北师版八年级数学上册1.3勾股定理的应用能力提升卷

合集下载

北师大版八年级数学上名校课堂练习1.3勾股定理的应用(含答案)

北师大版八年级数学上名校课堂练习1.3勾股定理的应用(含答案)

1.3 勾股定理的应用基础题知识点1立体图形中两点之间的最短距离1.如图,若圆柱的底面周长是30 cm,高是40 cm,从圆柱底部A处沿侧面缠绕一圈丝线到顶部B处作装饰,则这条丝线的最小长度是( )A.80 cm B.70 cmC.60 cm D.50 cm2.如图是棱长为1的正方体木块,一只蚂蚁现在A点,若在B处有一食物,它想尽快吃到食物,设蚂蚁沿正方体表面爬行的最短路程为a,则a2=________.3.如图是一个三级台阶,它的每一级的长、宽、高分别为20 dm、3 dm、2 dm,A和B是这个台阶的两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶面爬行到B点的最短路程是多少?知识点2勾股定理在生活中的应用4.如图,湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )A.30米B.40米C.50米D.60米5.一个圆柱形的油桶高120 cm,底面直径为50 cm,则桶内所能容下的最长的木棒长为( ) A.5 cm B.100 cmC.120 cm D.130 cm6.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口A到藏宝点B的直线距离是( )A.20 kmB.14 kmC.11 kmD.10 km7.你听说过亡羊补牢的故事吧.为了防止羊的再次丢失,牧羊人要在高0.9 m,宽1.2 m的长方形栅栏门的相对角顶点间加固一条木板,则这条木板至少需________长.8.一渔船从点A出发,向正北方向航行5公里到B点,然后从B点向正东方向航行12公里至C点,则AC长为________公里.9.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶端A在AC上运动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑竿顶端A 下滑多少米?中档题10.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走________公尺后,他与神仙百货的距离为340公尺( ) A.100 B.180C.220 D.26011.(济南中考)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)为( )A.12 m B.13 mC.16 m D.17 m12.(东营中考)如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行________米.13.如图是延安某地一个农家的窑洞的洞门示意图,其上方为半圆形,若长方形的对角线AC=2.5米,AD=1.5米,则洞口的面积为________平方米(π取3).14.如图,长方体的高为3 cm ,底面是正方形,边长为2 cm ,现有一苍蝇从A 点出发,沿长方体的表面到达C 点处,则苍蝇所经过的最短距离为________.15.如图,圆柱的底面周长为6 cm ,AC 是底面圆的直径,高BC =6 cm ,点P 是母线BC 上一点,且PC =23BC.一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是多少?综合题16.印度数学家什迦罗(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.参考答案1.D 2.53.经分析,如图,应把台阶看成是纸片折成的,拉平(没高度)成一张长方形(长为3×3+2×3=15 dm ,宽为20 dm)的纸. 所以AB 2=152+202=625(dm 2).所以AB =25 dm ,即蚂蚁沿着台阶面爬行到B 点的最短路程是25 dm.4.C5.D6.D 7.1.5 m 8.139.因为AB =DE =2.5,BC =1.5,∠C =90°, 所以AC =AB 2-BC 2= 2.52-1.52=2. 因为BD =0.5,所以在Rt △ECD 中,CE =DE 2-CD 2= 2.52-(CB +BD )2= 2.52-(1.5+0.5)2=1.5. 所以AE =AC -EC =0.5. 答:滑竿下滑了0.5米.10.C 11.D 12.10 13.4.5 14.5 cm15.画侧面展开图,如图,因为圆柱的底面周长为6 cm , 所以右图中AC =3 cm , 又因为PC =23BC ,所以PC =23×6=4(cm).在Rt △ACP 中,AP 2=AC 2+CP 2,得AP =5 cm.16.如图,由题意知,AC =2,AD =0.5.在Rt △ACD 中,由勾股定理,得CD 2=AC 2-AD 2=22-0.52=3.75. 设湖水深BD 为x 尺,则BC 为(x +0.5)尺.在Rt △BCD 中,由勾股定理,得BD 2+CD 2=BC 2,即x 2+3.75=(x +0.5)2,解得x=3.5.答:湖水深3.5尺.。

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

北师大版八年级上《1.3勾股定理的应用》同步练习(含答案解析)

2020-2020学年度北师大版数学八年级上册同步练习1.3 勾股定理的应用(word解析版)学校:___________姓名:___________班级:___________一.选择题(共10小题)1.如图,CD是一平面镜,光线从A点射出经CD上的E点反射后照射到B点,设入射角为α(入射角等于反射角),AC⊥CD,BD⊥CD,垂足分别为C、D,且AC=3,BD=6,CD=12,则CE的值为()A.3 B.4 C.5 D.62.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米3.小明从家走到邮局用了8分钟,然后右转弯用同样的速度走了6分钟到达书店(如图所示).已知书店距离邮局660米,那么小明家距离书店()A.880米B.1100米C.1540米D.1760米4.古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是()A.直角三角形两个锐角互补B.三角形内角和等于180°C.如果三角形两条边长的平方和等于第三边长的平方D.如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形5.如图,厂房屋顶人字形钢架的跨度BC=12米,AB=AC=6.5米,则中柱AD(D 为底边BC的中点)的长是()A.6米 B.5米 C.3米 D.2.5米6.如图,盒内长、宽、高分别是6cm、3cm、2cm,盒内可放木棒最长的长度是()A.6cm B.7cm C.8cm D.9cm7.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm8.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为()A.B.2 C.3 D.49.如图,长方体的底面边长分别为2cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要()A.11cm B.2cm C.(8+2)cm D.(7+3)cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题(共6小题)11.如图,一艘海轮位于灯塔P的北偏东方向60°,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长海里.12.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.13.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C 向上拉升3cm到D,则橡皮筋被拉长了cm.14.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.15.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).16.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是.三.解答题(共4小题)17.如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD的长.18.(1)如图1是一家唇膏卖家的礼品装,卖家采用了正三梭柱形盒子,里面刚好横放一支圆柱形唇膏,右图是其横载面,△ABC为正三角形.求这个包装盒空间的最大利用率(圆柱体积和纸盒容积的比);(2)一个长宽高分别为l,b.h的长方体纸箱装满了一层高为h的圆柱形易拉罐如图2.求纸箱空间的利用率(易拉罐总体积和纸箱容积的比);(3)比较上述两种包装方式的空间利用率哪个大?19.如图,甲乙两船同时从A港出发,甲船沿北偏东35°的方向,以每小时12海里的速度向B岛驶去.乙船沿南偏东55°的方向向C岛驶去,2小时后,两船同时到达了目的地.若C、B两岛的距离为30海里,问乙船的航速是多少?20.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m.(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的顶端B在水平方向上向右滑动了多远?2020-2020学年度北师大版数学八年级上册同步练习:1.3 勾股定理的应用(word解析版)参考答案与试题解析一.选择题(共10小题)1.【分析】证明△AEC∽△BED,可得=,由此构建方程即可解决问题;【解答】解:由镜面反射对称可知:∠A=∠B=∠α,∠AEC=∠BED.∴△AEC∽△BED.∴=,又∵若AC=3,BD=6,CD=12,∴=,求得EC=4.故选:B.2.【分析】要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.【解答】解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=4,∴AC=2,∵BD=0.9,∴CD=2.4.在Rt△ECD中,EC2=ED2﹣CD2=2.52﹣2.42=0.49,∴EC=0.7,∴AE=AC﹣EC=2﹣0.7=1.3.故选:B.【分析】利用勾股定理求出小明家到书店所用的时间,求出小明的速度,再求小明家距离书店的距离.【解答】解:∵小明家到书店所用的时间为=10分钟,又∵小明的速度为=110米/分钟,故小明家距离书店的距离为110×10=1100米.故选:B.4.【分析】根据勾股定理的逆定理即可判断.【解答】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.5.【分析】首先证明AD⊥BC,再利用勾股定理计算即可;【解答】解:∵AB=AC,BD=DC,∴AD⊥BC,在Rt△ADB中,AD===2.5,故选:D.6.【分析】两次运用勾股定理:两直角边的平方和等于斜边的平方即可解决.【解答】解:本题需先求出长和宽组成的长方形的对角线长为=3cm.这根最长的棍子和矩形的高,以及长和宽组成的长方形的对角线组成了直角三角盒内可放木棒最长的长度是=7cm.故选:B.7.【分析】首先根据题意画出图形,利用勾股定理计算出AC的长【解答】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC===15(cm),则这只铅笔的长度大于15cm.故选:D.8.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP=,故选:C.9.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:把长方体的侧表面展开得到一个长方形,高6cm,宽=2+3+2+3=10cm,AB为对角线.AB==2cm.故选:B.10.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题(共6小题)11.【分析】首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP•cos∠A=2海里.【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos∠A=4×cos60°=4×=2海里.故答案为2.12.【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【解答】解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.13.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.14.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.15.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.16.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短解答,注意此题展开图后蚂蚁的爬行路线有两种,分别求出,选取最短的路程.【解答】解:如图①:AM2=AB2+BM2=16+(5+2)2=65;如图②:AM2=AC2+CM2=92+4=85;如图③:AM2=52+(4+2)2=61.∴蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是:61.故答案为:61.三.解答题(共4小题)17.【分析】如图,直角△ACD和直角△ABD有公共边AD,在两个直角三角形中,利用三角函数即可用AD表示出CD与BD,根据CB=BD﹣CD即可列方程,从而求得AD的长.【解答】解:如图所示.则∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD,∴BC=AC=100海里.在Rt△ACD中,设CD=x海里,则AC=2x海里,AD===x,在Rt△ABD中,AB=2AD=2x,BD===3x,又∵BD=BC+CD,∴3x=100+x,解得x=50,∴AD=x=50海里.18.【分析】(1)如图1,设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r.根据圆柱的体积和棱柱的体积公式分别求得圆柱型唇膏和纸盒的体积,然后求其比值;(2)求得易拉罐总体积和纸箱容积,然后求得比值;(3)利用(1)(2)的数据进行解答.【解答】解:(1)由题意,⊙O是△ABC内接圆,D为切点,如图1,连结OD,OC.设⊙O半径为r,纸盒长度为h',则CD=r,BC=2r 则圆柱型唇膏和纸盒的体积之比为:()(2)易拉罐总体积和纸箱容积的比:=;(3)∵=∴第二种包装的空间利用率大.19.【分析】首先求得线段AB的长,然后利用勾股定理求得线段AC的长,然后除以时间即可得到乙船的速度.【解答】解:根据题意得:AB=12×2=24,BC=30,∠BAC=90°.…(1分)∴AC2+AB2=BC2.∴AC2=BC2﹣AB2=302﹣242=324∴AC=18.…(4分)∴乙船的航速是:18÷2=9海里/时.…(6分)20.【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【解答】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC===2.4(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,即1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′﹣BC=2﹣0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.。

最新2019-2020年度北师大版八年级数学上册《勾股定理的应用》同步练习题及答案解析-精品试题

最新2019-2020年度北师大版八年级数学上册《勾股定理的应用》同步练习题及答案解析-精品试题

八上1.3勾股定理的应用一.选择题(共10小题)1.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m2.如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm3.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米4.如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm5.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D 点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm6.已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.167.在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对8.如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺9.一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里10.如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m二.填空题(共10小题)11.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.12.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了cm.13.如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.(结果保留根号)14.在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高米.15.小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?(填“能”或“不能”).16.一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有km.17.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是m/s.18.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.19.如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离.20.如图示(单位:mm)的矩形零件上两孔中心A和B的距离为mm.三.解答题(共10小题)21.在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.22.如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?23.一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?24.如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?25.八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.26.有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?27.如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?28.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB 的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.29.如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.30.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?八上1.3个勾股定理的应用参考答案与试题解析一.选择题(共10小题)1.(2016春•庐江县期末)如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m【分析】图中为一个直角三角形,根据勾股定理两个直角边的平方和等于斜边的平方.此题要求斜边和直角边的长度,解直角三角形即可.【解答】解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.【点评】本题考查的是勾股定理的正确应用,找出可以运用勾股定理的直角三角形是关键.2.(2016春•临沭县期中)如图,是台阶的示意图.已知每个台阶的宽度都是30cm,每个台阶的高度都是15cm,连接AB,则AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分别求得直角三角形的两直角边的长后即可利用勾股定理求得斜边AB 的长.【解答】解:如图,由题意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故选A.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.3.(2015•岳池县模拟)如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.4.(2015•伊宁市校级一模)如图,一个圆桶儿,底面直径为16cm,高为18cm,则一只小虫底部点A爬到上底B处,则小虫所爬的最短路径长是(π取3)()A.20cm B.30cm C.40cm D.50cm【分析】先将圆柱的侧面展开为一矩形,而矩形的长就是底面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC=3×16÷2=24,在Rt△ABC中,由勾股定理,得AB===30cm.故选B.【点评】本题考查了圆柱侧面展开图的运用,两点之间线段最短的运用,勾股定理的运用.在解答时将圆柱的侧面展开是关键.5.(2015秋•滨湖区期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.故选A.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.6.(2015秋•新泰市期末)已知蚂蚁从长、宽都是3,高是8的长方形纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.8 B.10 C.12 D.16【分析】根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB 为矩形的对角线,即蚂蚁所行的最短路线为AB.【解答】解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB==10,即蚂蚁所行的最短路线长是10.故选B.【点评】考查了平面展开﹣最短路径问题,本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.7.(2015春•北流市期中)在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A.一定不会 B.可能会C.一定会D.以上答案都不对【分析】由题意知树折断的两部分与地面形成一直角三角形,根据勾股定理求出BC的长即可解答.【解答】解:如图所示,AB=10米,AC=6米,根据勾股定理得,BC===8米<9米.故选:A.【点评】此题考查了勾股定理在生活中的应用.善于观察题目的信息是解题以及学好数学的关键.8.(2015春•青山区期中)如图,在水池的正中央有一根芦苇,池底长10尺,它高出水而1尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面则这根芦苇的长度是()A.10尺B.11尺C.12尺D.13尺【分析】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),故选D.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.9.(2014春•台山市校级期末)一艘轮船以16海里∕小时的速度从港口A出发向东北方向航行,另一轮船12海里∕小时从港口A出发向东南方向航行,离开港口3小时后,则两船相距()A.36海里B.48海里C.60海里D.84海里【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了48,36.再根据勾股定理,即可求得两条船之间的距离.【解答】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×3=48,12×3=36海里,根据勾股定理得:=60(海里).故选C.【点评】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.10.(2013秋•东兴市校级期末)如图,一场大风后,一棵与地面垂直的树在离地面1m处的A点折断,树尖B点触地,经测量BC=3m,那么树高是()A.4m B.m C.(+1)m D.(+3)m【分析】由题意知树枝折断部分、竖直部分和折断部分构成了直角三角形,根据题目提供数据分别求出竖直部分和折断部分,二者的和即为本题的答案.【解答】解:由题意知:AC=1,BC=3,由勾股定理得:AB===,∴树高为:AC+AB=(+1)m,故选C.【点评】本题考查了勾股定理的相关知识,解决本题时,先由勾股定理求得树枝折断部分,然后与竖直部分加在一起即为本题的解.二.填空题(共10小题)11.(2016•富顺县校级模拟)如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.12.(2016春•潮州期末)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.13.(2016春•武冈市期中)如图是一个三级台阶,它的每一级的长、宽和高分别为25dm、3dm、3dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是dm .(结果保留根号)【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:三级台阶平面展开图为长方形,长为25dm,宽为(3+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=252+[(3+3)×3]2=949,解得x=.故答案为dm.【点评】此题主要考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.14.(2015秋•苏州校级期末)在一棵树的10米高的B处有两只猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树20米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高15 米.【分析】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【点评】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.15.(2015秋•东明县期末)小明要把一根长为70cm的长的木棒放到一个长、宽、高分别为50cm,40cm,30cm的木箱中,他能放进去吗?能(填“能”或“不能”).【分析】在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较.【解答】解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.【点评】本题的关键是求出木箱内木棒的最大长度.16.(2015春•岳池县期末)一艘船由于风向的原因先向正东方向航行了160km,然后向正北方向航行了120km,这时它离出发点有200 km.【分析】两段航行的路线正好互相垂直,构成直角三角形,利用勾股定理即可解答即可.【解答】解:如图,A为出发点,B为正东方向航行了160km的地点,C为向正北方向航行了120km的地点,故AB=160km,BC=120km,在Rt△ABC中,由勾股定理得:AC===200km.故答案为200.【点评】本题考查直角三角形的性质及勾股定理的应用,关键是要根据题意画出图形即可解答.17.(2015秋•蓝田县期末)如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间的距离为50m,则这辆小汽车的速度是20 m/s.【分析】求小汽车是否超速,其实就是求BC的距离,直角三角形ABC中,有斜边AB的长,有直角边AC的长,那么BC的长就很容易求得,根据小汽车用2s行驶的路程为BC,那么可求出小汽车的速度.【解答】解:在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC==40(m),故小汽车的速度为v==20m/s.故答案为:20.【点评】本题考查了勾股定理的应用,是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.18.(2015秋•宜兴市校级期中)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10 cm.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.【点评】此题主要考查了立体图形的展开和两点之间线段最短,解题的关键是根据题意画出展开图,表示出各线段的长度.19.(2014秋•平山区校级月考)如图,一个无盖的长廊体盒子紧贴地面,一只蚂蚁由A出发,在盒子表面上爬到点G,已知,AB=7,BC=5,CG=5,求这只蚂蚁爬行的最短距离cm .【分析】将长方体盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【解答】解:如图(1),AG===13cm;(2)AG==cm.故答案为cm.【点评】此题考查了平面展开﹣最短路径问题,解答时要进行分类讨论,利用勾股定理是解题的关键.20.(2012秋•上蔡县校级期中)如图示(单位:mm)的矩形零件上两孔中心A和B的距离为100 mm.【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解答】解:∵AC=120﹣60=60mm,BC=140﹣60=80mm,∴AB===100(mm).故答案为:100.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.三.解答题(共10小题)21.(2016春•浠水县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA ⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明.【分析】如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.【解答】解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.(2016春•重庆校级期中)如图,台风过后,一希望小学的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部8米处,已知旗杆原长16米,你能求出旗杆在离底部多少米的位置断裂吗?【分析】设旗杆在离底部x米的位置断裂,在直角三角形中利用勾股定理即可得出关于x的一元二次方程,解方程求出x的值,此题得解.【解答】解:设旗杆在离底部x米的位置断裂,在给定图形上标上字母如图所示.∵AB=x,AB+AC=16,∴AC=16﹣x.在Rt△ABC中,AB=x,AC=16﹣x,BC=8,∴AC2=AB2+BC2,即(16﹣x)2=x2+82,解得:x=6.故旗杆在离底部8米的位置断裂.【点评】本题考查了勾股定理的应用,解题的关键是利用勾股定理得出关于x的一元二次方程.本题属于基础题,难度不大,解决该题型题目时,构建直角三角形,利用勾股定理表示出三边关系是关键.23.(2016春•广州校级期中)一架方梯AB长13米,如图,斜靠在一面墙上,梯子底端离墙OB 为5米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了3米,那么梯子的底端在水平方向滑动了几米?【分析】(1)在Rt△ABO中,根据勾股定理AO=,即可求出梯子顶端距地面的高度;(2)在Rt△A′B′O中,根据勾股定理OB′=,先求出OB′的长,梯子底部在水平方向滑动的长度即是BB′=OB′﹣OB的长,.【解答】解:(1)∵AO⊥DO,∴AO===12(m),(2)∵AA′=3m,∴A′O=AO﹣AA′=9m,∴OB′===,∴BB′=OB′﹣OB=﹣5=2﹣5(m),∴梯子的底端在水平方向滑动了2﹣5米.【点评】本题考查了勾股定理在实际生活中的运用,考查了直角三角形中勾股定理的运用,本题中正确的使用勾股定理求OB′的长度是解题的关键.24.(2015秋•龙口市期末)如图,某地方政府决定在相距50km的A、B两站之间的公路旁E点,修建一个土特产加工基地,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么基地E应建在离A站多少千米的地方?【分析】由勾股定理两直角边的平方和等于斜边的平方即可求,即在直角三角形DAE和直角三角形CBE中利用斜边相等两次利用勾股定理得到AD2+AE2=BE2+BC2,设AE为x,则BE=10﹣x,将DA=8,CB=2代入关系式即可求得.【解答】解:设基地E应建在离A站x千米的地方.则BE=(50﹣x)千米在Rt△ADE中,根据勾股定理得:AD2+AE2=DE2∴302+x2=DE2…(3分)在Rt△CBE中,根据勾股定理得:CB2+BE2=CE2∴202+(50﹣x)2=CE2又∵C、D两村到E点的距离相等.∴DE=CE∴DE2=CE2∴302+x2=202+(50﹣x)2解得x=20∴基地E应建在离A站多少20千米的地方.【点评】考查了勾股定理的应用,本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.25.(2013秋•亭湖区校级期末)八年级三班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米.(2)根据手中剩余线的长度计算出风筝线BC的长为65米.(3)牵线放风筝的小明身高1.6米.求风筝的高度CE.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【解答】解:在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=652﹣252=3600,所以,CD=±60(负值舍去),所以,CE=CD+DE=60+1.6=61.6米,答:风筝的高度CE为61.6米.【点评】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.26.(2014春•江都市校级期中)有一只喜鹊在一棵5m高的小树上觅食,它的巢筑在距该树6m的一棵大树上,大树高14m,且巢离树顶部1m,当它听到巢中幼鸟的叫声时,立即赶过去,若它飞行速度为5m/s,则它至少需要多少时间才能赶回巢中?【分析】根据题意,构建直角三角形,利用勾股定理解答即可.【解答】解:过A做AE⊥CD,垂足为E,由题意可得AE=6,CE=14﹣1﹣5=8在Rt△ACE中,则t==2秒.答:它至少需要2秒的时间才能赶回巢中.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.27.(2014春•东莞市校级期中)如图,有一条小路穿过长方形的草地ABCD,若AB=30m,BC=42m,AE=50m,则这条小路的面积是多少?【分析】根据勾股定理求得BE的长,即可求得CE的长,则要求的平行四边形的面积即为CE•AB 的值.【解答】解:由长方形性质知:∠B=90°在Rt△ABE中,∵AB=30m,AE=50m,∴BE===40m.∴CE=BC﹣BE=42﹣40=2m.S四边形AECF=CE•AB=2×30=60m2.答:小路的面积为60m2.【点评】此题主要是勾股定理的运用.勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.28.(2014春•禹州市期中)如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,荡秋千到AB的位置时,下端B距静止位置的水平距离EB,等于2.4米,距地面1.4米,求秋千AB的长.【分析】利用已知得出B′E的长,再利用勾股定理得出即可.【解答】解:由题意可得出:B′E=1.4﹣0.6=0.8(m),则AE=AB﹣0.8,在Rt△AEB中,AE2+BE2=AB2,∴(AB﹣0.8)2+2.42=AB2解得:AB=4,答:秋千AB的长为4m.【点评】本题考查了勾股定理的应用,善于观察题目的信息是解题以及学好数学的关键.29.(2014春•台安县期中)如图,某居民楼A与公路MN相距60m(AB=60m),在公路MN上行驶的汽车在距居民楼A100m的点P处就可使其受到噪音的影响,求在公路上以10m/s的速度行驶的汽车给居民楼A的居民带来多长时间的噪音影响.【分析】设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.由勾股定理得到AP的长,然后求得PP′长,利用速度路程时间之间的关系求得时间即可.【解答】解:如图,设汽车行驶到点P′处噪音影响结束,连接AP′,则AP′=AP.∵由勾股定理得到:PB===80,∴PP′=2PB=2×80=160米,∴影响时间为160÷10=16秒,答:影响时间为16秒.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中整理出直角三角形.30.(2014秋•兴化市校级月考)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街道上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方30米C处,过了2秒后,小汽车行驶到B处,测得小汽车与车速检测仪间距离为50米,(1)求BC的长;(2)这辆小汽车超速了吗?【分析】(1)在直角三角形ABC中,已知AB,AC根据勾股定理即可求出小汽车2秒内行驶的距离BC;(2)根据小汽车在两秒内行驶的距离BC可以求出小汽车的平均速度,求得数值与70千米/时比较,即可计算小汽车是否超速.【解答】解:(1)在直角△ABC中,已知AC=30米,AB=50米,。

