电磁场与电磁波基础知识总结

合集下载

电磁场与电磁波知识点总结 知乎

电磁场与电磁波知识点总结 知乎

电磁场与电磁波知识点总结知乎
电磁场和电磁波是物理学中的重要基础知识,涉及到电学、磁学、波动光学等多个领域。

下面是对电磁场和电磁波的一些重要知识点总结:
1. 电场和磁场:电场是指空间中由电荷引起的电力作用,磁场是指空间中由电流引起的磁力作用。

电场和磁场都是矢量场,可以用矢量图形表示。

2. 麦克斯韦方程组:麦克斯韦方程组是描述电磁场行为的基本方程,包括四个方程:高斯定理、高斯磁定理、法拉第电磁感应定律和安培环路定理。

3. 电磁波:电磁波是由电场和磁场相互作用引起的一种波动现象,包括无线电波、可见光、紫外线、X射线等。

电磁波具有波长、频率等特征,可以用波动方程表示。

4. 偏振:偏振是指电磁波中电场矢量的振动方向。

根据电场矢量的振动方向,电磁波可以分为线偏振、圆偏振和不偏振等。

5. 折射和反射:当电磁波从一种介质传播到另一种介质时,会发生折射现象,即波的传播方向改变。

同时,当电磁波遇到介质的边界时,会发生反射现象,即波发生反向传播。

折射和反射现象可以用斯涅尔定律和菲涅尔公式计算。

6. 衍射和干涉:电磁波在经过小孔或射缝等障碍物时,会发生衍射现象,即波扩散后形成干涉条纹。

同时,当两束电磁波相遇时,会发生干涉现象,即波的振幅会增强或减弱。

衍射和干涉现象可以用
菲涅尔衍射和双缝干涉等理论进行描述。

以上是电磁场和电磁波的一些重要知识点总结。

熟练掌握这些知识,对于理解电学、磁学、波动光学等学科都具有重要意义。

电磁场与电磁波总结

电磁场与电磁波总结

电磁场与电磁波总结首先,电磁场是由带电粒子所产生的一种物质的存在状态,它是电磁相互作用的媒介。

电磁场可以通过电流、电荷或者磁体来产生,它包括电场和磁场两个部分。

电场是由电荷引起的,它的强度和方向由电荷的性质和位置决定。

磁场是由电流或者磁体引起的,它的强度和方向由电流大小和方向或者磁体性质和位置决定。

电磁场可以用矢量表示,它具有能量、动量和角动量等物理量。

电磁波是电磁场的一种传播形式,它是由振荡的电场和磁场组成。

电磁波具有极高的传播速度,它在真空中的速度接近光速,约为3×10^8米每秒。

电磁波可以根据频率不同分为很多种类,包括无线电波、微波、红外线、可见光、紫外线、X射线和γ射线等。

不同频率的电磁波具有不同的性质和应用。

电磁场和电磁波具有许多特性和规律。

首先,电磁场遵循麦克斯韦方程组的规律,其中包括电场和磁场之间的关系、电荷和电流的守恒定律等。

电磁波是在麦克斯韦方程组的基础上通过推导得出的解。

其次,电磁场和电磁波在空间中传播时具有波动性质,它们可以发生折射、反射、干涉和衍射等现象。

电磁波的传播速度与频率和介质的性质有关。

当电磁波从一种介质传播到另一种介质时,会发生折射现象。

折射可以用斯涅尔定律来描述。

另外,电磁波的传播还受到衍射和干涉等现象的影响,这些现象对于解释电磁波的性质和应用具有重要意义。

电磁场和电磁波具有广泛的应用。

首先,无线通信是电磁波应用的重要领域之一、从无线电到移动通信,无线电波是信息传输的基础。

其次,电磁波在遥感和雷达中也发挥着重要作用。

通过接收和分析不同频率的电磁波,可以获取地球表面的信息,用于环境监测和资源探测等。

此外,电磁波还广泛用于医学诊断和治疗,如X射线和磁共振成像等。

除了应用领域,电磁场和电磁波的研究也对于理解物质结构和宇宙演化等问题具有重要意义。

总之,电磁场和电磁波是物理学中的重要概念,可以用来描述电磁现象和电磁辐射。

电磁场由电场和磁场组成,它可以通过电荷和电流来产生。

电磁场与电磁波_知识点总结

电磁场与电磁波_知识点总结

已经将文本间距加为24磅,第18章:电磁场与电磁波一、知识网络二、重、难点知识归纳1.振荡电流和振荡电路(1)大小和方向都随时间做周期性变化的电流叫振荡电流。

能够产生振荡电流的电路叫振荡电路。

自由感线圈和电容器组成的电路,是一种简单的振荡电路,简称LC 回路。

在振荡电路里产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流以及跟电荷和电流相联系的电场和磁场都发生周期性变化的现象叫电磁振荡。

(2)LC 电路的振荡过程:在LC 电路中会产生振荡电流,电容器放电和充电,电路中的电流强度从小变大,再从大变小,振荡电流的变化符合正弦规律.当电容器上的带电量变小时,电路中的电流变大,当电容器上带电量变大时,电路中的电流变小(3)LC 电路中能量的转化 :a 、电磁振荡的过程是能量转化和守恒的过程.电流变大时,电场能转化为磁场能,LC 回路中电磁振荡过程中电荷、电场。

电路电流与磁场的变化规律、电场能与磁场能相互变化。

分类:阻尼振动和无阻尼振动。

振荡周期:LC T π2=。

改变L 或C 就可以改变T 。

电磁振荡 麦克斯韦电磁场理论 变化的电场产生磁场 变化的磁场产生电场 特点:为横波,在真空中的速度为3.0×108m/s 电磁波 电磁场与电磁波 发射接收 应用:电视、雷达。

目的:传递信息 调制:调幅和调频 发射电路:振荡器、调制器和开放电路。

原理:电磁波遇到导体会在导体中激起同频率感应电流 选台:电谐振 检波:从接收到的电磁波中“检”出需要的信号。

接收电路:接收天线、调谐电路和检波电路电流变小时,磁场能转化为电场能。

b 、电容器充电结束时,电容器的极板上的电量最多,电场能最大,磁场能最小;电容器放电结束时,电容器的极板上的电量为零,电场能最小,磁场能最大.c 、理想的LC 回路中电场能E 电和磁场能E 磁在转化过程中的总和不变。

回路中电流越大时,L 中的磁场能越大。

极板上电荷量越大时,C 中电场能越大(板间场强越大、两板间电压越高、磁通量变化率越大)。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是由电场和磁场相互作用而形成的一种物理场。

