《连铸保护渣的分类》编制说明

合集下载

连铸保护渣基础

连铸保护渣基础
• 典型问题:夹杂与增碳 • 解决办法:高粘度+高表面张力
板坯浇注保护渣应用——低碳钢
• 典型问题:容易粘结,润滑不良 • 解决方法:低粘度,润滑性能好,低析晶温度,提高传热 效率
板坯浇注保护渣应用——包晶钢
典型问题:纵向裂纹 原因分析:凝固时包 晶反应坯壳收缩过大, 传热不均匀导致坯壳 厚度不均匀,内部应 力作用产生裂纹,往 往在浇注过程中伴随 着钢液面波动较大, 铸坯振痕较深 解决方法:提高保护 渣粘度,提高析晶温 度以降低传热速度
3)保护渣凝固过程的特性(析晶温度及析晶率);
4)保护渣渣膜传热状况(结晶器进出水温差); 5)浇注后期(连浇几炉之后)保护渣的稳定状况; 6)保护渣润滑和防粘结状况(消耗量和粘结性漏钢率) 7)正常情况下铸坯表面和皮下质量的状况。
保护渣与铸坯表面质量
板坯浇注保护渣应用——超低碳钢
板坯浇注保护渣应用——超低碳钢
保护渣的基本物理化学特性
• 熔化速度
• • 保护渣的熔化速度的快慢一般是由保护渣中添加的碳质材料来控 制的。 配入保护渣中的炭质材料种类包括: 焦炭、木炭、石墨、碳黑、无定性碳等
保护渣的基本物理化学特性
• 熔化速度
1、必须满足生成液态渣的需要 2、必须避免钢液与富含碳质材料的粉渣层接触而导致钢液增碳
保护渣的选用
保护渣的选用
50 40
裂纹率,%
30 20 10 0 0 0.05 0.1 0.15 C% 0.2 0.25 0.3
碳含量与裂纹率的关系
保护渣的评价方法
目前,评价保护渣的优劣,主要根据它的使用性和使用效果: 1)保护渣的理化性能(熔点、粘度、熔化速度、碱度等); 2)保护渣的熔化特性(在结晶器内火苗、渣圈、结块、均匀性、保温性等);

连铸工艺、设备--07连铸保护渣及覆盖剂分析

连铸工艺、设备--07连铸保护渣及覆盖剂分析

三.保护渣的理化性能
1.熔化特性
A.熔化温度
保护渣是由多组元组成的混合物,没有固 定的熔点,熔化过程有一定的温度范围; 通常将熔渣具有一定流动性时的温度称为 熔点。保护渣的液渣形成渣膜其润滑作用, 因此保护渣的熔化温度应低于结晶器出口 处的铸坯表面温度,通常在1050~1100℃左 右。保护渣的熔化温度主要决定于渣子的 化学成分及渣料的粒度。
四.原料加工及成品
原料应按工艺要求各自经过研磨加工成细 粉状,要求彼此之间粒度应相近。
§7—3 保护渣的选用对策
一.保护渣对铸坯质量的重要性 1.粘结性漏钢
由于保护渣的熔化温度偏高或熔化速度偏低,致 使液渣层过薄或厚薄不均造成的。 2.表面纵向热裂纹 该缺陷发生在结晶器内,是由于结晶器内生成的坯 壳厚度不均匀,张应力集中在某一薄弱部位的情 况下发生的。在设备条件和操作因素不变的条件 下,保护渣熔化特性选用不当,液渣层厚薄不一, 造成渣膜厚度不均,使局部坯壳变薄产生纵裂。 纵裂产生与熔渣粘度(η)和拉坯速度(v)有关, 对连铸板坯, η·v值应控制在0.25~ 0.35Pa·s·m∕min,对小方坯连铸应控制在 η·v值为0.5 Pa·s·m∕min。
二.原料的选择及组合
原则:
原料的化学成分应尽可能稳定,尽可能接 近选择的保护渣的化学成分;基本原料的 种类不宜过多,以配制工序过于复杂,便 于调整渣子性能;原料来源广泛且价格便 宜。
常用的原料有天然矿物(如硅灰石、珍珠 岩、石灰石、石英等),工业原料(水泥、 水泥熟料等),工业废料(玻璃、烟道灰、 高炉渣、电炉白渣、石墨尾矿等)。
2.超低碳钢用保护渣
浇注超低碳钢种(C≤0.03%)时,确有铸坯 增碳的问题。首先应选配易氧化的活性碳质 材料,并控制其配碳量,使液渣层厚度接近 上限,并避免富碳层出现或富碳层含碳量显 著降低。其次,可以在保护渣中配入适量的 MnO2,用它作氧化剂,可有效地抑制富碳层并 降低其中含碳量,还可起助熔剂作用,使熔 渣层增厚。再次,也可在保护渣中配入BN粒 子,用以取代碳粒子。

