高一数学集合的概念教案设计

合集下载

高中数学 必修一 集合的概念 教案

高中数学 必修一 集合的概念   教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。

2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。

【教学重难点】教学重点:集合的含义与表示方法。

教学难点:表示法的恰当选择。

【教学过程】一、创设情景,揭示课题。

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。

举例和互相交流。

与此同时,教师对学生的活动给予评价。

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

二、研探新知。

1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程2560-+=的所有实数根;x xx->的所有解;(7)不等式30(8)国兴中学2004年9月入学的高一学生的全体。

2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。

一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集)。

a b c d…表4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,示。

三、质疑答辩,排难解惑,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。

使学生明确集合元素的三大特性,即:确定性。

高一数学第一章《集合》教案

高一数学第一章《集合》教案

高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。

那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。

高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。

(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。

(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。

教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。

(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。

教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。

【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。

[设计意图]探讨并形成集合的含义。

【问题3】请同学们举出认为是集合的例子。

[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。

【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。

理解集合与元素的关系。

【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。

高一数学集合教学设计

高一数学集合教学设计

高一数学集合教学设计一、教学任务及对象1、教学任务本教学设计针对的是高一数学中的集合部分。

集合是数学的基础概念之一,它涉及到数学的各个分支,是学生建立数学逻辑思维的重要环节。

教学任务主要包括:集合的定义与表示方法,集合的基本运算,集合论的基本性质,以及集合在数学中的应用。

此外,通过集合的学习,培养学生抽象思维能力,理解数学概念的本质,并能够运用集合知识解决实际问题。

2、教学对象教学对象为高中一年级学生,他们经过初中的数学学习,已经具备了一定的数学基础和逻辑思维能力。

然而,集合概念作为高中数学的起点,对学生而言是全新的,需要从零开始构建知识体系。

此外,由于集合思想的抽象性,学生在理解和应用上可能存在一定难度,因此需要教师运用适当的教学策略,帮助学生顺利过渡到高中数学的学习。

二、教学目标1、知识与技能(1)理解集合的概念,掌握集合的表示方法,包括列举法、描述法等;(2)掌握集合的基本运算,如并集、交集、差集、补集等,并能够灵活运用;(3)理解集合论的基本性质,如集合的确定性、互异性、无序性等;(4)能够运用集合知识解决实际问题,提高数学应用能力;(5)通过集合的学习,培养学生的抽象思维能力和逻辑推理能力。

2、过程与方法(1)通过引导学生观察、分析现实生活中的集合现象,培养学生从具体实例中抽象出数学概念的能力;(2)采用问题驱动的教学方法,激发学生的求知欲和思考能力,引导学生主动探究集合的性质和运算规律;(3)运用分类讨论的思想方法,培养学生分析问题和解决问题的能力;(4)通过小组合作学习,培养学生的团队协作能力和交流表达能力;(5)利用多媒体教学手段,辅助学生理解抽象的集合概念,提高教学效果。

3、情感,态度与价值观(1)激发学生对数学学习的兴趣,培养他们积极、主动学习的态度;(2)培养学生勇于探索、善于思考的数学精神,使他们认识到数学学习的价值;(3)通过集合的学习,引导学生体会数学的严谨性和美感,提高学生的审美情趣;(4)培养学生面对困难时,保持坚持不懈、勇于克服的精神风貌;(5)引导学生将数学知识运用到实际生活中,认识到数学与现实生活的紧密联系,增强学生的社会责任感。

《高中数学集合》教案模板

《高中数学集合》教案模板

《高中数学集合》教案模板一、教学目标1.知识与技能:●理解集合的概念及其表示方法(列举法、描述法)。

●掌握集合的基本性质:确定性、无序性、互异性。

●能够运用集合的基本运算:并集、交集、补集。

2.过程与方法:●通过实例引入,让学生感受集合概念在现实生活中的应用。

●通过讨论与探索,培养学生的逻辑推理能力和抽象思维能力。

3.情感态度与价值观:●激发学生对数学学习的兴趣和好奇心。

●培养学生的团队合作精神和数学表达的自信心。

二、教学重点与难点1.教学重点:●集合的定义与表示方法。

●集合的基本运算。

2.教学难点:●对集合概念的理解及其在实际问题中的应用。

●集合运算的灵活运用。

三、教学准备•多媒体课件,包括集合的基本概念、表示方法、运算的演示。

•黑板及粉笔,用于板书重点概念和例题。

•练习题册或教学软件,用于学生课堂练习和巩固。

四、教学过程1.导入新课●通过生活中的实例(如班级学生的集合、水果种类的集合等)引出集合的概念。

●提问学生:“你们认为什么是集合?”引导学生初步思考。

2.讲授新课●讲解集合的定义和表示方法(列举法、描述法),并举例说明。

●介绍集合的基本性质,并通过实例让学生理解这些性质。

●讲解集合的基本运算(并集、交集、补集),通过图示和实例帮助学生理解运算过程。

3.互动探究●分组讨论:让学生分组讨论集合概念在实际生活中的应用,并分享讨论结果。

●教师引导:针对学生的讨论结果,教师进行点评和总结,并引导学生深入思考。

4.巩固练习●学生独立完成练习题册中的题目,教师巡视指导。

●针对学生练习中出现的问题,教师进行解答和讲解。

5.课堂小结●总结本节课的学习内容,强调集合概念和运算的重要性。

●布置课后作业,包括复习本节课知识点和完成相关练习题。

五、板书设计●集合的定义与表示方法•列举法•描述法●集合的基本性质•确定性•无序性•互异性●集合的基本运算•并集•交集•补集六、教学反思●在课后对本节课的教学效果进行反思,总结教学中的成功之处和不足。

高一数学教案(优秀6篇)