电场是由电荷产生的,而磁场则是由电流或者变化的电场产生的。

电荷是产生电场的源。

正电荷会产生向外辐射的电场,负电荷则产生向内汇聚的电场。

电场强度 E 用来描述电场的强弱和方向,其单位是伏特每米(V/m)。

电流是产生磁场的源。

电流产生的磁场方向可以通过右手螺旋定则来确定。

磁场强度 H 用来描述磁场的强弱和方向,其单位是安培每米(A/m)。

法拉第电磁感应定律表明,变化的磁场会产生电场。

麦克斯韦进一步提出,变化的电场也会产生磁场。

这两个定律共同揭示了电磁场的相互联系和相互转化。

二、电磁波的产生电磁波是电磁场的一种运动形态。

当电荷加速运动或者电流发生变化时,就会产生电磁波。

例如,在一个开放的电路中,电荷在电容器和电感之间来回振荡,就会产生电磁波。

这种振荡电路是产生电磁波的一种简单方式。

电磁波的频率和波长之间存在着一定的关系,即光速 c =λf,其中c 是光速(约为 3×10^8 m/s),λ 是波长,f 是频率。

不同频率的电磁波具有不同的特性和应用。

例如,无线电波频率较低,用于通信和广播;而X 射线频率较高,用于医学成像和材料检测。

三、电磁波的传播电磁波在真空中可以无需介质传播,在介质中传播时,其速度会发生变化。

电磁波在传播过程中遵循反射、折射和衍射等规律。

当电磁波遇到障碍物时,会发生反射。

如果电磁波从一种介质进入另一种介质,会发生折射,折射的程度取决于两种介质的电磁特性。

衍射则是指电磁波绕过障碍物传播的现象。

当障碍物的尺寸与电磁波的波长相当或较小时,衍射现象较为明显。

电磁波的极化是指电场矢量的方向在传播过程中的变化。

常见的极化方式有线极化、圆极化和椭圆极化。

四、电磁波的特性1、电磁波是横波,电场和磁场的振动方向都与电磁波的传播方向垂直。

2、电磁波具有能量,其能量密度与电场强度和磁场强度的平方成正比。

3、电磁波的传播速度是恒定的,在真空中为光速。

公共基础知识电磁场与电磁波基础知识概述

公共基础知识电磁场与电磁波基础知识概述

《电磁场与电磁波基础知识概述》一、引言电磁场与电磁波是现代物理学的重要组成部分,在通信、电子、电力等众多领域都有着广泛的应用。

从无线电广播到手机通信,从雷达探测到卫星导航,电磁场与电磁波无处不在。

深入了解电磁场与电磁波的基础知识,对于理解现代科技的发展和应用具有重要意义。

二、电磁场的基本概念(一)电场1. 定义电场是电荷及变化磁场周围空间里存在的一种特殊物质。

电场对放入其中的电荷有作用力,这种力称为电场力。

2. 电场强度电场强度是描述电场强弱和方向的物理量,用 E 表示。

它的定义是单位正电荷在电场中所受的电场力。

电场强度是矢量,其方向与正电荷在该点所受电场力的方向相同。

3. 电场线电场线是为了形象地描述电场而引入的假想曲线。

电场线上每一点的切线方向表示该点电场强度的方向,电场线的疏密程度表示电场强度的大小。

(二)磁场1. 定义磁场是一种看不见、摸不着的特殊物质,它存在于磁体、电流和运动电荷周围。

磁场对放入其中的磁体、电流和运动电荷有力的作用。

2. 磁感应强度磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。

它的定义是在磁场中垂直于磁场方向的通电导线,所受的磁场力 F 与电流 I 和导线长度 L 的乘积 IL 的比值。

磁感应强度是矢量,其方向与小磁针在该点静止时 N 极所指的方向相同。

3. 磁感线磁感线是为了形象地描述磁场而引入的假想曲线。

磁感线上每一点的切线方向表示该点磁感应强度的方向,磁感线的疏密程度表示磁感应强度的大小。

(三)电磁场1. 定义电磁场是有内在联系、相互依存的电场和磁场的统一体和总称。

变化的电场产生磁场,变化的磁场产生电场,两者相互激发,形成电磁场。

2. 麦克斯韦方程组麦克斯韦方程组是描述电磁场基本规律的一组方程,由四个方程组成。

它揭示了电场和磁场之间的内在联系,以及电磁波的产生和传播规律。

三、电磁波的基本概念(一)定义电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波,是以波动的形式传播的电磁场。