最新连铸保护渣基础知识

最新连铸保护渣基础知识

最新连铸保护渣基础知识连铸保护渣是在钢液连铸过程中使用的一种特殊材料,它能够有效保护钢液不受氧化和污染,提高连铸过程中的钢液质量,确保铸坯的成型质量。

通过对最新连铸保护渣的基础知识的了解,可以更好地应用连铸保护渣,提高连铸过程的效率和质量。

1. 连铸保护渣的概念连铸保护渣是在钢液连铸过程中向钢液的表面加覆盖剂,形成一层保护层来隔绝钢液与氧气、杂质的接触,防止钢液的氧化和污染。

这种保护层能够降低钢液与外界的热交换,延缓钢液的凝固速度,从而改善铸坯的结晶结构。

2. 连铸保护渣的组成连铸保护渣由多种物质组成,主要包括粉状碳化物、氧化物和稳定剂。

粉状碳化物可以提供还原性碳元素,减少钢液的氧化反应;氧化物可以迅速消耗气氛中的氧气,防止氧化反应的进行;稳定剂可以调节渣体的粘度和流动性,提供较好的覆盖效果。

3. 连铸保护渣的作用连铸保护渣在连铸过程中起到多重作用。

首先,它可以保护钢液不受氧化和污染,确保钢液质量的稳定。

其次,它可以降低钢液与外界的热交换,减少结晶过程中的缺陷,提高铸坯的结晶质量。

此外,连铸保护渣还能防止结晶器内渣垢的形成,保护结晶器的正常运行。

4. 连铸保护渣的使用方法在连铸过程中使用连铸保护渣需要注意一些方法。

首先,要控制保护渣的添加时间和添加方式,确保渣体在钢液表面形成均匀的保护层。

其次,要根据不同钢种和连铸条件选择合适的保护渣种类和配方。

此外,还需要定期检查和更换保护渣,确保其有效性和稳定性。

5. 连铸保护渣的发展趋势随着连铸技术的不断发展,连铸保护渣也在不断改进和创新。

目前,一些新型的连铸保护渣已经应用于实际生产中,具有更好的保护效果和性能稳定性。

未来,随着研究的深入和技术的突破,连铸保护渣的发展趋势将更加注重环保性能和节能性能。

通过对最新连铸保护渣基础知识的了解,我们可以更好地应用连铸保护渣,提高连铸过程的效率和质量。

随着连铸技术的不断进步,我们有理由相信,在不久的将来,连铸保护渣将会在钢铁生产中起到越来越重要的作用,为我们提供更好的铸坯产品。

不同连铸工艺及品种的保护渣技术特征

不同连铸工艺及品种的保护渣技术特征

3. 中碳钢板坯连铸保护渣根据钢水凝固特征,国际上通常将钢中[C]≈0.09~0.25%的钢种称为中碳钢,而在我国,则将[C] ≈0.25~0.50%的钢种划入中碳钢之列,但不论怎样划分,中碳钢在我国目前连铸生产品种中所占比例最高,此外,不少中碳低合金钢亦归入此列。

由于中碳钢特殊的凝固特性,铸坯表面容易产生纵裂纹、星状裂纹等典型缺陷,针对这类问题,结晶器保护渣必须采取不同于低碳和超低碳钢的特殊对策,才能保证无缺陷铸坯的工业化生产。

3.1 裂纹敏感性包晶钢板坯连铸保护渣对于[C]=0.09~0.16%的钢种,凝固过程中发生包晶反应,结晶器弯月面以下50mm区域初生坯壳收缩大,晶粒粗大(如图24,图25),初生坯壳生长不均匀,易产生裂纹,这是包晶钢裂纹敏感的主要原因。