高一数学教案(优秀6篇)

高一数学教案(优秀6篇)第一节集合的含义与表示学时:1学时[学习引导]一、自主学习1.阅读课本.2.回答问题:⑴本节内容有哪些概念和知识点?⑵尝试说出相关概念的含义?3完成练习4小结二、方法指导1、要结合例子理解集合的概念,能说出常用的数集的名称和符号。

2、理解集合元素的特性,并会判断元素与集合的关系3、掌握集合的表示方法,并会正确运用它们表示一些简单集合。

4、在学习中要特别注意理解空集的意义和记法[思考引导]一、提问题1.集合中的元素有什么特点?2、集合的常用表示法有哪些?3、集合如何分类?4.元素与集合具有什么关系?如何用数学语言表述?5集合和是否相同?二、变题目1.下列各组对象不能构成集合的是()A.北京大学2023级新生B.26个英文字母C.著名的艺术家2.下列语句:①0与表示同一个集合;②由1,2,3组成的集合可表示为或;③方程的解集可表示为;④集合可以用列举法表示。

其中正确的是()A.①和④B.②和③C.②D.以上语句都不对[总结引导]1.集合中元素的三特性:2.集合、元素、及其相互关系的数学符号语言的表示和理解:3.空集的含义:[拓展引导]1.课外作业:习题11第题;2.若集合,求实数的值;3.若集合只有一个元素,则实数的值为;若为空集,则的取值范围是.1、知识与技能(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;(5)树立映射观点,正确理解三角函数是以实数为自变量的函数。

2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。

引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义。

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案 高一数学教案优秀13篇

高一数学集合教案高一数学教案优秀13篇高一数学集合教案篇一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。

集合的概念 高中数学教案

集合的概念 高中数学教案

集合的概念【教学目标】1.知识与技能:(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性、互异性、无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力。

2.过程与方法:(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

(2)让学生归纳整理本节所学知识。

3.情感、态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性。

【教学重难点】教学重点:集合的含义与表示方法。

教学难点:表示法的恰当选择。

【教学过程】一、创设情景,揭示课题。

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?引导学生回忆。

举例和互相交流。

与此同时,教师对学生的活动给予评价。

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容。

二、研探新知。

1.教师利用多媒体设备向学生投影出下面9个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的正方形;(4)海南省在2004年9月之前建成的所有立交桥;(5)到一个角的两边距离相等的所有的点;(6)方程的所有实数根;2560x x -+=(7)不等式的所有解;30x ->(8)国兴中学2004年9月入学的高一学生的全体。

