北京西城学习探究诊断高中数学选修2-全本练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京西城区学习探究诊断高中数学选修
2- 1
第一章 常用逻辑用语
测试一 命题与量词
Ⅰ 学习目标
会判断命题的正误,理解全称量词与存在量词的意义. Ⅱ 基础性训练
一、选择题
1.下列语句中不是命题的是( )
(A )团结就是力量 (B )失败乃成功之母
(C )世上无难事 (D )向雷锋同志学习
2.下列语句能作为命题的是( )
(A )3>5 (B )星星和月亮 (C )高一年级的学生 (D )x 2+|y |=0
3.下列命题是真命题的是( )
(A )y =sin |x |是周期函数 (B )2≤3
(C )空集是集合A 的真子集 (D )y =tan x 在定义域上是增函数
4.下列命题中真命题的个数是( )
①∃x ∈R ,x ≤0;
②至少有一个整数,它既不是合数,也不是质数;
③∃x ∈{x |x 是无理数},x 2是有理数.
(A )0 (B )1 (C )2 (D )3
5.下列语句中表示真命题的是( )
(A )x >12
(B )函数21x y =在(0,+∞)上是减函数 (C )方程x 2-3x +3=0没有实数根 (D )函数2
22++=x x x y 是奇函数 6.已知直线a ,b 和平面α ,下列推导错误的是( )
(A )b a a b a ⊥⇒⊂∀⊥⎪⎭⎪⎬⎫α
(B )b a b a ////⇒⎭
⎬⎫⊂∃αα (C )αα⊂⇒⎭⎬⎫⊥⊥∃a b b a 或α//a (D )
b a b a ////⇒⎭⎬⎫⊂αα 7.下列命题是假命题的是( )
(A )对于非零向量a ,b ,若a ·b =0,则a ⊥b
(B )若|a |=|b |,则a =b
(C )若ab >0,a >b ,则b
a 11< (D )a 2+
b 2≥2ab
8.若命题“ax 2-2ax +3>0对x ∈R 恒成立”是真命题,则实数a 的取值范围是( )
(A )0≤a <3 (B )0≤a ≤3 (C )0<a <3 (D )0≤a <3
二、填空题
9.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对于∀x ∈R 均成立,则实数a 的取值范围是______.
10.设A 、B 为两个集合,下列四个命题:
①A ⊄B ⇔对任意x ∈A ,有x ∉B
②A ⊆/B ⇔A ∩B =∅ ③A ⊆/B ⇔A ⊇B ④A ⊆/B ⇔存在x ∈A ,使得x ∉B
其中真命题的序号是______.(把符合要求的命题序号都填上)
三、解答题
11.判断下列语句哪些是命题?如果是命题,是真命题还是假命题?
(1)末位数字是0的整数能被5整除;
(2)平行四边形的对角线相等且互相平分;
(3)两直线平行则斜率相等;
(4)△ABC 中,若sin A =sin B ,则A =B ;
(5)余弦函数是周期函数吗?
12.用符号“∀”、“ ∃”表达下列命题:
(1)实数的平方大于等于0;
(2)存在一个实数x ,使x 3>x 2;
(3)存在一对实数对,使2x +3y +3<0成立.
13.判断下列命题是全称命题还是存在性命题,并判断其真假:
(1)对数函数都是单调函数;
(2)至少有一个整数,它既能被2整除又能被5整除;
(3)∃x ∈{x |x ∈Z },log 2x >0.
参考答案
第一章 常用逻辑用语
测试一 命题与量词
1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.A
9.2
321<<-a ; 10.④ 11.(1)是命题,是真命题 (2)是命题,是假命题 (3)是命题,是假命题
(4)是命题,是真命题 (5)不是命题
12.(1)∀x ∈R ,x 2≥0.
(2)∃x ∈R ,使x 3>x 2.
(3)∃(x ,y ),x 、y ∈R ,使2x +3y +3<0成立.
13.(1)全称命题,真命题. (2)存在性命题,真命题. (3)存在性命题,真命题.
测试二 基本逻逻辑联结词
Ⅰ 学习目标
1.了解逻辑联结词“或”、“且”、“非”的含义.
2.能正确地对含有一个量词的命题进行否定.
Ⅱ 基础性训练
一、选择题
1.命题“菱形的对角线互相垂直平分”是( )
(A )简单命题 (B )“非p ”形式的命题
(C )“p 且q ”形式的命题 (D )“p 或q ”形式的命题
2.下列结论中正确的是( )
(A )p 是真命题时,“p 且q ”一定是真命题
(B )p 是假命题时,“p 且q ”不一定是假命题
(C )“p 且q ”是假命题时,p 一定是假命题
(D )“p 且q ”是真命题时,p 一定是真命题
3.如果“p 或q ”与“非p ”都是真命题,那么( )
(A )q 一定是真命题 (B )q 不一定是真命题
(C )p 不一定是假命题 (D )p 与q 的真假相同
4.“xy ≠0”是指( )
(A )x ≠0且y ≠0 (B )x ≠0或y ≠0
(C )x ,y 至少一个不为零 (D )x ,y 不都为零
5.命题5:p 的值不超过2,命题2:q 是无理数,则( )
(A )命题“p 或q ”是假命题
(B )命题“p 且q ”是假命题 (C )命题“非p ”是假命题
(D )命题“非q ”是真命题 6.下列命题的否定是真命题的是( )
(A )∀x ∈R ,x 2-2x +2≥0
(B )所有的菱形都是平行四边形 (C )∃x ∈R ,|x -1|<0
(D )∃x ∈R ,使得x 3+64=0 7.下列命题的否定是真命题的是( )
(A )∃x ∈R ,x 2=1
(B )∃x ∈R ,使得2x +1≠0成立 (C )∀x ∈R ,x 2-2x +1>0 (D )∃x ∈R ,x 是x 3-2x +1=0的根
8.已知U =R ,A ⊆U ,B ⊆U ,若命题A p ∈2:∪B ,则命题∈“⌝p ”是( )
(A )2∉A
(B )2∈U B (C )2∉A ∩B (D )2∈(U A )∩(U B )
9.由下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题中,“p 或q ”为真、“p 且q ”为假、“非p ”为真的是( )
(A )p :11不是质数,q :6是18和15的公约数
(B )p :0∈N ,q :{0}{-1,0}