苏教版五年级数学下册知识点及重点题型
【精品】苏教版数学五年级下册知识点归纳总结(全册)
苏教版五年级(下册)数学知识要点归纳第一单元简易方程1、表示相等关系的式子叫做等式。
含有未知数的等式是方程。
例:x+50=150、2x=200方程一定是等式;等式不一定是方程。
3、等式的性质:①等式两边同时加上或减去同一个数,所得结果仍然是等式。
②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。
4、使方程左右两边相等的未知数的值叫做方程的解。
求方程中未知数的过程,叫做解方程。
5、解方程60-4X=20,解4X=60-204X=40X=10检验: 把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解。
方程左边=60-4×10=20=方程右边,所以X=10是方程的解。
6、解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答。
注意:解完方程,要养成检验的好习惯。
第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
苏教版五年级下册数学知识点汇总
苏教版五年级下册数学知识点汇总第一单元:方程•等式的性质:•理解等式的意义,掌握等式的基本性质(等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘或除以同一个不为0的数,等式仍然成立)。
•简易方程:•初步理解方程的意义,知道方程是含有未知数的等式。
•学会用等式的性质解简易方程(如ax=b,a≠0;ax±b=c等形式),并会检验。
•列方程解决实际问题:•学习根据题目中的等量关系列方程解决简单的实际问题,如和差倍问题、简单的行程问题等。
第二单元:折线统计图•折线统计图的认识:•认识折线统计图,理解折线统计图的特点(能清楚地看出数量的增减变化情况)。
•绘制折线统计图:•学会根据统计表中的数据绘制折线统计图,注意标出图例、单位等。
•分析折线统计图:•能根据折线统计图中的数据进行分析,预测趋势,解决简单问题。
第三单元:因数与倍数•因数与倍数的概念:•理解因数与倍数的概念,知道一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
•找因数与倍数的方法:•掌握找一个数的因数和倍数的方法,学会用列举法找出一个数的所有因数或倍数。
•2、3、5的倍数的特征:•掌握2、3、5的倍数的特征,并能运用这些特征进行判断或解决问题。
•质数与合数:•理解质数与合数的概念,知道1既不是质数也不是合数,会判断一个数是质数还是合数。
第四单元:分数的意义和性质•分数的意义:•进一步理解分数的意义,知道分数表示的是整体与部分的关系。
•分数与除法的关系:•理解分数与除法的关系,知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线,商相当于分数值。
•分数的基本性质:•掌握分数的基本性质(分数的分子和分母同时乘或除以同一个不为0的数,分数的大小不变)。
•约分与通分:•学会约分和通分的方法,能将分数化为最简分数或进行通分以便比较大小或进行加减运算。
苏教版五年级下册数学 第6单元 第13招 圆的周长解题技巧 知识点梳理重点题型练习课件
所示的方向爬到B点。若甲、乙两只小虫的速度相同,
甲、乙两只小虫谁先爬到B点?
d1+d2=d3 甲的路程:(πd3)÷2
d2
d1
乙的路程: (πd1+πd2)÷2= π (d1+d2)÷2 d3
假设中半圆形的直径是4 cm,小半圆形的直径 是2 cm,则大半圆形的直径是4+2=6(cm)。 甲所爬的路程:3.14×6÷2=9.42(cm) 乙所爬的路程:3.14×4÷2+3.14×2÷2=9.42(cm) 9.42=9.42 答:甲、乙两只小虫同时爬到B 点。
规范解答:3.14×10+10×4=71.4(cm) 圆的周长 正方形的周长
答:捆扎一圈需要绳子71.4 cm。
技 巧 1 转化
1.如图,等边三角形空白部分是三个相同的扇形, 等边三角形的边长是20 cm。阴影部分的周长是 多少厘米?
直径为20cm圆的周长的一半 3.14×20÷2=31.4(cm)
2.求阴影部分的周长。 阴影部分的周长是直径为12 cm 的 圆的周长与正方形两条边长的和。
3.14×12+12×2=61.68(cm) 答:阴影部分的周长是61.68 cm。
12cm
12cm
技 巧 3 分割
3.如图,求阴影部分的周长。(单位:cm)
技 巧 4 设数
4.如图,甲、乙两只小虫同时从A点出发,分别沿箭头
SJ 五年级下册
第13招 圆的周长解题技巧
学习第6单元后使用
在解答圆的周长的问题时,首先要能熟练地运用 公式进行计算,其次在遇到有关圆的组合图形的周长 计算时,要能巧妙地运用“转化”“拼补”“分割”等技巧 将不规则图形转化为规则图形进行解答。
经典例题
把4个直径是10 cm的圆柱形瓶子捆扎在一起,截面 如图所示,捆扎一圈需要绳子多少厘米?(接头处 忽略不计)
苏教版小学五年级下册数学总复习资料和知识重点
5、三角形 ( s:面积 a:底 面积 =底 ×高 ÷2 s=ah÷2
h:高)
三角形高 =面积 ×2÷底 三角形底 =面积 ×2÷高
6、平行四边形 ( s:面积 面积 =底 ×高 s=ah
a:底
h:高)
7、梯形 ( s:面积 a:上底 b:下底 面积 =( 上底 +下底 ) ×高 ÷2 s=(a+b) ×h ÷2
3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用 符号 ( , ) 。两个数的公因数也是有限的。
注意:解完方程,要养成检验的好习惯。
4、两个素数的积一定是合数。举例: 3×5=15, 15 是合数。
6、五个连续的自然数 (或连续的奇数,连续的偶数 )的和,等于中间的一个数的 然数 (或连续的奇数,连续的偶数 )的和 ÷个数 =中间数
5 数的整除
整数 a 除以整数 b(b ≠ )0,除得的商是整数而没有余数,我们就说
a 能被 b 整除,或者说b 能整除 a 。
如果数 a 能被数 b( b ≠ 0)整除, a 就叫做 b 的倍数, b 就叫做 a 的约数(或 a 的因数)。倍数和约数是相
互依存的。
因为 35 能被 7 整除,所以 35 是 7 的倍数, 7 是 35 的约数。
例如把 28 分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如
12 的
特殊关系的数 (两个都是合数, 一个是奇数, 一个是偶数, 但他们之间只有一个公因数 4 和 15、 10 和 21,最大公因数是 1,最小公倍数是它们的乘积。
1),比如 4 和 9、
一般关系的两个数, 求最大公因数用列举法或短除法, 求最小公倍数用大数翻倍法或短除法。 本 31 页内容 )
苏教版五年级下册数学总复习知识点回顾(提纲+练习)
苏教版五年级下册数学总复习知识点回顾(提纲+练习) 第一单元方程1、左右两边相等关系的式子叫做等式。
(通俗的说就是含有“=”号的式子就是等式。
) 2、含有未知数的等式是方程。
[注:(判断题)含有未知数的式子是方程(?)] 3、(背诵)方程一定是等式;等式不一定是方程。
4、等式的性质。
(1)等式两边同时加上或减去同一个数,所得结果仍然是等式。
(2)等式两边同时乘或除以同一个(不等于0)的数,所得结果仍然是等式。
用途:解方程5、求方程中未知数的过程,叫做解方程。
解方程时常用的关系式:加法:加数+加数=和和-一个加数=另一个加数减法:被减数-减数=差被减数-差=减数差+减数=被减数乘法:因数×因数=积积÷一个因数=另一个因数除法:被除数÷除数=商被除数÷商=除数商×除数=被除数注意:解完方程,要养成检验的好习惯。
6、3个、5个或7个连续的自然数(或连续的奇数,连续的偶数)它们的和=中间的数×3、5或7。
中间的数=连续数的和÷3、5或7 (个数为奇数)比如:1、2、3、4、5 1+2+3+4+5=15 即:3×5=15 15÷5=3 又比如:6÷3=2 1、2、3 35÷5=7 3、5、7、9、11 7、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验G、作答。
第一单元相应练习题1、哪些是等式,哪些是方程,请填入相应的横线上。
(填序号) ①3+x=12 ②3.6+x ③ 4+17.5=21.5 ④48+x��63等式________________________;方程:________________________ 2、含有未知数的式子叫方程。