2.教师组织学生分组讨论:这8个实例的共同特征是什么?3.每个小组选出—位同学发表本组的讨论结果,在此基础上,师生共同概括出8个实例的特征,并给出集合的含义。

一般地,我们把研究对象统称为元素(element ),把一些元素组成的总体叫做集合(set )(简称为集)。

4.教师指出:集合常用大写字母A ,B ,C ,D ,…表示,元素常用小写字母…,,,a b c d 表示。

三、质疑答辩,排难解惑,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。

集合的概念教案5篇

集合的概念教案5篇

集合的概念教案5篇集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。

集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。

把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。

从知识结构上来说是为了引入函数的定义。

因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:1.知识与技能:掌握集合的基本概念及表示方法。

高中数学集合的定义教案

高中数学集合的定义教案

高中数学集合的定义教案
教学重点:集合的定义、元素、子集、集合的表示法以及集合的运算。

教学难点:集合运算的理解及应用。

教学准备:教材、PPT、黑板、教案、讲义。

教学过程:
一、导入:通过举例介绍集合的概念及作用,引导学生思考集合在日常生活中的应用。

二、讲解:1. 集合的定义:集合是指将若干个确定的对象组合在一起成为一个整体的概念。

2. 集合的元素:集合中的每个对象称为元素,用小写字母表示。

3. 集合的表示法:集合可以用列举法或描述法表示,例如:A={1,2,3}或B={x|x是自
然数}。

4. 子集:若集合A的每个元素都属于集合B,则称A是B的子集,记作A⊆B。

5. 集合的运算:并集、交集、差集、补集等。

三、练习:让学生练习集合的基本运算,巩固所学知识。

四、应用:通过生活实例或问题,让学生运用集合的知识进行解题。

五、归纳总结:复习本节课的重点知识,强化学生对集合的理解。

六、作业:布置相应的习题,让学生巩固所学内容。

七、反馈:检查学生的作业完成情况,及时纠正错误。

教学反思:此教案主要围绕高中数学集合的定义展开,通过生动的例子和实际练习,帮助
学生更好地理解和运用集合的相关知识。

同时,教师需要灵活运用不同的教学方法,激发
学生学习的兴趣和积极性。

高一数学集合教案

高一数学集合教案

1.1.1集合的概念【教学目标】1. 初步理解集合的概念;理解集合中元素的性质.2. 初步理解“属于”关系的意义;知道常用数集的概念及其记法.【教学重点】集合的基本概念,元素与集合的关系.【教学难点】正确理解集合的概念.【教学过程】环节 教学内容 师生互动 设计意图导 入 师生共同欣赏图片“中国所有的大熊猫”、“我们班的所有同学”. 师:“物以类聚”;“人以群分”;这些都给我们以集合的印象. .新 课 新 课引例:(1) 某学校数控班学生的全体;(2) 正数的全体;(3) 平行四边形的全体;(4) 数轴上所有点的坐标的全体.1. 集合的概念.(1) 一般地,把一些能够确定的对象看成一个整体,我们就说,这个整体是由这些对象的全体构成的集合(简称为集).(2) 构成集合的每个对象都叫做集合的元素.(3) 集合与元素的表示方法:一个集合,通常用大写英文字母 A,B,C,…表示,它的元素通常用小写英文字母 a,b,c,…表示.2. 元素与集合的关系.(1) 如果 a 是集合 A 的元素,就说a属于A,记作a A,读作“a属于A”.(2)如果a不是集合A的元素,就说a不属于A,记作a A.读作“a不属于A”.3. 集合中元素的特性.(1) 确定性:作为集合的元素,必须是能够确定的.这就是说,不能确定的对象,就不能构成集合.(2) 互异性:对于一个给定的集合,集合中的元素是互异的.这就是说,集合中的任何两个元素都是不同的对象.4. 集合的分类.(1) 有限集:含有有限个元素的集合叫做有限集.(2) 无限集:含有无限个元素的集合叫做无限集.5. 常用数集及其记法.(1) 自然数集:非负整数全体构成的集合,记作 N;或 N*;(2) 正整数集:非负整数集内排除0的集合,记作 N+(3) 整数集:整数全体构成的集合,记作 Z;(4) 有理数集:有理数全体构成的集合,记作 Q;(5) 实数集:实数全体构成的集合,记作 R.注意:(1)自然数集合与非负整数集合是相同的集合,也就是说自然数集包含0;(2)自然数集内排除0的集,表示成 或 ,其他数集{如整数集Z、有理数集Q、实数集R}内排除0的集,也可类似表示 , , ;(3)原教科书或根据原教科书编写的教辅用书中出现的符号如 , , …不再适用. 例1 判断下列语句能否构成一个集合,并说明理由.(1) 小于 10 的自然数的全体;(2) 某校高一(2)班所有性格开朗的男生;(3) 英文的 26 个大写字母;(4) 非常接近 1 的实数.练习1 判断下列语句是否正确:(1) 由2,2,3,3构成一个集合,此集合共有4个元素;(2) 所有三角形构成的集合是无限集;(3) 周长为20 cm 的三角形构成的集合是有限集;(4) 如果a Q,b Q,则 a+b Q.2.选择题⑴以下四种说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可例2 用符号“ ”或“ ”填空:(1) 1 N,0 N,-4 N,0.3 N;(2) 1 Z,0 Z,-4 Z,0.3 Z;(3) 1 Q,0 Q,-4 Q,0.3 Q;(4) 1 R,0 R,-4 R,0.3 R.练习2 用符号“ ”或“ ”填空:(1) -3 N;(2) 3.14 Q;(3) 13 Z ; (4) -12 R ;(5) 2 R ; (6) 0 Z .1.1.2 集合的表示方法【教学目标】1. 掌握集合的表示方法;能够按照指定的方法表示一些集合.. 【教学重点】集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合. 【教学难点】集合特征性质的概念,以及运用描述法表示集合. 【教学过程】 环节 教学内容师生互动设计意图导 入1. 集合、元素、有限集和无限集的概念是什么?2. 用符号“ ”与“ ”填空白:(1) 0 N ; (2) -2 Q ; (3)-2 R .这节课我们一起研究如何将集合表示出来.新 课 新 课 新 课1. 列举法.当集合元素不多时,我们常常把集合的元素列举出来,写在大括号“{}”内表示这个集合,这种表示集合的方法叫列举法.例如,由1,2,3,4,5,6这6个数组成的集合,可表示为:{1,2,3,4,5,6}.又如,中国古代四大发明构成的集合,可以表示为: {指南针,造纸术,活字印刷术,火药}.有些集合元素较多,在不发生误解的情况下,可列几个元素为代表,其他元素用省略号表示. 如:小于100的自然数的全体构成的集合,可表示为 {0,1,2,3,…,99}. 例1 用列举法表示下列集合:(1) 所有大于3且小于10的奇数构成的集合; (2) 方程 x 2-5 x +6=0的解集. 解 (1) {5,7,9};(2) {2,3}.练习1 用列举法表示下列集合:(1) 大于3小于9的自然数全体; (2) 绝对值等于1的实数全体; (3) 一年中不满31天的月份全体;(4) 大于3.5且小于12.8的整数的全体.2. 性质描述法.给定 x 的取值集合 I,如果属于集合 A 的任意元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质p(x),则性质 p(x)叫做集合A的一个特征性质,于是集合 A 可以用它的特征性质描述为 {x I |p(x)} ,它表示集合 A是由集合 I 中具有性质 p(x)的所有元素构成的.这种表示集合的方法,叫做性质描述法.使用特征性质描述法时要注意:(1) 特征性质明确;(2) 若元素范围为 R,“x R”可以省略不写.例2 用性质描述法表示下列集合:(1) 大于3的实数的全体构成的集合;(2) 平行四边形的全体构成的集合;(3) 平面 内到两定点 A,B 距离相等的点的全体构成的集合.解 (1){ x |x >3};(2){ x |x 是两组对边分别平行的四边形};(3) l={ P ,|PA|=|PB|,A,B 为 内两定点}.练习2 用性质描述法表示下列集合:(1) 目前你所在班级所有同学构成的集合;(2) 正奇数的全体构成的集合;(3) 绝对值等于3的实数的全体构成的集合;(4) 不等式4 x-5<3的解构成的集合;(5)所有的正方形构成的集合.2、用描述法表示下列集合①{1,4,7,10,13}②{-2,-4,-6,-8,-10}3、用列举法表示下列集合①{x∈N|x是15的约数}②{(x,y)|x∈{1,2},y∈{1,2}}?③④⑤ ?⑥①注意区别 a 与 {a}.a 是集合{a}的一个元素,而{a}表示一个集合.例如,某个代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的;②用列举法表示集合时,不必考虑元素的前后顺序.集合{1,2}与{2,1}表示同一个集合吗?注:(1)在不致混淆的情况下,可以省去竖线及左边部分。