专题13勾股定理的应用-2021-2022学年八年级数学上(解析版)【北师大版】

专题13勾股定理的应用-2021-2022学年八年级数学上(解析版)【北师大版】

2021-2022学年八年级数学上册尖子生同步培优题典【北师大版】专题1.3勾股定理的应用姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•达川区校级月考)如图,原来从A村到B村,需要沿路A→C→B(∠C=90°)绕过村庄间的一座大山.打通A,B间的隧道后,就可直接从A村到B村.已知,AC=12km,BC=16km,那么,打通隧道后从A村到B村比原来减少的路程为()A.5km B.8km C.10km D.20km【分析】直接利用勾股定理得出AB的长,进而得出答案.【解析】由题意可得:AB²=AC2+BC2=122+162=400(km),AB=20km,则打通隧道后从A村到B村比原来减少的路程为:12+16﹣20=8(km).故选:B.2.(2020春•文水县期末)疫情期间,小颖宅家学习.一天,她在课间休息时,从窗户向外望,看到一人为快速从A处到达居住楼B处,直接从边长为24米的正方形草地中穿过.为保护草地,小颖计划在A处立一个标牌:“少走?米,踏之何忍”,已知B、C两处的距离为7米,那么标牌上?处的数字是()A.3B.4C.5D.6【分析】根据图形标出的长度,可以知道AC和BC的长度,从而构造直角三角形,根据勾股定理就可求出斜边A和B的距离.【解析】由题意可知AB²=AC2+BC2=24²+7²=625m,故居民直接到B时要走AB=25m,若居民不践踏草地应走AC+BC=24+7=31mAC+BC﹣AB=31﹣25=6m故在?的地方应该填写的数字为6,故选:D.3.(2021春•长沙期中)如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米【分析】过点D作DE⊥AB于点E,构造Rt△ADE,利用勾股定理求得AD的长度即可.【解析】如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD²=AE2+DE2=0.9²+1.2²=6.25,,故选:B.4.(2020春•西城区校级期中)为了迎接新年的到来,同学们做了许多拉花布置教室,准备举办新年晚会,大林搬来一架高为2.5米的木梯,准备把拉花挂到2.4米的墙上,开始梯脚与墙角的距离为1.5米,但高度不够.要想正好挂好拉花,梯脚应向前移动(人的高度忽略不计)()A.0.7米B.0.8米C.0.9米D.1.0米【分析】仔细分析题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定理解此直角三角形即可.【解析】梯脚与墙角距离的平方:2.52−2.42=0.49,∵开始梯脚与墙角的距离为1.5米,∴要想正好挂好拉花,梯脚应向前移动:1.5﹣0.7=0.8(米).故选:B.5.(2020•巴中)《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(10﹣x)尺.利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.故选:B.6.(2020秋•未央区期中)如图,在灯塔O的东北方向8海里处有一轮船A,在灯塔的东南方向6海里处有一渔船B,则AB间的距离为()A.9海里B.10海里C.11海里D.12海里【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【解析】已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=8海里,OB=6海里,∴AB²=OA2+OB2=8²+6²=100AB=10(海里).故选:B.7.(2020秋•罗湖区期中)如图,某校攀岩墙的顶部安装了一根安全绳,让它垂到地面时比墙高多出了2米,教练把绳子的下端拉开8米后,发现其下端刚好接触地面(如图),则此攀岩墙的高度是()A.10米B.15米C.16米D.17米【分析】根据题意设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,再利用勾股定理即可求得AB 的长,即攀岩墙的高.【解析】如图:设攀岩墙的高AB为x米,则绳子AC的长为(x+2)米,在Rt△ABC中,BC=8米,AB2+BC2=AC2,∴x2+82=(x+2)2,解得x=15,∴AB=15.∴攀岩墙的高15米.故选:B.8.(2020秋•龙泉驿区期中)如图,将一根长为20cm的筷子置于底面直径为5cm,高为12cm的圆柱形水杯中,筷子露在杯子外面的长度为()A.13cm B.8cm C.7cm D.15cm【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解析】由题意可得:杯子内的筷子长度为:√52+122=13,则筷子露在杯子外面的筷子长度为:20﹣13=7(cm).故选:C.9.(2020秋•历城区期中)古代数学的“折竹抵地”问题:“今有竹高二十五尺,末折抵地,去本五尺,问折者高几何?”意思是:现有竹子高25尺,折后竹尖抵地与竹子底部的距离为5尺,问折处高几尺?即:如图,AB+AC=25尺,BC=5尺,则AC等于()尺.A.5B.10C.12D.13【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x尺,则斜边为(25﹣x)尺,利用勾股定理解题即可.【解析】设竹子折断处离地面x尺,则斜边为(25﹣x)尺,根据勾股定理得:x2+52=(25﹣x)2.解得:x=12,答:折断处离地面的高度为12尺.故选:C.10.(2020春•南岗区校级期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm【分析】当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出h的取值范围.【解析】如图,当筷子的底端在D点时,筷子露在杯子外面的长度最长,∴h=24﹣8=16(cm);当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•盐池县期末)如图,要为一段高5米,长13米的楼梯铺上红地毯,至少需要红地毯17米.【分析】地毯的长度实际是所有台阶的宽加上台阶的高,因此利用勾股定理求出水平距离即可.【解析】根据勾股定理,楼梯水平长度为√132−52=12米,则红地毯至少要12+5=17米长,故答案为:17.12.(2021春•越秀区校级期中)如图,公路MN和公路PQ在点P处交会,公路PQ上点A处有学校,点A 到公路MN的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m 以内都会受到噪音的影响,请你算出该学校受影响的时间为24秒.【分析】设卡车开到C处刚好开始受到影响,行驶到D处时结束,在Rt△ACB中求出CB,继而得出CD,再由卡车的速度可得出所需时间.【解析】设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB=√1002−802=60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.13.(2020秋•南宫市月考)小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解析】∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.14.(2020秋•成华区校级月考)将一根24cm的筷子,置于底面直径为5cm、高为12cm的圆柱体中,如图,设筷子露出在杯子外面长为hcm,则h的最小值11cm,h的最大值12cm.【分析】当筷子与杯底垂直时h最大,当筷子与杯底及杯高构成直角三角形时h最小,据此可以得到h 的取值范围.【解析】当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,此时,在杯子内部分=√122+52=13(cm),故h=24﹣13=11(cm).故h的取值范围是11≤h≤12.故答案为:11cm;12cm.15.(2020秋•太原期中)《九章算术)“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何.”其大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?若设门的宽为x尺,根据题意列出的方程x2+(x+6.8)2=102.(注:1丈=10尺,1尺=10寸)【分析】设长方形门的宽x尺,则高是(x+6.8)尺,根据勾股定理即可列方程求解.【解析】设长方形门的宽x尺,则高是(x+6.8)尺,根据题意得x2+(x+6.8)2=102,解得:x=2.8或﹣9.6(舍去).则宽是6.8+2.8=9.6(尺).答:门的高是9.6尺,宽是2.8尺.故答案为:x2+(x+6.8)2=102.16.(2020秋•溧水区期中)木工师傅为了让尺子经久耐用,常常在尺子的直角顶点A处与斜边BC之间加一根小木条AD.已知∠BAC=90°,AB=5dm,AC=12dm,则小木条AD的最短长度为6013dm.【分析】首先利用勾股定理求出BC 的长,再利用三角形面积求出即可.【解析】∵∠BAC =90°,AB =5dm ,AC =12dm ,∴BC =√AB 2+AC 2=√52+122=13(dm ),当AD ⊥BC 时,AD 最短,则12AD ×BC =12AB ×AC , 则AD =AB×AC BC =5×1213=6013(dm ). 故答案是:6013.17.(2020秋•广陵区校级期中)《九章算术》中有一道“引葭赴岸”问题:“仅有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AB 生长在它的中央,高出水面部分BC 为1尺.如果把芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B 恰好碰到岸边的B ′(示意图如图,则水深为 12 尺.【分析】我们可以将其转化为数学几何图形,如图所示,根据题意,可知EB '的长为10尺,则B 'C =5尺,设出AB =AB '=x 尺,表示出水深AC ,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【解析】依题意画出图形,设芦苇长AB =AB ′=x 尺,则水深AC =(x ﹣1)尺,因为B 'E =10尺,所以B 'C =5尺在Rt △AB 'C 中,52+(x ﹣1)2=x 2,解之得x =13,即水深12尺,芦苇长13尺.故答案为:12.18.(2020秋•泰州期中)如图所示是一个圆柱形饮料罐,底面半径为5cm,高为12cm,上底面中心有一个小圆孔,将一根长24cm的直吸管从小圆孔插入,直到接触到饮料罐的底部,直吸管在罐外的长度hcm (罐的厚度和小圆孔的大小忽略不计),则h的取值范围是11≤h≤12.【分析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高;当吸管底部在A点时吸管在罐内部分最长,此时可以利用勾股定理在Rt△ABO中求出,然后可得罐外部分a长度范围.【解析】如图,当吸管底部在O点时吸管在罐内部分最短,此时罐内部分就是圆柱形的高,罐外部分a=24﹣12=12(cm);当吸管底部在A点时吸管在罐内部分最长,即线段AB的长,在Rt△ABO中,AB=√AO2+BO2=√122+52=13(cm),罐外部分a=24﹣13=11(cm),所以11≤h≤12.故答案是:11≤h≤12.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•荥阳市期中)郑州市CBD如意湖的两岸有A,B两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB垂直的BC方向上取点C,测得BC=30米,AC=50米.求:(1)两棵景观树之间的距离;(2)点B到直线AC的距离.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.【解析】(1)因为△ABC是直角三角形,所以由勾股定理,得AC2=BC2+AB2.因为AC=50米,BC=30米,所以AB2=502﹣302=1600.因为AB>0,所以AB=40米.即A,B两点间的距离是40米.(2)过点B作BD⊥AC于点D.因为S△ABC=12AB•BC=12AC•BD,所以AB•BC=AC•BD.所以BD=AB⋅BCAC=30×4050=24(米),即点B到直线AC的距离是24米.20.(2020秋•太原期中)如图是一块四边形木板,其中AB=16cm,BC=24cm,CD=9cm,AD=25cm,∠B=∠C=90°.李师傅找到BC边的中点P,连接AP,DP,发现△APD是直角三角形,请你通过计算说明理由.【分析】根据勾股定理解答即可.【解析】∵点P为BC中点,∴BP=CP=12BC=12(cm),∵∠B=90°,在Rt△ABP中,根据勾股定理可得:AB2+BP2=AP2,162+122=AP2,解得:AP=20(cm),同理可得:DP=15(cm),∵152+202=252,∴AP2+DP2=AD2,∴△APD是直角三角形,∠APD=90°.21.(2020秋•碑林区校级月考)我们学校有一块四边形空地,如图所示,现计划在这块空地上种植草皮,经测量∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.若每平方米草皮需要200元,则共需要投入多少钱?【分析】利用勾股定理求出AC,利用勾股定理的逆定理证明∠ADC=90°即可解决问题.【解析】连接AC,在Rt△ABC中,∵∠ABC=90°,AB=20,BC=15,∴AC=√AB2+BC2=√202+152=25(米).在△ADC中,∵CD=7,AD=24,AC=25,∴AD2+CD2=242+72=625=AC2.∴△ADC是直角三角形,且∠ADC=90°.∴S四边形ABCD=S△ABC+S△ADC=12×15×20+12×7×24=234(平方米).∴四边形空地ABCD的面积为234平方米.∴200×234=46800(元).答:学校共需投入46800元.22.(2020秋•青羊区校级月考)如图,有两条公路OM和ON相交成30°角,沿公路OM方向离两条公路的交叉处O点160米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁100米内会受到噪声影响.已知有一台拖拉机正沿ON方向行驶,速度为5米/秒.(1)该小学是否受到噪声的影响,并说明理由.(2)若该小学要受到噪声的影响,则这台拖拉机沿ON方向行驶时给小学带来噪声影响的时间是多少?【分析】过点A作AC⊥ON于点C,求出AC的长,第一台到B点时开始对学校有噪音影响,第二台到B点时第一台已经影响小学50米,直到第二台到D点噪音才消失.【解析】如图所示:过点A作AC⊥ON于点C,∵∠MON=30°,OA=160米,∴AC=12OA=80米,∵80m<100m,∴该小学会受到噪声影响;(2)以A为圆心,半径长为100m画圆与ON交B,D两点,连接AB,AD,在B到D范围内,小学都会受到影响,∴AB=AD=100米,由勾股定理得:BC=√AB2−AC2=√1002−802=60(米),∴BD=2BC=120米,CD=60米∴影响的时间应是:t=1205=24(秒);答:拖拉机沿ON方向行驶时给小学带来噪声影响的时间是24秒.23.(2020秋•南山区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【分析】设AB=x,则AC=x+1,依据勾股定理即可得到方程x2+52=(x+1)2,进而得出风筝距离地面的高度AB.【解析】设AB=x,则AC=x+1,由图可得,∠ABC=90°,BC=5,∴Rt△ABC中,AB2+BC2=AC2,即x2+52=(x+1)2,解得x=12,答:风筝距离地面的高度AB为12米.24.(2020春•武汉期中)如图,在笔直的铁路上A,B两点相距20km,C,D为两村庄,DA=8km,CB=14km,DA⊥AB于A,CB⊥AB于B.现要在AB上建一个中转站E,使得C,D两村到E站的距离相等,求AE的长.【分析】根据题意设出E点坐标,再由勾股定理列出方程求解即可.【解析】设AE=x,则BE=20﹣x,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=82+x2,在Rt△BCE中,CE2=BC2+BE2=142+(20﹣x)2,由题意可知:DE=CE,所以:82+x2=142+(20﹣x)2,解得:x=13.3所以,E应建在距A点13.3km.。