高中物理经典复习资料:电磁场和电磁波

高中物理经典复习资料:电磁场和电磁波

【基础知识归纳】大小和方向都做周期性变化的电流叫做振荡电流.能产生振荡电流的电路叫振荡电路,L C 电路是最简振荡电路中产生振荡电流的过程中,线圈中的电流、电容器极板上的电量及其与之相联系的磁场能、1.振荡原理:利用电容器的充放电和线圈的自感作用产生振荡电流,形成电场能和磁场能的周期性2.振荡过程:电容器放电时,电容器所带电量和电场能均减少,直到零;电路中的电流和磁场能均增大,直到最大值.充电时,情况相反.电容器正反向充放电一次,便完成一次振荡的全过程.图13—2—1图13—2—13.周期和频率:电磁振荡完成一次周期性变化所用的时间叫做电磁振荡的周期.1 s 内完成电磁振荡的次数叫做电磁振荡的频率.对LCT =LCπ2 f =LCπ21三、电磁场和电磁波1(1(2)不仅电流能够产生磁场,变化的电场也能产生2变化的电场和磁场总是相互联系的,形成一个不可分割的统一体,即为电磁场,电磁场由近及远的传3在真空中,任何频率的电磁波的传播速度都等于光速c =3.00×108 m/s .其波速、波长、周期频率间关系为:c =Tλ=f λ(1)麦克斯韦从理论上预言了电磁波的存在,赫兹用实验成功的证实了电磁波的存在. (2)在电磁波中,电场强度和磁感应强度是互相垂直的,且都和电磁波的传播方向垂直,所以电磁(3)电磁波的(41.调制:在无线电应用技术中,首先将声音、图象等信息通过声电转换、光电转换等方式转为电信号,这种电信号频率很低,不能用来直接发射电磁波.把要传递的低频率电信号“加”到高频电磁波上,1.电谐振:当接收电路的固有频率跟接收到的电磁波的频率相同时,接收电路中产生的振荡电流最2.调谐:调谐电路的固有频率可以在一定范围内连续改变,将调谐电路的频率调节到与需要接收的某个频率的电磁波相同,即,使接收电路产生电谐振的过程叫做调谐.3.检波:从接收到的高频振荡中分离出所携带的信号的过程叫做检波.检波是调制的逆过程,也叫4.无线电的接收:天线接收到所有的电磁波,经调谐选择出所需要的电磁波,再经检波取出携带的电视系统主要由摄像机和接收机组成.把图象各个部位分成一系列小点,称为像素,每幅图象至少要有几十万个像素.摄像机将画面上各个部分的光点,根据明暗情况逐点逐行逐帧地变为强弱不同的信号电中国电视广播标准采用每1 s传送25帧画面,每帧由625雷达是利用无线电波来测定物体位置的无线电设备,一般由天线系统、发射装置、接收装置、输出装【方法解析】麦克斯韦电磁理论是理解电磁场和电磁波的关键所在,应注意领会以下内容:变化的磁场可产生电场,产生的电场的性质是由磁场的变化情况决定的,均匀变化的磁场产生稳定的电场,非均匀变化的磁场产生【典型例题精讲】[例1]L C振荡电路中,某时刻磁场方向如图13—2—2所示,则下列说法错误的是图13—2—2ABCD.若电容器【解析】先根据安培定则判断出电流的方向,若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B叙述正确,由楞次定律知D叙述亦正确.因而错误选项只有C【思考】(1)若磁场正在增强,则电场能和磁场能是如何转化的?电容器是充电还是放电?线圈两端的电压是增大还是减小?(2)若此时磁场最强(t=0),试画出振荡电流i和电容器上板带电量q随时间t变化的图象?(3)若使该振荡电路产生的电磁波的波长更短些,可采取什么措施?(包括:线圈匝数、铁芯、电介【思考提示】(1)磁场增强,磁场能增大,电场能减小,电容器放电,电容器两端电压降低,线圈(2LC,为减小λ,需减小L或C.(3)根据λ=cT和T=2π【设计意图】[例2]某电路中电场随时间变化的图象如图13—2—3所示,能发射电磁波的电场是图13—2—3【解析】变化的电场可产生磁场,产生的磁场的性质是由电场的变化情况决定的.均匀变化的电场图A中电场不随时间变化,不会产生磁场.图B和图C中电场都随时间做均匀的变化,在周围空间产生稳定的磁场,这个磁场不能再激发电场,所以不能激起电磁波.图D中电场随时间做不均匀的变化,能在周围空间产生变化的磁场,而这磁场的变化也是不均匀的,又能产生变化的电场,从而交织成一个不【设计意图】通过本例说明形成【达标训练】1.建立电磁场理论的科学家是_______.用实验证明电磁波存在的科学家是_______【答案】 麦克斯韦2 ABCD .电磁波的传播速度总是3.0×108m/s【答案】B3A .波长和频率BC .波长和波速D【答案】C4A .①③BC .①④D【答案】A5.关于电磁波,下列说法中正确的是 ABC.电磁波由真空进D【解析】 任何频率的电磁波在真空中的传播速度都是c ,故AB 都错.电磁波由真空进入介质,波速变小,而频率不变,C对.变化的电场、磁场由变化区域向外传播就形【答案】C6.无线电广播的中波段波长的范围是187 m ~560 m ,为了避免邻近电台的干扰,两个电台的频率范围至少应差104 Hz,则在此波段中最多能容纳的电台数约为多少个【解析】f max =1871038min⨯=λcHz =1.6×106Hzf min =5601038max⨯=λcHz =0.54×106Hzn =466min max 101054.0106.1⨯-⨯=-f f f ∆=106【答案】1067.某收音机接收电磁波的波长范围在577 m 到182 m【解析】 根据c =λff 1=57710381⨯=λcHz =5.20×105Hzf 2=18210382⨯=λcHz =1.65×106Hz所以,频率范围为5.20×105 Hz ~1.65×106Hz【答案】 5.20×105 Hz ~1.65×106Hz8.关于LCA BC D【答案】9.L C 振荡电路中,某时刻的电流方向如图13—2—4所示,则下列说法中正确的是A BCD .【答案】D10.在L C 振荡电路中,电容器C 的带电量随时间变化的图象如图13—2—5所示,在1×10-6 s 到2×10-6s 内,关于电容器的充(或放)电过程及因此产生的电磁波的波长,正确的结论是A .充电过程,波长为1200 m B .充电过程,波长为1500 m C .放电过程,波长为1200 m D .放电过程,波长为1500 m【解析】 在1×10-6s 到2×10-6s 内,电容器带电量增大,属充电过程.产生的电磁波周期T =4×10-6s ,波长λ=cT =3×108×4×10-6 m =1200 m【答案】 A11.L C 振荡电路中,某时刻磁场方向如图13—2—6所示,则下列说法错误的是图13—2—6A B C D【解析】 若该时刻电容器上极板带正电,则可知电容器处于充电阶段,电流应正在减小,知A 正确.若该时刻电容器上极板带负电,则可知电容器正在放电,电流正在增强,知B 正确,由楞次定律知D【答案】12.在L C 振荡电路中,电容C 两端的电压U C 随时间变化的图象如图13—2—7所示,根据图象可以确定振荡电路中电场能最大的时刻为_______,在T /2~3T /4时间内电容器处于_______状态,能量转化情况是_______【解析】 电容器两极板间电压最大时,电场能最大,由图可知电场能最大时刻为0,2T ,T .在2T ~43T 时间内,两极板间电压变小,电容器处于放电状态,电场能正转化为磁场能.T【答案】0,2,T;放电;电场能转化为磁场能。

电磁场与电磁波基础知识总结

电磁场与电磁波基础知识总结

电磁场与电磁波总结第一章一、矢量代数 A ∙B =AB cos θA B ⨯=AB e AB sin θA ∙(B ⨯C ) = B ∙(C ⨯A ) = C ∙(A ⨯B )()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系 矢量线元d l = e r d r e θr d θ+e ϕr sin θd ϕ矢量面元d S = e r r 2sin θd θd ϕ体积元ϕθθd drd r dVsin 2=单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A SSd Φ0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γmaxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z∂∂∂∇⨯=∂∂∂e e e A x y z x y zA A A 1zzzA A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SVd dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u ll 0cos cos cos ∂∂∂∂=++∂∂∂∂P u u u ulx y zαβγcos ∇⋅=∇e l u u θgrad ∂∂∂∂==+∂∂∂∂e e e +e n x y zu u u uu n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场()0∇⨯∇=u -u =∇F 六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y zu u uu A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu zA A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理) d 0⋅=⎰l E l 0∇⋅=E ρε0∇⨯=E 场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ0∇⨯=E极化:0=+D E P εe 00(1)=+==D E E E r χεεεε==⋅P e PS n n P ρ=-∇⋅P P ρ2. 恒定电场 电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l 0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ(安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ=∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lId 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:0=-BH M μm 00(1)=+B H =H =H r χμμμμm =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt ⋅=-⋅⨯⋅⎰⎰⎰SE l B S +)(法拉第电磁感应定律∂∇⨯=-∂B E t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S lSt∂∇⨯=+∂DH J t 位移电流:d=DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性e m e m eme e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t&tt ρρm e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B t t ρρ 三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n S n S n ρ12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ111=⎧⎪⎨∂=-⎪∂⎩s const nφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体:112ne i i i W q φ==∑连续分布:12e VW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1.位函数微分方程与边界条件位函数微分方程:20∇=φ边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ 2. 欧姆定律与焦耳定律欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E SSSU R G I d d σ(L R =σS ) 4.静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析 2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d qC Ud d ε1. 位函数微分方程与边界条件矢量位:2∇=-A J μ12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇=211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A lSlL IIIψ0=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ (2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结