()【判断】 3、等式都是方程,方程都是等式。
1.简易方程-苏教版五年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)
苏教版五年级下册数学期末复习专题讲义-1.简易方程【知识点归纳】1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示。
④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答。
【典例讲解】例1.已知平行四边形的周长是44厘米,它的一边长是a厘米,则与该边相邻的边长是()厘米.A.44﹣a B.(44﹣a)÷2C.44÷2﹣a【分析】平行四边形对边相等,周长是44厘米,则相邻的两边之和是44÷2=22cm,它的一边长是a厘米,则与该边相邻的边长是(22﹣a)cm,据此解答即可.【解答】解:44÷2﹣a=(22﹣a)cm答:与该边相邻的边长是(22﹣a)cm.故选:C.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.例2.如果a=3,那么a2+6等于15.【分析】把a=3,代入a2+6即可求出它的值.【解答】解:a=3时,a2+6=3×3+6=15答:如果a=3,那么a2+6等于15.故答案为:15.【点评】此题考查了用字母表示数以及求值的方法,关键是弄清题中字母所表示的含义,再进一步解答.例3.因为2+2=2×2,所以x+x=x×x.×(判断对错)【分析】当x=3时,x+x=6,x×x=9,二者不相等,直接判断即可.【解答】解:当x=3时,x+x≠x×x,所以原题说法错误;故答案为:×.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.例4.解方程.4x+7=23﹣4x2(2x﹣5)=14【分析】(1)根据等式的性质,方程的两边同时加上4x,把方程化为8x+7=23,方程的两边同时减去7,然后方程的两边同时除以8求解;(2)根据等式的性质,方程的两边同时除以2,方程的两边同时加上5,然后方程的两边同时除以2求解.【解答】解:(1)4x+7=23﹣4x4x+7+4x=23﹣4x+4x8x+7=238x+7﹣7=23﹣78x=168x÷8=16÷8x=2(2)2(2x﹣5)=142(2x﹣5)÷2=14÷22x﹣5=72x﹣5+5=7+52x=122x÷2=12÷2x=6【点评】本题考查解方程,解题的关键是掌握等式的性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立.例5.读唐代古诗.望庐山瀑布[唐]李白日照香炉生紫烟,遥看瀑布挂前川.飞流直下三千尺,疑是银河落九天.(1)若唐代的一尺相当于现在的a米,诗中的三千尺相当于现在的3000a米.(2)如果唐代的千尺约为现在的307米,那么a约代表多少?【分析】(1)若唐代的一尺相当于现在的a米,诗中的三千尺相当于现在的3000×a=3000a米;(2)唐代的千尺约为现在的307米,则一尺相当于307÷1000=0.307米,即a约代表0.307米.【解答】解:(1)3000×a=3000a(米)答:诗中的三千尺相当于现在的3000a米.(2)307÷1000=0.307(米)答:a约代表0.307米.故答案为:3000a.【点评】解答此题的关键是正确找出题中数据的关系,再灵活选用乘法或除法解答.【同步测试】一.选择题(共10小题)1.如图,可以看出在解方程时运用了()A.商不变的规律B.等式的性质C.乘数=积÷另一个乘数2.笑笑打算从273里连续减去13,要计算减去多少次后结果还是13.下列方程错误的是()A.273﹣13x=13B.13x=273﹣13C.13x=273D.13x+13=2733.一位同学在计算a+235时,把235当做23.5,那么()A.和增加10倍B.和减少10倍C.和减少了235﹣23.54.5x﹣3错写成5(x﹣3),结果比原来()A.多12B.少12C.多35.与a2表示的意义一样的是()A.a×a B.a+a C.2a D.a+26.根据方程3 x﹣6=18的解,得到5x﹣6=()A.4B.8C.14D.347.五(1)班有学生48名,男生有(48﹣m)名,这里的m表示()A.男生人数B.女生人数C.全班人数D.男生和女生相差的人数8.当()时,a的倒数大于a.A.a>1B.a=1C.0<a<19.一个两位数,十位上的数字是a,个位上的数字是b,这个两位数是()A.a+b B.10a+b C.a+10b10.下面的式子中,()是方程.A.3x﹣2B.0.8x+2>5C.﹣x=二.填空题(共8小题)11.a×5×b用简便方法写成,m×m×1用简便方法写成.12.每千克苹果是m元,妈妈买了8千克,付给售货员30元,应找回元.13.笑笑家一年水电支出a元,平均每月水电支出元.14.粮库有m吨大米,每小时运走n吨,4.5小时后还剩吨.15.丁丁今年12岁,妈妈今年36岁,妈妈比丁丁大岁.如果用A表示丁丁的年龄,用表示妈妈的年龄比较合适.16.一辆小汽车每小时行x千米,一列火车的速度比它的3倍多16千米,这列火车每小时行千米;如果x=58,火车的速度是千米/时.17.如果x+4=7,那么3x+12=.18.京张高速铁路是2022年北京冬奥会重要交通保障设施之一,全长174km,其中北京境内长akm,剩余都在河北境内.如果高铁以每小时350km的速度行驶,高铁在河北境内需要开小时.三.判断题(共5小题)19.x=16是方程x×6﹣4=32的解.(判断对错)20.x=6.8是方程x﹣1.2=8的解.(判断对错)21.a2表示两个a相乘,当a=2时,a2=2a.(判断对错)22.a+1和a﹣1可以分别表示和自然数a(a≠0)相邻的两个自然数.(判断对错)23.如果2a=3b(a、b不等于0),那么a<b.(判断对错)四.计算题(共1小题)24.解方程.2x÷3=96x+18=488﹣4x=4五.应用题(共7小题)25.为了庆祝国庆节,学校手工社团计划做360面小彩旗.(1)如果每天做x面,3天后还剩下多少面小彩旗没有做?(2)当x=85时,用上面的式子求还剩下多少面小彩旗没有做.26.学校买来m个足球,单价是40元/个;又买来n个篮球,单价是25元/个.(1)用含有字母的式子表示学校买这些球一共花了多少元?(2)当m=5,n=3时,学校买这些球一共花了多少元?27.利民蔬菜公司用来a车蔬菜,每车装5吨,供应给菜场45吨.(1)用含有字母的式子表示剩下的吨数.(2)当a=14时,求剩下多少吨蔬菜.28.小军步行去游乐场,上坡用了6分钟,平均每分钟走a米;下坡用了5分钟,平均每分钟走b米.当a =40,b=50时,小军一共走了多少米?29.如图,一张长方形纸长16厘米,宽m厘米.用这张纸剪一个最大的正方形.(1)用式子表示剩下部分的面积.(2)当m=10时,剩下部分的面积是多少平方厘米?30.幸福小学四、五年级同学星期天参加义务劳动,四年级去了a人、五年级去的人数是四年级的1.2倍.先用含有字母的式子表示四、五年级一共去的人数,再计算,当a=80时,四、五年级一共去了多少人?31.一辆大客车和一辆小轿车从甲地同时出发,沿同一条公路开往乙地.大客车每小时行驶x千米,小轿车每小时行驶120千米.2.5小时后,小轿车到达乙地,大客车没有到达.(1)用含有字母的式子表示这时大客车离乙地还有多少千米?(2)当x=80时,大客车离乙地还有多少千米?参考答案与试题解析一.选择题(共10小题)1.【分析】根据等式的性质,方程两边同时除以4求解.【解答】解:4y=20004y÷4=2000÷4y=500解方程时运用了等式的性质;故选:B.【点评】此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐..2.【分析】设笑笑要连续减去x次,连续减去x次13是13x,根据从273里减去13x次后结果还是13,列出方程求解即可.【解答】解:设笑笑要连续减去x次,可列方程,273﹣13x=13,13x=273﹣13,13x+13=273所以方程错误的是13x=273;故选:C.【点评】完成本题要注意分析题目中数量之间的关系,然后列出方程解答即可.3.【分析】把235当作23.5来加就是少加了235﹣23.5=211.5,就是和减少了211.5,据此选择.【解答】解:一位同学在计算a+235时,把235当做23.5,那么和减少了(235﹣23.5);故选:C.