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇

高一必修一数学集合教案3篇高一必修一数学集合教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。

本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。

加强函数教学可帮助学好其他的内容。

而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。

而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。

函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。

为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

高一必修一集合教案完整版(精心整理)

高一必修一集合教案完整版(精心整理)

必修一第一章预习教案(第1次)1.1集合 1.1.1 集合的含义及其表示教学目标:(1)初步理解集合的概念,知道常用数集及其记法;(2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义;教学重点:集合的含义与表示方法;教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合。

教学过程:一、问题引入:我家有爸爸、妈妈和我; 我来泉州市第九中学; 五中高一(1)班; 我国的直辖市。

分析、归纳上述各个实例的共同特征,归纳出集合的含义。

二、建构数学:1.集合的概念:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合(set )。

集合常用大写的拉丁字母来表示,如集合A 、集合B ……集合中的每一个对象称为该集合的元素(element ),简称元。

集合的元素常用小写的拉丁字母来表示。

如a 、b 、c 、p 、q ……指出下列对象是否构成集合,如果是,指出该集合的元素。

(1)我国的直辖市; (2)五中高一(1)班全体学生;(3)较大的数 (4)young 中的字母; (5)大于100的数; (6)小于0的正数。

2.关于集合的元素的特征(1)确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写。

3.集合元素与集合的关系用“属于”和“不属于”表示; (1)如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)如果a 不是集合A 的元素,就说a 不属于A ,记作a ∉A (“∈”的开口方向,不能把a ∈A 颠倒过来写)4.有限集、无限集和空集的概念:5.常用数集的记法:(1)非负整数集(自然数集):全体非负整数的集合记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合Q ,{}整数与分数=Q(5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0 (2)非负整数集内排除0的集N *或N +。

高中数学集合教案

高中数学集合教案

高中数学集合教案【篇一:高一数学集合教学案(4课时)】高一数学《集合》教学案一、教材分析(一)学习目标Ⅰ、知识与技能:1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

Ⅱ、过程与方法:通过讲练结合让学生在实践中突破重点和难点,并对易错、易混点重新认定,达到熟练应用的地板。

情感态度与价值观:让学生在重新审视的基础上重新定位对知识的把握,在充分发挥学习的主动性地基础上提高自己在学习中的信心和进一步学习数学的兴趣。

(二)重点、难点重点:理解集合之间包含与相等的含义,能识别给定集合的子集;理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

难点:能使用venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

二、教学计划:四课时三、教学设计第一课时1.1.1《集合的概念》一、课题引入阅读教材中的章头引言二、概念形成与深化1、集合的概念(1)对象:阅读课本p3(3)元素:集合中每个叫做这个集合的元素,元素通常用表示 2、元素与集合的关系(1)属于:记作:a___a;(2)不属于:记作:a___a;(1) 参加2008北京奥运会的中国代表团的所有成员构成的集合; 其中元素为(2) 三角形的全体构成的集合; 其中元素为2(3) 方程方程x=1的解的全体构成的集合; 其中元素为(4) 不等式x+12x+2的解的全体构成的集合. 其中元素为你能指出各个集合的元素吗?各个集合的元素与集合之间是什么关系?3、集合中元素的性质”年轻人”、“较小的有理数”能否分别构成一个集合,为什么? 集合中元素的性质(1);(2);(3)_____________.(1) 节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团有309名成员;(2) 平面上与一个定点o的距离等于定长r的点的全体;(3) 方程x+1=x+2的解的全体.4、空集: 集合,记作 .5、集合分类(1)含有个元素的集合叫做有限集(2)含有个元素的集合叫做无限集6、常用数集及其表示方法(1)自然数集:的集合.记作;(2)正整数集:的集合.记作;(3)整数集:的集合.记作;(4)有理数集:的集合.记作;(5)实数集:的集合.记作。