电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。

下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。

电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。

理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。

(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。

调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。

电磁场与电磁波复习重点

电磁场与电磁波复习重点

电磁场与电磁波知识点要求第一章 矢量分析和场论基础1、理解标量场与矢量场的概念;场是描述物理量在空间区域的分布和变化规律的函数。

2、理解矢量场的散度和旋度、标量场的梯度的概念,熟练掌握散度、旋度和梯度的计算公式和方法(限直角坐标系)。

梯度:x y z u u uu x y z∂∂∂∇=++∂∂∂e e e , 物理意义:梯度的方向是标量u 随空间坐标变化最快的方向; 梯度的大小:表示标量u 的空间变化率的最大值。

y x zA A A x y z∂∂∂∇⋅=++∂∂∂A散度:单位空间体积中的的通量源,有时也简称为源通量密度, 高斯定理: ()()V S dV d ∇⋅=⋅⎰⎰⎰⎰⎰A A S ,x y zy y x x z zx y z xy zA A A A A A x y z y z z x xy A A A ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫∇⨯==-+-+- ⎪⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭e e e A e e e旋度:其数值为某点的环流量面密度的最大值,其方向为取得环量密度最大值时面积元的法线方向。

斯托克斯定理:()()S L d d ∇⨯⋅=⋅⎰⎰⎰A S A l数学恒等式:()0u ∇⨯∇=,()0∇⋅∇⨯=A 3、理解亥姆霍兹定理的重要意义:若矢量场 A 在无限空间中处处单值,且其导数连续有界,源分布在有限区域中,则矢量场由其散度和旋度唯一地确定,并且矢量场 A 可表示为一个标量函数的梯度和一个矢量函数的旋度之和。

u =∇⨯-∇A F第二、三、四章 电磁场基本理论1、 理解静电场与电位的关系,QPu d =⋅⎰E l ,()()u =-∇E r r2、 理解静电场的通量和散度的意义,d d d 0V SV SVρ⎧⋅=⎪⎨⋅=⎪⎩⎰⎰⎰D S E l ,0V ρ∇⋅=⎧⎨∇⨯=⎩D E 静电场是有散无旋场,电荷分布是静电场的散度源。

3、 理解静电场边值问题的唯一性定理,能用平面镜像法解简单问题;唯一性定理表明:对任意的静电场,当电荷分布和求解区域边界上的边界条件确定时,空间区域的场分布就唯一地确定的镜像法:利用唯一性定理解静电场的间接方法。

电磁场与电磁波总结

电磁场与电磁波总结

电磁场与电磁波总结电磁场与电磁波是物理学中的重要概念,它们是描述电磁现象的理论基础。

电磁场是指电荷或电流在空间中产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作用后的电磁场。

电磁波是电磁场在空间中传播的波动现象,它是由变化的电场和磁场耦合产生的。

电磁场的产生与电荷和电流密切相关。

根据库仑定律,电荷之间存在相互作用力,这种相互作用力可以通过电场来描述。

电场是指电荷在周围空间中产生的场,它由电荷所带来的力场引起。

电场的强度可以通过电场线来表示,电场线是指沿着电场方向的曲线。

电场线越密集,电场强度越大。

电场的另一种表达方式是电势。

电势是指单位正电荷在电场中所具有的能量。

电势的计算可以通过电势差来实现,电势差是指单位正电荷从一个点移动到另一个点所做的功。

电势差也可以通过电势面来表示,电势面是指电势相等的点所组成的曲面。

电势是标量量,它没有方向。

静电场是指电荷分布不变的电场。

根据高斯定律,静电场满足库仑定律,即电场强度与电荷量正比,与距离的平方成反比。

静磁场是指电流分布不变的磁场。

根据比奥-萨伐尔定律,静磁场满足安培定律,即磁场强度与电流正比,与距离成反比。

静电场和静磁场可以通过麦克斯韦方程组来描述。

根据电磁波的频率,可以将其分为不同的波段。

其中,频率低于3000Hz的电磁波称为低频电磁波,主要包括工频电磁波和无线电波;频率在3000Hz到300GHz之间的电磁波称为射频电磁波,主要包括微波和雷达波;频率高于300GHz的电磁波称为高频电磁波,主要包括红外线、可见光、紫外线、X射线和γ射线。

电磁波在生活中有广泛的应用。

无线通信、广播电视、雷达导航、医学影像、光纤通信等都是基于电磁波的技术。

此外,电磁波还有助于人类对宇宙的认知,天文学家利用电磁波对星系、恒星和行星进行观测和研究。

总结起来,电磁场与电磁波是物理学中重要的概念。

电磁场是由电荷和电流产生的具有能量和动量的场,它包括静电场和静磁场,以及相互作用后的电磁场。

电磁波与电磁场(总复习).

电磁波与电磁场(总复习).
2
5.电容C
q q U 1 2 1 1 q2 2 (We qU CU ) 2 2 2C We
V
1 n 电场能量:We qii 2 i 1
1 E DdV 2
二、计算
1.基本计算:均匀媒质、2种媒质中带电体周围的 D、E、 ? 分析方法:使用高斯定律
C
0 4
B(r )
0 4

V
J ( r ') R dV ' 3 R
J mS M n
3.基本方程: H dl I H J 本构关系: B H 矢量磁位: B A 4.边界条件:B2 n B1n 5. 电感:L I M 12

一主要知识点概念主要结论第五章时变电磁场一主要知识点
第 1章
矢量分析要点
一 、概念 1.“场”:定义、分类、几何描述方法? 2. 亥姆霍兹定理? 二、标量场 G e e e
l
x
x
y
y
z
z
P0
cos cos cos G l 0 x y z
3.瞬时矢量与复矢量之间的转换规则?
( x, y, z)e jt ] E( x, y, z, t ) Re[E
波动方程的2种形式?复数波动方程的推导? 二、计算: 1.场的瞬时形式与复矢量之间的转换? 2.已知磁场,求电场: 已知电场,求磁场:
第六章
平面电磁波
一、主要知识点 均匀平面波传播特性;波的极化 1.均匀平面波定义 2.无耗介质中 E ex E0 e jkz E( z, t ) ex E0m cos(t kz 0 )
计算: ?