【点评】解答本题关键是理解:把235当作23.5来加就是少加了(235﹣23.5).4.【分析】根据题意知道,用5(x﹣3)减去5x﹣3,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:5(x﹣3)﹣(5x﹣3)=5x﹣15﹣5x+3=﹣12答:把5x﹣3错写成5(x﹣3),结果比原来少12,故选:B.【点评】注意括号前面是减号,去掉括号时,括号里面的运算符合要改变.5.【分析】根据乘法的意义可知:a2=a×a,而B项a+a=2a,C项2a也等于a+a,D项a+2是字母与数字相加,没有其它的表达形式,据此解答即可.【解答】解:由分析可知,与a2表示的意义一样的是a×a;故选:A.【点评】此题考查了用字母表示数,解答此题应注意乘法的意义的灵活应用.6.【分析】根据等式的性质,先求出方程3x﹣6=18的解,然后再代入5x﹣6进行求值.【解答】解:3x﹣6=183x﹣6+6=18+63x=243x÷3=24÷3x=8把x=8代入5x﹣6可得:5×8﹣6=40﹣6=34故选:D.【点评】本题关键是根据等式的性质,先求出方程的解,然后再代入含有字母的式子进行解答.7.【分析】因为班级里所有学生人数包括男生和女生,则男生人数=全班人数﹣女生人数=48﹣m,所以m表示女生人数.【解答】解:因为男生人数=全班人数﹣女生人数=48﹣m,所以m表示女生人数.故选:B.【点评】解题关键是明确:男生人数=全班人数﹣女生人数,据此可知字母表示的意义.8.【分析】当一个数大于0且小于1时,它的倒数大于这个数;当一个数大于1时,这个数的倒数一定小于这个数;据此解答即可.【解答】解:由分析得出:当0<a<1时,a的倒数大于a.故选:C.【点评】此题考查的目的是使学生理解倒数的意义,掌握求一个数的倒数的方法.9.【分析】用十位上的数字乘10,加上个位上的数字,即可表示出这个两位数.【解答】解:因为十位数字为a,个位数字为b,所以这个两位数可以表示为10a+b.故选:B.【点评】此题考查了用字母表示数,以及两位数的表示方法.两位数字的表示方法:十位数字×10+个位数字.10.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行选择.【解答】解:A、只是含有未知数的式子,不是等式,不是方程;B、只是含有未知数的不等式,不是等式,不是方程;C、既含有未知数又是等式,具备了方程的条件,因此是方程;故选:C.【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.二.填空题(共8小题)11.【分析】用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写;或用“•”(点)表示.字母和数字相乘时,省略乘号,并把数字放到字母前;“1”与任何字母相乘时,“1”省略不写.据此解答即可.【解答】解:a×5×b用简便方法写成5ab,m×m×1用简便方法写成m2.故答案为:5ab,m2.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.12.【分析】根据总价=单价×数量,妈妈买了8千克,苹果的总价是8×m=8m元,付给售货员30元,应找回(30﹣8m)元.【解答】解:30﹣8×m=(30﹣8m)元答:应找回(30﹣8m)元.故答案为:(30﹣8m).【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.13.【分析】求平均每个月水电支出多少元,根据:总价÷数量=单价,由此带入解答即可.【解答】解:笑笑家一年水电支出a元,平均每月水电支出(a÷12)元.故答案为:(a÷12).【点评】明确总价、数量和单价之间的关系,是解答此题的关键.14.【分析】每小时运走的吨数(n吨)乘运的时间(4.5小时)就是运走的吨数,用总吨数(m吨)减去运走的吨数就剩下的吨数.【解答】解:m﹣n×4.5=m﹣4.5n(吨)答:粮库有m吨大米,每小时运走n吨,4.5小时后还剩m﹣4.5n吨.故答案为:m﹣4.5n.【点评】此题是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.15.【分析】先用妈妈的年龄减去丁丁的年龄等于妈妈比丁丁大的岁数;然后用丁丁的年龄加上妈妈比丁丁大的岁数即可求出妈妈的年龄.【解答】解:6﹣12=24(岁),妈妈比丁丁大24岁;如果用A表示丁丁的年龄,用(A+24)表示妈妈的年龄比较合适.故答案为:24,(A+24).【点评】解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.16.【分析】根据火车的速度比小汽车的3倍多16千米,所以火车每小时行的路程为:3×小汽车每小时行的路程+16;再把x=58代入算式解答即可.【解答】解:因为汽车每小时行x千米,火车的速度比小汽车的3倍多16千米,所以火车每小时行(3x+16)千米;当x=58时3x+16=3×58+16=174+16=190(千米/时)答:这列火车每小时行(3x+16)千米;如果x=58,火车的速度是190千米/时.故答案为:(3x+16),190.【点评】本题考查了用字母表示数以及含字母式子的求值,做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.17.【分析】首先把3x+12化成3(x+4),然后把x+4=7代入3(x+4),求出算式的值是多少即可.【解答】解:因为x+4=7,所以3x+12=3(x+4)=3×7=21故答案为:21.【点评】此题主要考查了方程的解和解方程,要熟练掌握,解答此题的关键是把所求的算式灵活变形.18.【分析】由题意可知,京张高速铁路全长174km,其中北京境内长akm,剩余都在河北境内.河北境内的高铁长度(174﹣a)千米,然后再运用路程速度时间之间的数量关系进行解答即可.【解答】解:(174﹣a)÷350(小时)答:高铁在河北境内需要开(174﹣a)÷350小时.故答案为:(174﹣a)÷350.【点评】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式.三.判断题(共5小题)19.【分析】依据等式的性质,方程两边同时加上4,再同时除以6求解,再判断即可解答.【解答】解:x×6﹣4=32x×6﹣4+4=32+4x×6=36x×6÷6=36÷6x=6所以x=16是方程x×6﹣4=32的解,计算错误;故答案为:×.【点评】解方程时要注意:(1)方程能化简先化简,(2)等号要对齐.20.【分析】依据等式的性质,方程两边同时加上1.2求解,再进行判断解答.【解答】解:x﹣1.2=8x﹣1.2+1.2=8+1.2x=9.2所以x=6.8是方程x﹣1.2=8的解,说法错误;故答案为:×.【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.21.【分析】根据题意,当a=2时,把a=2分别代入a2与2a,求出值再比较解答.【解答】解:当a=2时;a2=2×2=4;2a=2×2=4;所以a2=2a.所以,原题说法正确.故答案为:√.【点评】此题考查了用字母表示数,把a表示的数代入即可得出结论.22.【分析】根据自然数的排列规律,相邻的自然数相差1,与自然数a(a≠0)相邻的两个自然数是a+1和a﹣1.【解答】解:与自然数a(a≠0)相邻的两个自然数是a+1和a﹣1;故答案为:√.【点评】此题考查的目的是理解自然数的意义,掌握自然数的排列规律.明确:相邻的自然数相差1.23.【分析】由题意知2a=3b(a、b不等于0),要比较a、b两数的大小,可比较另外两个数的大小,根据“积一定的情况下,一个因数小则另一个因数就大”,据此判断.【解答】解:如果2a=3b(a、b不等于0),因为2<3,所以a>b,因此如果2a=3b(a、b不等于0),那么a<b,这种说法是错误的.故答案为:×.【点评】解答此题要明确:积(0除外)一定的情况下,一个因数小则另一个因数就大.四.计算题(共1小题)24.【分析】(1)根据等式的性质,方程的两边同时乘上3,然后方程的两边同时除以2求解;(2)根据等式的性质,方程的两边同时减去18,然后方程的两边同时除以6求解;(3)根据等式的性质,方程的两边同时加上4x,把方程化为4+4x=8,方程的两边同时减去4,然后方程的两边同时除以4求解.