1 3 勾股定理的应用 提升练习 北师大版数学八年级上册

1 3 勾股定理的应用  提升练习  北师大版数学八年级上册

1.3 勾股定理的应用提升练习一、选择题1.如图,湖的两端有A,B两点,从与BA方向成直角的BC方向上的点C测得CA =130 m,CB=120 m,则AB为()A. 30 mB. 40 mC. 50 mD. 60 m2. 一个圆柱形的油桶高120cm,底面直径为50cm,则桶内所能容下的最长的木棒长为()A. 5cmB. 100cmC. 120cmD. 130cm3.如图是一个底面为等边三角形的三棱镜,在三棱镜的侧面上,从顶点A到顶点A'镶有一圈金属丝,已知此三棱镜的高为5 cm,底面边长为4 cm,则这圈金属丝的长度至少为( )A.8 cmB.13 cmC.12 cmD.15 cm4.如图所示,有一个由传感器A控制的灯,要装在门上方离地高4.5 m的墙上,任何东西只要移至该灯5 m及5 m以内时,灯就会自动发光.请问一个身高1.5 m 的学生要走到离墙多远的地方灯刚好发光?( )A.4米B.3米C.5米D.7米5.如图所示,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,他们同时出发,一个小时后,甲、乙两渔船相距()海里.A.8 B.10 C.12 D.136.如图,有一个水池,水面是一边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池的一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()尺.A.7.5 B.8 C.D.97.如图,长方形操场ABCD的长AD为80m,宽AB为60m,小明站在A处,足球落在C处,小明要想捡到足球,他最少应跑( ).A.80mB.90mC.100mD.140m8.如图,由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m 处,则这棵树在折断前(不包括树根)的高度是( )A.8mB.10mC.16mD.18m9.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图),在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为8cm,则这圈金属丝的长度至少为()A.8cm B.10cm C.12cm D.3cm10.如图是2022年8月在北京召开的国际数学大会的会标,它是由四个相同的直角三角形与中间一个小正方形拼成的一个大正方形,若大正方形的边长是13cm,每个直角三角形较短的一条直角边的长是5cm,则小正方形的边长为()A.4cm B.5cm C.6cm D.7cm二、填空题1.如图,小明从A点出发向正北方向走1200米到达B点,接着向正东方向走到离A点2000米远的C点,此时小明向正东方向走了米.2.如图,某斜拉桥的主梁AD垂直于桥面MN于点D,主梁上两根拉索AB、AC长分别为13米、20米,主梁AD的高度为12米,则固定点B、C之间的距离为______ 米.3.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;如果从点A开始经过4个侧面缠绕n圈到达点B,那么所用细线最短需要cm4.如图,要在河边l上修建一个水泵站,分别向A村和B村送水,已知A村、B 村到河边的距离分别为2 km和7 km,且AB两村庄相距13 km,则铺设水管的最短长度是__________km.5.如图,一根直立于水中的芦苇BD高出水面AC1米,一阵风吹来,芦苇的顶端D 恰好到达水面的C处,且点C到BD的距离AC=3米,则芦苇BD的长度为米.6.如图是一个滑梯示意图,左边是楼梯,右边是滑道,已知滑道AC与AE的长度一样,滑梯的高度BC=4m,BE=1m.则滑道AC的长度为m.三、解答题1.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?2.小明去钓鱼,鱼钩A在离水面BD约1.3米处,在距离鱼线1.2米处的D点的水下0.8米处的C点有一条鱼发现了鱼饵,于是以0.2 m/s的速度向鱼饵游来,那么这条鱼至少几秒后才能到达鱼饵处?3.某船从港口A出发沿南偏东32°方向航行12海里到达B岛,然后沿某方向航行16海里到达C岛,最后沿某个方向航行了20海里回到港口A,则该船从B到C是沿哪个方向航行的?(即求C岛在B岛的哪个方位,距离B岛多远?),请说明理由.4.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.5.甲同学在拼图探索活动中发现;用4个形状大小完全相同的直角三角形(直角边长分别为a,b,斜边长为c,可以拼成像图1那样的正方形,并由此得出了关于a2,b2,c2.的一个等式.(1)请你写出这一结论:,并给出验证过程;(2)试用上述结论解决问题:如图2如图,在四边形ABCD中,∠B=∠D=90°,分别以四边向外作正方形甲、乙,丙、丁,若甲的面积为30,乙的面积为16,丙的面积为17,求“丁”的面积.。

《第1章勾股定理》同步优生提升训练2021-2022学年北师大版八年级数学上册

《第1章勾股定理》同步优生提升训练2021-2022学年北师大版八年级数学上册

2021年北师大版八年级数学上册《第1章勾股定理》同步优生提升训练(附答案)一.勾股定理1.如图,在四边形ABCD中,∠B=90°,AB=3,BC=6,点E在BC上,AE⊥DE.且AE=DE,若EC=1.则CD=.2.如图是一个四边形ABCD,若已知AB=4cm,BC=3cm,CD=12cm,AD=13cm,∠ABC =90°,则这个四边形的面积是cm2.3.如图,△ABC中,∠ACB=90°,AC=6,BC=8,P为直线AB上一动点,连PC.(1)线段PC的最小值是.(2)当PC=5时,AP长是.4.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为6cm,则A、B、C、D四个正方形的面积之和为cm2.5.如图,在6×4的小正方形网格中,小正方形的边长均为1,点A,B,C,D,E均在格点上.则∠ABC﹣∠DCE=()A.30°B.42°C.45°D.50°6.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.647.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE ⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF的长是()A.B.6C.D.8.△ABC中,AB=17,AC=10,高AD=8,则△ABC的周长是()A.54B.44C.36或48D.54或339.在Rt△ABC中,∠C=90°,若BC﹣AC=2cm,AB=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm210.如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A.B.C.D.511.在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8).以点A为圆心,以AB长为半径画弧交x轴于点C,则点C的坐标为()A.(6,0)B.(4,0)C.(6,0)或(﹣16,0)D.(4,0)或(﹣16,0)12.如图,△ABC中,∠ABC=90°,AC=25cm,BC=15cm.(1)直接写出AB的长度.(2)设点P在AB上,若∠P AC=∠PCA.求AP的长;(3)设点M在AC上.若△MBC为等腰三角形,直接写出AM的长.13.如图,4×4方格中每个小正方形的边长都为1.(1)图①中正方形ABCD的边长为;(2)在图②的4×4方格中画一个面积为8的正方形;(3)把图②中的数轴补充完整,然后用圆规在数轴上表示实数和﹣.14.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”.(1)如图,在△ABC中,AB=AC=,BC=4,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=,若△ABC是“美丽三角形”,求BC的长.15.如图所示网格是由边长为1的小正方形组成,点A,B,C位置如图所示,在网格中确定点D,使以A,B,C,D为顶点的四边形的所有内角都相等.(1)确定点D的位置并画出以A,B,C,D为顶点的四边形;(2)直接写出(1)中所画出的四边形的周长和面积.二.勾股定理的证明16.勾股定理是人类早期发现并证明的重要数学定理之一,这是历史上第一个把数与形联系起来的定理,其证明是论证几何的发端.下面四幅图中,不能证明勾股定理的是()A.B.C.D.三.勾股数17.已知:整式A=n(n+6)+2(n+8)(n>0),整式B>0.尝试:化简整式A;发现:A=B2,求整式B;应用:利用A=B2,填写下列表格:n(n+6)2(n+8)B\40\四.勾股定理的逆定理18.如图,在四边形ABCD中,点E为AB的中点,DE⊥AB于点E,AB=6,,BC =1,,则四边形ABCD的面积为.19.在正方形网格中,A、B、C、D均为格点,则∠BAC﹣∠DAE=.20.下列各组数据中能作为直角三角形的三边长的是()A.1,1,B.6,8,11C.3,4,5D.1,3,21.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按如图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,422.如图,四边形ABCD的三条边AB,BC,CD和BD都为5cm,动点P从点A出发沿A →B→D以2cm/s的速度运动到点D,动点Q从点D出发沿D→C→B→A以2.8cm/s的速度运动到点A.若两点同时开始运动运动5s时,P,Q相距3cm.试确定两点运动5s时,问△APQ的形状.23.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.24.(1)在Rt△ABC中,∠C=90°,BC=2,AB=,求AC的长;(2)已知△ABC中,BC=1,AC=,AB=2,求证:△ABC是直角三角形.25.如图,已知在△ABC中,CD⊥AB于D,BD=9,BC=15,AC=20.(1)求CD的长;(2)求AB的长;(3)判断△ABC的形状.五.勾股定理的应用26.小明从A处出发沿北偏东40°的方向走了30米到达B处;小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=.27.一个矩形的抽斗长为12cm,宽为5cm,在抽斗底部放一根铁条,那么铁条最长可以是cm.28.如图,在水塔O的东北方向15m处有一抽水站A,在水塔的东南方向8m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.7m B.12m C.17m D.22m29.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为5,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A.B.C.D.30.将一根24cm的筷子,置于底面直径为15cm,高8cm的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则h的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 31.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D 两村到E站的距离相等,则E站应建在距A站多少千米处?32.如图,一棵高10m的大树倒在了高8m的墙上,大树的顶端正好落在墙的最高处,如果随着大树的顶端沿着墙面向下滑动,请回答下列各题.(1)如果大树的顶端沿着墙面向下滑动了2m,那么大树的另一端点是否也向左滑动了2m?说明理由,(2)如果大树的顶端沿着墙面向下滑动了am,那么大树的另一端点是否也向左滑动了am?说明理由.33.如图,学校有一块空地ABCD,准备种草皮绿化已知∠ADC=90°,AD=4米,CD=3米,AB=13米,BC=12米,求这块地的面积.34.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)35.如图,甲、乙两艘轮船同时从港口O出发,甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行.已知它们离开港口O两小时后,两艘轮船相距50海里,求乙轮船平均每小时航行多少海里?六.平面展开-最短路径问题36.如图,长方体盒子的长为15cm,宽为10cm,高为20cm,点B距离C点5cm,一只蚂蚁如果要沿着盒子的表面从点A到点B.(1)蚂蚁爬行的最短距离是cm;(2)若从C处想盒子里面插入一根吸管,要使吸管不落入盒子中,吸管应不少于cm.37.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为()A.12cm B.14cm C.20cm D.24cm参考答案一.勾股定理1.解:过点D作DF⊥BC,交BC延长线于点F,由题意得,BE=BC﹣EC=5,∵∠B=90°,∴∠BAE+∠AEB=90°,∵AE⊥DE,∴∠AEB+∠DEC=90°,∴∠BAE=∠DEC,∵AE=DE,∠B=∠DFE=90°,∴△ABE≌△EFD(AAS),∴EF=AB=3,DF=BE=5,∴CF=EF﹣CE=2,∵∠DFC=90°,∴DC=.故答案为:.2.解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD﹣S△ABC=AC×CD﹣AB×BC=×5×12﹣×4×3=30﹣6=24(cm2).故四边形ABCD的面积为24cm2.故答案为:24.3.解:(1)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,∴AB===10,由垂线段最短得:当PC⊥AB时,PC的值最小,此时,△ABC的面积=•AB•PC=•AC•BC,∴AB•PC=AC•BC,∴PC===4.8,故答案为:4.8;(2)过C作CQ⊥BC于Q,如图所示:同(1)得:CQ=4.8,由勾股定理得:AQ===3.6,PQ===1.4,当P在线段BQ上时,AP=AQ+PQ=3.6+1.4=5;当P在线段AQ上时,AP=AQ﹣PQ=3.6﹣1.4=2.2;综上所述,AP的长为5或2.2,故答案为:5或2.2.4.解:如右图所示,根据勾股定理可知,S正方形2+S正方形3=S正方形1,S正方形C+S正方形D=S正方形3,S正方形A+S正方形B=S正方形2,∴S正方形C+S正方形D+S正方形A+S正方形B=S正方形2+S正方形3=S正方形1=62=36.故答案是365.解:连接AC,AD,如图,根据勾股定理可得:AD=AC=BC=,CD=,∴∠ABC=∠BAC,∴∠ACB=180°﹣∠ABC﹣∠BAC=180°﹣2∠ABC,在△ACD中,,,∴AD2+AC2=CD2,∴△ACD是直角三角形,∠DAC=90°,∵AD=CD,∴△ACD是等腰直角三角形,∴∠ACD=45°,∵AB∥EC,∴∠ABC+∠BCE=180°,∴∠ABC+∠ACB+∠ACD+∠DCE=180°,∴∠ABC+(180°﹣2∠ABC)+45°+∠DCE=180°,∴∠ABC﹣∠DCE=45°,故选:C.6.解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选:D.7.解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x ∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S△PBD=BD•PE,S△PCD=DC•PF,S△BCD=BD•AC,所以PE+PF=AC=2×2=4.故选:C.8.解:分两种情况:①如图1所示:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,∴BD===15,CD===6,∴BC=BD+CD=15+6=21;此时,△ABC的周长为:AB+BC+AC=17+10+21=48.②如图2所示:同①得:BD=15,CD=6,∴BC=BD﹣CD=15﹣6=9;此时,△ABC的周长为:AB+BC+AC=17+10+9=36.综上所述:△ABC的周长为48或36.故选:C.9.解:∵∠C=90°,∴AC2+BC2=AB2=100,∵BC﹣AC=2cm,∴(BC﹣AC)2=4,即AC2+BC2﹣2AC•BC=4,∴2AC•BC=96,∴AC•BC=24,即Rt△ABC的面积是24cm2,故选:A.10.解:S阴影=AC2+BC2+AB2=(AB2+AC2+BC2),∵AB2=AC2+BC2=5,∴AB2+AC2+BC2=10,∴S阴影=×10=5.故选:D.11.解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,∴AB===10,∴AC=10,∴C(﹣16,0)或(4,0).故选:D.12.解:(1)∵∠ABC=90°,AC=25cm,BC=15cm,∴AB===20(cm),故答案为:20cm;(2)∵∠P AC=∠PCA,∴AP=PC,设AP=PC=x,∴PB=20﹣x,∵∠B=90°,∴BP2+BC2=CP2,即(20﹣x)2+152=x2,解得:x=,∴AP=;(3)AM的长为10cm,7cm,12.5cm.如图(1),当CB=CM=15时,AM=AC﹣CM=25﹣15=10(cm);如图(2),当BM=CM时,AM=BM=CM=AC=12.5(cm);如图(3),当BC=BM时,过B作BH⊥AC于点H,则BH==12(cm),CH ==9(cm),∴CM=2CH=18(cm),∴AM=AC﹣CM=7(cm);综上所述,AM的长为10cm,7cm,12.5cm.13.解:(1)图①中正方形ABCD的边长为=;故答案为:;(2)如图所示:(3)如图所示:14.(1)证明:过点A作AD⊥BC于D,∵AB=AC,AD⊥BC,∴BD=BC=2,由勾股定理得,AD==4,∴AD=BC,即△ABC是“美丽三角形”;(2)解:当AC边上的中线BD等于AC时,如图2,BC==6,当BC边上的中线AE等于BC时,AC2=AE2﹣CE2,即BC2﹣(BC)2=(4)2,解得BC=8.综上所述,BC的长是6或8.15.解:(1)如图所示:(2)AB==,BC==2,周长为(2+)×2=6,面积为2×=10.二.勾股定理的证明16.解:A、∵ab+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×ab+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×ab+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.三.勾股数17.解:A=n(n+6)+2(n﹣8)=n2+8n+16.∵A=B2,B>0,∴B2=n2+8n+16=(n+4)2.∴B=n+4,当2(n+8)=时,解得:n=,∴n+4=,当n(n+6)=40时,解得:n1=4,n2=﹣10(舍去),∴n+4=8,故答案为:;8.四.勾股定理的逆定理18.解:连接BD,∵点E为AB的中点,DE⊥AB于点E,AB=6,,∴EB=AB=3,∴,∵,即BD2+BC2=CD2,∴△BCD是直角三角形,且∠DBC=90°,∴四边形ABCD的面积=,故答案为:.19.解:如图所示,把△ADE移到△CFG处,连接AG,此时∠DAE=∠FCG,∵CF∥BD,∴∠BAC=∠FCA,∴∠BAC﹣∠DAE=∠FCA﹣∠FCG=∠ACG,设小正方形的边长是1,由勾股定理得:CG2=12+32=10,AC2=AG2=12+22=5,∴AC2+AG2=CG2,AC=AG,∴∠CAG=90°,即△ACG是等腰直角三角形,∴∠ACG=45°,∴∠BAC﹣∠DAE=45°,故答案为:45°.20.解:A、12+12≠()2,不能构成直角三角形,故不符合题意;B、62+82≠(11)2,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、12+32≠()2,不能构成直角三角形,故不符合题意.故选:C.21.解:当选取的三块纸片的面积分别是1,4,5时,围成的直角三角形的面积是=,当选取的三块纸片的面积分别是2,3,5时,围成的直角三角形的面积是=;当选取的三块纸片的面积分别是3,4,5时,围成的三角形不是直角三角形;当选取的三块纸片的面积分别是2,2,4时,围成的直角三角形的面积是=,∵,∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5,故选:B.22.解:5s时,动点P运动的路程为2×5=10(cm),即点P运动到D点(点P与点D重合),动点Q运动的路程为2.8×5=14(cm),因为DC=BC=BA=5cm,所以点Q在BA上,且BQ=14﹣10=4(cm).在△BPQ中,因为BP=5cm,BQ=4cm,PQ=3cm,所以BQ2+PQ2=42+32=25=BP2,所以△BPQ是直角三角形,且∠BQP=90°,所以∠AQP=180°﹣90°=90°,所以两点运动5s时,△APQ是直角三角形.23.解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC=,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.24.(1)解:∵Rt△ABC中,∠C=90°,BC=2,AB=,∴AC=3.(2)证明:∵在△ABC中,BC=1,AC=,AB=2,BC2+AC2=12+()2=4=22=AB2,∴∠C=90°,∴△ABC为直角三角形.25.解:(1)在△BCD中,因为CD⊥AB,所以BD2+CD2=BC2.所以CD2=BC2﹣BD2=152﹣92=144.所以CD=12.(2)在△ACD中,因为CD⊥AB,所以CD2+AD2=AC2.所以AD2=AC2﹣CD2=202﹣122=256.所以AD=16.所以AB=AD+BD=16+9=25.(3)因为BC2+AC2=152+202=625,AB2=252=625,所以AB2=BC2+AC2.所以△ABC是直角三角形.五.勾股定理的应用26.解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.27.解:在直角△ABC中,根据勾股定理可得:AC=13(cm).即铁条最长可以是13cm.故答案是:13.28.解:已知东北方向和东南方向刚好是一直角,∴∠AOB=90°,又∵OA=15m,OB=8m,∴AB=17(m).故选:C.29.解:由题意知AB=CE=3,BC=AE=8,∠BCE=∠E=90°,DC∥BG,过点C作CF⊥BG于F,如图所示:∴∠DCF=90°,设DE=x,则AD=8﹣x,根据题意得:(8﹣x+8)×3×3=3×3×5,解得:x=6,∴DE=6,∵∠E=90°,由勾股定理得:CD=3,∵∠BCE=∠DCF=90°,∴∠DCE=∠BCF=90°﹣∠BCD,∵∠DEC=∠BFC=90°,∴CF=,故选:B.30.解:如图,当筷子的底端在D点时,筷子浸没在杯子里面的长度最短,∴h=BD=8(cm);当筷子的底端在A点时,筷子浸没在杯子里面的长度最长,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=17(cm),所以h的取值范围是:8cm≤h≤17cm.故选:C.31.解:设AE=xkm,∵DA⊥AB于A,CB⊥AB于B,∴∠A=∠B=90°,∵C、D两村到E站的距离相等,∴DE=CE,即DE2=CE2,由勾股定理,得152+x2=102+(25﹣x)2,解得,x=10.故:E点应建在距A站10千米处.32.解:(1)是,理由如下:由题意可知,△ABC是直角三角形,∵AC=8m,AB=DE=10m,由勾股定理得,BC=6(m),∵AD=2m,∴CD=AC﹣AD=8﹣2=6(m),∴CE=8(m),∴BE=CE﹣BC=8﹣6=2(m),∴大树的另一端点也向左滑动了2m;(2)不一定,理由如下:∵AD=am,∴CD=AC﹣AD=(8﹣a)m,解得:a=2或a=0(舍去),∴只有当a=2时,大树的顶端沿着墙面向下滑动了am,那么大树的另一端点也向左滑动了am.33.解:连接AC.由勾股定理可知:AC=5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×5×12﹣×3×4=24(米2).34.解:在Rt△ABC中,AC=30m,AB=50m;根据勾股定理可得:BC=40∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.答:这辆小汽车超速了.35.解:∵甲轮船以20海里/时的速度向南偏东45°方向航行,乙轮船向南偏西45°方向航行,∴AO⊥BO,∵甲以20海里/时的速度向南偏东45°方向航行,∴OB=20×2=40(海里),∵AB=50海里,在Rt△AOB中,AO=30∴乙轮船平均每小时航行30÷2=15海里.六.平面展开-最短路径问题36.解:(1)只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm,∴BD=CD+BC=10+5=15(cm),AD=20(cm),在直角三角形ABD中,根据勾股定理得:∴AB=25(cm);∴蚂蚁爬行的最短距离是25(cm).故答案为:25;37.解:如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=12cm,∴则该圆柱底面周长为24cm.故选:D.。