集合的概念教学设计-高一上学期数学人教A版

集合的概念教学设计-高一上学期数学人教A版

《普通高中课程标准实验教科书数学必修第一册(A版)》第一章集合与常用逻辑用语教学设计授课人:XXXXXX年X月X日教材:人教A版高中数学必修第一册课题:1.1 集合的概念一.教学内容解析本节课选自《普通高中课程标准实验教科书数学必修第一册(A版)》的内容.一种语言来学习,作为一种数学简单符号来探究.通过本节课的学习,是阶段性的要求,学生将领悟集合的抽象性及其具体性,学会使用最基本的集合语言去表示有关的数学对象,逐渐发展运用数学语言进行交流的能力.集合相关知识的学习对于接下来函数的学习至关重要,高中函数的概念将建立在集合间关系的基础上的.集合论是中学数学的理论基础,用集合语言梳理、表达学过的相应数学内容是学习集合及其运算的基本任务,也是对其蕴含的基本思想和方法的挖掘,涉及现实情境或数学情境的数学抽象与集合语言表达,学生经历从集合的实例中抽象出集合共同特征的过程,感知集合的含义,培养学生的数学核心素养.二.教学目标设置(1)知识目标:学生能辨析集合的性质,能理解元素与集合的属于关系,会选择恰当方法表示集合;(2)能力目标:培养学生的判断、抽象概括能力;(3)情感目标:通过感知集合来训练学生的思维,发展学生的数学抽象等核心素养,培养学生整合的思维品质.三.学生学情分析本节内容属于高中数学的“预备知识”,定位是帮助学生完成初高中数学学习的过渡,在初中学生基础的集合知识较为零散.在本节课中,学生首次系统的学习描述数学内容的的语言和工具.通过学习,学生能够在现实情境或数学情境中,概括出数学对象的一般特征,并用集合语言予以表达;初步学会用三种语言(自然语言、符号语言和集合语言)表达数学研究对象,并进行交流.因此,在本节教学中特别注重通过抽象的数学符号语言的学习,提升学生表达抽象的层次,从而做好初高中数学学习的有效衔接.四.教学策略分析本节课的难点是掌握描述法表示集合,突破策略主要是:x-≤,为之后的描(1) 以问题探究为导向,在探究列举法时引入不等式37述法铺垫,引导学生自主思考并适应符号表达;(2) 通过探究用自然语言、列举法和描述法分别表示集合时的各自特点和适用对象,让学生在对比中感受描述法的重要性,引起学生重视;(3) 通过例题让学生们理解集合的本质特点,以此加深学生对描述法的理解,并能结合自己的理解去灵活运用所学知识.在本节课的教学中,主要以问题引领过程,通过教师引导、学生探究、师生交流,让学生适应集合语言,能理解教学的重难点,发展学生的抽象概括能力.五.重点与难点重点:元素与集合的“属于”关系,用符号语言刻画集合;难点:用描述法表示集合.六.教学方法与教学手段本节课采用“递进式”的教学方法使知识点自然呈现、层层深入,并利用多媒体教学平台,从具体到抽象,从感性到理性,由浅入深.从学生熟悉常见的例子入手,逐步呈现集合的概念、集合的表示方法,产生初步认识.采用教师引导,学生自主探索、观察、归纳的教学方式.利用多媒体教学设备辅助教学,充分调动学生探究数学奥秘的积极性.七.教学过程1.创设情境,引入课题【情境导入】我们知道,方程x2=2在有理数范围内无解,但在实数范围内有解.在平面内,到定点的距离等于定长的点的集合是圆,而在空间中,到定点的距离等于定长的点的集合是球面,因此,明确研究对象、确定研究范围是研究数学问题的基础.集合论是德国数学家康托在19世纪末创立的,集合语言是现代数学的基本语言.使用集合语言,可以简洁、准确地表达数学的一些内容.我们将集合作为一种语言来学习,将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.集合语言是一种抽象的数学语言,学习集合语言最好的方法就是使用,非洲大草原上生存着几千种动物,它们常常面临着生与死的考验,为了生存,它们过着“群居”的生活,这种“物以类聚”就产生某种动物集合.让我们一起走进“集合”世界,探索集合的奥秘.[写板书: 1.1 集合的概念]2.引导探求,形成知识【探究1】阅读教科书第2页的6个例子,每个问题都由若干个对象组成,每组对象的全体都能组成集合吗?我们把研究的对象统称为元素,例子中的元素分别是什么?师生活动: 学生独立思考、讨论交流.追问: 例子中研究的对象分别是什么,构成的集合是什么.预设的答案:(1)1—10之间的每个偶数作为元素,这些元素的全体就是一个集合.(2)立德中学今年入学的每位高一学生作为元素,这些元素的全体也是一个集合.(3)每一个正方形作为元素,所有的正方形构成一个集合.(4)到直线l的距离等于定长d的点作为元素,满足条件的点全体构成的一个集合.(5)方程x2−3x+2=0的根作为元素,这些元素构成了一个集合.(6)地球上的四大洋作为元素,这些大洋构成了一个集合.[设计意图]通过初中所学及实例,让学生感知、了解、抽象出元素与集合的含义,提高学生用数学抽象的思维方式思考并解决问题的能力.【探究2】判断下列说法是否正确:(1) 所有好看的花可以构成一个集合.(2) 由1,3,0,5,|−3|这些数组成的集合中有5个元素.(3) 高一(3)班的全体同学组成一个集合,调整座位后这个集合发了改变.师生活动:学生独立观察,充分思考,交流讨论.追问:(1)你从哪个角度分析一些研究对象能否构成集合?(从集合中的元素是否确定)(2)集合中的元素能否相同,可以重复吗?(不能重复,如问题(2)中|−3|=3,所以集合只有4个元素1,3,0,5,集合中的元素是互异的)(3)(3) 高一(3)班的全体同学调整座位后这个班集体变了吗?(班集体没有变,集合没有变化,集合中的元素是没有顺序的)(4)(4) 通过以上的学习你能给出集合中元素的特性吗?请你再举一些相应的例子,(确定性、互异性、无序性)(5)(5) 如何判断两个集合相等?(元素是否完全一样,两个集合中元素是一样的,则这两个集合相等)(6)[设计意图]通过具体的例子让学生充分经历从观察、分析到抽象、概括出元素的三个特性,深刻理解集合概念.(7)(8)【探究3】阅读课本回答问题.元素和集合各用什么字母表示?元素和集合之间有哪两种关系?用什么符号表示?常用数集及其记法有哪些?(9)师生活动:学生独立阅读完成.给出练习检测其阅读效果.(10)预设的答案:a b c d…表示;集合用大写拉丁字母A,B,C,(11)(1)元素用小写拉丁字母,,,D,…表示.(2)元素与集合的关系:“属于”、“不属于”.如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果b不是集合.A中的元素,就说b不属于集合A,记作b A(3) 常用数集及其记法:非负整数(自然数集)、正整数集*或+、整数集、有理数集、实数集.(根据学生的实际情况,适当回顾一下具体数集包含哪些数,对记忆有帮助)[设计意图] 用数学语言表示集合和元素.元素、集合的字母表示,元素与集合的“属于”或“不属于”关系,常用数集及其记法,建议学生在运用中逐渐熟练掌握.【探究4】 上面的例1使用自然语言表示集合,还有其他方法可以表示集合吗? 例如,地球上的四大洋组成的集合,我们明确地知道地球上的4大洋是什么,而 自然语言表达的不具体,那么该用什么方法呢?再比如,不等式37x -≤的解集, 又该用什么方法表示呢?师生活动:学生独立思考,然后交流讨论.教师适时地选择下面问题进行追问. 追问1:上述两个例子有什么区别呢?从集合中元素的特点来分析.预设的答案: 第1个例子集合中的元素是有限个(4个),可以这样表示 {}太平洋,大西洋,印度洋,北冰洋.第2个集合中的元素都小于10,集合中 的元素都是实数且是无数多个.追问2:你能总结归纳出列举法的特征吗?使用列举法表示时需要注意什么? 预设的答案: 把集合的元素一一列举出来,并用大括号“{}” 括起来表示集合的方法叫做列举法.利用列举法表示集合时应注意:①大括号不能缺失,元素中 间用逗号隔开;②元素虽然与顺序无关,但是防止不重不漏,按一定的顺序列举 较好,如:从小到大或者从大到小等.追问3: 显然不能用列举法表示不等式37x -≤特点是什么?将这个共同特征描述清楚,写出来也可以表示集合,这就是集合的 描述法.阅读课本第4页,什么叫描述法?然后用描述法写出解集对应的集合. 预设的答案: 共同特点是10x ≤;在大括号内先写上表示这个集合元素的一般符 号及其取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有 的共同特征,一般形式为:{}()x p x .这种用所含元素的共同特征表示集合的方 法叫做描述法. 例如;{}10x x ≤或者{}10x R x ∈≤,或者{}37x x -≤,或者{}37x R x ∈-≤ 追问4:自然语言、列举法和描述法表示集合时,各自的特点和适用对象?预设的答案:[设计意图] 通过集合的表示法,学生对实例或问题的思考,去体验知识方法.不仅要让学生明白用列举法是集合最基本、最原始的表示方法,还要理解到集合中元素的列举与元素的顺序无关.通过问题的思考,学生认识到仅用列举法表示集合是不够的,有些集合是列举不完或者列举不出来的,由此说明学习描述法的必要性.学习描述法时,先用自然语言描述集合元素具有的共同属性,再介绍用描述法的具体方法.在这个过程中提升学生的数学抽象素养.3. 变式训练——巩固知识【问题1】 下列命题:(1)若a A -∉,则a A ∈;(2){0}表示只有一个元素0的集合;(3)方程212x x +=的解的集合可表示成{1,1};其中正确的命题个数是( 1 )[设计意图] 促进学生熟练判断元素与集合间的关系.判断元素与集合关系的两种方法: (1) 直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2) 推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.【问题2】 已知2{2,25,12}a a a -+,且3A -∈,求实数a 的值。