【解答】解:(1)2x÷3=92x÷3×3=9×32x=272x÷2=27÷2x=13.5(2)6x+18=486x+18﹣18=48﹣186x=306x÷6=30÷6x=5(3)8﹣4x=48﹣4x+4x=4+4x4+4x=84+4x﹣4=8﹣44x=44x÷4=4÷4x=1【点评】本题考查解方程,解题的关键是掌握等式的性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立.五.应用题(共7小题)25.【分析】(1)用每天做的面数乘3,求出已经做的面数,再与总面数作差即可;(2把x=85,代入上面(1)中的代数式解答即可.【解答】解:(1)360﹣x×3=360﹣3x(面)答:如果每天做x面,3天后还剩下(360﹣3x)面小彩旗没有做.(2)当x=85时,360﹣3x=360﹣3×85=360﹣255=105(面)答:还剩下105面小彩旗没有做.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,明确数量之间的关系,然后根据题意列式计算即可得解.26.【分析】(1)根据“总价=单价×数量”分别求出买足球、篮球的钱数,再把二者相加.(2)把(1)中用含有字母m、n的表示买这两种球一共要付的钱数的式子中的m、n用5、6代换,计算即可.【解答】解:(1)m×40+25×n=40m+25n(元)答:学校买这两种球一共要付的钱数是(40m+25n)元.(2)当m=5,n=3时,40m+25n=40×5+25×3=200+75=275(元)答:一共要付275元.【点评】此题主要是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;会根据字母的取值,求含有字母式子的值.注意:数字与字母相乘时,数字因数写在字母因数的前面,并省略乘号.27.【分析】(1)用每车的质量乘辆数求出求出总吨数,再减去45吨就是剩下的吨数.(2)当a=14时,把它代入问题(1)的式子求出求剩下多少吨蔬菜即可.【解答】解:(1)用含有字母的式子表示剩下的吨数是:(5a﹣45)吨.(2)当a=14时,5a﹣45=5×14﹣45=25(吨)答:剩下25吨蔬菜.【点评】在数学中,我们常常用字母来表示一个数,然后通过四则运算求解出那个字母所表示的数.含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值.28.【分析】用每分钟走的路程×时间分别计算出上下坡走的路程,再相加就是小军一共走的路程,再将将数值代入算式计算即可.【解答】解:a×6+b×5=6a+5b(米)当a=40,b=50时,6a+5b=6×40+5×50=240+250=490(米)答:小军一共走了490米.【点评】本题考查了速度、时间和路程的关系的运用以及含字母式子的求值.29.【分析】(1)在这张长方形纸上剪下的最大正方形的边长等于这张长方形纸的宽m厘米,根据长方形的面积计算公式“S=ab”求出原长方形的面积,再根据正方形的面积计算公式“S=a2”求出剪去的最大正方形的面积,二者相减即可.(2)当m=10时,把(1)求出含有字母b的表示剩下部分面积的式子,经过计算即可求出剩下部分的面积.剩下部分还是一个长方形,长为原来的宽m厘米,宽为(16﹣m)厘米,根据长方形的面积计算公式“S =ab”即可求得剩下部分的面积.也可用【解答】解:(1)16×m﹣m2=16m﹣m2(平方厘米)(2)当m=10时16m﹣m2=16×10﹣102=160﹣100=60(平方厘米)答:剩下部分的面积是60平方厘米.【点评】此题主要是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;会根据字母的取值,求含有字母式子的值.30.【分析】先用四年级的人数乘上1.2求出五年级的人数,再把四五年级的人数相加;再把a=80代入计算即可求解.【解答】解:a+a×1.2=2.2a(人)当a=80时,2.2a=2.2×80=176答:四、五年级一共去的人数是2.2a人,当a=80时,四、五年级一共去了176人.【点评】解决本题关键是理解倍数关系:已知一个数,求它的几倍是多少,用乘法计算.31.【分析】(1)根据“小轿车每小时行驶120千米,2.5小时后到达乙地”,可知从甲地到乙地的总路程是120×2.5千米,根据“大客车每小时行驶x千米,行驶了2.5小时”,可知大客车一共行驶了2.5x 千米,据此用甲地到乙地的总路程减去大客车2.5小时行驶的2.5x千米,就是这时大客车离乙地还有的千米数;(2)把x=80代入含字母的式子,计算即可求得大客车离乙地还有的千米数.【解答】解:(1)120×2.5﹣x×2.5=300﹣2.5x(千米)答:这时大客车离乙地还有(300﹣2.5x)千米.(2)当x=80时300﹣2.5x=300﹣2.5×80=300﹣200=100(千米)答:大客车离乙地还有100千米.【点评】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式;也考查了含字母的式子求值的方法.。
2019年新苏教版五年级数学下册知识点归纳总结(含题型归纳)
2019年新苏教版五年级数学下册知识点归纳总结(含题型归纳)本文介绍了新苏教版五年级数学下册第一单元(简易方程)的知识点和题型归纳总结。
第一部分讲解了等式与方程的概念,明确了含有未知数的等式是方程,方程一定是等式,等式不一定是方程。
通过例题的方式让学生掌握如何判断一个式子是否为方程。
第二部分介绍了等式的性质,包括等式两边同时加减乘除同一个数仍然是等式。
通过填空题让学生巩固掌握等式的性质。
第三部分讲解了解方程的概念和步骤,通过例题让学生掌握如何解方程。
第四部分介绍了列方程解应用题的步骤,通过面积、和差倍分、平均量等类型的问题让学生掌握如何应用所学知识解决实际问题。
最后,本文对每部分的内容进行了简要总结。
8) 学校购买了10盒乒乓球,花费60元,找回5元,每盒乒乓球的价格是多少?9) ___购买了2本笔记本和5支圆珠笔,总共花费7.5元,每支圆珠笔的价格是0.5元,每本笔记本的价格是多少元?10) 香蕉的价格是每千克4.50元,梨的价格是每千克4元,___的妈妈购买了4千克香蕉,付了30元,剩下的钱用来购买梨,可以购买多少千克?11) 甲、乙两地相距300千米,一辆汽车从甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行驶多少千米?12) 两个城市相距480千米,甲、乙两辆汽车同时从两个城市相对行驶,3小时后两辆车相遇,已知甲车每小时行驶85千米,乙车每小时行驶多少千米?13) 甲、乙两辆车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙每小时各行驶多少千米?14) 新岭要修建一条长3300米的公路,甲、乙两个工程队同时施工,15天完成,甲队每天修建125米,乙队每天修建多少米?15) 两个施工队开凿一条长270米的隧道,甲施工队每天开凿15米,乙施工队平均每天开凿12米,需要多少天才能开凿完?(用两种方法解答)16) 三个连续自然数的和为153,这三个自然数分别是多少?17) 三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲、乙、丙三个数各是多少?第二单元(折线统计图)1、复式折线统计图不仅能显示数量的多少和数量增减变化情况,还便于比较两组相关数据。
苏教版小学数学五年级下学期精品课件-《第一单元知识点梳理与练习》
拓展练习
练习3: 明明买了1支钢笔和4张贴纸,君君买了1支钢笔和 6支铅笔,两人用去的钱同样多。如果买1支钢笔 和3支铅笔用去的钱同样多,那么1支钢笔的价钱 等于几张贴纸的价钱?
思考:可以先列出等式,再使用等式的性质试试。
1支钢笔的钱+4张贴纸的钱=1支钢笔的钱+6支铅笔的钱
C. 2x-4=20
D.3x+8=23
第一单元知识点梳理与练习(2)
苏教版 五年级数学下册
知识点梳理
等式 方程
等式
方程
方程的解 解方程
列方程解决 实际问题
等式的性质
一般步骤
校园里有75棵松树,是柏树棵数的3倍,校园里有多少棵柏树?
75÷3=25(棵)
弄清题意 找等量关系 列方程求解
检验结果
柏树棵数×3=松树棵数
小英的路程+小婷的路程=总路程 速度和×相遇时间=总路程
解:设x秒后两人相遇。
6x+4x=100
(6+4)x=100
10x=100
10x=100
x=100÷10
x=100÷10
x=10
x=10
答:10秒后两人相遇。
稍复杂实际问题
4、甲乙两车同时从同一地点向相反方向开去,甲车每小时行 62千米,乙车每小时行54千米。几小时后两车相距174千米?