为此,许多研究者通过模型计算和实验检测分析了结晶器热流量与铸坯纵裂纹的关系,指出在弯月面下部45mm处,对于低碳钢,当热流密度超过2.8×106W/m2, 对于中碳钢,当热流密度超过1.7×106W/m2时,铸坯表面裂纹指数急剧增大,铸坯易出现表面纵裂纹(见图26)。

因此,在实际生产中一方面减弱结晶器水冷强度,另一方面主要通过采用结晶体状态的保护渣。

国内外目前倾向于采用高碱度保护渣,通过:①减少透明玻璃体达到减少辐射传热;②结晶体内的微孔和界面极大地削弱晶格振动,从而减弱传导传热,达到减缓传热和减少裂纹的目的。

但是,当保护渣碱度过高,析晶温度过高时易严重恶化铸坯润滑状况,导致铸坯粘结和漏钢,连铸生产被迫采用降低拉坯速度的技术路线,这使得连铸机生产率和产能降低20%~30%;如何协调好玻璃体和结晶体的比例,这在国内外许多连铸生产中都还没有得到妥善解决。

为了开发出对中碳钢连铸工艺适应性强的结晶器保护渣,必须针对上述问题,综合分析保护渣主要组份对结晶性能和玻璃化特性的综合影响情况,在此基础上,才能设计保护渣配方。

3.1.1 保护渣组成与结晶性能和玻璃化特性的基本关系为了弄清和明确保护渣组份对其结晶行为的影响规律,本研究首先采用化学纯试剂配制渣样(见表16),采用旋转粘度计测试保护渣在1300℃下的粘度,并在降温条件下测试保护渣粘度--温度曲线关系。

不锈钢连铸保护渣概述

不锈钢连铸保护渣概述
不锈钢连铸保护渣概述
王雨 谢兵 王谦
刁江
(重庆大学材料科学与工程学院,400044)
摘要:概要介绍了不锈钢的性铯特点、主要生产工艺,保护渣的设计原则,围绕提高铸坯表面质量的表面质量,论 述了连铸保护渣的优化技术路线,对几个典型生产实例做了介绍。 关键词:不锈钢,连铸坯,表面质量,保护渣
1刚舌 不锈钢是最重要而又普及的金属材料之一,由于其具有许多优良的性能.如耐腐蚀、耐磨损、耐热、耐低温、 强度高、易加工等,因此广泛用于工业及民用领域的各个方面。自1954年加拿大阿特拉斯公司建造了第一台不锈钢 板坯连铸机以来,不锈钢连铸技术蓬勃发展,目前不锈钢连铸比已超过95%。高质量连铸坯生产已成为不锈钢降低 成本,提高成材率的关键…。 不锈钢中含有大量的cr、Ni、Ti等合金元素,不同品种具有不同的凝固特性;易氧化元素多,夹杂含量高,在 连铸过程中铸坯表面多出现凹陷、裂纹、深振痕及夹渣等缺陷。这些缺陷增加了铸坯修磨量,严重降低了不锈钢的 成材率。为满足性能要求,不锈钢表面质量要求比普碳钢严格,但其本身却极易产生表面缺陷,因此不锈钢连铸必 须选择合适的连铸保护渣并严格控制其理化性能。
物。这些夹杂物成群分布在铸坯表面下,恶化铸坯质量,并易于在水口内壁聚集,造成水口堵塞,给浇注操作带来
危害。这就要求不锈钢连铸保护渣具有较强的吸收和同化夹杂物的能力,而且在保护渣吸收夹杂物后,其性能仍然 能够满足连铸工艺的要求,即保证保护渣物化性能的稳定性。
150
4不锈钢表面缺陷及其对保护渣的要求
41口坑和裂纹 不锈钢铸坯表面易产生…坑.返与钢的化学成分打咒一如幽5所示,304舆氏体十锈制NilCr当量&为0 55, 铁索体凝固牢约为1.口坑敏感性母为强烈.430铁索体币锈钢则列19坑不敏感。通常下锈钢板坯口坑№方坯严重。 H坑处不仅结品组织粗化,而R常常伴础纵裂纹产生.见罔6,易导致溶钢或漏铜事触。同时使铸坯表面平整度差. 增加铸坯袁自修噼量或剥皮々。