高一数学集合教案优秀4篇

高一数学集合教案优秀4篇

高一数学集合教案优秀4篇高一数学集合教案篇一教学目标:1.使学生理解集合的含义,知道常用集合及其记法;2.使学生初步了解属于关系和集合相等的意义,初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法,并能正确地表示一些简单的集合。

教学重点:集合的含义及表示方法。

教学过程:一、问题情境1.情境。

新生自我介绍:介绍家庭、原毕业学校、班级。

2.问题。

在介绍的过程中,常常涉及像家庭、学校、班级、男生、女生等概念,这些概念与学生相比,它们有什么共同的特征?二、学生活动1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征。

三、数学建构1.集合的含义:一般地,一定范围内不同的、确定的对象的全体组成一个集合。

构成集合的每一个个体都叫做集合的一个元素。

2.元素与集合的关系及符号表示:属于,不属于。

3.集合的表示方法:另集合一般可用大写的拉丁字母简记为集合A、集合B.4.常用数集的记法:自然数集N,正整数集N*,整数集Z,有理数集Q,实数集R.5.有限集,无限集与空集。

6.有关集合知识的历史简介。

四、数学运用1.例题。

例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色。

小结:集合的确定性和无序性例2 准确表示出下列集合:(1)方程x2―2x-3=0的解集;(2)不等式2-x0的解集;(3)不等式组的解集;(4)不等式组2x-1-33x+10的解集。

解:略。

小结:(1)集合的表示方法列举法与描述法;(2)集合的分类有限集⑴,无限集⑴与⑴,空集⑴例3 将下列用描述法表示的集合改为列举法表示:(1){(x,y)| x+y = 3,x N,y N }(2){(x,y)| y = x2-1,|x |2,x Z }(3){y| x+y = 3,x N,y N }(4){ x R | x3-2x2+x=0}小结:常用数集的记法与作用。

例4 完成下列各题:(1)若集合A={ x|ax+1=0}=,求实数a的值;(2)若-3{ a-3,2a-1,a2-4},求实数a.小结:集合与元素之间的关系。

集合的概念 教案

集合的概念 教案

1.1集合的概念教学设计教材分析由于空间时间维度的不同, 同一个事物会有不同的解释, 如: 在平面内, 所有到定点的距离等于定长的点组成一个圆;而在空间中, 所有到定点的距离等于定长的点组成一个球面。

因此明确研究对象、确定研究范围是研究数学问题的基础。

为了简洁、准确地表达数学对象及研究范围, 我们需要使用集合的语言和工具。

作为高中数学的第一节, 本节主要通过实例研究研究集合的含义, 表示方法及表示方法, 比较简单。

教学目标与核心素养课程目标1.了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.会用集合的两种表示方法表示一些简单集合。

感受集合语言的意义和作用。

数学学科素养1.数学抽象: 集合概念的理解, 描述法表示集合的方法;2.逻辑推理: 集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算, 集合的描述法转化为列举法时的运算;4.数据分析: 元素在集合中对应的参数满足的条件;5.数学建模: 用集合思想对实际生活中的对象进行判断与归类。

教学重难点重点: 集合的基本概念, 集合中元素的三个特性, 元素与集合的关系, 集合的表示方法.难点:元素与集合的关系, 选择适当的方法表示具体问题中的集合.课前准备教学方法: 以学生为主体, 采用诱思探究式教学, 精讲多练。