4、小刚今年x岁,小红今年(x+3)岁。再过10年,他们相差 ( )岁。
A. x+3 B. 3 C. x
5、甲、乙两筐苹果,甲筐重32千克,乙筐重x千克。从甲 筐拿4千克放入乙筐,两筐苹果就一样重。下列方程中,正 确的是( )。
苏教版五年级下册数学知识点归纳
苏教版五年级下册数学知识点归纳以下是苏教版五年级下册数学知识点的归纳:一、数的认识1. 整数的认识:正整数、负整数、零、相反数、绝对值等概念。
2. 分数的认识:分数的定义、分数的大小比较、分数的化简、分数的加减乘除等运算。
3. 小数的认识:小数的定义、小数的读法、小数和分数的转换。
4. 百分数的认识:百分数的定义、百分数的意义、百分数的转化、百分数的计算等。
二、数的运算1. 加、减、乘、除的运算,并能结合实际情境来进行解决问题。
2. 多位数的加、减、乘、除。
3. 小数的加、减、乘、除,并能结合实际情境进行解决问题。
4. 分数的加、减、乘、除。
5. 分数和整数的混合运算。
6. 取余数和商、分辨被除数、除数、商、余数的大小关系。
三、图形的认识1. 命名、比较、解读简单图形的性质:如线段、角、三角形、四边形、多边形等。
2. 通过测量和估算,能获取图形的长度、面积、周长等信息,了解相应的计算方法。
3. 理解几何图形的对称性和相似性,能够通过等距离变换、比例变换、旋转变换等对图形进行变换操作并且判断相应的变换关系。
4. 能够捏造一些简单的图形,从而使其满足一些要求。
四、简单方程1. 学习解一步一元一次方程。
2. 通过研究具体问题并利用代数符号建模,发现模式并提出问题。
3. 利用各种方法破解问题,发掘问题本质特征。
五、数据的处理1. 理解样本的性质、固定时间样本和间断时间样本的不同,以及样本和总体的关系。
2. 准确把握和解读直方图、折线图、饼图等不同形式的统计图表。
3. 利用统计图表进行数据的整体比较、分类统计以及趋势预测等操作。
总之,苏教版五年级下册数学知识点包括数的认识、数的运算、图形的认识、简单方程和数据的处理,这些知识点的掌握是学生成功学习数学的重要基础。
五年级下册数学试题重难点题型和易错题 苏教版
五年级期末复习:十大易错重难点【问题1】小强用一根10米长的绳子绕一棵树干3圈后,还剩下0.58米。
这棵树干横截面的面积是多少平方米?【问题2】一个挂钟,钟面上的时针长5厘米。
这根时针的尖端一昼夜所划过的路线,一共有多少厘米?【问题3】一根蜡烛第一次烧掉全长的1/5,第二次烧掉剩下的一半。
这根蜡烛还剩下全长的几分之几?【问题4】有12支铅笔,平均分给2个同学。
每支铅笔是铅笔总数的每人分得的铅笔是总数的。
【问题5】一瓶油重千克,第一个星期吃了千克,第二个星期吃了千克。
这瓶油比原来少了多少千克?【问题6】图中正方形的面积是8平方厘米,你能算出黄色部分的面积吗?【问题7】小明、小华和小芳各做一架航模飞机,小明用了小时,小华用了小时,小芳用了0.8小时。
()做得更快。
【问题8】一个直径为6米的圆形花坛,在它的周围铺设一条2米宽的小路。
求这条小路的面积。
【问题9】判断:半径2厘米的圆,周长与面积相等。
()【问题10】一块草坪被4条1米宽的小路平均分成了9小块。
草坪的面积是多少平方米?五年级易错题1、解方程:7.5÷x=0.252、用96朵红花和72朵黄花做花束,如果每个花束里的红花同样多,每个花束里的黄花也同样多,那么最多能做几束花?每束花里有红花几朵,黄花几朵?3、同一种零件,小张12小时可以做7个,小王6小时可以做13个,小赵8小时可以做19个,谁做得最快?4、小红、小兰、小华各看一本180页的故事书。
现在小红还剩没看,小兰看了全书的,小华还剩没看。
三人中谁看的页数多?5、在下图中涂色,表示出千克。
6、半径是2厘米的圆,周长和面积比较,( )。
A.相等B.无法比较C.面积比周长大7、把8米长的绳子平均分成5段,每段占全长的,每段长米。
8、在一个周长是40厘米的正方形上剪下一个最大的圆,剩下的图形面积是多少平方厘米?9、下图中小正方形的面积是20平方厘米,圆的面积是多少平方厘米?语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。
苏教版五年级下册数学期末重点复习
苏教版五年级下册数学期末重点复习一,知识点整理:1,方程:解方程和方程的解2,确定位置3,最小公倍数和最大公因数4,认识分数5,异分母分数的加减法6,找规律…7,统计和解决问题的策略8,圆:圆的位置,大小,面积,周长,半圆的面积和周长,圆环的面积二,经典例题:例1, 有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形?在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余。
一共可以裁出多少个这样的正方形?%例2:把3米长的铁丝平均截成8段,每段长( )( ) 米,每段长是3米的( )( ) 。
一块3公顷的菜地平均分成8份,每份占这块菜地的( )( ) ,每份是( )( ) 公顷。
5米的19 和1米的( )( ) 相等,例3:把一根铁丝平均剪成15段,用去5段,剩下的占全长的几分之几~洗衣机厂计划25天生产1200台洗衣机,实际提前5天就完成了任务,实际每天完成了这项任务的几分之几?三:课堂练习1、A 是B 倍数,那么它们的最小公倍数是( )。
A 、AB B 、AC 、B2、两个数的最大公因数是15,最小公倍数是90,这两个数一定不是( )。
A 、15和90B 、45和90C 、45和303,54的分子加上12,要使分数的大小不变,分母应该加上( )\4、把两根长度分别是120厘米和180厘米的铁丝,截成长度相等的小段,每根都不能有剩余。
每小段最长多少厘米?5,三个连续的奇数的和是57,中间的数是M ,你能列方程求M 的值吗?6,小明和小红共有邮票50张,如果小明给小红8张,那么两人的邮票张数相等,小明原来有多少张?7,一个正方形的周长与一个圆的周长相等,已知正方形的边长是6.28厘米,圆的半径是多少厘米?·8,一个长方形纸的长是20厘米,周长是60厘米,在这张纸上剪下一个最大的圆,这个圆的周长是( )厘米,面积是( )平方厘米。
苏教版五年级下册数学 3-4 质数与合数 知识点梳理重点题型练习课件
知识点2 质数和合数的意义的运用 2.分一分,将下列各数填入指定的框里。
1 13 25 41 51 19 91 52 83 61 89 71 87 49 24 282
13 41 19 83 61 89 71
25 51 91 52 87 49 24 282
3.选一选。
(1)2、3、5、7 都是( A )。
A. 质数
B. 合数 C. 因数
(2)两个质数的积一定是( B ) 。
A. 质数
B. 合数 C. 奇数
D. 奇数 D. 偶数
(3) 两位数的质数中,个位上的数字和十位上的数字
交换位置后还是质数的数有( D )个。
A. 3
B. 5
C. 8
D. 9
(4)在1~100 的自然数中,如果有a 个质数,那么就有
( A )个合数。
A. 99-a
B. 98-a
C. 100-a
D. 101-a
易错点 对相关概念理解不透彻导致误判
4.判断。 (1)质数都是奇数,偶数都是合数。
()
辨析:2 是质数,也是偶数。
(2)两个质数的和一定是合数。
()
辨析:两个质数的和不一定是合数,如:
2+3=5,5 是质数。
(3)三个连续的自然数中,至少有一个数是合数。 ()
苏教版数学五年级下册课件
第4课时 质数与合数
3 因数与倍数
基础导学练
知识点1 质数和合数的意义 1.填一填。
(1) 7 有( 2 )个因数,13 有( 2 )个因数。像7 和 13 这样只有( 2 )个因数的数是质数。
小学数学苏教版-五年级下-第一单元-《简易方程》学习重点、章节练习及解析
小学数学苏教版-五年级下-第一单元-《简易方程》一、知识点(一)方程的定义及性质1.定义:含有未知数的等式是方程。