连铸保护渣2

连铸保护渣2

连铸保护渣2连铸保护渣是直接影响连铸稳定生产和改善铸坯质量的一种功能性消耗材料,它具有绝热保温,防止再氧化,吸收夹杂物,均匀传热,润滑坯壳等功能,在连铸工艺中起着至关重要的作用,由于保护渣的显著作用,各国连铸工作者对保护渣都非常重视.1保护渣的基本特性1.1保护渣的熔融特性保护渣在结晶器内的熔融过程示意图(略).保护渣在熔融状态时自上而下可形成粉渣层,烧结层及熔渣层3层结构,起绝热保温,防止再氧化,吸收夹杂物的作用;在结晶器与坯壳之间形成固态渣膜(玻璃质层,结晶质层)和液态渣膜两层结构,起到"润滑"和"控制传热"作用,靠结晶器一侧是固态层,造坯壳一侧是液态层;固态层中进一步分为玻璃质层和结晶质层,且有结晶粒度的差异.渣膜在厚度方向上的不同结构层,有着不同的"润滑"和"传热效应".日本NKK公司的一项研究证实[21,通过提高结晶温度可加快渣的结晶速度(实质上是增加渣膜中的结晶质层厚度),由此开发出一种可减少中碳钢表面纵裂的新型保护渣.然而,由于玻璃质层的组分质点是无序排列的,振动范围较大,体系内能也较大,因而热阻较小,对控制传热的影响较小;相反,结晶质层的热阻较大,对控制传热的影响较大.根据不同浇铸条件(钢种,断面,拉速等)对结晶器传热的不同要求,调整渣膜中玻璃质层和结晶质层的比例,可以达到改善坯壳向结晶器的传热,从而达到控制铸坯表面缺陷的目的.LZ保护渣的冶金特性1.2.1粘度粘度是保护渣的一个重要参数,粘度太大或太小,都会使渣膜厚薄不均,润滑传热不良,甚至引起收稿日期2003折-21作者简介:饶添荣(1974)男,福建龙岩人,工程师,从事炼钢连铸工艺工作.万方数据106江西冶金2003年12月坯壳悬挂撕裂.粘度与温度的关系式为[[3171二A" T"exp(B/T)式中,7为粘度〔泊);T为绝对温度;A,B为常数.对于一定成分的渣,随温度降低粘度呈突然性增大趋势,所以一般希望从弯月面到出结晶器的坯壳表面温度应大于1 150℃,且要求渣粘度不会发生突变,这对保持均匀渣膜厚度,确保良好润滑极其重要.1.2.2表面张力熔渣的表面张力和金一渣的界面张力决定了熔渣润湿钢的能力,它影响夹杂物分离,夹杂物吸收, 渣膜的润滑和铸坯的表面质量,是一项重要的冶金特性.结晶器液面有保护渣层覆盖时结晶器中钢液弯月面半径与表面张力和界面张力的关系为[[31y, = 5.43 x 10-2.二一./P,一P.) la口._.=a二一少二coso式中,Y.为弯月面半径;'_,为金一渣界面张力; ..,,.为钢,渣表面张力;9为润湿角;P. "o.为钢, 渣密度.若Y.大,弯月面凝固壳受钢水静压力作用贴向结晶器壁就越容易,润滑良好,坯壳裂纹也就难于发生.若Y.小,就会破坏弯月面的薄膜弹性性能,铸坯易于发生裂纹,夹渣等表面缺陷.1.2.3熔点与熔化速度保护渣的熔点的基本原则是必须低于结晶器内的钢水温度,只有这样保护渣才能熔化,一般为950 ℃一1200℃,主要取决于保护渣的的原料组成及其化学成分.熔化速度决定钢液面上形成熔渣层厚度和渣的消耗量.熔化速度过慢,形成熔渣层过薄,渣膜不均匀,润滑传热就不好;熔化速度过快,粉渣层很快消失,熔渣层易结壳,渣膜厚度增加,使传热减慢,坯壳减薄而易产生裂纹.因此,必须合理控制保护渣的熔化速度.保护渣熔化速度一般是由其成分中的炭粒子来控制完成的,控制能力的强弱决定于炭粒子的种类和数量[41.