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体。

电荷产生电场,电流产生磁场。

电场是存在于电荷周围,能传递电荷之间相互作用的物理场。

它的基本特性是对置于其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用 E 表示。

单位是伏特每米(V/m)。

磁场是一种看不见、摸不着的特殊物质,能对放入其中的磁体、电流产生力的作用。

磁感应强度是描述磁场强弱和方向的物理量,用 B 表示。

单位是特斯拉(T)。

二、库仑定律与安培定律库仑定律描述了真空中两个静止点电荷之间的相互作用力与它们电荷量的乘积成正比,与它们距离的平方成反比。

其表达式为:$F =k\frac{q_1q_2}{r^2}$,其中 k 是库仑常量,约为$9×10^9N·m^2/C^2$ 。

安培定律则阐述了两个电流元之间的相互作用力。

电流元在磁场中所受到的安培力为$dF = I dl × B$ 。

三、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,由四个方程组成。

高斯定律:$\oint_{S} E·dS =\frac{q}{ε_0}$,表明电场的散度与电荷量成正比。

高斯磁定律:$\oint_{S} B·dS = 0$ ,说明磁场是无源场。

法拉第电磁感应定律:$\oint_{C} E·dl =\frac{d}{dt}\int_{S} B·dS$ ,揭示了时变磁场产生电场。

安培麦克斯韦定律:$\oint_{C} H·dl = I +\frac{d}{dt}\int_{S} D·dS$ ,指出时变电场产生磁场。

四、电磁波的产生与传播电磁波是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子波。

变化的电场和变化的磁场相互激发,形成在空间中传播的电磁波。

电磁波的产生通常需要一个振荡电路,比如 LC 振荡电路。

当电容器充电和放电时,电路中的电流和电荷不断变化,从而产生变化的电磁场,并向周围空间传播。

电磁场与电磁波基础知识

电磁场与电磁波基础知识

雨的类 型
毛毛雨 小雨 中雨 大雨 暴雨 倾雨盆大
各种强度雨的主要特性
雨的强 度mm/h
雨滴半径 1 m3内的 雨滴间
mm 雨滴数 平均距 离cm
含水量 g/m3
0.25
0.1
0.092
1
0.225
0.14
4
0.5
530Biblioteka 120.2815
0.75
450
0.83
40
1
1.9
100 1.5-2.5 400
14
5.4
路径衰减γд与雨的强度I的关系
1 – 30 GHz 2 – 40 GHz 3 – 80 GHz 4 – 100 GHz 5-250 GHz
雪的衰减
a)图:1 – 35 GHz, 2 – 95 GHz,3 – 140 GHz,4 – 217 GHz上的路径 衰减γ与降雪ρ的关系;
b)图:1-140 GHz频率上的路径衰减γ与等效降雪强度(I)的关系; 2-毫米波在140 GHz频率上的路径衰减γ与降雨强度(I)的关系
电磁场的概念源于麦克斯韦的预言
1862年,英国科学家在总结前人研究电磁现象 基础上,建立了完整的电磁波理论,通过数学 推导建立了麦克斯韦方程,进而预言:
• 如果在空间某区域中有周期性变化的电场,那 么,这个变化的电场就在它周围空间产生周期 性变化的磁场;
• 这个变化的磁场又在它周围空间产生新的周期 性变化的电场……如此周而复始;
◆大气气体的吸收具有双重特性:
非谐振吸收和谐振吸收— 在10 GHz频率以 上尤为明显。
雨、雾、云和冰雹的衰减
雾依其形成条件也分为三种 — 辐射雾、平流雾、汽化雾。
◆辐射雾形成的主要原因是来自地表和空气 下层的自由辐射,空气因此变冷凝结。 ◆平流雾在湿热空气流经较冷的表面时产生, 其持续时间最长。 ◆汽化雾在冷空气流经热水面时出现。

电磁场与电磁波的教学内容概述

电磁场与电磁波的教学内容概述

电磁场与电磁波是电磁学的重要内容,是进入现代物理的基础知识。

它是我们了解电子学、信息科学、电力工程、电磁兼容等领域的理论基础。

本文将从电磁场与电磁波的概念、数学表示及其应用等方面进行全面的阐述,共分为以下几个部分。

一、电磁场的概念与基本特性电磁场是指在电荷或电流存在的情况下,在空间中发生的电场和磁场的相互作用。

它是一个连续的场,具有能量、动量、角动量等物理量。

电磁场的基本特性有:1)超距作用;2)场的线性性;3)场的可加性;4)场的相互作用。

二、电磁场的数学表示电磁场的数学表示主要有两种方法:一是使用麦克斯韦方程式,它包括麦克斯韦电场定律、麦克斯韦磁场定律、法拉第电磁感应定律和安培电流定律。

二是利用应用数学中的向量分析,包括向量导数、散度和旋度等。

三、电磁波的概念与基本特性电磁波是由电场和磁场相互作用而产生的一种波动现象。

它具有电场和磁场的可旋转、垂直并互相垂直、传播方向垂直于电场和磁场的特点。

电磁波分为许多不同的频率和波长,其中包括无线电波、光波、X射线、γ射线等。

四、电磁波的数学表示电磁波的数学表示主要有两种方法:一是通过电磁场的数学表示导出电磁波的运动方程,即麦克斯韦方程组。

二是通过电磁波本身的性质进行数学建模,如用傅里叶分析法,将电磁波表示为谐波和完整的谱等。

五、电磁场与电磁波的应用电磁场与电磁波在各个领域均有着广泛的应用。

在电子学领域,电磁场在电磁管、电子束匀器及微波电路等设备的设计与优化中发挥着重要的作用。

在信息科学领域,电磁波被广泛用于通信技术中的无线传输、卫星通讯等。

在电力工程领域,电磁场在电气设备的设计、制造、维护等方面起着至关重要的作用。

此外,在医学、地质、环境、天文学等领域,电磁场与电磁波也有着广泛的应用。

电磁场与电磁波是电磁学的基础,是现代科学技术的重要组成部分。

本文从电磁场与电磁波的概念、数学表示及其应用等角度进行了概述,希望能够对读者理解和应用电磁场与电磁波有所帮助。

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=∙=∙∇=∙=∙∇∙∂∂-=∙∂∂-=⨯∇∙∂∂+=∙∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ρ本构关系: E J HB EDσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=∙=∙∇=∙=∙∇=∙=⨯∇=∙=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ρ2 边界条件(1)一般情况的边界条件nn n sT t t sn s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-∙=-=-⨯=-=-∙==-⨯((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-∙==-⨯==-∙==-⨯(((1)基本方程0022=∙==∇-=∇=∙=∙∇=∙=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρ本构关系: E Dε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