2.性质:(1)等式两边同时加上或减去同一个数,所得结果仍然是等式;(2)等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式;3.使方程左右两边相等的未知数的值叫做方程的解,求方程的解的过程叫做解方程。
(二)列方程需要注意的问题列方程解决实际问题:(1)先弄清题意,找出未知量,并用字母表示;(2)要根据题中数量之间的相等关系列方程;(3)求出答案后,还要检验结果是否正确;(4)应用学过的公式、数量关系式或者画图,可以帮助我们寻找等量关系。
二、练习题(一)选择题1.下面式子中,()是方程.A.x+3B.4÷5=0.8C.0.8y+1=7D.10-x>22.下面各式中,()不是方程.A.3x+5x+1=8+1B.2.8+5x=12.8C.3.4x=0D.2x+4<243.a-b=4,7-x=5,5x>6,7y=35,67+a=77这几个式子中有()个方程.A.2B.3C.44.小亮比小强大2岁,比小花小4岁,如果小强是m岁,小花是()岁.A.m-2B.m+2C.m+4D.m+65.爸爸今年x岁,比舅舅大a岁,舅舅今年()岁.A.x+a B.x-a C.a-x6.与方程3x+8=68的解相同的是()A.12x=360B.8+2x=68C.15x=320-x7.方程3x=36的解与下面()的解相同.A.x+12=12B.12÷x=1C.2x+3=248.比x的3倍多1的数是4,列方程是()A.3x-1=4B.3-x=4C.3x+1=49.下面的x的值中,()是方程3x+5=20的解A.x=5B.x=6C.x=710.根据x+4.5=9判断下面()成立.A.x+4.5-5=9+4.5B.(x+4.5)×2=9×3 C.x+4.5-4.5=9-4.5(二)填空题11.一本书有A页,小明每天看18页,看了B天,还剩下页没有看.12.甲数是a,比乙数多5,乙数是.13.小明今年a岁,爸爸的年龄比他的3倍大b岁,爸爸今年岁.14.哪些是等式,哪些是方程.(填写序号)①x+5=40②20-10x③7a=14④160÷8=20⑤9x>80⑥5a⑦(n-2)×180=540等式有方程有.15.已知0.6x+8=20,那么5x-9=.16.按要求在横线上列方程.(1)5与b的和是24.(2)3个y的和是60.17.填上适当的数,使每个方程的解都是x=10x+=91x-=8.9x=5.1x÷=4(三)计算18.直接写出计算结果.x×3=3a+7a= 2.3t-1.3t=x+5.7x=m×m=0.84-0.4=9.6÷0.6=12.5×80=8.48÷0.8=1÷0.01×9.2=19.解方程.3x-48=72 5.9x-2.4x=7x÷2.6=0.84x-6=284x-2x=482x÷9=2520.三个连续整数的和是63,最小数为a,求这三个数.(列方程解答)三、答案及解析1.【答案】C【解析】A、x+3,只是含有未知数的式子,不是等式,不是方程;B、4÷5=0.8,只是等式,不含有未知数,不是方程;C、0.8y+1=7,既含有未知数又是等式,具备了方程的条件,因此是方程;D、10-x>2,虽然含有未知数,但它是不等式,也不是方程.2.【答案】D【解析】A、3x+5x+1=8+1,既含有未知数又是等式,具备方程的条件,因此是方程;B、2.8+5x=12.8,既含有未知数又是等式,具备方程的条件,因此是方程;C、3.4x=0,既含有未知数又是等式,具备方程的条件,因此是方程;D、2x+4<24,只是含有未知数的式子,不是等式,所以不是方程.3.【答案】C【解析】这几个式子中方程有:a-b=4,7-x=5,7y=35,67+a=77,共4个;故选:C.4.【答案】D【解析】m+2+4=m+6(岁).答:小花是(m+6)岁.故选:D.5.【答案】B【解析】舅舅比爸爸小a岁,所以用爸爸的年龄减a就是舅舅的年龄.舅舅今年(x-a)岁.6.【答案】C【解析】3x+8=68解:3x+8-8=68-83x=603x÷3=60÷3x=20A.把x=20代入12x=360,左边=12×20=240,右边=360,左边≠右边,所以它们的解不同;B.把x=20代入8+2x=68,左边=8+2×20=8+40=48,右边=68,左边≠右边,所以它们的解不同;C.把x=20代入15x=320-x,左边=15×20=300,右边=320-20=300,左边=右边,所以它们的解相同7.【答案】B【解析】3x=36解:3x÷3=36÷3x=12A.把x=12代入x+12=12,左边=12+12=24,右边=12,左边≠右边,所以它们的解不同;B.把x=12代入12÷x=1,左边=12÷12=1,右边=1,左边=右边,所以它们的解不同;C.把x=12代入2x+3=24,左边=2×12+3=27,右边=24,左边≠右边,所以它们的解不同。
苏教版五年级下册数学最大公因数最小公倍数易错题和重点题型
一、知识点整理:1、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的.一个数最小的倍数是它本身,没有最大的倍数.一个数倍数的个数是无限的.一个数最大的因数等于这个数最小的倍数.2、几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,用符号,表示.几个数的公倍数也是无限的.3、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号, .两个数的公因数也是有限的.4、两个素数的积一定是合数.举例:3×5=15,15是合数.5、两个数的最小公倍数一定是它们的最大公因数的倍数.举例:6,8=24,6,8=2,24是2的倍数.6、求最大公因数和最小公倍数的方法:倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数.举例:15和5,15,5=15,15,5=5素数关系的两个数,最大公因数是1,最小公倍数是它们的乘积.举例:3,7=21,3,7=1一个素数和一个合数,最大公因数是1,最小公倍数是它们的乘积.5,8=40,5,8=1相邻关系的两个数,最大公因数是1,最小公倍数是它们的乘积.9,8=72,9,8=1特殊关系的数两个都是合数,一个是奇数,一个是偶数,但他们之间只有一个公因数1,比如4和9、4和15、10和21,最大公因数是1,最小公倍数是它们的乘积.一般关系的两个数,求最大公因数用列举法或短除法,求最小公倍数用大数翻倍法或短除法.二、经典例题:例1,写出每组数的最大公因数7和9 5和25 10和4写出每组数的最小公倍数8和10 51和3 5和4例2:有一批地砖,每块长45厘米、宽30厘米,至少要用多少块这样的地砖才能铺成一个正方形在一张长40厘米,宽32厘米的长方形红纸上裁出同样大小,面积最大的正方形,并且没有剩余.一共可以裁出多少个这样的正方形例3:五1班学生人数不超过50人,在分小组做游戏时,可以分为每组6人或者每组8人,两种分法都刚好分完.这个班的学生可能有多少人例4:甲、乙两人到图书馆去借书,甲每4天去一次,乙每5天去一次,如果7月1日他们两人在图书馆相遇,那么他们下一次同时到图书馆是几月几日三、课堂练习1,暑假期间,小华,小明和小芳都去图书馆借书,小华每3天去一次,小明每4天去一次,小芳每6天去一次,8月1日他们都去借了书,那么小芳每次去借书的那天也去了,三人同一天去借书的时间是.2、一个数的最大因数是13,这个数的最小倍数是.3、两个自然数a、b的最大公因数是1,它们的最小公倍数是.4、如果A=2×2×3,B=2×3×3,那么它们的最大公因数是,最小公倍数是.5、一个数是3的倍数,又是5的倍数,还有因数7.