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

北师版八年级数学上册作业课件(BS) 第一章 勾股定理 勾股定理的应用

8.(2020·锦州期末)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车 尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问: 发生火灾的住户窗口距离地面多高?
解:∵AC⊥BC,∴∠ACB=90°.在Rt△ABC中,根据勾股定理,得BC2=AB2 -AC2=152-92=144,∴BC=12米,∴BD=12+2=14(米).答:发生火灾的住户窗 口距离地面14米
A.5≤a≤2 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
11.(2020·迎泽月考)一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形 DEFH的边长为2米,∠B=90°,AB=8米,BC=6米.当正方形DEFH运动到什么 位置,即当AE=( C )米时,有DC2=AE2+BC2.
数学 八年级上册 北师版
第一章 勾股定理
1.3 勾股定理的应用
1.如图,正方体的边长为1,一只蚂蚁从正方体的一个顶点A爬行到另一个顶点B, 则蚂蚁爬行的最短距离的平方是( ) D
A.2 B.3 C.4 D.5
2.(2020·沈河期中)如图,圆柱的底面周长为16,BC=12,动点P从A点出发,沿 着圆柱的侧面移动到BC的中点S,则移动的最短距离为( A )
17.为筹备元旦晚会,同学们设计了一个圆筒形灯罩,底色涂成白色,然后缠绕 彩纸(彩纸宽度忽略不计).如图,已知圆筒高108 cm,其截面周长为36 cm,如果在 表面上缠绕彩纸4圈,应剪多长的彩纸?
解:将圆筒展开,可得长方形,整个彩纸也随之分成相等的4段,如图,只需求出 每一段所需的彩纸的长度AC即可,在Rt△ABC中,AB=36 cm,BC=108÷4= 27(cm),由勾股定理,得AC2=AB2+BC2=362+272=2 025,所以AC=45 cm,故 整个彩纸的长为45×4=180(cm)

2022八年级数学上册第一章勾股定理测试卷3新版北师大版

2022八年级数学上册第一章勾股定理测试卷3新版北师大版

第一章勾股定理一、选择题(每题4分,共28分)1.(2018•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.82.(4分)(2017•兴安盟)下列长度的三条线段能组成锐角三角形的是()A.6,8,14 B.6,8,12 C.6,8,10 D.6,8,83.(4分)如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A.2 B.3 C.4 D.54.(4分)如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米5.(4分)满足下列条件的△ABC中,不是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:56.(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm7.(4分)如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对二、填空:(每空4分,共计28分)8.(4分)已知一个Rt△的两边长分别为3和4,则第三边长的平方为.9.(4分)求如图中直角三角形中未知的长度:b= ,c= .10.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为cm2.11.(4分)小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答: (填“能”、或“不能”)12.(4分)(2018•襄阳)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为.13.(4分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=.14.(4分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).三、解答题:(每题11分,共计44分)15.(11分)一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)16.(11分)小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?17.(11分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°; (1)求BD的长;(2)求四边形ABCD的面积.18.(11分)如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.参考答案一、选择题(每题4分,共28分)1.(2018•滨州)在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.8【分析】直接根据勾股定理求解即可.【解答】解:∵在直角三角形中,勾为3,股为4,∴弦为=5.故选:A.【点评】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.2.(4分)(2017•兴安盟)下列长度的三条线段能组成锐角三角形的是()A.6,8,14 B.6,8,12 C.6,8,10 D.6,8,8【考点】KS:勾股定理的逆定理.【专题】55:几何图形.【分析】根据勾股定理求出以较短的两条边为直角边的三角形的斜边的长度,然后与较长的边进行比较作出判断即可.【解答】解:A、∵6+8=14,∴不能组成三角形;B、=10<12,6+8>12,∴不能组成锐角三角形;C、∵=10是直角三角形,∴不能组成锐角三角形;D、∵=10>8,6+8>8,∴能组成锐角三角形.故选:D.【点评】本题考查了勾股定理的逆定理,利用勾股定理求出直角三角形的斜边是解题的关键.3.(4分)如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A.2 B.3 C.4 D.5【考点】算术平方根.【分析】根据勾股定理,可得AC的长,再根据乘方运算,可得答案.【解答】解:由勾股定理,得AC=,乘方,得()2=2,故选:A.【点评】本题考查了算术平方根,先求出AC的长,再求出正方形的面积.4.(4分)如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.5.(4分)满足下列条件的△ABC中,不是直角三角形的是()A.a:b:c=3:4:5 B.∠A:∠B:∠C=1:2:3C.a2:b2:c2=1:2:3 D.a2:b2:c2=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】由勾股定理的逆定理得出A、C是直角三角形,D不是直角三角形;由三角形内角和定理得出B是直角三角形;即可得出结果.【解答】解:∵a:b:c=3:4:5,32+42=52,∴这个三角形是直角三角形,A是直角三角形;∵∠A:∠B:∠C=1:2:3,∴∠C=90°,B是直角三角形;∵a2:b2:c2=1:2:3,∴a2+b2=c2,∴三角形是直角三角形,C是直角三角形;∵a2:b2:c2=3:4:5,∴a2+b2≠c2,∴三角形不是直角三角形;故选:D【点评】本题考查了勾股定理的逆定理、三角形内角和定理;熟练掌握勾股定理的逆定理和三角形内角和定理,通过计算得出结果是解决问题的关键.6.(4分)若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()A.12 cm B.10 cm C.8 cm D.6 cm【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质先求出BD,然后在RT△ABD中,可根据勾股定理进行求解.【解答】解:如图:由题意得:AB=AC=10cm,BC=16cm,作AD⊥BC于点D,则有DB=BC=8cm,在Rt△ABD中,AD==6cm.故选D.【点评】本题考查了等腰三角形的性质及勾股定理的知识,关键是掌握等腰三角形底边上的高平分底边,及利用勾股定理直角三角形的边长.7.(4分)如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:∵正方形小方格边长为1,∴BC==2,AC==,AB==,在△ABC中,∵BC2+AC2=52+13=65,AB2=65,∴BC2+AC2=AB2,∴△ABC是直角三角形.故选:A.【点评】考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.二、填空:(每空4分,共计28分)8.(4分)已知一个Rt△的两边长分别为3和4,则第三边长的平方为7或25 .【考点】勾股定理.【分析】已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.【解答】解:分两种情况:当3、4都为直角边时,第三边长的平方=32+42=25;当3为直角边,4为斜边时,第三边长的平方=42﹣32=7.故答案为:7或25.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.(4分)求如图中直角三角形中未知的长度:b= 12 ,c= 10 .【考点】勾股定理.【分析】根据勾股定理进行计算即可.【解答】解:b==12;c==10,故答案为:12;10.【点评】本题考查的是勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.10.(4分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为49 cm2.【考点】勾股定理.【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【解答】解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A,B,C,D的面积之和=49cm2.故答案为:49cm2.【点评】熟练运用勾股定理进行面积的转换.11.(4分)小明把一根70cm长的木棒放到一个长、宽、高分别为40cm、30cm、50cm的木箱中,他能放进去吗?答: 能(填“能”、或“不能”)【考点】勾股定理的应用.【分析】能,在长方体的盒子中,一角的顶点与斜对的不共面的顶点的距离最大,根据木箱的长,宽,高可求出最大距离,然后和木棒的长度进行比较即可.【解答】解:能,理由如下:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案为能.【点评】本题考查了勾股定理的应用,解题的关键是求出木箱内木棒的最大长度.12.(4分)(2018•襄阳)已知CD是△ABC的边AB上的高,若CD=,AD=1,AB=2AC,则BC的长为2或2.【考点】KQ:勾股定理.【专题】552:三角形.【分析】分两种情况:①当△ABC是锐角三角形,如图1,②当△ABC是钝角三角形,如图2,分别根据勾股定理计算AC和BC即可.【解答】解:分两种情况:①当△ABC是锐角三角形,如图1,∵CD⊥AB,∴∠CDA=90°,∵CD=,AD=1,∴AC=2,∵AB=2AC,∴AB=4,∴BD=4﹣1=3,∴BC===2;②当△ABC是钝角三角形,如图2,同理得:AC=2,AB=4,∴BC===2;综上所述,BC的长为2或2.故答案为:2或2.【点评】本题考查了三角形的高、勾股定理的应用,在直角三角形中常利用勾股定理计算线段的长,要熟练掌握.13.(4分)(2018•福建)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD=﹣1 .【考点】勾股定理.【专题】11:计算题.【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.【点评】此题主要考查了勾股定理,等腰直角三角形的性质,正确作出辅助线是解本题的关键.14.(4分)(2018•黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20 cm(杯壁厚度不计).【考点】KV:平面展开﹣最短路径问题.【专题】27:图表型.【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.三、解答题:(每题11分,共计44分)15.(11分)一棵树在离地面9米处断裂,树的顶部落在离树根底部12米处,求树折断之前的高度?(自己画图并解答)【考点】勾股定理的应用.【分析】根据勾股定理,计算树的折断部分是15米,则折断前树的高度是15+9=24米.【解答】解:如图所示:因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.(11分)小东与哥哥同时从家中出发,小东以6km/时的速度向正北方向的学校走去,哥哥则以8km/时的速度向正东方向走去,半小时后,小东距哥哥多远?【考点】勾股定理的应用.【分析】根据题意求出小东与哥哥各自行走的距离,根据勾股定理计算即可.【解答】解:由题意得,AC=6×=3km,BC=8×=4km,∠ACB=90°,则AB==5km.【点评】本题考查的是勾股定理的应用,正确构造直角三角形、灵活运用勾股定理是解题的关键.17.(11分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°; (1)求BD的长;(2)求四边形ABCD的面积.【考点】勾股定理;勾股定理的逆定理.【分析】(1)在Rt△ABD中,利用勾股定理可求出BD的长度;(2)利用勾股定理的逆定理判断出△BDC为直角三角形,根据S四边形ABCD=S△ABD+S△BDC,即可得出答案.【解答】解:(1)∵∠A=90°,∴△ABD为直角三角形,则BD2=AB2+AD2=25,解得:BD=5.(2)∵BC=13cm,CD=12cm,BD=5cm,∴BD2+CD2=BC2,∴BD⊥CD,故S四边形ABCD=S△ABD+S△BDC=AB×AD+BD×DC=6+30=36.【点评】本题考查了勾股定理及勾股定理的逆定理,在求不规则图形的面积时,我们可以利用分解法,将不规则图形的面积转化为几个规则图形的面积之和.18.(11分)如图,有一个直角三角形纸片,两直角边AB=6cm,BC=8cm,现将直角边BC沿直线BD折叠,使点C落在点E处,求三角形BDF的面积是多少?【考点】翻折变换(折叠问题).【专题】应用题;操作型.【分析】由折叠的性质得到三角形BDC与三角形BDE全等,进而得到对应边相等,对应角相等,再由两直线平行内错角相等,等量代换及等角对等边得到FD=FB,设FD=FB=xcm,则AF=(8﹣x)cm,在直角三角形AFB中,利用勾股定理列出关于x的方程,求出方程的解得到x 的值,确定出FD的长,进而求出三角形BDF面积.【解答】解:由折叠可得:△BDC≌△BDE,∴∠CBD=∠EBD,BC=BE=8cm,ED=DC=AB=6cm,∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴FD=FB,设FD=FB=xcm,则有AF=AD﹣FD=(8﹣x)cm,在Rt△ABF中,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,即FD=cm,则S△BDF=FD•AB=cm2.【点评】此题考查了翻折变换(折叠问题),涉及的知识有:折叠的性质,全等三角形的性质,平行线的性质,等腰三角形的判定,以及勾股定理,熟练掌握性质及定理是解本题的关键.四、附加题19.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.【考点】勾股定理的应用;三角形的面积;勾股定理的逆定理.【专题】应用题.【分析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.【解答】解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.【点评】解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.20.如图,△ABC是直角三角形,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF.(1)如图1,试说明BE2+CF2=EF2;(2)如图2,若AB=AC,BE=12,CF=5,求△DEF的面积.【考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【分析】(1)延长ED至点G,使得EG=DE,连接FG,CG,易证EF=FG和△BDE≌△CDG,可得BE=CG,∠DCG=∠DBE,即可求得∠FCG=90°,根据勾股定理即可解题;(2)连接AD,易证∠ADE=∠CDF,即可证明△ADE≌△CDF,可得AE=CF,BE=AF,S四边形AEDF=S △ABC,再根据△DEF的面积=S△ABC﹣S△AEF,即可解题.【解答】(1)证明:延长ED至点G,使得DG=DE,连接FG,CG,∵DE=DG,DF⊥DE,∴DF垂直平分DE,∴EF=FG,∵D是BC中点,∴BD=CD,在△BDE和△CDG中,,∴△BDE≌△CDG(SAS),∴BE=CG,∠DCG=∠DBE,∵∠ACB+∠DBE=90°,∴∠ACB+∠DCG=90°,即∠FCG=90°,∵CG2+CF2=FG2,∴BE2+CF2=EF2;(2)解:连接AD,∵AB=AC,D是BC中点,∴∠BAD=∠C=45°,AD=BD=CD,∵∠ADE+∠ADF=90°,∠ADF+∠CDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF(ASA),∴AE=CF,BE=AF,AB=AC=17,∴S四边形AEDF=S△ABC,∴S△AEF=×5×12=30,∴△DEF的面积=S△ABC﹣S△AEF=.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BDE≌△CDG和△ADE≌△CDF是解题的关键.。

北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)

北师大版八年级(上)数学《勾股定理的应用》课堂练习(含答案)