(3)典型问题● 导体球(包括实心球、空心球、多层介质)的电场、电位计算; ● 长直导体柱的电场、电位计算;● 平行导体板(包括双导体板、单导体板)的电场、电位计算; ● 电荷导线环的电场、电位计算; ● 电容和能量的计算。

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点

初识电磁场与电磁波知识点
电磁场和电磁波是物理学中非常重要的概念,涉及到电场、磁场、电磁波的传播等多个方面。

以下是一些关于电磁场与电磁波的基本知识点:
1. 电磁场:由变化的电场和磁场组成,是相互联系、相互作用的统一场。

电磁场的变化会产生电磁波。

2. 电磁波:是电磁场的一种波动状态,可以传播能量。

电磁波由电场和磁场组成,它们的相互垂直并且都与波的传播方向垂直。

3. 电磁波的传播:电磁波可以在真空中传播,也可以在介质中传播。

在介质中传播时,电磁波的传播速度、频率和波长等特性会受到影响。

4. 电磁波的性质:具有波动性和粒子性,即具有能量和动量。

电磁波的频率、波长和能量之间存在关系,即E=hν,其中E为能量,ν为频率,h为普朗
克常数。

5. 电磁波谱:根据频率从低到高的顺序,电磁波谱包括无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线等。

6. 电磁辐射:指能量以电磁波形式发射到空间的现象。

电磁辐射包括无线电波、红外线、可见光、紫外线等。

7. 电磁感应:当导体处于变化的磁场中时,导体中会产生感应电动势。

这种现象称为电磁感应。

8. 磁场强度和电场强度:描述磁场和电场强弱的物理量,单位分别为安培/米2(A/m)和伏特/米(V/m)。

这些知识点为初步了解电磁场与电磁波的概念提供了基础,但实际应用和研究涉及更多深入的内容。

如需更多信息,建议查阅相关文献或咨询物理学专家。

电磁场和电磁波基础

电磁场和电磁波基础

第一章 电磁场和电磁波基础1 电磁学基本物理量 2 电磁场定律 3 边界条件 4 本构关系 5 波动方程 6 场和方程的复数形式 7 波数和波阻抗 8 均匀平面波 9 平面波的反射和折射 10 坡印亭定理1 电磁学基本物理量在电磁场基本方程中,所涉及到的基本物理量有:E :称为电场强度(伏/米)H :称为磁场强度(安/米)D :称为电通密度(库/米 2) B :称为磁通密度(韦/米 2)电位移矢量 磁感应强度⎯真空→ ε 0 E ⎯ ⎯ ⎯真空→ μ 0 H ⎯ ⎯J :电流密度(安/米 2)ρ :电荷密度(库/米 )3⎧ ⎪基本物理量:E , B ⎨ ⎪导出物理量:D, H ⎩瞬时值或时域表示 一般情况下,各场量和源量既是空间坐标的函数,又是时 间的函数,即2 电磁学场定律电磁学场定律描述场和源的关系,包括积分形式场定 律和微分形式场定律。

微分场定律形式把某点的场与就在该点的源及该点 的其它场量联系起来,适用于场、源量都是连续函数并有 S 连续的导数的良态域。

•⎧ E = E ( r , t ) = E ( x, y , z , t ) ⎪ ⎪ D = D ( r , t ) = D ( x, y , z , t ) ⎪ B = B ( r , t ) = B ( x, y , z , t ) ⎪ ⎨ ⎪ H = H ( r , t ) = H ( x, y , z , t ) ⎪ ρ = ρ (r , t ) = ρ ( x, y, z , t ) ⎪ ⎪ J = J (r , t ) = J ( x, y, z , t ) ⎩对应不同时刻,这些场量和源量的方向和数值会发生变 化,对应着一般时变场,称为场量的时域表示,或者瞬时 值。

P⎧ ⎪场:E , B ⎨ ⎪源:ρ,J ⎩2.1 自由空间场定律 2.2 物质中场定律V2.1 自由空间场定律∇× E = −B∂B (1a) ∂t∂ε 0 E (1b) ∂tVS自由空间指真空或同真空基本上具有同样特性的任 何其它媒质 (如空气) 自由空间场定律描述纯粹的源 ρ 、 。

(完整word版)电磁场与电磁波课程知识点总结和公式

(完整word版)电磁场与电磁波课程知识点总结和公式

电磁场与电磁波课程知识点总结与主要公式1 麦克斯韦方程组的理解和掌握 (1)麦克斯韦方程组⎰⎰⎰⎰⎰⎰=•=•∇=•=•∇•∂∂-=•∂∂-=⨯∇•∂∂+=•∂∂+=⨯∇ss l s l s s d B B Q s d D D s d t B l d E t B E s d tD J l d H t D J H 0)(ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖρ本构关系: E J HB ED ϖϖϖϖϖϖσμε===(2)静态场时的麦克斯韦方程组(场与时间t 无关)⎰⎰⎰⎰=•=•∇=•=•∇=•=⨯∇=•=⨯∇ss l l s d B B Qs d D D l d E E Il d H J H 0000ϖϖϖϖϖϖϖϖϖϖϖϖϖρ2 边界条件(1)一般情况的边界条件nn n sT t t s n s n n sn tt n B B B B a J H H J H H a D D D D a E E E E a 21212121212121210)())(0)==-•=-=-⨯=-=-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖϖ((ρρ(2)介质界面边界条件(ρs = 0 J s = 0)nn n t t n n n n t t n B B B B a H H H H a D D D D a E E E E a 21212121212121210)(0)0)(0)==-•==-⨯==-•==-⨯ϖϖϖϖϖϖϖϖϖϖϖϖ(((1)基本方程0022=•==∇-=∇=•=•∇=•=⨯∇⎰⎰⎰A Apsl ld E Qs d D D l d E E ϕϕϕερϕρϖϖϖϖϖϖϖϖ本构关系: E D ϖϖε=(2)解题思路● 对称问题(球对称、轴对称、面对称)使用高斯定理或解电位方程(注意边界条件的使用)。