教学工具: 多媒体。

教学过程预习课本, 引入新课阅读课本2-5页, 思考并完成以下问题1.集合和元素的含义是什么?各用什么字母表示?2.集合有什么特性?3.元素和集合之间有哪两种关系?有什么符号表示?4.常见的数集有哪些?用什么字母表示?5.集合有哪两种表示方法?它们如何定义?6.它们各自有什么特点?7.它们使用什么符号表示?要求:学生独立完成, 以小组为单位, 组内可商量, 最终选出代表回答问题。

二、知识归纳、梳理1. 元素与集合的概念(1)元素: 一般地, 把研究对象统称为元素. 元素常用小写的拉丁字母a, b, c, …表示.(2)集合:把一些元素组成的总体叫做集合(简称为集). 集合通常用大写的拉丁字母A, B, C, …表示.(3)集合相等: 只要构成两个集合的元素是一样的, 就称这两个集合是相等的.4.把集合的元素一一列举出来出来, 并用花括号“{ }”括起来表示集合的方法叫做列举法.5. 描述法(1)定义: 用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(变化)范围, 再画一条竖线, 在竖线后写出这个集合中元素所具有的共同特征.三、典例分析、举一反三题型一集合的含义例1考查下列每组对象, 能构成一个集合的是()①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A. ③④B. ②③④C. ②③D. ②④【答案】B解题技巧: (判断一组对象能否组成集合的标准)判断一组对象能否组成集合, 关键看该组对象是否满足确定性, 如果此组对象满足确定性, 就可以组成集合;否则, 不能组成集合.同时还要注意集合中元素的互异性、无序性.跟踪训练一1. 给出下列说法:①中国的所有直辖市可以构成一个集合;②高一(1)班较胖的同学可以构成一个集合;③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合.其中正确的有________. (填序号)【答案】①③题型二元素与集合的关系例2(1)下列关系中, 正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A. 1个B. 2个C. 3个D. 4个(2)集合A中的元素x满足∈N, x∈N, 则集合A中的元素为________.【答案】(1) C (2) 0,1,2解题技巧: 判断元素与集合关系的两种方法(1)直接法:如果集合中的元素是直接给出, 只要判断该元素在已知集合中是否出现即可。

集合概念教案

集合概念教案

集合概念教案1.1集合的概念教案第1篇【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2.理解集合的作用,会根据已知条件构造集合;3.理解元素与集合的“属于”和“不属于”关系,并会正确表达;4.掌握常用数集及其记法;5.了解数合的含义,记忆基本数集的符号;6.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月21日上午8点,高一年级在操场集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(3)班一共45人,其中班长易雪芳,现有以下问题:⑴45人组成的班集体能否组成一个整体?⑵班长易雪芳和45人所组成的班集体是什么关系?⑶假设张三是相邻班的学生,问他与高一(3)班是什么关系?三、课前学习1.学法指导:(1)阅读教材的内容感受集合的含义,理解集合与元素的关系,理解数集、空集的概念;(2)本学时的重点是集合的含义、元素与集合之间的关系以及常用数集的符号表示、空集的意义及符号;(3)对于一个整体是否是集合的判断的关键是对“确定”两字的理解,学习时结合实例及教材上的例题进行理解。

记忆常用数集、空集的符号表示。

2.尝试练习:见《数学学案》P1四、课堂探究:见《数学学案》P11.探究问题:探究1探究22.知识链接:3.拓展提升:例1、下列各组对象能否组成集合?(1)所有小于10的自然数;(2)某班个子高的同学;(3)方程的所有解;(4)不等式的所有解;(5)中国的直辖市;(6)不等式的所有解;(7)大于4的自然数;(8)我国的小河流。

例2、下列集合哪些是数集?再试着举两个数集,并使它们分别是有限集与无限集。

高中数学集合优秀教案模板

高中数学集合优秀教案模板

高中数学集合优秀教案模板
一、教学目标
1. 理解集合的概念和基本性质;
2. 掌握集合的表示方法及运算规则;
3. 能够解决与集合相关的实际问题;
4. 培养学生的逻辑思维能力和数学分析能力。

二、教学重点和难点
1. 集合的基本概念和性质;
2. 集合的表示方法及基本运算规则。

三、教学内容
1. 集合的基本概念:元素、子集、空集、全集等;
2. 集合的表示方法:列举法、描述法、数学符号表示法等;
3. 集合的运算:并集、交集、补集、差集等。

四、教学过程
1. 导入:通过一个生活实例引入集合的概念,引起学生的兴趣;
2. 讲解:介绍集合的基本概念和性质,以及表示方法和运算规则;
3. 练习:布置一些练习题让学生巩固所学知识;
4. 拓展:引导学生应用所学知识解决实际问题,拓展集合的应用领域;
5. 总结:对本节课的重点内容进行总结,澄清学生对集合的理解。