这个数最小是.6、一个数既是30的因数、又是45的因数,最大的是.7、如果两个数的最大公因数是1,它们最小公倍数是91,那么这两个数的和最大是.8、任何两个奇数的和是.A、奇数B、合数C、偶数9、12是的最大公因数.A、1和12B、12和24C、3和410、任何两个自然数的的个数是无限的.A、公倍数B、公因数C、倍数11、A是B倍数,那么它们的最小公倍数是.A、ABB、AC、B12、两个数的最大公因数是15,最小公倍数是90,这两个数一定不是.A、15和90B、45和90C、45和30用短除法求出每组数的最大公因数和最小公倍数.32和612和1872和4813,在周长是400米的椭圆形跑道上插彩旗,原来每间隔8米插一面彩旗,现在改为每隔10米插一面彩旗,如果以其中的一面彩旗为起点不改变,那么一共需要移动多少面彩旗14、把两根长度分别是45厘米和60厘米的铁丝,截成长度相等的小段,每根都不能有剩余.每小段最长多少厘米可以剪成多少段15、李刚和李强是兄弟,两人都在外地工作.李刚隔6天回家一次,李强隔8天回家一次,十月一日这天他们同时回家,再过多少天他们才能再一次见面16,把48米,60米的两根钢管锯成长度一样的钢管且没有剩余.(1),锯好的钢管每段最长是多少米2,如果每锯一次需要2分钟,一共需要锯多少分钟17、在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米染一个蓝点,有多少个点同时染了红色和蓝色18、植树节那天,园林工人在一段公路的一边每隔4米栽一棵树,一共栽了40棵,现在改成每隔5米栽一棵树,那么有多少棵树不用移动四:课堂检测1、两个数的最大公因数是1,最小公倍数是21,这两个数分别是和,或者和2、已知A=5B,则A,B=,A,B=3、已知a=b+2,则a,b=4、a是一个素数,则a的倍数有个A、1个B、2个C、无数个5、如果b是一个整数,那么2b一定是A、合数B、偶数C、素数写出每组数的最小公倍数和最大公因数.4和155和790和306、甲,乙两人到图书馆借书,甲每4天去一次,乙每6天去一次,如果3月16日他们两人到图书馆相遇,那么下一次都到图书馆是几月几日7、有一包糖果.如果平均分给8个小朋友,正好分完;如果平均分给10个小朋友,也正好分完.这包糖果至少有多少块8、有两根彩带,一根长45厘米,另一根长30厘米.现在要把它们剪成长度一样的短彩带且没有剩余,每根短彩带最长是多少厘米9、在一张长60厘米的纸条上,从左端起,先每隔3厘米画一个红点,再从左端起,每隔4厘米画一个红点.纸条的两端都不画.最后,纸条上共有多少个红点五、课后作业1、如果A=2×3×7,B=2×5×7,那么A和B的最大公因数是,最小公倍数是.2、要使601□既是2的倍数,又是3的倍数,那么□里可以填.3、如果a÷b=4a、b为整数那么a和b的最大公因数是4.4、一个数最小的倍数与它最大的因数相等.5、任何一个自然数的因数至少有2个.6、1和任何自然数0除外都没有公因数.7、写出每组数的最大公因数7和9 5和25 10和48、写出每组数的最小公倍数8和10 51和3 5和49、a与b的最大公因数是6,最小公倍数是72,a是18,b是多少10、从小明家到学校原来每隔5米安装一根电线杆,加上两端的两根一共是25根电线杆,现在改成每隔6米安装一根电线杆,除两端的两根不需要移动外,中间有多少根不必移动。
新版苏教版五年级下册数学知识点总结-新版-精选.pdf
第一单元简易方程1、表示相等关系的式子叫做等式。
含有未知数的等式是方程。
例:x+50=150、2x=2002、方程一定是等式;等式不一定是方程。
3、等式的性质:①等式两边同时加上或减去同一个数,所得结果仍然是等式。
②等式两边同时乘或除以同一个不等于0的数,所得的结果任然是等式。
4、使方程左右两边相等的未知数的值叫做方程的解。
求方程中未知数的过程,叫做解方程。
5、解方程60-4X=20,解4X=60-204X=40X=10检验:把X=10代入原方程, 左边=60-4×10=20,右边=20,左边=右边,所以X=10是原方程的解。
6、解方程时常用的关系式:一个加数=和-另一个加数一个因数=积÷另一个因数减数=被减数-差被减数=减数+差除数=被除数÷商被除数=商×除数7、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数8、四个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题,B、理清题目的等量关系,C、设未知数,一般是把所求的数用X表示,D、根据等量关系列出方程,E、解方程,F、检验,G、作答。
注意:解完方程,要养成检验的好习惯。
第二单元折线统计图1、复式折线统计图从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
不能同时描点画线,以免混淆。
(也可以先画虚线的统计图)第三单元因数和倍数1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。
苏教版五年级(下册)数学知识点梳理归纳及复习要点
苏教版五年级(下册)数学知识点梳理归纳及复习要点一、知识点梳理归纳第一单元:简易方程1、表示相等关系的式子叫作等式。
如:20+30=50a+20=302、含有未知数的等式是方程。
如:X+Y=40,30+b=503、方程一定是等式;等式不一定是方程。
如:20+30=50是等式,但不是方程,它不含有未知数。
4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫作方程的解。
如x=30是20+x=50的解,不能说30是20+x=50的解。
6、求方程的解的过程,叫作解方程。
解方程步骤:(1)写解;(2)=上下对齐;(3)运用等式的性质解方程;(4)注意:解完方程,要养成检验的好习惯,把求得的解代入原方程,看等号左右两边是否相等。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①审题并弄懂题目的已知条件和所求问题。
②理清题目的数量关系,找准等量关系式。
③设未知数,一般是把问题中的量用X表示。
④根据数量关系列出方程。
⑤解方程。
⑥检验。
(把方程结果代入原题检验)⑦写答句。
注意书写应规范:设句中要有单位名称,求得的x的值的后面不写单位名称。
9、找等量关系的方法:①根据条件想数量间的相等关系。
②根据计算公式确定等量关系。
③稍复杂的条件可以画出线段图找等量关系。
第二单元:折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,直接表示增减变化的速度,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
苏教版五年级下册数学 1-4 列形如x±a=b 或ax=b 的方程解决问题 知识点梳理重点题型练习课
解:设王大妈家二月份付水费x 元。 x+56=82.5
x+56-56= 82.5-56 x= 26.5
也可以根据“二月份付的电费-二月份付的水费= 56 元”列方程。
82.5-x=56 82.5-x+x=56 + x
82.5=56+x 56+x=82.5
x= 26.5 答:王大妈家二月份付水费( 26.5 )元。
解:设此处的斜坡高度最高为x 米。 12x=18
12x÷12=18÷12 x=1.5
答:此处的斜坡高度最高为1.5 米。
思维拓展练
6.五(3)班图书角的书架有上、下两层,下层有36 本书,从上层拿走5 本书放到下层后,上、下两 层的书就同样多了,书架上层原来有多少本书?
解:设书架上层原来有x 本书。 x-5=36+5
知识点2 列形如ax=b 的方程解决问题 2.某市A 种单车和B 种单车投放量如下图。B种单
车投放了多少万辆?
解:设B 种单车投放了x 万辆。 2x=3.6
2x÷2= 3.6÷2 x = 1.8
答:B 种单车投放了( 1.8 )万辆。
易错点
3.有一摞打印纸,用去了345 张,还剩下155 张, 这摞打印纸原来一共有多少张?(用方程解)
解:设这摞打印纸原来一共有x 张。 x-345=155
x-345+345=155+345 x=500
答:这摞打印纸原来一共有500 张。 辨析:求得方程的解误带单位
应用提升练 提升点 列方程解决实际问题
4.在“学习强国”的学习平台上,妈妈昨天获得积 分56 分,比今天多获得16 分。妈妈今天获得积 分多少分?