表现在它对造渣材料的分融能力和对造渣材料生成的熔体的流动阻滞能力.炭粒子的原材料常见的有炭黑和石墨.炭黑在温度较低区域里有很强的分融能力和控制效率,在高温区其作用却大为降低;石墨开始氧化的温度高且慢,控制高温能力强,故有延缓保护渣的烧结和熔化功能.1.2.4吸收溶解夹杂物的能力保护渣碱度提高,可改善保护渣吸收和溶解钢中夹杂物的动力学条件而有利于吸收夹杂物,但碱度过高,熔渣中易析出钙铝黄长石(2CaO从qSi02),枪晶石((3CaO.2Si02 - CaF2 )等高熔点物质,使熔渣的析晶温度和析晶能力增高,恶化保护渣的玻璃化特性,破坏了熔渣的均匀润滑和传热,引起铸坯缺陷甚至拉漏,故碱度控制应合理.2保护渣的选择与应用2.1保护渣原料的选择保护渣的主要成分为.O, SiO2, A1203, 990,Fe2O3, N% 0, K2 0, Li20, CaF2以及炭粒,Ca()和Si02 约占60%一70% , CaO/Si马(即碱度)之比通常在0.8一1.2.加人Na20, Cal,是为了降低熔化速度和粘度,炭粒起隔离熔滴,调节熔化速度的作用.保护渣原料的选择要做到组成合理,成分稳定;既要满足连铸质量的需要,又要经济节约,尽可能就地取材,充分利用当地的废弃资源.例如国内某些保护渣厂常用的保护渣原料有玻璃粉(SiO2大于70% , Na20大于13%),水泥,高炉渣,烟道灰,固态水玻璃,苏打,萤石等[31,由这些原料按照不同比例配制成需要的渣料.表1,表2分别示出了保护渣常用的基料及助熔剂的化学成分.表1保护渡常用基料的化学成分化学成分,%基料—si场Cs0鸽乌.鲍pMn0 Na,O残伪高炉渣25一3933一45 s一15 2一8 0.1一1.0 < 1电厂灰45一60 2一5 10一20 1一4 2一6 3一8'钾土60-65 1一2 1〕一IS 5一7 <13" 1一2水泥熟料19一2260一65 5-7 1一4 <6白渣45一5518一22 <9 0.25%的硬钢)一1.0,C为13%一14%,q1,为..3 Pa-s(用于软钢)一0.45(用于硬钢),熔渣层厚度3一5.5 mmo颗粒渣不适用于小方坯,因其熔化均匀,宜用于MCAK钢板坯和大方坯.德国Sulukl. k等人认为[91,保护渣中MnO为3 . 5 % , CaO/SiO2为0.9,11.为..25 Pa "s, Ta为900 ℃,T.为1 025℃,能满足c大于等于0.35%,Mn大于等于0.65%的大断面圆坯的表面质量要求.马钢连铸圆坯主要用于生产车轮轮箍用钢,此类钢由于含碳量,含锰量均较高,因此要求钢水纯净度很高,尤其是钢中气体([01, [H]-, [N])的含量,要求控制在很低的水平,以至冶炼时加Al量较高,在保护浇铸效果不佳的情况下,A1203和AIN夹杂将进一步增加,使圆坯表面易形成线状缺陷.浇铸这类钢,保护渣既要有好的润滑特性,又要有低的传热强度;因此,保护渣粘度要适当高些(,,为0.30-0.50 Pa- s);为了防范点状凹陷和确保有良好的吸收夹杂物的能力,碱度要适中(R为0. 90) [301渣中A12 Os含量要低些;另一方面要确保有一定渣耗量(0.45一0.70甲t) a2.2.3异型坯用保护渣马钢引进的3机3流异型坯/矩型坯连铸机,铸坯尺寸为异型坯:750 mm x 450 mm x 120 mm, 50 rim x 300 mm x 120 mm;矩型坯:;250 mm x 380 mm.