五、教学资源
1. 课件:包括集合的概念、表示方法和运算规则的说明;
2. 教材:提供相关的练习题和案例。

六、教学评价
1. 针对学生的理解程度和解题能力进行实时评价,及时调整教学策略;
2. 鼓励学生提出问题和交流学习经验,促进学生之间的互动和合作。

七、教学反思
1. 回顾本节课的教学过程和效果,找出存在的不足之处,并进行改进;
2. 为下一节课的教学做好准备,提前准备相关教学资源和案例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学集合的概念教案设计数学《集合》概念教案一教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:数学《集合》概念教案二教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:1.集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明教学过程:一、复习引入:1.简介数集的发展,复习公约数和最小公倍数,质数与和数;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家)(见附录);4.“物以类聚”,“人以群分”;5.教材中例子(P4)二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N,(2)正整数集:非负整数集内排除0的集记作N*或N+(3)整数集:全体整数的集合记作Z,(4)有理数集:全体有理数的集合记作Q,(5)实数集:全体实数的集合记作R注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N*或N+Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*3、元素对于集合的隶属关系(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A(2)不属于:如果a不是集合A的元素,就说a不属于A,记作4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……⑵“∈”的开口方向,不能把a∈A颠倒过来写三、练习题:1、教材P5练习1、22、下列各组对象能确定一个集合吗?(1)所有很大的实数(不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)3、设a,b是非零实数,那么可能取的值组成集合的元素是_-2,0,2__4、由实数x,-x,|x|,所组成的集合,最多含(A)(A)2个元素(B)3个元素(C)4个元素(D)5个元素5、设集合G中的元素是所有形如a+b(a∈Z,b∈Z)的数,求证:(1)当x∈N时,x∈G;(2)若x∈G,y∈G,则x+y∈G,而不一定属于集合G证明(1):在a+b(a∈Z,b∈Z)中,令a=x∈N,b=0,则x=x+0*=a+b∈G,即x∈G证明(2):∵x∈G,y∈G,∴x=a+b(a∈Z,b∈Z),y=c+d(c∈Z,d∈Z)∴x+y=(a+b)+(c+d)=(a+c)+(b+d)∵a∈Z,b∈Z,c∈Z,d∈Z∴(a+c)∈Z,(b+d)∈Z∴x+y=(a+c)+(b+d)∈G,又∵=且不一定都是整数,∴=不一定属于集合G四、小结:本节课学习了以下内容:1.集合的有关概念:(集合、元素、属于、不属于)2.集合元素的性质:确定性,互异性,无序性3.常用数集的定义及记法五、课后作业:六、板书设计(略)七、课后记:八、附录:康托尔简介发疯了的数学家康托尔(GeorgCantor,1845-1918)是德国数学家,集合论的1845年3月3日生于圣彼得堡,1918年1月6日病逝于哈雷康托尔11岁时移居德国,在德国读中学1862年17岁时入瑞士苏黎世大学,翌年入柏林大学,主修数学,1866年曾去格丁根学习一学期1867年以数论方面的论文获博士学位1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教授,1879年任教授由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”来自数学*们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神*症,被送进精神病医院真金不怕火炼,康托尔的思想终于大放光彩1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦1918年1月6日,康托尔在一家精神病院去世集合论是现代数学的基础,康托尔在研究函数论时产生了探索无穷集和超穷数的兴趣康托尔肯定了无穷数的存在,并对无穷问题进行了哲学的讨论,最终建立了较完善的集合理论,为现代数学的发展打下了坚实的基础康托尔创立了集合论作为实数理论,以至整个微积分理论体系的基础从而解决17世纪牛顿(I.Newton,1642-1727)与莱布尼茨(G.W.Leibniz,1646-1716)创立微积分理论体系之后,在近一二百年时间里,微积分理论所缺乏的逻辑基础和从19世纪开始,柯西(A.L.Cauchy,1789-1857)、魏尔斯特拉斯(K.Weierstrass,1815-1897)等人进行的微积分理论严格化所建立的极限理论克隆尼克(L.Kronecker,1823-1891),康托尔的老师,对康托尔表现了无微不至的关怀他用各种用得上的尖刻语言,粗暴地、连续不断地攻击康托尔达十年之久他甚至在柏林大学的学生面前公开攻击康托尔横加阻挠康托尔在柏林得到一个薪金较高、声望更大的教授职位使得康托尔想在柏林得到职位而改善其地位的任何努力都遭到挫折法国数学家彭加勒(H.Poi-ncare,1854-1912):我个人,而且还不只我一人,认为重要之点在于,切勿引进一些不能用有限个文字去完全定义好的东西集合论是一个有趣的“病理学的情形”,后一代将把(Cantor)集合论当作一种疾病,而人们已经从中恢复过来了德国数学家魏尔(C.H.Her-mannWey1,1885-1955)认为,康托尔关于基数的等级观点是雾上之雾菲利克斯.克莱因(F.Klein,1849-1925)不赞成集合论的思想数学家H.A.施瓦兹,康托尔的好友,由于反对集合论而同康托尔断交从1884年春天起,康托尔患了严重的忧郁症,极度沮丧,神态不安,精神病时时发作,不得不经常住到精神病院的疗养所去变得很自卑,甚至怀疑自己的工作是否可靠他请求哈勒大学*把他的数学教授职位改为哲学教授职位健康状况逐渐恶化,1918年,他在哈勒大学附属精神病院去世流星埃.伽罗华(E.Galois,1811-1832),法国数学家伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题许多数学家为之耗去许多精力,但都失败了直到1770年,法国数学家拉格朗日对上述问题的研究才算迈出重要的一步伽罗华在前人研究成果的基础上,利用群论的方法从系统结构的整体上彻底解决了根式解的难题他从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换群及其子群结构的分析上同时创立了具有划时代意义的数学分支——群论,数学发展作出了重大贡献1829年,他把关于群论研究所初步结果的第一批论文提交给法国科学院科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了以参加科学院的数学大奖评选,论文寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未能发现伽罗华的手稿1831年1月伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院这篇论文是伽罗华关于群论的重要著作当时的数学家S.K.泊松为了理解这篇论文绞尽了脑汁尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它1832年5月30日,临死的前一夜,他把他的重大科研成果匆忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类1832年5月31日离开了人间死因参加无意义的决斗受重伤1846年,他死后14年,法国数学家刘维尔着手整理伽罗华的重大创作后,首次发表于刘维尔主编的《数学杂志》。

相关文档
最新文档