1.3 勾股定理的应用1.若正整数a,b,c是一组勾股数,则下列各组数一定仍然是勾股数的是()A.a+1,b+1,c+1 B.a2,b2,c2C.2a,2b,2c D.a-1,b-1,c-1你能否再多写几组勾股数,从这些勾股数中,你能发现什么规律?2.如图1,有一个底面半径为6cm,高为24cm的圆柱,在圆柱下底面的点A 有一只蚂蚁,它想吃到上底面上与点A相对的点B处的食物后再返回到A点处休息,请问它需爬行的最短路程约是多少?(π取整数3)3.有一个长宽高分别为2cm,1cm,3cm的长方体,如图2,有一只小蚂蚁想从点A爬到点C1处,请你帮它设计爬行的最短路线,并说明理由.4.在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,请问水深多少?参考答案1.C若a,b,c为一组勾股数,那么ka,kb,kc(k≠0,k为常数)也是勾股数.2.解:如下图:将圆柱沿着过A点的高AC剪开,并将侧面展开.1·2πr=π·r≈18(cm)则AC=24cm,BC=2∴在Rt△ABC中,AB2=AC2+BC2=242+182,∴AB=30(cm)∴它最短的爬行路程约为30×2=60(厘米)3.(1)当蚂蚁在侧面A1ABB1和侧面B1BCC1上爬行时,爬行的最短路线的长设为d1,则d12=(2+1)2+32=18(2)当蚂蚁在侧面A1ABB1和上底面A1B1C1D1上爬行时,由A到C1的最短路线的长设为d2,则d22=22+(3+1)2=20(3)同理可求得蚂蚁在侧面A1ADD1和D1DCC1上爬行时,d32=32+(1+2)2=18,蚂蚁在底面ABCD,侧面D1DCC1上爬行时,d32=22+(1+3)2=20所以,蚂蚁可沿A—M—C1爬行,如下图:或蚂蚁沿A—N—C1爬行,如下图:4.解:设水深为x尺如图,Rt△ABC中,AB=h,AC=h+3,BC=6由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62∴h2+6h+9=h2+36,解得:h=4.5答:水深4.5尺.。

勾股定理的应用(原卷版)-2023-2024学年八年级数学上册同步学与练(北师大版)

勾股定理的应用(原卷版)-2023-2024学年八年级数学上册同步学与练(北师大版)

第03讲勾股定理的应用1.利用勾股定理及逆定理解决生活中的实际问题(梯子滑动、风吹莲动、折竹抵地、台风和爆破、航行和信号塔、速度等问题).2.解决实际问题时,要善于构造直角三角形,把实际问题抽象成几何问题.知识点01勾股定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.题型01求梯子滑落高度【典例1】(2023秋·吉林长春·八年级统考期末)如图,一架2.6m长的梯子AB斜靠在一竖直的墙AC上,∠=︒,这时,梯子的底端B到墙底C的距离BC为1m.90C(1)求此时梯子的顶端A距地面的高度AC.(2)如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B外移0.5m吗?通过计算说明你的结论.【变式1】(2023春·宁夏吴忠·八年级校考期中)如图,将长为25米长的云梯AB斜靠在建筑物的侧墙上,BE长7米.(1)求梯子上端到墙的底端E的距离AE的长;(2)如果梯子的顶端A沿墙下滑4米,则梯脚B将外移多少米?【变式2】(2023·全国·八年级假期作业)如图梯子斜靠在竖直的墙AO,AO长为24dm,OB为7dm.(1)求梯子AB的长.(2)梯子的顶端A沿墙下滑4dm到点C,梯子底端B外移到点D,求BD的长.题型02求旗杆高度【典例1】(2023春·广东汕头·八年级统考期末)如图,某攀岩中心攀岩墙AB的顶部A处安装了一根安全绳AC,让它垂到地面时比墙高多出了1米,教练把绳子的下端C拉开5米后,发现其下端刚好接触地面(即⊥,求攀岩墙AB的高度.BC=米),AB BC5【变式1】(2022春·八年级单元测试)思源中学八(3)班小明和小亮同学学习了“勾股定理”之后,为了测得下图风筝CE的高度,他们进行了如下操作:(1)测得BD的长度为25米;(2)根据手中剩余线的长度计算出风筝线BC的长为65米;(3)牵线放风筝的小明身高1.68米,求风筝的高度CE.【变式2】(2023春·江西宜春·八年级统考期中)一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A后,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.(1)求旗杆的高度OM;(2)玛丽在荡绳索过程中离地面的最低点的高度MN.题型03求小鸟飞行距离【典例1】(2023春·广西贵港·八年级统考期中)有两棵树,一棵高6米,另一棵高3米,两树相距4米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?【变式1】(2023春·广东东莞·八年级校考阶段练习)如图,有一只小鸟从小树顶飞到大树顶上,它飞行的最短路程是________.【变式2】(2023春·广西防城港·八年级统考阶段练习)如图,有两棵树,一棵树高AC是10米,另一棵树高BD是4米,两树相距8米(即CD=8米),一只小鸟从一棵树的树梢A点处飞到另一棵树的树梢B点处,则小鸟至少要飞行多少米?题型04求大树折断前的高度【典例1】(2023春·江西南昌·八年级南昌市外国语学校校考期末)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵尺),中部有一处折断,竹梢触地面处地,去根四尺,问折者高几何?”题意是:一根竹子原高1丈(1丈10离竹根4尺,试问折断处离地面多高?【变式1】(2023春·湖南娄底·八年级统考阶段练习)如图,一棵大树在一次强台风中在离地某处折断倒下,树尖落在离树底部12米处,已知原树高是18米,你能求出大树在离地多少米的位置折断吗?【变式2】(2023春·全国·八年级期中)如图,一根垂直于地面的旗杆高8m ,因刮大风旗杆从点C 处折断,顶部B 着地且离旗杆底部的距离4m AB =.(1)求旗杆折断处C 点距离地面的高度AC ;(2)工人在修复的过程中,发现在折断点C 的下方1.25m 的点D 处,有一明显裂痕,若下次大风将修复好的旗杆从点D 处吹断,旗杆的顶点落在水平地面上的B '处,形成一个直角ADB ' ,请求出AB '的长.题型05解决水杯中筷子问题【典例1】(2023春·河北唐山·八年级统考期中)如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A .45a <<B .34a ≤≤C .23a ≤≤D .12a ≤≤【变式1】(2023·江苏·模拟预测)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈10=尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.12尺C.13尺D.15尺【变式2】(2023春·内蒙古通辽·八年级校考期中)如图,将一根长24cm的筷子,置于底面直径为5cm,高h,则h的取值范围是________.为12cm的圆柱形水杯中,设筷子露在杯子外面的长度是cm题型06解决航海问题【典例1】(2023·宁夏吴忠·统考二模)如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60︒方向上,继续向东航行20海里到达点B处,测得小岛C在轮船的北偏东15︒方向上,此时轮船与小岛C的距离为____海里.【变式1】(2023春·广东珠海·八年级珠海市前山中学校考期中)如图,某港口O位于东西方向的海岸线上,有甲,乙两艘轮船同时离港,各自沿着一固定方向航行,甲船沿北偏西40︒方向航行,每小时30海里,乙船沿北偏东50︒方向航行,每小时40海里,2小时后,两船分别到达A,B处,此时两船相距多少海里?【变式2】(2022秋·广东深圳·八年级深圳市高级中学校考期中)如图所示,一艘轮船由A港口沿着北偏东60︒的方向航行100km到达B港口,然后再沿北偏西30︒方向航行100km到达C港口.(1)求A ,C 两港口之间的距离;(结果保留根号)(2)C 港口在A 港口的什么方向.题型07求台阶上地毯长度【典例1】(2023春·山西吕梁·八年级统考期中)如图是楼梯的示意图,楼梯的宽为5米,5AC =米,13AB =米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A .652mB .852mC .902mD .1502m 【变式1】(2023春·湖南张家界·八年级统考期中)如图所示的一段楼梯,高BC 是3米,斜边AB 长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A .5米B .6米C .7米D .8米【变式2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考期中)某会展中心在会展期间准备将高5m 、长13m 、宽2m 的楼道铺上地毯,已知地毯每平方米30元,请你帮助计算一下,铺完这个楼道需要_______________元.题型08判断汽车是否超速【典例1】(2023春·广东汕头·八年级统考期末)某条道路限速80km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m.(1)求BC的长;(2)这辆小汽车超速了吗?【变式1】(2023春·八年级课时练习)如图,一辆小汽车在一条限速70km/h的街路上沿直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60m处的C点,过了5s后,测得小汽车所在的B点与车速检测仪A之间的距离为100m.(1)求B,C间的距离.(2)这辆小汽车超速了吗?请说明理由.【变式2】(2023春·全国·八年级专题练习)“交通管理条例第三十五条”规定:小汽车在城市街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪距离130米.(1)求小汽车6秒走的路程;(2)求小汽车每小时所走的路程,并判定小汽车是否超速?题型09判断是否受台风影响【典例1】(2023·全国·八年级假期作业)6号台风“烟花”风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB 由A 向B 移动,已知点C 为一海港,且点C 与直线AB 上的两点A 、B 的距离分别为300km AC =,400km BC =,又500km AB =,经测量,距离台风中心260km 及以内的地区会受到影响.(1)海港C 受台风影响吗?为什么?(2)若台风中心的移动速度为25千米/时,则台风影响该海港持续的时间有多长?【变式1】(2023春·全国·八年级专题练习)如图,某沿海城市A 接到台风警报,在该市正南方向150km 的B 处有一台风中心正以20km /h 的速度向BC 方向移动,已知城市A 到BC 的距离90km AD =,那么:(1)台风中心经过多长时间从B 点移到D 点?(2)如果在距台风中心30km 的圆形区域内都有受到台风破坏的危险,为让D 点的游人脱离危险,游人必须在接到台风警报后的几小时内撤离(撤离速度为6km /h )最好选择什么方向?【变式2】(2023春·湖南郴州·八年级校考阶段练习)如图,有一辆环卫车沿公路AB 由点A 向点B 行驶,已知点C 为一所学校,且点C 与直线AB 上两点A ,B 的距离分别为200m 和150m ,250m AB =,环卫车周围130m以内为受噪声影响区域.(1)学校C 会受噪声影响吗?为什么?(2)若环卫车噪声影响该学校持续的时间有2min ,求环卫车的行驶速度为多少?题型10求最短路径【典例1】(2023春·黑龙江齐齐哈尔·八年级校联考阶段练习)有一圆柱形油罐,如图,要从点A 环绕油罐建梯子,正好到A 点的正上方点B ,问梯子最短要多少米?(已知油罐底面周长是12米,高AB 是5米)【变式1】(2023春·八年级单元测试)如图,在长方体''''ABCD A B C D -中,点E 是棱''B C 的中点,已知3AB =cm ,4BC =cm ,'5AA =cm .一只小虫从A 点出发沿长方体的表面到E 点处觅食,求小虫爬行的最短距离.【变式2】(2023春·全国·八年级专题练习)问题情境:如图①,一只蚂蚁在一个长为80cm ,宽为50cm 的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽AD ,木块从正面看是一个边长为20cm 的等边三角形.求一只蚂蚁从点A 处到达点C 处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过...的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接AC .(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中AB =_____,BC =_____.(4)这只蚂蚁从点A 处到达点C 处需要走的最短路程是_____.题型11选址使到两地距离相等【典例1】(2023春·江西赣州·八年级校考期中)为了丰富少年儿童的业余生活,某社区要在如图中AB 所在的直线上建一图书室,本社区有两所学校,分别在点C 和点D 处,CA AB ⊥于点A ,DB AB ⊥于点B ,已知25km 15km 10km AB CA DB ===,,,问:图书室E 应建在距点A 多少千米处,才能使它到两所学校的距离相等?【变式1】(2023春·上海·八年级专题练习)如图,笔直公路上A 、B 两点相距10千米,C 、D 为两居民区,DA AB ⊥于A ,CB AB ⊥于B ,已知6DA =千米,8CB =千米,现要在公路AB 段上建一超市E ,使C 、D 两居民区到E 的距离相等,则超市E 应建在离A 处多远处.【变式2】(2023春·八年级课时练习)为了丰富少年儿童的业余生活,某社区要在如图中的AB 所在的直线上建一图书室,本社区有两所学校所在的位置在点C 和点D 处,CA AB ⊥于A ,DB AB ⊥于B ,已知,2.5km AB =, 1.5km CA =, 1.0km DB =,试问,图书室E 应该建在距点A 多少km 知处.才能使它到两所学校的距离相等?1.(2023春·广东云浮·八年级统考期中)海洋热浪对全球生态带来了严重影响,全球变暖导致华南地区汛期更长、降水强度更大,使得登录广东的台风减少,但是北上的台风增多.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为()A .10mB .15mC .18mD .20m2.(2023·河北衡水·校联考二模)如图,点P 为观测站,一艘巡航船位于观测站P 的南偏西34︒方向的点A 处,一艘渔船在观测站P 的南偏东56︒方向的点B 处,巡航船和渔船与观测站P 的距离分别为45海里、60海里.现渔船发生紧急情况无法移动,巡航船以30海里/小时的速度前去救助,至少需要的时间是()A .1.5小时B .2小时C .2.5小时D .4小时3.(2023春·福建莆田·八年级统考期中)如图所示的是一个长方体笔筒,底面的长、宽分别为8cm 和6cm ,高为10cm ,将一支长为18cm 的签字笔放入笔筒内,则签字笔露在笔筒外的的长度最少为()A .10cmB .()18102cm -C .8cmD .102cm4.(2023·贵州贵阳·统考二模)勾股定理是人类数学文化的一颗璀璨明珠,是用代数思想解决几何问题的最重要工具,也是数形结合的纽带之一.如图,秋千静止时,踏板离地的垂直高度BE =1m ,将它往前推6m 至C 处时(即水平距离CD =6m ),踏板离地的垂直高度CF =4m ,它的绳索始终拉直,则绳索AC 的长是()A .152mB .92mC .6mD .212m 5.(2023春·四川德阳·八年级四川省德阳市第二中学校校考阶段练习)如图,长方体的长15cm BE =,宽10cm AB =,高20cm AD =,点M 在CH 上,且5cm CM =,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是()A .22cmB .25cmC .529cmD .537cm6.(2023春·天津滨海新·八年级校考期中)如图,从电杆上离地面5m 的C 处向地面拉一条长为7m 的钢缆,则地面钢缆A 到电线杆底部B 的距离是______.7.(2023春·湖南长沙·八年级校联考期中)如图,有两棵树,一棵高8米,另一棵高3米,两树相距12米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米.8.(2023春·八年级课时练习)如图,某人欲横渡一条河,由于水流的影响,实际上岸地点A 处偏离欲到达地点B 处40m ,结果他在水中实际游的路程比河的宽度多10m .该河的宽度BC 为_____米.9.(2023春·湖北武汉·八年级统考期中)如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=︒,公路PQ 上A 处距离O 点240米,如果火车行驶时,火车头周围150米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为________秒.10.(2023·四川广安·统考中考真题)如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为___________cm .(杯壁厚度不计)11.(2023春·广东惠州·八年级阶段练习)如图,在一棵树的10米高B 处有两只猴子,其中一只爬下树走向离树20米的池塘C ,而另一只爬到树顶D 后直扑池塘C ,结果两只猴子经过的距离相等,问这棵树有多高?12.(2023春·黑龙江大庆·七年级校联考期中)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA AB ⊥于点A ,CB AB ⊥于点B ,已知15km DA =,10km CB =,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?13.(2023春·广东广州·八年级校考期中)如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域.(1)A 城是否受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,则A 城遭受这次台风影响有多长时间?14.(2023春·广东广州·八年级华南师大附中校考期中)如图,A 、B 两个村子在笔直河岸的同侧,A 、B 两村到河岸的距离分别为2km AC =,5km BD =,6km CD =,现在要在河岸CD 上建一水厂E 向A 、B 两村输送自来水,要求水厂E 到A 、B 两村的距离之和最短.(1)在图中作出水厂E 的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂E 到A 、B 两村的距离之和的最小值.15.(2023·全国·八年级假期作业)如图,一架长10米的梯子AB ,斜靠在竖直的墙上,这时梯子底端离墙()BO 6米(1)此时梯子顶端A 离地面多少米?(2)若梯子顶端A 下滑3米到C 处,那么梯子底端B 将向左滑动多少米到D 处?16.(2023秋·河南南阳·八年级统考期末)如图,在一条绷紧的绳索一端系着一艘小船,河岸上一男孩拽着绳子另一端向右走,绳端从点C 移动到点E ,同时小船从点A 移动到点B ,且绳长始终保持不变,回答下列问题:(1)根据题意,可知AC ________BC CE +(填“>”“<”“=”);(2)若5CF =米,12AF =米,4AB =米,求男孩需向右移动的距离CE (结果保留根号).17.(2023·江苏·八年级假期作业)新冠疫情期间,为了提高人民群众防疫意识,很多地方的宣讲车开起来了,大喇叭响起来了,宣传横幅挂起来了,电子屏亮起来了,电视、广播、微信、短信齐上阵,防疫标语、宣传金句频出,这传递着打赢疫情防控阻击战的坚定决心.如图,在一条笔直公路MN 的一侧点A 处有一村庄,村庄A 到公路MN 的距离AB 为800米,若宣讲车周围1000米以内能听到广播宣传,宣讲车在公路MN 上沿MN 方向行驶.(1)请问村庄A能否听到宣传?请说明理由;(2)如果能听到,已知宣讲车的速度是300米/分钟,那么村庄A总共能听到多长时间的宣传?18.(2023春·全国·八年级专题练习)吴老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的条件分别求出蚂蚁需要爬行的最短路径长.(1)如图1,正方体的棱长为5cm,一只蚂蚁欲从正方体底面上的点A沿正方体表面爬到点C1处;(2)如图2,长方体底面是边长为5cm的正方形,高为6cm,一只蚂蚁欲从长方体底面上的点A沿长方体表而爬到点C1处;(3)如图3,是一个底面周长为10cm,高为5cm的圆柱体,一只蚂蚁欲从圆柱体底面上的点A沿圆柱体侧面爬到点C处.。