因砂打石硼苏萤万方数据108江西冶金2003年12月其独特的截面形状和复杂的连铸工艺决定了对保护渣要求更为严格,马钢根据异型坯生产特点,选择了3类保护渣进行了生产试验研究:(1)低碱度(0.8),较高熔点(1 171℃)和粘度(1.39 Pa-s);(2)中碱度(1.02),较高熔点(1 188℃)和粘度(1.10 Pa-s);(3)中高碱度(1.12),较低熔点(1 145 9C)(0.84Pa- s);把这3类保护渣的理化性能与从韩国进口的相比较,第三类保护渣的效果与其一致,有利于改善异型坯表面质量.韩国异型坯保护渣成分如表3所示.根据马钢的生产实践,在设备条件和操作因素不变的情况下,异型坯表面裂纹与保护渣粘度和拉速有关,对于小断面异型坯控制,I .叽在0.5一0.6Pa " s " m/min;大断面控制在0.5 Pa "s"m/min时,能够防止异型坯腹板纵裂.表3韩国异型坯保护渣成分化学成分,%企业'ISQi0.50073Px01:::竺喻011光阳Indl印】s;oi Al,场31.36 12.2624.69 13.181._843491Fei 011.533.137.8024.2035.8219.56M酥】2.472.291._000.79Na}00.254.531._120.792.2.4溥板坯连铸用保护值墨西哥Hylsa公司的CSP连铸机,铸坯厚50mm,低碳钢拉速3.0一5.5 m/xnin.其所用保护渣, 开浇时用发热型渣,连浇时用球形空心颗粒渣(R为0.86, A1203为8.0% , Na2O+K20+Lie.为12%,F为6.5%,1},为0.18 Pa "s, Ta为1 300℃,T,为1 070℃,渣耗.095 kg) [u],这种开浇时和A铸时分别用不同类保护渣的作法,在实际使用中的效果很好,在薄板坯连铸中具有推广价值.马钢CSP薄板坯连铸机预计于2003年10月份建成投产,规格0.8一12.7二x 900一1 600 mm.由于CSP工艺具有拉速快,凝固快,易产生粘结漏钢以及铸坯表面质量差等特点,借鉴前人的经验,对保护渣的选用将综合考虑下列因素.(1)为了防止钢液二次氧化和确保具有良好的绝热保温性能,选择有良好铺展性,熔化均匀性和抗波动性的保护渣;(2)生产超低碳钢时,为了防止钢液增C,应采用低C或无C且熔化性能好的保护渣;(3)应有良好的吸收溶解A12 03夹杂的性能;(4)成渣快,玻璃化率高,润滑性能好,传热性能要均匀稳定;(5)环保和高性价比.3结语(I)保护渣具有绝热,保温,防止氧化,均匀传热,润滑和吸收夹杂物功能;(2)保护渣原料的选择应组成合理,成份稳定,既要满足连铸质量的需要,又要经济节约,尽可能就地取材,充分利用当地的废弃资源;(3)保护渣的选用应根据钢种,断面,拉速和振动参数等因素而定,在生产实践中应区别对待; (4)高拉速下,可选择低熔点,高熔速,低粘度,低析晶率和低析晶温度保护渣;(5)异型坯连铸保护渣,控制v K小断面在0.5一0. 67 Pa " s " m/min,大断面在0.5 Pa "s"m/min, 能够防止异型坯腹板纵裂;(6) CSP连铸用保护渣可采用低熔点,低粘度,低结晶温度,熔速快和玻璃性好的多组元保护渣。