解:设妈妈今天获得积分x 分。 x+16=56
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新苏教版五年级数学下册知识点精华及各单元易错题第一单元简易方程1表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
4、等式的性质1等式两边同时加上或减去同一个数,所得结果仍然是等式。
等式的性质2:等式两边同时乘或除以同一个(不为0的数),所得结果仍然是等式。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
7、检验格式:60-4X=20 解4X=60-20 4X=40 X=10检验:把X= 10代入原方程,左边=60-4 X 10=20,右边=20,左边二右边,所以,X=10是原方程的解.8解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差除数=被除数*商被除数=商乂除数9、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B理清题目的等量关系。
C设未知数,一般是把所求的数用X表示。
D根据等量关系列出方程E、解方程 F 、检验G、作答。
注意:解完方程,要养成检验的好习惯。
甲乙两数的和是。
如果乙数的小数点向右移动一位,就等于甲数。
那么甲乙两数各是多少第二单元折线统计图1、从复式折线统计图中,不仅能看出数量的多少和数量增减变化的情况,而且便于这两组相关数据进行比较。
2、作复式折线统计图步骤:①写标题和统计时间;②注明图例(实线和虚线表示);③分别描点、连线、标数;④实线和虚线的区分(画线用直尺)。
注意:先画表示实线的统计图,再画虚线统计图。
不能同时描点画线,以免混淆。
(也可以先画虚线的统计图)第三单元:因数和公倍数1、几个非零自然数相乘,每个自然数都叫它们积的因数,积是这几个自然数的倍数。
因数与倍数是相互依存绝不能孤立的存在。
2、一个数最小的因数是1,最大的因数是它本身,一个数因数的个数是有限的。
(找因数的方法:成对的找,一般从小到大排列。
)3、一个数最小的倍数是它本身,没有最大的倍数。
一个数倍数的个数是无限的。
(找一个数倍数的方法:从自然数1、2、3……分别乘这个数)4、一个数最大的因数等于这个数最小的倍数。
5、按照一个数因数个数的多少可以把非0 自然数分成三类①只有自己本身一个因数的1②只有 1 和它本身两个因数的数叫作质数(素数)1 00以内的质数有2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71 、73、79、83、89、97 二十五个。
最小的质数是2。
在所有的质数中, 2 是唯一的一个偶数。
③除了 1 和它本身两个因数还有别的因数的数叫作合数。
(合数至少有 3 个因数)最小的合数是4。
按照是否是2的倍数可以把自然数分成两类偶数和奇数。
最小的偶数是0.6、两个数公有的因数,叫做这两个数的公因数,其中最大的一个,叫做这两个数的最大公因数,用符号(,)举例(24,18)=6。
两个数的公因数也是有限的。
公因数只有 1 的两个数叫作互质数7、两个数公有的倍数,叫做这两个数的公倍数,其中最小的一个,叫做这两个数的最小公倍数,用符号[ ,]表示。
举例:[15,24]=120. 。
两个数的公倍数也是无限的。
8两个质数的积一定是合数。
举例:3X 5=15, 15是合数。
9、两个数的最小公倍数一定是它们的最大公因数的倍数举例[6,8]=24,(6,8)=2,24是2 的倍数。
10、求最大公因数和最小公倍数的方法①倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
举例:15 和5,[15,5]=15,(15,5)=5②互质关系的两个数,最大公因数是 1,最小公倍数是它们的乘积。
(相邻的两个自然数互质、1和 任何自然数互质、两个不同的质数互质、一个质数和一个合数,这两个数不是倍数关系时互质。
不含相同质因数的两个合数互质。
相邻的两个奇数是互质数。
例如 49与 51。
两个相差4的奇数是互质数。
例如例如97与91。
5的倍数的特征:个位是0或5。
5、两根钢管,甲管长36分米,乙管长40分米,把它们截成同样长的小段而且没有剩余,每小段最 长( )分米,最少可截成( )段。
四、分数的意义和性质1、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数 1来表示,通常我们把 它叫做单位“1”。
把单位“ 1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中2、分母越大,分数单位越小,最大的分数单位是49与 53。
大数是质数的两个数是互质数。
小数是质数,大数不是小数的倍数的两个数是互质数1和任何自然数(0除外)都是互质数。
) 举例:[3 , 7]=21 , (3 , 7)=1 ③一般关系的两个数,求最大公因数用列举法或短除法, 求最小公倍数用短除法。
11、质因数:如果一个数的因数是质数,这个因数就是它的质因数。
12、分解质因数:把一个合数用质因数相乘的形式表示出来,叫作分解质因数。
13、是2的倍数的数叫作偶数,不是 2的倍数的数叫作奇数。
相邻的偶数(奇数)相差 2。
14、2的倍数的特征:个位是 0、2、4、 6、&3的倍数的特征:各位上数字的和一定是3的倍数。
和与积的奇偶性:偶数+偶数= 偶数奇数+奇数(偶数个奇数) =偶数 偶数+奇数=奇数 偶数x 偶数=偶数偶数x 奇数=偶数 (因数中只要有一个偶数) 奇数x 奇数=奇数 m 和n 的最大公因数是( m 和n 的最大公因数是m - n =5 ( m 、n 都是非零的自然数), m 和n 是相邻的两个非零的自然数, 把一张长18cm,宽12cm 的长方形纸,分成同样大小的正方形且没有剩余,每个小正方形边长 最大是()厘米,最少可分成( 3、),最小公倍数是()。
)个。
一份的数,叫做分数单位。
一个分数的分母是几, 它的分数单位就是几分之一。
33、举例说明一个分数的意义:-表示把单位“ 7 1”平均分成7份,表示这样的3份.还表示把3平均3分成7份,表示这样的1份。
-吨表示把1吨平均分成7份,表示这样的3份.还表示把3吨平均分成7份,表示这样的1份。
4、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线。
a表示被除数,b表示除数,可以写成a* b=a/b(b工0)5、4米的-和1米的4同样长。
5 56、求一个数是(占或者相当于)另一个数的几分之几,用除法列算式计算。
方法:是(占或相当于)前面的数除以后面的数写成分数。
男生人数是女生人数的3/4,则女生人数是男生人数的4/3。
(注: 男生人数是女生人数的3/4的意义是把男生人数看作3份则女生有这样的4份。
7、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。
8真分数小于1。
假分数大于或等于1。
真分数总是小于假分数。
9、所有分母相同且分母为大于2的自然数的最简真分数和一定为整数。
10、能化成整数的假分数,它们的分子都是分母的倍数。
反过来,分子是分母倍数的假分数,都能化成整数。
(用分子除以分母)分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
带分数是假分数的另一种形式。
例如4就可以看作是3(就是1)和1合成的数,写作11,读作一又三分之一。
带分数都大于真分数,3 3 3 3同时也都大于1。
11、把分数化成小数的方法:用分数的分子除以分母。
12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几……13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。
15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子(分母为指定的分母)。
16、大于3/7而小于5/7的分数有无数个;分数单位是1/7的分数只有4/7 一个。
17、分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变,这是分数的基本性质。
它和整数除法中的商不变规律类似。
18、 分子和分母只有公因数1,这样的分数叫最简分数。
约分时,通常要约成最简分数。
19、 把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
约分方法:直接除以分 子、分母的最大公因数。
20、 把几个分母不同的分数(也叫做异分母分数)分别化成和原来分数相等的同分母分数,叫做通分。
通分过程中,相同的分母叫做这几个分数的公分母。
通分时,一般用原来几个分母的最小公倍数 作公分母。
21、 比较异分母分数大小的方法:(1)先通分转化成同分母的分数再比较。
⑵ 化成小数后再比较。
(3)先通分子转化成同分子的分数再比较。
(4)十字相乘法。
球的反弹实验 球的反弹高 度实验的结论:(1) 用同一种球从不同高度下落,表示反弹高度与下落高度关系的分数大致不变,这说明同一种球的弹性是一样的。
(2) 用不同的球从同一个高度下落,表示反弹高度与下落高度关系的分数是不一样的,这说明不同的球的弹性是不一样的。
2一节课的时间是-小时,是把()看做单位1,平均分成( )份,一节课的时间占了( )3份。
.用100千克花生榨了 35千克花生油。
1千克花生可以榨多少千克花生油榨 1千克油需要多少千克花生有一根20米长的绳子,平均分成10段,每段绳子长( 2 2一根绳子,第一次截去2米,第二次截去绳子的-,( 5 5在100克的水中加入10克盐,那么盐占盐水的( 这时盐占盐水的(),水占盐水的())米,每段绳子长是总长度的)截去的多。
A.第一次 B .第二次 C .一样多 D •无法确定2 两根同样长的绳子,第一根截去 -米,第二根截去绳子的 5 )截去的多。
A.第一根 B .第二根 C .一样多 •无法确定水占盐水的();如果再加5克盐,第六单元圆1、圆是由一条曲线围成的平面图形。
( 长方形、梯形等都是由几条线段围成的平面图形)2、画圆时,针尖固定的一点是圆心,通常用字母0表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。
在同一个圆里, 有无数条半径和直径。
在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。
画圆时要注意:针尖必须固定在一点,不可移动; 两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。
(d=2r, r=d - 2)5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
6、圆心决定圆的位置,半径决定圆的大小。
所以要比较两圆的大小就是比较两个圆的直径或半径。