新版北师大版八年级上册数学全册同步练习(全套)【最新】

新版北师大版八年级上册数学全册同步练习(全套)【最新】

第一章勾股定理1.1 探索勾股定理※课时达标1.△ABC,∠C=90°,a=9,b=12,则c =_______.2.△ABC,AC=6,BC=8,当AB=________时,∠C=90°.3.等边三角形的边长为6 cm,则它的高为 __________.4.直角三角形两直角边长分别为5 和12,则斜边上的高为__________.5.等腰三角形的顶角为120°,底边上的高为3,则它的周长为__________.6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为__________.7.若一个三角形的三边长分别为3,4, x,则使此三角形是直角三角形的x的值是_________.8.在某山区需要修建一条高速公路,在施工过程中要沿直线AB打通一条隧道,动工前,应先测隧道BC 的长,现测得∠ABD=150°,∠D=60°,BD=32 km,请根据上述数据,求出隧道BC的长(精确到0.1 km).※课后作业★基础巩固1.△ABC中,∠C=90°,若a∶b=3∶4,c=10,则a=__________,b=__________.2.△ABC中∠C=90°,∠A=30°,AB=4,则中线BD=__________.3.如图,将直角△ABC沿AD对折,使点C落在AB上的E处,若AC=6,AB=10,则DB=__________.3cm,c=3 cm,则△ABC中最小的角为______度.4.△ABC中,三边长分别为a=6 cm,b=35.如图,AB⊥BC,且AB=3,BC=2,CD=5,AD=42,则∠ACD=__________,图形ABCD的面积为__________.6.等腰三角形的两边长为 2 和5,则它的面积为__________.7.有一根7 cm木棒,要放在长,宽,高分别为5 cm,4 cm,3 cm的木箱中,__________(填“能”或“不能”)放进去.8.直角三角形有一条直角边为11,另外两条边长是自然数,则周长为__________.9.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于( ).A.6B.6C.5D.4☆能力提升10.直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长( ). A.4 cmB.8 cmC.10 cmD.12 cm11.如图,△ABC 中,∠C=90°,AB 垂直平分线交BC 于D 若BC=8,AD=5,则AC 等于 ( ).A.3B.4C.5D.1312.如图,△ABC 中,AB=AC=10,BD ⊥AC 于D ,CD=2,则BC 等于( ).A.210B.6C.8D.513.ABC 中,∠C=90°,∠A=30°,斜边长为2,斜边上的高为( ). A.1 B.3C.23 D.43 14.直角三角形的一条直角边是另一条直角边的31,斜边长为10,它的面积为( ). A.10B.15C.20D.30●中考在线15.在△ABC 中,∠C =90°,若c =10,a ∶ b =3∶4,则直角三角形的面积是= . 16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2。

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版

八年级数学上册第1章勾股定理拔高练勾股定理的应用新版北师大版
第一章 勾股定理 培优拔高练 勾股定理的应用
1. [2024襄阳襄州区阶段练习]我国古代数学家赵爽为了证明
勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦
图”.如图是由弦图变化得到的,它是由八个全等的直角三
角形拼接而成的,记图中正方形 ABCD ,正方形 EFGH ,
正方形 MNKT 的面积分别为 S1, S2, S3, 若EF =6,则 S1+ S2+ S3的值是( D )
123
因为在△ ABC 中,∠ BAC =90°, AB =6, BC =10, 所以 AC =8, CQ = AB = AD =6. 所以 PB = AC = AI =8. 所以 IP =8+6+8=22, DQ =6+8+6=20. 所以长方形 KLMJ 的面积=22×20=440.
123
3. 【问题探究】(1)如图①,在锐角三角形 ABC 中,分别以 AB , AC 为边向外作等腰直角三角形 ABE 和等腰直角三 角形 ACD ,使 AE = AB , AD = AC ,∠ BAE =∠ CAD =90°,连接 BD , CE ,请判断 BD 与 CE 的数量关系,并说明理由;
( B) A.拨:如图,延长 AB 交 KL 于 P ,延长 AC 交 LM 于 Q , 由题意得,∠ BAC =∠ BPF =∠ FBC =90°, BC =BF , 所以∠ ABC +∠ ACB =90°=∠ PBF +∠ ABC . 所以∠ ACB =∠ PBF . 所以△ ABC ≌△ PFB (AAS).所以 PB = AC . 同理可得△ ABC ≌△ QCG . 所以 CQ = AB .
123
解: BD = CE . 理由如下: 因为∠ CAD =∠ BAE =90°, 所以∠ BAD =∠ EAC =90°+∠ BAC . 因为 AB = AE , AD = AC , 所以△ ABD ≌△ AEC (SAS). 所以 BD = CE .

北师大版八年级(上)数学《勾股定理》专题复习(含答案)

北师大版八年级(上)数学《勾股定理》专题复习(含答案)

例1. (1)如图1是一个外轮廓为矩形的机器零件 平面示意图,根据图中的尺寸(单位: mm ),计算两圆孔中心A 和B 的距离为(2)如图2,直线I 上有二个正方形a, b, 的面积分别为5和11,则b 的面积为( C . 16D . 55点评:以上两例都是勾股定理的直接运用,当已知直角三角形的两边,求第第一章《勾股定理》专项练习专题一:勾股定理考点分析:勾股定理单独命题的题目较少,常与方程、函数,四边形等知识综合在一 起考查,在中考试卷中的常见题型为填空题、选择题和简单的解答题典例剖析分析:本题结合图中的尺寸直接运用勾股定理计算即可.解:(1)由已知得:AC=150-60=90, BC=180-60=120,由勾股定理得:AB 2=902+1202=22500,所以 AB=150 (mm )(2)由勾股定理得:b=a+c=5+11=16,故选C .60]15060c)图2三边时,往往要借助于勾股定理来解决.例2.如图3,正方形网格的每一个小正方形的边长都是1,试求Z AE2A2 Z A4E2C4 Z A4E5C4 的度数.、图3解:连A3E2. Q A3A2A]A2, A2E2A2E2,A3A2E2 AA2E2 90o,Rt △ A3A2E2如Rt △ A1A2E2(SAS).5 A-I E2A3 E2 A2由勾股定理,得:C4E5 22 12 ,5 C3E2 , A4E5 、42 12 ,17 A3E2 ,2Q A4C4AC B 2 , △ A4C4E5◎△ A3C3E2 (SSS).A3 E2C3A4 E5C4A1E2 A2A4E2C4 A4 E5C4 A3E2C4 A4 E2C4 A3E2C3 A2E2C4 •由图可知△ E2C2C4为等腰直角三角形. A2E2C4 45o.即A,E2A2A4E2C4 A4E5C4 45° .点评:由于在正方形网格中,它有两个主要特征:(1)任何格点之间的线段都是某正方形或长方形的边或对角线,所以格点间的任何线段长度都能求得.(2)利用正方形的性质,我们很容易知道一些特殊的角,如45°、90°、135°, 便一目了然.以上两例就是根据网格的直观性,再结合图形特点,运用勾股定理进行计算,易求得线段和角的特殊值,重点考查学生的直觉观察能力和数形结合的能力.专练一:〔、△ ABC 中,/ A :/ B:/ C=2 : 1: 1, a,b,c分别是/ A、/ B、/ C 的对边,则下列各等式中成立的是( )(A) a2b2c2; (B) a22b2; (C) c22a2; (D) b22a22、若直角三角形的三边长分别为2, 4, X,则x的可能值有( )(A) 1 个;(B) 2 个;(C) 3个;(D) 4 个3、一根旗杆在离底面4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为( )(A) 10.5 米; ( B) 7.5 米; (C) 12 米; (D) 8 米4、下列说法中正确的有( )(1)如果/ A+ / B+Z C=3: 4: 5,则厶ABC是直角三角形;(2) 如果/ A+Z B= Z C,那么△ ABC是直角三角形;(3)如果三角形三边之比为6: 8:10,则ABC是直角三角形;(4)如果三边长分别是n21,2n,n21(n 1),则ABC是直角三角形。

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》达标测试题(附答案)

2022-2023学年北师大版八年级数学上册《1-3勾股定理的应用》达标测试题(附答案)

2022-2023学年北师大版八年级数学上册《1.3勾股定理的应用》达标测试题(附答案)一.选择题(共8小题,满分32分)1.如图,有一个正方体盒子,棱长为1cm,一只蚂蚁要从盒底点A沿盒的表面爬到盒顶的点B,蚂蚁爬行的最短路程是()A.cm B.3cm C.cm D.2cm2.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16的直吸管露在罐外部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.4≤a≤5B.3≤a≤4C.2≤a≤3D.1≤a≤23.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间整有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A.20B.24C.25D.264.如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.A.14B.15C.16D.175.如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.dm B.20dm C.25dm D.35dm6.如图,某公园的一块草坪旁边有一条直角小路,公园管理处为了方便群众,沿AC修了一条近路,已知AB=40米,BC=30米,则走这条近路AC可以少走()米路.A.20B.30C.40D.507.如图,已知树EF(垂直于地面)上的点B处(BE=5米)有两只松鼠,为抢到A处(点A,E在同一水平地面上,AE=10米)的坚果,一只松鼠沿B﹣E﹣A到达点A处,另一只松鼠沿B﹣F﹣A到达点A处.若两只松鼠经过的路程相等,则树EF的高为()A.6.5米B.7.0米C.7.5米D.8米8.如图,某自动感应门的正上方A处装着一个感应器,离地AB=2.5米,当人体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生CD正对门,缓慢走到离门1.2米的地方时(BC=1.2米),感应门自动打开,则人头顶离感应器的距离AD等于()A.1.2米B.1.5米C.2.0米D.2.5米二.填空题(共5小题,满分20分)9.如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN 的距离为80m.现有一卡车在公路MN上以5m/s的速度沿PN方向行驶,卡车行驶时周围100m以内都会受到噪音的影响,请你算出该学校受影响的时间为秒.10.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为.11.如图,一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面的部分BC为1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,芦苇的顶端与岸齐,则芦苇高度是尺.12.小亮用11块高度都是2cm的相同长方体小木块垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个正方形ABCD木板,截面如图所示.两木墙高分别为AE与CF,点B 在EF上,求正方形ABCD木板的面积为cm2.13.折竹抵地(源自《九章算术》):“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”意即:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子处3尺远.则原处还有尺竹子.(1丈=10尺)三.解答题(共7小题,满分68分)14.八年级11班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米;(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?15.在综合实践课上王老师带领大家利用所学的知识了解某广告牌的高度,已知CD=3m,经测量,得到其它数据如图所示,其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH.16.如图,有一架秋千,当他静止时,踏板离地的垂直高度DE=0.6m,将他往前推送2.4m (水平距离BC=2.4m)时,秋千的踏板离地的垂直高度BF=1.2m,秋千的绳索始终拉得很直,求绳索AD的长度.17.一架2.5m长的梯子AB斜靠在一竖直的墙AC上,这时BC为0.7m.如果梯子的顶端A 沿墙下滑0.4m,那么梯子底端B在水平方向上滑动了多少米?18.某条道路限速70km/h,如图,一辆小汽车在这条道路上沿直线行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s,小汽车到达B处,此时测得小汽车与车速检测仪间的距离为50m.(1)求BC的长;(2)这辆小汽车超速了吗?19.图1是超市购物车,图2为超市购物车侧面示意图,测得∠ACB=90°,支架AC=4.8dm,CB=3.6dm.(1)两轮中心AB之间的距离为dm;(2)若OF的长度为dm,支点F到底部DO的距离为5dm,试求∠FOD的度数.20.今年第6号台风“烟花”登录我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=600km,BC=800km,又AB =1000km,以台风中心为圆心,周围500km以内为受影响区域.(1)求∠ACB的度数;(2)海港C受台风影响吗?为什么?(3)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?参考答案一.选择题(共8小题,满分32分)1.解:如图,将正方体展开,则线段AB即为最短的路线,∵这个正方体的棱长为1cm,∴AB==(cm),∴蚂蚁爬行的最短路程是cm.故选:A.2.解:设b是圆柱形的高,当吸管底部在地面圆心时吸管在罐内部分b最短,此时b就是圆柱形的高,即b=12;∴a=16﹣12=4,当吸管底部在饮料罐的壁底时吸管在罐内部分b最长,b==13,∴此时a=3,所以3≤a≤4.故选:B.3.解:如图所示,将图展开,图形长度增加2MN,原图长度增加4米,则AB=20+4=24,连接AC,∵四边形ABCD是长方形,AB=24,宽AD=10,∴AC====26,∴蚂蚁从A点爬到C点,它至少要走26的路程.故选:D.4.解:沿过A的圆柱的高剪开,得出矩形EFGH,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC中,由勾股定理得:A′C==15cm,故选:B.5.解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为xdm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25(dm).故选:C.6.解:在Rt△ABC中,∵AB=40米,BC=30米,∴AC==50(米),30+40﹣50=20(米),∴他们踩坏了50米的草坪,只为少走20米的路.故选:A.7.解:设设BF为xm,则EF=(5+x)m,由题意知:BE+AE=15m,∵两只松鼠所经过的路程相等,∴BF+AF=15m,∴AF=(15﹣x)m,在Rt△AEF中,由勾股定理得:102+(x+5)2=(15﹣x)2,解得x=2.5,∴EF=5+2.5=7.5(m),答:这棵树高7.5米.故选:C.8.解:如图,过点D作DE⊥AB于点E,∵AB=2.5米,BE=CD=1.6米,ED=BC=1.2米,∴AE=AB﹣BE=2.5﹣1.6=0.9(米).在Rt△ADE中,由勾股定理得到:AD===1.5(米)故选:B.二.填空题(共5小题,满分20分)9.解:设卡车开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,CB==60(m),∴CD=2CB=120(m),则该校受影响的时间为:120÷5=24(s).答:该学校受影响的时间为24秒,故答案为:24.10.解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.11.解:设芦苇长AB=AB′=x尺,则水深AC=(x﹣1)尺,因为边长为10尺的正方形,所以B'C=5尺在Rt△AB'C中,52+(x﹣1)2=x2,解之得x=13,即芦苇长13尺.故答案是:13.12.解:∵AE⊥EF,CF⊥EF,∴∠AEB=∠BFC=90°,∴∠EAB+∠ABE=90°.∵∠ABC=90°,∴∠ABE+∠CBF=90°.∴∠EAB=∠CBF,∵AB=BC,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF=2×5=10(cm),∵CF=2×6=12(cm).在Rt△BCF中,BC2=BF2+CF2=102+122=244,∴S正方形ABCD=BC2=244cm2,即正方形ABCD木板的面积为244cm2.故答案为:244.13.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2.解得:x=4.55.答:原处还有4.55尺高的竹子.故答案为:4.55.三.解答题(共7小题,满分68分)14.解:(1)在Rt△CDB中,由勾股定理得,CD2=BC2﹣BD2=172﹣82=225,所以,CD=15(负值舍去),所以,CE=CD+DE=15+1.6=16.6米,答:风筝的高度CE为16.6米;(2)由题意得,CM=9,∴DM=6,∴BM===10,∴BC﹣BM=7,∴他应该往回收线7米.15.解:延长CD交AH于点E,设DE=x,则BE=x,∵∠A=30°,∴==,∴x=5﹣4.5,∴GH=EC=5﹣1.5(m)答:GH的长为=(5﹣1.5)m.16.解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x+0.6﹣1.2)m,故x2=2.42+(x+0.6﹣1.2)2,5.76﹣1.2x+0.36=0解得:x=5.1,答:绳索AD的长度是5.1m.17.解:∵Rt△OAB中,AB=2.5m,BC=0.7m.∴AC==2.4(m),同理,Rt△CA1B1中,∵A1B1=2.5m,CA1=2.4﹣0.4=2(m),∴B1C==1.5(m),∴BB1=B1C﹣BC=1.5﹣0.7=0.8(m).答:梯子底端B在水平方向上滑动了0.8米.18.解:(1)在Rt△ABC中,AC=30m,AB=50m;据勾股定理可得:BC===40(m),(2)∵BC=40m,∴小汽车的速度为v==20(m/s)=20×3.6(km/h)=72(km/h);∵72(km/h)>70(km/h);∴这辆小汽车超速行驶.19.解:(1)在Rt△ABC中,由勾股定理得:AB===6(dm),故答案为:6;(2)过点F作FH⊥DO,交DO延长线于H,如图所示:则FH=5dm,在Rt△FHO中,由勾股定理得:OH===5(dm),∴OH=FH,∴△FHO是等腰直角三角形,∴∠FOH=45°,∴∠FOD=180°﹣∠FOH=180°﹣45°=135°,∴∠FOD的度数为135°.20.解:(1)∵AC=600km,BC=800km,AB=1000km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;(2)海港C受台风影响,理由:过点C作CD⊥AB,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴600×800=1000×CD,∴CD=480(km),∵以台风中心为圆心周围500km以内为受影响区域,∴海港C受台风影响;(3)当EC=500km,FC=500km时,正好影响C港口,∵ED==140(km),∴EF=280km,∵台风的速度为28千米/小时,∴280÷28=10(小时).答:台风影响该海港持续的时间为10小时.。