● 假设电荷Q ——> 计算电场强度E ——> 计算电位φ ——> 计算能量ωe =εE 2/2或者电容(C=Q/φ)。

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理

电磁场与电磁波知识点整理一、电磁场的基本概念电磁场是有内在联系、相互依存的电场和磁场的统一体的总称。

电荷会产生电场,而电流会产生磁场。

电场是由电荷产生的,它对处在其中的电荷有力的作用。

电场强度是描述电场强弱和方向的物理量,用 E 表示,单位是伏特每米(V/m)。

电场线可以形象地描绘电场的分布,其疏密程度表示电场强度的大小,切线方向表示电场的方向。

磁场是由运动电荷或电流产生的,对处在其中的运动电荷或电流有力的作用。

磁感应强度是描述磁场强弱和方向的物理量,用 B 表示,单位是特斯拉(T)。

磁感线可以形象地描绘磁场的分布,其疏密程度表示磁感应强度的大小,切线方向表示磁场的方向。

二、麦克斯韦方程组麦克斯韦方程组是电磁场理论的核心,它由四个方程组成,分别描述了电场和磁场的产生、变化和相互关系。

1、高斯定律:描述了电场的散度与电荷量之间的关系。

对于静电场,通过任意闭合曲面的电通量等于该闭合曲面所包围的电荷量除以真空中的介电常数。

数学表达式:∮E·dS = q /ε₀2、高斯磁定律:表明磁场的散度恒为零,即磁感线总是闭合的,没有磁单极子存在。

数学表达式:∮B·dS = 03、法拉第电磁感应定律:指出时变磁场会产生感应电场,感应电场的环流等于磁通量的变化率的负值。

数学表达式:∮E·dl =dΦ/dt4、安培麦克斯韦定律:修正了安培环路定律,不仅电流会产生磁场,时变电场也会产生磁场。

数学表达式:∮B·dl =μ₀(I +ε₀dΦₑ/dt)三、电磁波的产生与传播电磁波是由时变的电场和磁场相互激发而产生的,并在空间中以波动的形式传播。

变化的电流或电荷是电磁波的源。

电磁波的传播不需要介质,可以在真空中传播。

在真空中,电磁波的传播速度为光速 c,约为 3×10⁸米每秒。

电磁波具有波的特性,如波长、频率、波速之间的关系:v =fλ,其中 v 是波速,f 是频率,λ 是波长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电磁场与电磁波总结第一章一、矢量代数 A •B =AB cos θA B ⨯=AB e AB sin θ A •(B ⨯C ) = B •(C ⨯A ) = C •(A ⨯B ) ()()()C A C C A B C B A ⋅-⋅=⨯⨯二、三种正交坐标系 1. 直角坐标系 矢量线元x y z =++le e e d x y z矢量面元=++Se e e x y z d dxdy dzdx dxdy体积元d V = dx dy dz 单位矢量的关系⨯=e e e x y z ⨯=e e e y z x ⨯=e e e z x y2. 圆柱形坐标系 矢量线元=++l e e e z d d d dz ρϕρρϕl 矢量面元=+e e z dS d dz d d ρρϕρρϕ体积元dz d d dVϕρρ= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e zz z ρϕϕρρϕ3. 球坐标系矢量线元d l = e r d r + e θ r d θ + e ϕ r sin θ d ϕ 矢量面元d S = e r r 2sin θ d θ d ϕ体积元ϕθθd drd r dVsin 2= 单位矢量的关系⨯=⨯⨯=e e e e e =e e e e r r r θϕθϕϕθ三、矢量场的散度和旋度 1. 通量与散度=⋅⎰A S Sd Φ 0lim∆→⋅=∇⋅=∆⎰A S A A Sv d div v2. 环流量与旋度=⋅⎰A l ld Γ maxn 0rot =lim∆→⋅∆⎰A lA e lS d S3. 计算公式∂∂∂∇=++∂∂∂⋅A y x z A A A x y z 11()z A A A z ϕρρρρρϕ∂∂∂∇=++∂∂∂⋅A 22111()(sin )sin sin ∂∂∂∇=++∂∂∂⋅A r A r A A r r r r ϕθθθθθϕxy z ∂∂∂∇⨯=∂∂∂e e e A x y z x y z A A A 1z z z A A A ρϕρϕρρϕρ∂∂∂∇⨯=∂∂∂e e e A 21sin sin r r zr r A r A r A ρϕθθθϕθ∂∂∂∇⨯=∂∂∂e e e A4. 矢量场的高斯定理与斯托克斯定理⋅=∇⋅⎰⎰A S A SV d dV⋅=∇⨯⋅⎰⎰A l A S lSd d四、标量场的梯度 1. 方向导数与梯度00()()lim∆→-∂=∂∆l P u M u M u llcos cos cos ∂∂∂∂=++∂∂∂∂P uu u ulx y zαβγ cos ∇⋅=∇e l u u θ grad ∂∂∂∂==+∂∂∂∂e e e +e n x y z u u u u u n x y z2. 计算公式∂∂∂∇=++∂∂∂e e e xy z u u u u x y z 1∂∂∂∇=++∂∂∂e e e z u u u u z ρϕρρϕ 11sin ∂∂∂∇=++∂∂∂e e e r u u uu r r r zθϕθθ 五、无散场与无旋场1. 无散场()0∇⋅∇⨯=A =∇⨯F A2. 无旋场 ()0∇⨯∇=u -u =∇F六、拉普拉斯运算算子 1. 直角坐标系22222222222222222222222222222222∂∂∂∇=++∇=∇+∇+∇∂∂∂∂∂∂∂∂∂∂∂∂∇=++∇=++∇=++∂∂∂∂∂∂∂∂∂A e e e x x y y z zyyyx x x z z z x y z u u u u A A A x y zA A A A A A A A A A A A x y z x y z x y z,,2. 圆柱坐标系22222222222222111212⎛⎫∂∂∂∂∇=++ ⎪∂∂∂∂⎝⎭∂∂⎛⎫⎛⎫∇=∇--+∇-++∇ ⎪ ⎪∂∂⎝⎭⎝⎭A e e e z z u u uu z A A A A A A A ϕρρρρϕϕϕρρρρρϕρρϕρρϕ3. 球坐标系22222222111sin sin sin ⎛⎫∂∂∂∂∂⎛⎫∇=++ ⎪ ⎪∂∂∂∂∂⎝⎭⎝⎭u u uu r r r r r r θθθϕθϕ ⎪⎪⎭⎫⎝⎛∂∂+-∂∂+∇+⎪⎪⎭⎫⎝⎛∂∂--∂∂+∇+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂---∇=∇ϕθθθϕθϕθθθθϕθθθθϕϕϕϕθθθϕθθA r A r A r A A r A r A r A A r A r A r A r A r r r r r 222222222222222222sin cos 2sin 1sin 2sin cos 2sin 12sin 22cot 22e e e A 七、亥姆霍兹定理如果矢量场F 在无限区域中处处是单值的,且其导数连续有界,则当矢量场的散度、旋度和边界条件(即矢量场在有限区域V’边界上的分布)给定后,该矢量场F 唯一确定为()()()=-∇+∇⨯F r r A r φ其中1()()4''∇⋅'='-⎰F r r r r V dV φπ 1()()4''∇⨯'='-⎰F r A r r r V dV π第二章一、麦克斯韦方程组 1. 静电场 真空中:001d ==VqdV ρεε⋅⎰⎰SE S (高斯定理)d 0⋅=⎰lE l 0∇⋅=E ρε0∇⨯=E场与位:3'1'()(')'4'V dV ρπε-=-⎰r r E r r r r ϕ=-∇E 01()()d 4πV V ρϕε''='-⎰r r |r r |介质中:d ⋅=⎰D S Sqd 0⋅=⎰lE l ∇⋅=D ρ 0∇⨯=E极化:0=+D E P ε e 00(1)=+==D E E E r χεεεε ==⋅P e PS n n P ρ =-∇⋅P P ρ2. 恒定电场电荷守恒定律:⎰⎰-=-=⋅Vsdv dtd dt dq ds J ρ 0∂∇⋅+=∂J tρ传导电流与运流电流:=J E σ ρ=J v恒定电场方程:d 0⋅=⎰J S Sd 0⋅=⎰J l l0∇⋅=J 0∇⨯J =3. 恒定磁场 真空中:0 d ⋅=⎰B l lI μ (安培环路定理) d 0⋅=⎰SB S 0∇⨯=B J μ 0∇⋅=B场与位:03()( )()d 4π ''⨯-'='-⎰J r r r B r r r VV μ =∇⨯B A 0 ()()d 4π'''='-⎰J r A r r r V V μ 介质中:d ⋅=⎰H l lI d 0⋅=⎰SB S ∇⨯=H J 0∇⋅=B磁化:=-BH M μ m 00(1)=+B H =H =H r χμμμμ m =∇⨯J M ms n =⨯J M e4. 电磁感应定律() d d in lC dv B dl dt⋅=-⋅⨯⋅⎰⎰⎰S E l B S + )(法拉第电磁感应定律 ∂∇⨯=-∂BE t5. 全电流定律和位移电流全电流定律: d ()d ∂⋅=+⋅∂⎰⎰D H l J S l St∂∇⨯=+∂DH J t 位移电流: d =DJ d dt6. Maxwell Equationsd ()d d d d d 0∂⎧⋅=+⋅⎪∂⎪∂⎪⋅=-⋅⎪∂⎨⎪⋅=⎪⎪⋅=⎪⎩⎰⎰⎰⎰⎰⎰⎰D H J S B E S D S B S lS l SS V Sl tl t V d ρ 0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩D H J BE D B t t ρ ()()()()0∂⎧∇⨯=+⎪∂⎪∂⎪∇⨯=-⎨∂⎪∇⋅=⎪⎪∇⋅=⎩E H E H E E H t t εσμερμ 二、电与磁的对偶性em e m em e e m m e e m mm e 00∂∂⎫⎧∇⨯=-∇⨯=⎪⎪∂∂⎪⎪∂∂⎪⎪∇⨯=+∇⨯=--⎬⎨∂∂⎪⎪∇=∇=⎪⎪⎪⎪∇=∇=⎩⎭⋅⋅⋅⋅B D E H DB H J E J D B D B t t &tt ρρ m e e m ∂⎧∇⨯=--⎪∂⎪∂⎪∇⨯=+⇒⎨∂⎪∇=⎪⎪∇=⎩⋅⋅B E J D H J D B tt ρρ三、边界条件1. 一般形式12121212()0()()()0n n S n Sn σρ⨯-=⨯-=→∞⋅-=⋅-=()e E E e H H J e D D e B B2. 理想导体界面和理想介质界面111100⨯=⎧⎪⨯=⎪⎨⋅=⎪⎪⋅=⎩e E e H J e D e B n n Sn S n ρ 12121212()0()0()0()0⨯-=⎧⎪⨯-=⎪⎨⋅-=⎪⎪⋅-=⎩e E E e H H e D D e B B n n n n 第三章一、静电场分析 1. 位函数方程与边界条件 位函数方程:220∇=-∇=ρφφε电位的边界条件:121212=⎧⎪⎨∂∂-=-⎪∂∂⎩s nn φφφφεερ 111=⎧⎪⎨∂=-⎪∂⎩s constnφφερ(媒质2为导体) 2. 电容定义:=qCφ两导体间的电容:=C q /U 任意双导体系统电容求解方法:3. 静电场的能量N 个导体: 112ne i ii W q φ==∑ 连续分布: 12eVW dV φρ=⎰电场能量密度:12ω=⋅D E e二、恒定电场分析1. 位函数微分方程与边界条件位函数微分方程:20∇=φ 边界条件:121212=⎧⎪⎨∂∂=⎪∂∂⎩nn φφφφεε12()0⋅-=e J J n 1212[]0⨯-=J J e n σσ2. 欧姆定律与焦耳定律 欧姆定律的微分形式: =J E σ 焦耳定律的微分形式: =⋅⎰E J VP dV3. 任意电阻的计算2211d d 1⋅⋅====⋅⋅⎰⎰⎰⎰E lE l J S E S SSUR G Id d σ (L R =σS ) 4. 静电比拟法:G C —,σε—2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E lE lS S d d q C Ud d ε 2211d d d ⋅⋅===⋅⋅⎰⎰⎰⎰J S E SE lE lS S d I G Uσ三、恒定磁场分析1. 位函数微分方程与边界条件矢量位:2∇=-A J μ 12121211⨯⨯⨯A A e A A J n s μμ()=∇-∇=标量位:20m φ∇= 211221∂∂==∂∂m m m m n nφφφφμμ 2. 电感定义:d d ⋅⋅===⎰⎰B S A l SlL IIIψ=+i L L L3. 恒定磁场的能量N 个线圈:112==∑Nmj j j W I ψ 连续分布:m 1d 2=⋅⎰A J V W V 磁场能量密度:m 12ω=⋅H B第四章一、边值问题的类型(1)狄利克利问题:给定整个场域边界上的位函数值()=f s φ(2)纽曼问题:给定待求位函数在边界上的法向导数值()∂=∂f s nφ2211⋅⋅===⋅⋅⎰⎰⎰⎰D S E S E l E l S Sd d q C U d d ε(3)混合问题:给定边界上的位函数及其向导数的线性组合:2112()()∂==∂f s f s nφφ (4)自然边界:lim r r φ→∞=有限值二、唯一性定理静电场的惟一性定理:在给定边界条件(边界上的电位或边界上的法向导数或导体表面电荷分布)下,空间静电场被唯一确定。

相关文档
最新文档