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章 勾股定理的应用》同步练习题附带答案-北师大版

2023-2024学年八年级数学上册《第一章勾股定理的应用》同步练习题附带答案-北师大版学校:___________班级:___________姓名:___________考号:___________一、选择题1.梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是()A.6米B.7米C.8米D.9米2.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm3.由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m4.《九章算术》是我国古代数学的经典著作,书中有一个“折竹抵地”问题:“今有竹高丈,末折抵地,问折者高几何?”意思是:一根竹子,原来高一丈(一丈为十尺),虫伤有病,一阵风将竹子折断,其竹梢恰好抵地,抵地处离原竹子根部三尺远,问:原处还有多高的竹子?()A.4尺B.4.55尺C.5尺D.5.55尺5.如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果大正方形的面积41,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.25 B.41 C.62 D.816.如图,斜坡BC的长度为4米.为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4√3米,则原来斜坡的水平距离CD的长度是()米.A.2 B.4 C.2√3D.67.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A处出发先往东走8km,又往北走2km,遇到障碍后又往西走3km,再向北走到6km处往东拐,仅走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.20km B.14km C.11km D.10km8.如图,OP=1,过点P作PP1⊥OP且PP1=1,得OP1=√2;再过点P,作P1P2⊥OP1且P1P2=1,得OP2=√3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…依此法继续作下去,得OP2021=()A.√2023B.√2022C.√2021D.√2020二、填空题9.一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1.5小时后,它们相距海里.10.如图是某路口处草坪的一角,当行走路线是A→C→B时,有人为了抄近道而避开路的拐角∠ACB(∠ACB=90°),于是在草坪内走出了一条不该有的捷径路AB.某学习实践小组通过测量可知,AC的长约为6米,BC的长约为8米,为了提醒居民爱护草坪,他们想在A,B处设立“踏破青白可惜,多行数步无妨”的提示牌.则提示牌上的“多行数步”是指多行米.11.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.12.如图,一个长方体铁盒的长,宽,高分别是8 cm,6 cm,24 cm,-根长28 cm的木棒完全装进这个盒子里.(填“能”或“不能”)13.如图,山坡上,树甲从点A处折断,其树顶恰好落在另一棵树乙的根部C处,已知AB=4m,BC =10m,已知两棵树的水平距离为6m,则树甲原来高.三、解答题14.如图,小旭放风筝时,风筝挂在了树上,他先拉住风筝线,垂直于地面,发现风筝线多出1米;把风筝线沿直线BC向后拉5米,风筝线末端刚好接触地面,求风筝距离地面的高度AB.15.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).16.某地一楼房发生火灾,消防队员决定用消防车上的云梯救人如图(1).如图(2),已知云梯最多只能伸长到15m(即AB=CD=15m),消防车高3m,救人时云梯伸长至最长,在完成从12m(即BE=12m)高的B处救人后,还要从15m(即DE=15m)高的D处救人,这时消防车从A处向着火的楼房靠近的距离AC为多少米?(延长AC交DE于点O,AO⊥DE点B在DE上,OE的长即为消防车的高3m)17.如图,在笔直的公路AB旁有一座山,为方便运输货物现要从公路AB上的D处开凿隧道修通一条公路到C处,已知点C与公路上的停靠站A的距离为15km,与公路上另一停靠站B的距离为20km,停靠站A、B之间的距离为25km,且CD⊥AB.(1)求修建的公路CD的长;(2)若公路CD修通后,一辆货车从C处经过D点到B处的路程是多少?18.台风是一种自然灾害,它在以台风中心为圆心,一定长度为半径的圆形区域内形成极端气候,有极强的破坏力.如图,监测中心监测到一台风中心沿监测点B与监测点A所在的直线由东向西移动,已知点C为一海港,且点C与A,B两点的距离分别为300km、400km,且∠ACB=90°,过点C作CE⊥AB于点E,以台风中心为圆心,半径为260km的圆形区域内为受影响区域,台风的速度为25km/h.(1)求监测点A与监测点B之间的距离;(2)请判断海港C是否会受此次台风的影响,若受影响,则台风影响该海港多长时间?若不受影响,请说明理由.参考答案1.C2.B3.C4.B5.D6.A7.D8.B9.3010.411.3.7512.不能13.(4+6√5)m14.解:设AB=x米,则AC=(x+1)米由图可得,∠ABC=90°,BC=5米在Rt△ABC中AB2+BC2=AC2即x2+52=(x+1)2解得x=12答:风筝距离地面的高度AB为12米.15.解:如图设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m)而BC=8m 在Rt△ABC中AB2+BC2=AC2,即(x−2)2+82=x2解得:x=17(m)即旗杆的高度为17m.16.解:在 Rt △ABO 中∵∠AOB =90° AB =15m ,OB =12−3=9 (m ) ∴AO =√AB 2−OB 2=√152−92=12 (m )在 Rt △COD 中∵∠COD =90°,CD =15m ,OD =15−3=12 (m ) ∴OC =√CD 2−OD 2=√152−122=9 (m )∴AC =OA −OC =3 (m )答:消防车从原处向着火的楼房靠近的距离 AC 为 3m .17.(1)解:∵AC=15km ,BC=20km ,AB=25km152+202=252∴△ACB 是直角三角形,∠ACB=90°∵12AC ×BC=12AB ×CD∴CD=AC ×BC ÷AB=12(km ).故修建的公路CD 的长是12km ;(2)解:在Rt △BDC 中,BD= √BC 2−CD 2=16(km )一辆货车从C 处经过D 点到B 处的路程=CD+BD=12+16=28(km ). 故一辆货车从C 处经过D 点到B 处的路程是28km .18.(1)解:在RtΔABC 中,AC =300km ,BC =400km ∴AB =√AC 2+BC 2=√3002+4002=500(km )答:监测点A 与监测点B 之间的距离为500km ;(2)解:海港C 受台风影响理由:∵∠ACB =90°,CE ⊥AB∴S ΔABC =12AC ⋅BC =12CE ⋅AB ∴300×400=500CE∴CE =240km∵以台风中心为圆心周围260km 以内为受影响区域∴海港C 会受到此次台风的影响以C 为圆心,260km 长为半径画弧,交AB 于D ,F则DE =EF =260km 时,正好影响C 港口在RtΔCDE 中∵ED =√CD 2−CE 2=√2602−2402=100(km )∴DF =200km∵台风的速度为25千米/小时∴200÷25=8(小时).答:台风影响该海港持续的时间为8小时.。

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第1章 勾股定理 北师大版八年级数学上册能力提升(含答案)

第一章勾股定理单元测试(能力提升)一、单选题1.下列各组数中,不能作直角三角形三边长的是()A.3、4、5B.5、12 、13C.7、24、25D.7、9、13【答案】D【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:选项A:∵3²+4²=5²,∴能构成直角三角形三边,故选项A不符合题意;选项B:∵5²+12²=13²,∴能构成直角三角形三边,故选项B不符合题意;选项C:∵7²+24²=25²,∴能构成直角三角形三边,故选项C不符合题意;选项D:∵7²+9²=49+81=130≠13²,∴不能构成直角三角形三边,故选项D符合题意;故选:D【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.如图,在中,D,E分别是边BC,AC的中点,已知,,,则AB 的长为().A.B.C.10D.【答案】A设,,在和中,利用勾股定理可证得,在Rt△ABC中,利用即可求解.设,,在中,,①在中,,②①+②,,∴,在Rt△ABC中,,故选A.【点睛】本题考查了勾股定理,借助中点的定义,灵活运用勾股定理是解答的关键.3.如图正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为( )A.B.5C.D.【答案】D把此正方体的点所在的面展开,然后在平面内,利用勾股定理求点和点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2,另一条直角边长等于3,利用勾股定理可求得.解:如图示,将正方体展开,连接、,根据两点之间线段最短,.答:蚂蚁从点爬行到点的最短距离为.故选:D.【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.4.如图,已知1号、4号两个正方形的面积之和为7,2号、3号两个正方形的面积之和为4,则a、b、c 三个正方形的面积之和为()A.11B.15C.10D.22【答案】B【解析】由直角三角形的勾股定理以及正方形的面积公式不难发现:a的面积等于1号的面积加上2号的面积,b的面积等于2号的面积加上3号的面积,c的面积等于3号的面积加上4号的面积,据此可以求出三个的面积之和.利用勾股定理可得:,,∴故选B【点睛】本题主要考查勾股定理的应用,熟练掌握相关性质定理是解题关键.5.如图1是由个全等的边长为的正方形拼成的图形,现有两种不同的方式将它沿着虚线剪开,甲将它分成三块,乙将它分成四块,各自要拼一个面积是的大正方形,则()A.甲、乙都可以B.甲可以,乙不可以C.甲不可以,乙可以D.甲、乙都不可以【答案】A【解析】直接利用图形的剪拼方法结合正方形的性质分别分析得出答案.解:如图所示:可得甲、乙都可以拼一个面积是5的大正方形.故选:.【点睛】此题主要考查了图形的剪拼以及正方形的性质,正确应用正方形的性质是解题关键.6.下列命题①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果三角形的三个内角的度数比是3:4:5,那么这个三角形是直角三角形;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1.其中正确的是( )A.①②B.①③C.①④D.②④【答案】C【解析】分别利用勾股数的定义、勾股定理以及等腰直角三角形的边的关系分别判断得出即可.解:①如果a,b,c 为一组勾股数,那么4a,4b,4c仍是勾股数,是真命题;②如果三角形的三个内角的度数比是3:4:5,则这三角形的三个内角度数为:45°,60°,75°,因此这个三角形不是直角三角形,原命题是假命题;③如果一个三角形的三边是12、25、21,因为,故此三角形不是直角三角形,故原命题是假命题;④一个等腰直角三角形的三边是a,b,c,(a>b=c),那么a2:b2:c2=2:1:1,是真命题;故选:C.【点睛】此题主要考查了命题与定理,熟练掌握勾股定理以及等腰直角三角形的性质是解题关键.7.如图,在中,是边上的高线,是边上的中线,于点,.若,则的面积是()A.B.C.D.【答案】D【解析】连接DE,证明DE=DC=5,推出AB=10,AD=6,进而求出的面积即可得出结果.如图,连接,作于F点,是边上的高线,在中,根据“斜中半”定理可知,,,,为等腰三角形,且由勾股定理知:,,,是边上的中线,,,得,,,在中,由“三线合一”性质,知G为CE的中点,,故选:D.【点睛】本题考查了直角三角形斜边中线的性质,解直角三角形,三角形的面积等知识点,解决问题的关键是学会添加常用辅助线,构造直角三角形解决问题.8.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为( )A.10m B.11m C.12m D.13m【答案】B【解析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,在Rt△ABC 中利用勾股定理可求出x.设旗杆高度为xm,可得AC=AD=xm,AB=(x﹣1)m,BC=5m,根据勾股定理得,绳长的平方=x2+22,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11,故选:B.【点睛】此题考查勾股定理,题中有两种拉绳子的方式,故可以构建两个直角三角形,形状不同大小不同但都是直角三角形且绳子的长度是不变的,因此根据绳子建立勾股定理的等式,由此解答问题.9.如图,三角形纸片ABC中,点D是BC边上一点,连接AD,把△ABD沿着直线AD翻折,得到△AED,DE交AC于点G,连接BE交AD于点F.若DG=EG,AF=4,AB=5,△AEG的面积为,则BD的长为()A.B.C.D.【答案】A【解析】首先根据SAS证明△BAF≌△EAF可得AF⊥BE,根据三角形的面积公式求出AD,根据勾股定理求出BD 即可.解:由折叠得,,∠BAF=∠EAF,在△BAF和△EAF中,∴△BAF≌△EAF(SAS)∴BF=EF∴AF⊥BE又∵AF=4,AB=5,∴在△ADE中,EF⊥AD,DG=EG,设DE边上的高线长为h,∴即∵,∴∴∴∴在Rt△BDF中,,,∴故选:A【点睛】本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题.10.如图,在中,点D是边上的中点,连接,将沿着翻折,得到,与交于点F,连接.若,则点C到的距离为()A.B.C.D.【答案】C【解析】连接BE,延长CD交BE于G点,过C作CH⊥AB于H,由折叠的性质及中点性质,可得△AEB是直角三角形,且G点是BE的中点,从而CG⊥BE,由勾股定理可求得BE的长,则根据△ABC的面积相等一方面可表示为,另一方面其面积为△BCD与△ACD面积的和,从而可求得CH的长.连接BE,延长CD 交BE于G点,过C作CH⊥AB于H,如图所示由折叠的性质,得:BD=ED,CB=CE∴CG是线段BE的垂直平分线∴BG=BE∵D点是AB的中点∴BD=AD,∴AD=ED∴∠DAE=∠DEA∵BD=ED∴∠DEB=∠DBE∵∠DAE+∠BEA+∠DBE=180°即∠DAE+∠DEA+∠DEB+∠DBE=180°∴2∠DEA+2∠DEB=180°∴∠DEA+∠DEB=90°即∠AEB=90°在Rt△AEB中,由勾股定理得:∴∵∴∴故选:C.【点睛】本题考查了直角三角形的判定、勾股定理、线段垂直平分线的判定,利用面积相等求线段的长,关键是得出CG⊥BE,从而可求得△BCD的面积也即△ABC的面积.二、填空题11.如图,已知OA=AB,数轴上点C表示的实数是_____________,点E表示的实数是____________.【答案】【解析】利用勾股定理求出OB,即可得到点C表示的实数;利用勾股定理求出OD可得到点E表示的实数.解:由题意得:,∴,即点C表示的实数是,∴,∴,即点E表示的实数是,故答案为:,.【点睛】本题考查了勾股定理与无理数,熟练应用勾股定理是解题关键.12.如图,在△ABC中,∠A=30°,∠B=90°,BC=6, 一个边长为2的正方形DEFH沿边CA方向向下平移,平移开始时点F与点C重合,当正方形DEFH的平移距离为__________时,有DC2=AE2+BC2成立,【答案】【解析】连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,由∠A=30°,∠B=90°,BC=6,得到AC=12,AE=12-2-x=10-x,再根据DC2=AE2+BC2列出方程即可求解.连接CD,设平移的距离为x,则CF=x,根据勾股定理得到CD2=22+(x+2)2,∵∠A=30°,∠B=90°,BC=6,∴AC=12,AE=12-2-x=10-x,∴AE2+BC2=(10-x)2+62,∵DC2=AE2+BC2∴22+(x+2)2=(10-x)2+62,解得x=【点睛】此题主要考查勾股定理的应用,解题的关键是构造直角三角形,利用勾股定理进行求解.13.若直角三角形的三边分别为a、a+b、a+2b,则的值为___【答案】3或-5【解析】若b是正数,则a、a+b、a+2b中a+2b最大,即a+2b是斜边,由勾股定理可得(a+2b) 2=a2+(a+b) 2,化简得a2-2ab-3b2=0 ,所以(a+b)(a-3b)=0 ,又a+b是一条直角边,因此a+b>0,所以a=3b>0,即=3 ;若b是负数,则a、a+b、a+2b中a最大,即a是斜边,由勾股定理可得a2=(a+b) 2+(a+2b) 2,化简得a2+6ab+5b2=0 ,即(a+b)(a+5b)=0 ,同上a+b>0,所以a=-5b,即=-5.所以的值为3或-5.点睛:本题考查了勾股定理的应用,正确分类讨论是解决本题的关键.14.如图,在中于点D,点P是线段AD上一个动点,过点P作于点E,连接PB,则的最小值为________.【解析】根据题意点B与点C关于AD对称,所以过点C作AB的垂线,与AD的交点即点P,求出CE即可得到答案∵∴点B与点C关于AD对称过点C作CE⊥AB于一点即为点P,此时最小∵∴BD=2在Rt△ABC中,∵S△ABC=∴得故此题填【点睛】此题考察最短路径,根据题意找到对称点,作直角三角形,利用勾股定理解决问题15.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑________米.【答案】0.5【解析】结合题意可知AB=DE=2.5米,BC=1.5米,BD=0.5米,∠C=90°,∴AC===2(米).∵BD=0.5米,∴CD=2米,∴CE===1.5(米),∴AE=AC-EC=0.5(米).故答案为0.5.点睛:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.16.如图,在四边形ABCD中,AC平分∠BAD,BC=CD=10,AC=17,AD=9,则AB=_____.【答案】21【解析】在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,先证明△ADC≌△AEC,得出AE=AD=9,CE=CD=BC=10的长度,再设EF=BF=x,在Rt△CFB和Rt△CFA中,由勾股定理求出x,再根据AB=AE+EF+FB求得AB的长度.如图所示,在AB上截取AE=AD,连接CE,过点C作CF⊥AB于点F,∵AC平分∠BAD,∴∠DAC=∠EAC.在△AEC和△ADC中,∴△ADC≌△AEC(SAS),∴AE=AD=9,CE=CD=BC =10,又∵CF⊥AB,∴EF=BF,设EF=BF=x.∵在Rt△CFB中,∠CFB=90°,∴CF2=CB2-BF2=102-x2,∵在Rt△CFA中,∠CFA=90°,∴CF2=AC2-AF2=172-(9+x)2,即102-x2=172-(9+x)2,∴x=6,∴AB=AE+EF+FB=9+6+6=21,∴AB的长为21.故答案是:21.【点睛】考查全等三角形的判定和性质、勾股定理和一元二次方程等知识,解题的关键是作辅助线,构造全等三角形,再运用用方程的思想解决问题.17.定义:如图,点、点把线段分割成和,若以为边的三角形是一个直角三角形,则称点、点是线段的勾股分割点.已知点点是线段的勾股分割点,,则_____.【答案】或【解析】①当MN为最长线段时,由勾股定理求出BN;②当BN为最长线段时,由勾股定理求出BN即可.解:当为最长线段时,点是线段的勾股分割点,;当为最长线段时,点是线段的勾股分割点,.综上所述:或.故答案为:或.【点睛】本题考查了勾股定理,关键是熟悉勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方,注意分类思想的应用.18.如图,在一次测绘活动中,在港口A的位置观测停放于B、C两处的小船,测得船B在港口A北偏东75°方向12海里处,船C在港口A南偏东15°方向9海里处,则船B与船C之间的距离为__________海里.【答案】【解析】根据题目中的已知角度,求出,再利用勾股定理列方程计算.由题意知,,在中,,,则,解得:故答案为:15【点睛】本题考查了勾股定理的应用,突破口在于找到直接三角形.19.如图,长方体的底面边长分别为1cm 和4cm,高为6cm.如果用一根细线从点A 开始经过4 个侧面缠绕n 圈到达点B,那么所用细线最短需要_______________cm.(结果用含n 的代数式表示)【答案】2【解析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体展开,然后利用两点之间线段最短结合勾股定理解答.解:将长方体展开,连接A、B.从点A开始经过4个侧面缠绕n圈到达点B,相当于两条直角边分别是10n和6,根据两点之间线段最短,则AB==2cm.故填:2.【点睛】本题主要考查平面展开−最短路径问题,解题的关键是得到两条直角边分别是10n和6,根据两点之间线段最短,运用勾股定理进行解答.20.如图,已知,过作,且;再过作且;又过作且;又过作且;……,按照这种方法依次作下去得到一组直角三角形,,,,……,它们的面积分别为,,,,……,那么______.【答案】.【解析】利用勾股定理解直角三角形,然后利用三角形面积公式计算三角形面积,从而发现规律.解:由题意可得在中,∴同理可得:…∴故答案为:【点睛】本题考查勾股定理解直角三角形及数字的规律探索,准确利用勾股定理及三角形面积公式进行计算是解题关键.21.如图,四边形ABCD中,点E在CD上,交AC于点F,,若,,则__________.【答案】7【解析】证明△ABF≌△DCA可得AD=AF,AC=BF,过点D作DG垂直于AC于点G,可得DG=GC=3,GF=GC-FC=1,在△ADG中利用勾股定理即可求得AD,从而求得AC.解:∵BE∥AD,∴∠AFB=∠CAD,∵,∴△ABF≌△DCA(AAS),∴AD=AF,AC=BF,过点D作DG垂直于AC于点G,∠ACD=45°,,∴DG=GC=3,∴GF=GC-FC=3-2=1,设AD=AF=x,则AG=x-1,由勾股定理得32+(x-1)2=x2,解得x=5,∴AD=5,BF=AC=AF+CF=5+2=7,故答案为:7.【点睛】此题考查勾股定理以及全等三角形的判定和性质,关键是根据全等三角形的判定和性质解答.22.如图,中,,的角平分线,相交于点P,过P作交的延长线于点F,交于点H,则下列结论:①;②;③;④平分;其中正确的结论是___________.(填正确结论的序号)【答案】①②③【解析】由三角形的角平分线的含义结合三角形的内角和定理可判断①,先证明△ABP≌△FBP(ASA)与△APH≌△FPD(ASA),结合可判断②,由△ABP≌△FBP,△APH≌△FPD,可得S△APB=S△FPB,S△APH=S△FPD,再证明HD∥EP,可判断③,若DH平分∠CDE,推导DE∥AB,这个显然与条件矛盾,可判断④;解:在△ABC中,∵∠ACB=90°,∴,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE= ,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,又∵∠ABP=∠FBP,BP=BP,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,PA=PF,在△APH和△FPD中,,∴△APH≌△FPD(ASA),∴PH=PD,,故②正确,∵△ABP≌△FBP,△APH≌△FPD,∴S△APB=S△FPB,S△APH=S△FPD,PH=PD,∵∠HPD=90°,∴∠HDP=∠DHP=45°=∠BPD,∴HD∥EP,∴S△EPH=S△EPD,∴S△APH=S△AED,故③正确,若DH平分∠CDE,则∠CDH=∠EDH,∵DH∥BE,∴∠CDH=∠CBE=∠ABE,∴∠CDE=∠ABC,∴DE∥AB,这个显然与条件矛盾,故④错误;故答案为:①②③.【点睛】本题考查了三角形的角平分线的性质,三角形全等的判定方法,三角形内角和定理,三角形的面积,勾股定理的应用等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.三、解答题23.如图,已知与有一个公共点C,其中,若,,,,.求证:.【答案】见详解.【解析】先利用勾股定理求出AC2和CE2的值,再根据勾股定理的逆定理证明△ACE为直角三角形.证明:∵,∴在中,根据勾股定理同理可求.在中∵..∴.∴为直角三角形.【点睛】本题考查勾股定理和勾股定理逆定理的综合运用,如果三角形的三边满足两边的平方和等于第三边的平方,那么这个三角形为直角三角形,本题依次可证.24.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB = 90°,求证:a2+b2=c2.【答案】证明见解析.【解析】根据即可得证.如图,过点D作,交BC延长线于点F,连接BD,则,由全等三角形的性质得:,,,,即,整理得:.【点睛】本题考查了勾股定理的证明,掌握“面积法”是解题关键.25.如图,某小区对位于小路AC同侧的两个喷泉A,B的管道进行铺设.供水点M在小路AC上,喷泉A,B的距离是400米,供水点M到AB的距离MN是150m,BM=250m.(1)供水点M到A,B两个喷泉铺设的管道总长是多少米?(2)改变供水M的在AC上的位置,若使管道BM最短,求出此时供水点M到A,B两个喷泉铺设的管道总长是多少米?.【答案】(1)500m;(2)560m【解析】(1)根据勾股定理依次求出BN和AM,供水管道总长即为AM+BM;(2)根据垂线段的性质可画出对应图,再根据勾股定理分别在Rt△BM M '和Rt△BAM '中表示,列出方程求解即可求得MM ',由此可求得和AM '即可求解.解:(1)由题意可得:MN⊥AB,∴∠MNA=∠MNB=90°,在Rt△MNB中,∠MNB=90°,BN=,∵AB=400,∴AN=AB﹣BN=200,在Rt△AMN中,∠MNA=90°,AM=,∴供水点M到喷泉A,B需要铺设的管道总长=250+250=500m;(2)由题意可得:BM '⊥AC,AM=BM=250,AB=400,∴∠BM 'M=90°,设MM '=x,则AM '=x+250,在Rt△BM M ' 中,∠BM 'M=90°,,在Rt△BAM ' 中,∠BM 'M=90°,,∴,∴,∴,∴,∴供水点M ' 到喷泉A,B需要铺设的管道总长=320+240=560m.【点睛】本题考查勾股定理的应用,线段垂线段的性质.(2)中能正确作出图形,并熟练掌握方程思想是解题关键.26.如图1,在中,,,是的高,且.(1)求的长;(2)是边上的一点,作射线,分别过点,作于点,于点,如图2,若,求与的和.【答案】(1)3;(2).【解析】(1)根据勾股定理可求AD,再根据勾股定理可求CD,根据BC=BD+CD即可求解;(2)根据三角形面积公式可求AF与CG的和.(1)在Rt△ABD中,ADB=90,由勾股定理得:AD=,在Rt△ACD中,ADC=90,由勾股定理得:CD=,∴BC=BD+CD=1+2=3,∴BC的长为3;(2)∵AF⊥BE,CG⊥BE,BE=,∴,=,=,而=,∴=,即AF与CG的和为.【点睛】本题考查了勾股定理、三角形面积法的应用,正确运用勾股定理是解题的关键.27.如图,某城市接到台风警报,在该市正南方向的处有一台风中心,沿方向以的速度移动,已知城市到的距离.(1)台风中心经过多长时间从移动到点?(2)已知在距台风中心的圆形区域内都会受到不同程度的影响,若在点的工作人员早上6:00接到台风警报,台风开始影响到台风结束影响要做预防工作,则他们要在什么时间段内做预防工作?【答案】(1)台风中心经过16小时时间从B移动到D点;(2)他们要在20时到24时时间段内做预防工作【解析】(1)首先根据勾股定理计算BD的长,再根据时间=路程÷速度进行计算;(2)根据在30千米范围内都要受到影响,先求出从点B到受影响的距离与结束影响的距离,再根据时间=路程÷速度计算,然后求出时间段即可.解:(1)在Rt△ABD中,根据勾股定理,得BD==240km,所以,台风中心经过240÷15=16小时从B移动到D点,答:台风中心经过16小时时间从B移动到D点;(2)如图,∵距台风中心30km的圆形区域内都会受到不同程度的影响,∴BE=BD-DE=240-30=210km,BC=BD+CD=240+30=270km,∵台风速度为15km/h,∴210÷15=14时,270÷15=18,∵早上6:00接到台风警报,∴6+14=20时,6+18=24时,∴他们要在20时到24时时间段内做预防工作.【点睛】本题考查了勾股定理的运用,此题的难点在于第二问,需要正确理解题意,根据各自的速度计算时间,然后进行正确分析.28.如图,在中,过点A作,BE平分交AC于点E.(1)如图1,已知,,,求BD的长;(2)如图2,点F在线段BC上,连接EF、ED,若,,,求证:.【答案】(1)BD=5;(2)证明见解析【解析】(1)利用勾股定理运算即可;(2)利用角平分线的性质可得到,证出得到,,再通过角的等量代换证出,取的中点,连接,即可证出,从而得到结论.解:(1)∵∴∴∴(2)∵平分∴又∵,∴∴,∴∴∵∴取的中点,连接,如图2所示:则∴∵∴∴∴∴∴【点睛】本题主要考查了勾股定理,全等三角形的性质及判定等,合理做出辅助线灵活证明全等是解题的关键.29.(1)探索:请你利用图(1)验证勾股定理.(2)应用:如图(2),已知在中,,,分别以AC,BC为直径作半圆,半圆的面积分别记为,,则______.(请直接写出结果).(3)拓展:如图(3),MN表示一条铁路,A,B是两个城市,它们到铁路所在直线MN的垂直距离分别为千米,千米,且千米.现要在CD之间建一个中转站O,求O应建在离C点多少千米处,才能使它到A,B两个城市的距离相等.【答案】(1)见解析;(2);(3)O应建在离C点52.5千米处.【解析】(1)此直角梯形的面积由三部分组成,利用直角梯形的面积等于三个直角三角形的面积之和列出方程并整理即可;(2)根据半圆面积公式以及勾股定理,知S1+S2等于以斜边为直径的半圆面积;(3)设CO=xkm,则OD=(80-x)km,在Rt△AOC和Rt△BOD中,利用勾股定理分别表示出AO和BO的长,根据AO=BO列出方程,求解即可.(1)由面积相等可得,∴,∴,∴.(2),,∴.故答案为:(3)设千米,则千米.∵到A,B两个城市的距离相等,∴,即,由勾股定理,得,解得.即O应建在离C点52.5千米处.【点睛】本题考查了勾股定理的证明和勾股定理的应用,运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解是解题的关键.30.阅读下面的材料,并解决问题:数学家与勾股数组定义:勾股数是指可以构成一个直角三角形三边的一组正整数.一般地,若三角形三边的长都是正整数,且满足,那么数组称为一组勾股数.每一组勾股数都能确定一个边长都为正整数的直角三角形,研究勾股数对研究直角三角形具有重要意义,历史上很多数学家都对勾股数进行了研究:1.我国西周数学家商高在公元前年发现了“勾三,股四,弦五”,数组是世界上发现最早的一组勾股数.2.毕达哥拉斯学派提出勾股数公式为,其中为正整数.(说明:根据这个公式不能写出所有勾股数)3.柏拉图提出的勾股数公式为,其中为大于的整数.(说明:根据这个公式不能写出所有勾股数)4.世界上第一次给出勾股数通解公式的是《九章算术》,其勾股数公式为,其中是互质的奇数.(注:的相同倍数组成的一组数也是勾股数) 5.国外最先给出勾股数通解公式的是希腊的丢番图,其公式为,其中是互质且为一奇一偶的任意正整数.问题解答:通过观察柏拉图提出的勾股数公式特点,可知_;直接写出一组勾股数,且这组数不能由柏拉图提出的勾股数公式得出;通过阅读可知,一组勾股数中至少有一个数是偶数,请写出一组勾股数,使其中含有数字.【答案】(1)-2;(2)答案不唯一,例如;(3)答案不唯一,例如【解析】(1)直接令b-c即可求解;(2)根据题意即可写出勾股数;(3)根据题意即可写出勾股数.解:(1)∵∴b-c=故答案为:-2.答案不唯一,例如答案不唯一,例如.【点睛】本题考查的是勾股定理的逆定理,掌握完全平方公式、满足a2+b2=c2的三个正整数,称为勾股数是解题的关键.31.问题发现:(1)如图1,已知C为线段AB上一点,分别以线段AC、BC为直角边作等腰直角三角形,∠ACD=90°,CA=CD,CB=CE,连接AE、BD,则AE、BD之间的数量关系为___;位置关系为.拓展探究:(2)如图2,把Rt△ACD绕点C逆时针旋转,线段AE、BD交于点F,则AE与BD 之间的关系是否仍然成立请说明理由.拓展延伸:(3)如图3,已知AC=CD,BC=CE,∠ACD=∠BCE=90°,连接AB、AE、AD,把线段AB 绕点A旋转,若AB=5,AC=3,请直接写出旋转过程中线段AE的最大值.【答案】(1),;(2)成立,理由见解析;(3).【解析】(1)问题发现,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠BDC=∠EAC,可证AE⊥BD;(2)拓展探究,由“SAS”可证△ACE≌△DCB,可得AE=BD,∠AEC=∠DBC,可证AE⊥BD;(3)解决问题,由由“SAS”可证△ACE≌△DCB,可得AE=BD,由三角形的三边关系可求解.解:(1)问题发现如图①,延长BD交AE于H,∵CB=CE,∠ACD=∠BCD=90°,CA=CD,∴△ACE≌△DCB(SAS),∴AE=BD,∠BDC=∠EAC,∵∠CBD+∠CDB=90°,∴∠CBD+∠EAC=90°,∴∠AHB=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD;拓展探究:(2)成立.理由:如图2,设与BD相交于点G.∵,∴.又∵,,∴,∴,.∵,,∴,∴,∴.拓展延伸:(3)AE的最大值为.如图3,连接BD.∵,∴,又∵,,∴,∴,∵,,∴,,∴,当点在线段DA的延长线时等号成立,故AE的最大值为.【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,勾股定理,三角形的三边关系,证明△ACE≌△DCB是本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师版八年级数学上册1.3勾股定理的应用能力提升卷一、选择题(共10小题,3*10=30)1.如图,小红想用一条彩带缠绕一个圆柱,正好从A点绕四圈到正上方B点,已知圆柱底面周长是12 cm,高是20 cm,那么所需彩带最短是()A.13 cm B.24 cm C.25 cm D.52 cm2.如图,长方体的长为9,宽为4,高为12,点B与点C的距离为1,一只蚂蚁如果要沿长方体的侧面从点A爬行到点B,需要爬行的最短距离是()A.12B.13 C.15 D.173.一有盖长方体笔盒长、宽、高分别为12 cm,6 cm,4 cm,则它能容纳的最长的笔的长度为( ) A.12 cm B.13 cm C.14 cm D.15 cm4.如图,一个三级台阶,它的每一级的长、宽和高分别是50 cm,30 cm,10 cm,A和B是这个台阶的两个相对的点,A点处有一只壁虎,它想到B点去吃可口的食物,请你想一想,这只壁虎从A 点出发,沿着台阶爬到B点,至少需爬()A.13 cm B.40 cmC.130 cm D.169 cm5.我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,条边长分别为5里、12里、13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米6. 国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口点A处出发先往东走8 km,又往北走2 km,遇到障碍后又往西走3 km,再折向北走到6 km处往东拐,仅走了1 km,就找到了宝藏,则门口点A到藏宝点的直线距离是( )A.20 km B.14 km C.11 km D.10 km7.如图,在长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE折叠,点A恰好落在BC边上的点F处,若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.108.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼铒,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内到G处吃鱼铒,则小虫爬行的最短路线长为( )A.40 cm B.60 cm C.80 cm D.100 cm9.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点,则在圆锥的侧面上从B点到P点的最短路线的长为( )A. 5 B.2 5 C.3 5 D.4 5侧面缠绕一圈达到点B,那么所用细线最短需要( )A.11cm B.234cm C.(8+210)cm D.(7+35)cm二.填空题(共8小题,3*8=24)11.如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为________cm(杯壁厚度不计).12. 如图,有一个长、宽各为2 m,高为3 m且封闭的长方体纸盒,一只昆虫要从顶点A爬到顶点B,那么这只昆虫爬行的最短路程为________.13.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1 m,当他把绳子下端拉开5 m 后,发现下端刚好接触地面,则旗杆高度为_______m.14.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B离地面0.6米,当秋千荡到AB1的位置时,下端B1距静止位置的水平距离EB1等于2.4米,距地面1.4米,则秋千AB的长是________.15.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m 后,发现下端刚好接触地面,则旗杆高度为________米.16.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为________。

17.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动________.18.如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是________.三.解答题(共7小题,46分)19.(6分) 甲、乙两位探险者到沙漠进行探险.某日早晨8:00甲先出发,他以6 km/h的速度向正东行走.1 h后乙出发,他以5 km/h的速度向正北行走.上午10:00,甲、乙二人相距多远?20.(6分) 如图,在△ABC中,AC=BC,∠ACB=90°,点D在BC上,BD=3,DC=1,点P是AB上的动点,求PC+PD的最小值。

21.(6分) 印度数学家什迦逻(1141年~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.22.(6分)如图,长方体的高为3 cm,底面是正方形,边长为2 cm.现有绳子从D出发,沿长方体表面到达B′点,问:绳子最短是多少厘米?23.(6分)如图,牧童在A处放牛,其家在B处,A,B到河岸的距离分别为AC=400 m,BD=200 m,CD=800 m,牧童从A处把牛牵到河边饮水后回家,问在何处饮水能使所走的总路程最短?最短路程是多少?24.(8分)如图,把一块等腰直角三角形零件(△ABC,其中∠ACB=90°)放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠ADE=∠BED=90°,测得AD=6 cm,BE=8 cm,求该三角形零件的面积.25.(8分) 如图,有一个长方体纸盒,小明所在的数学合作小组研究长方体的底面A点到长方体与A 相对的B点的表面最短距离.若长方体的长为12 cm,宽为9 cm,高为5 cm,请你帮助该小组求出A点到B点的表面最短距离(结果精确到1 cm.参考数据:21.592≈466,18.442≈340,19.242≈370).参考答案1-5 DBCCA 6-10DCDCB11. 2012. 5 m13. 1214. 4米15. 1216. 2.2米17. 8m18. 6119. 解:设甲、乙二人相距x km.由题意知,甲、乙所走的方向构成了一个直角,甲走的路程是6×2=12(km),乙走的路程是5×1=5(km),根据勾股定理,得x2=52+122=169,所以x=13.答:甲、乙二人相距13 km.20. 解:如图,过点C作CO⊥AB于点O,延长CO到C′,使OC=OC,连接DC′,交AB于点P′,连接CP′,此时DP′+CP′=DP′+P′C′=DC′的值即为PC+PD的最小值.连接BC′,由对称性可知∠C′BP′=∠CBP′=45°,所以∠CBC′=90°.因为AB⊥CC′,OC=OC′,所以BC′=BC=3+1=4,根据勾股定理可得DC′=5.21. 解:如图,由题意知,AC=2,AD=0.5,在Rt△ACD中,由勾股定理,得CD2=AC2-AD2=22-0.52=3.75.设湖水深BD为x尺,则BC为(x+0.5)尺.在Rt△BCD中,由勾股定理,得BD2+CD2=BC2,即x2+3.75=(x+0.5)2,答:湖水深3.5尺22. 解:如图①,连接DB′,在Rt △DD′B′中,由勾股定理得DB′2=32+42=25.如图②,连接DB′,在Rt △DC′B′中,由勾股定理得DB′2=22+52=29.因为29>25,所以第一种情况绳子最短.此时B′D =5 cm. 故绳子最短是5 cm.23. 解:如图,作点A 关于直线CD 的对称点A ′,连接A ′B 交CD 于点M ,连接AM ,则AM =A ′M ,所以在点M 处饮水所走的总路程最短,最短路程为A ′B 的长.过点A ′作A ′H ⊥BD 交BD 的延长线于点H.在Rt △A ′HB 中,A ′H =CD =800 m ,BH =BD +DH =BD +AC =200+400=600(m),由勾股定理,得A ′B 2=A ′H 2+BH 2=8002+6002=1 000 000,故A ′B =1 000 m ,所以最短路程为1 000 m.24. 解:∵△ABC 是等腰直角三角形,∴AC =BC ,∠ACB =90°,∴∠ACD +∠BCE =90°,∵∠ADC =90°,∴∠ACD +∠DAC =90°,∴∠DAC =∠BCE ,由AAS 可证△ADC ≌△CEB ,∴DC =BE =8 cm ,∵AC 2=AD 2+DC 2,∴BC =AC =10 cm ,∴该零件的面积为12×10×10=50 (cm 2) 25. 解:将四边形ACDF 与四边形FDBG 在同一平面上展开,如图①所示,连接AB ,在Rt △ACB 中,将四边形ACDF与四边形DCEB在同一平面上展开,如图②所示,连接AB,在Rt△AEB中,根据勾股定理,得AB2=BE2+AE2=52+(12+9)2=466;将四边形AHGF与四边形FDBG在同一平面上展开,如图③所示,连接AB,在Rt△ADB中,根据勾股定理,得AB2=AD2+BD2=(5+12)2+92=370.因为340<370<466,所以A点到B点的表面最短距离是如图①所示的情况.此时AB≈18 cm.故A 点到B点的表面最短距离约为18 cm.。

相关文档
最新文档