最新连铸保护渣基础知识

最新连铸保护渣基础知识

最新连铸保护渣基础知识连铸保护渣在连铸过程中起着非常重要的作用,它可以保护钢水不受外界氧化,减少钢水中的杂质和气泡,并调整钢水的温度和流动性,确保最终铸造出高质量的产品。

本文将介绍最新连铸保护渣的基础知识,包括其主要成分、性能和应用。

一、连铸保护渣的主要成分连铸保护渣的主要成分通常包括氧化物、碳化物和氟化物等。

其中,氧化物是最常见的成分,包括SiO2、Al2O3、CaO、MgO等。

这些氧化物能够与钢水中的杂质和氧发生反应,形成不溶于钢水的氧化物渣和气泡,达到保护钢水的目的。

二、连铸保护渣的性能1. 抗渗透性:连铸保护渣应具有较好的抗渗透性,能形成一层致密的保护层,阻止钢水渗漏。

2. 熔化性:连铸保护渣应具有适当的熔化性,能够在高温下迅速熔化,并形成均匀的保护层。

3. 抗氧化性:连铸保护渣应具有较好的抗氧化性能,能够抵御高温氧化环境的侵蚀,保护钢水不受氧化。

4. 温度控制性:连铸保护渣应具有一定的温度控制性,能够吸收钢水的过剩热量,调整钢水的温度。

5. 流动性:连铸保护渣应具有一定的流动性,能够在结晶器内形成均匀的保护层,并顺利排出。

三、连铸保护渣的应用连铸保护渣广泛应用于钢铁冶炼和连铸过程中。

它可在连铸过程中形成一层保护层,保护钢水不受外界氧化,并减少钢水中的气泡和杂质。

此外,连铸保护渣还有以下应用:1. 调温:连铸保护渣可通过吸收钢水的过剩热量,调整钢水的温度,确保连铸过程中的温度控制。

2. 减少结晶器磨损:连铸保护渣可在结晶器内形成一层均匀的保护层,减少结晶器的磨损。

3. 改善钢水流动性:连铸保护渣具有一定的流动性,可改善钢水的流动性,使其在连铸过程中顺利流动。

4. 减少内包体生成:连铸保护渣中的氧化物和其他化合物能够与钢水中的氧和杂质发生反应,减少内包体的生成。

5. 提高产品质量:连铸保护渣能够保护钢水不受外界氧化,减少钢水中的杂质和气泡,从而提高最终产品的质量。

6. 减少能源消耗:连铸保护渣的应用可以减少能源消耗,提高冶炼效率。

连铸保护渣概述

连铸保护渣概述

连铸保护渣概述1 连铸保护渣的组成 (1)2 连铸保护渣的作用 (2)3 连铸保护渣进入结晶器的行为 (3)4 保护渣的主要理化性能指标 (5)二战后,战后恢复及经济发展的需求成为钢铁冶金工业发展的主要驱动力。

自50年代始,连铸技术的出现促进了钢铁冶金工业的蓬勃发展。

自60年代连铸结晶器保护渣技术的出现取代菜籽油以来,使连铸钢品种、连铸断面种类、连铸坯的质量、连铸生产率得以大幅度提高。

近年来,以高拉速、高连浇率、高作业率、及高质量为特征的高效连铸得到迅速的发展,成为钢铁企业降低成本、降低能耗、减少投资成、开拓市场、在激烈的世界钢铁市场竞争中利于不败之地的重要技术创新和钢铁企业结构优化的必然需要。

从70年代开始,连铸技术在装备先进的钢铁企业的板坯连铸浇铸速度逐渐提高,从1.0m/min左右上升到2.0/min 左右,目前最大铸速可达3.0/min,日本住友正在开发5.0m/min的大板坯连铸技术,意大利在小方坯连铸上拉速已经达到 5.0/min。

因此,以高拉速为主要特征的高效连铸技术的开发、应用、推广是优化我国连铸技术,提高连铸水平的重要发展方向。

由于高效连铸中的高拉速使结晶器中的热流及摩擦力增大、结晶器中钢液面波动加剧、出结晶器的铸坯坯壳变薄、渣耗急剧下降造成润滑不良和传热不均等,使得从常速连铸到高速连铸遇到了粘结漏钢和铸坯表面质量差两大难题,目前,为解决这些问题,就必须研究和开发具有相应物理和化学性能的结晶器保护渣,保证连铸过程中结晶器内的物理化学反应处于良好的状态。

以连铸连轧为基础的紧凑型生产流程是降低冶金产品生产成本、提高企业经济效益的一个重要途径,无缺陷铸坯生产技术是实现连铸连轧的关键,这对铸坯表面质量提出了更高要求,连铸保护渣对高表面质量铸坯的生产起着重要的保障作用,为此,国内外各炼钢厂都在寻求适合本厂连铸工艺特点的无缺陷铸坯生产用结晶器保护渣。

近十年来,国内外连铸保护渣的开发,以满足连铸生产的需要、充分发挥保护渣的作用为主要目的,同时在保护渣原料、制作工艺、保护渣的基础理论研究方面进行了大量的工作。

第六章 连铸保护渣

第六章 连铸保护渣
对AB段和CD段分别进行线性回归,得到的回归直线斜率绝对值
分别为I1和I2,把I1和I2分别定义为粘度高温稳定指数和粘度低温 稳定指数,I1和I2的物理意义可分别理解为高温时和低温时单位温
差熔渣粘度的变化。结合I1、I2和A、G、D点,粘度曲线基本可
以定量描述。 在温度低于转折点时的粘度实际上已经不是经典意义的粘度,应
钢铁冶金研究所&特殊钢冶金学术方向
粘性曲线形状的定量描述
A点为1300℃熔渣粘度,通常
所指的粘度即为此粘度; G点为拐点(粘度突变点);
D点粘度为5Pa· s;
粘度稳定性就是G点附近的粘 度变化情况而言。曲线形状 代表粘度的变化规律。
钢铁冶金研究所&特殊钢冶金学术方向
粘性曲线形状的定量描述
钢铁冶金研究所&特殊钢冶金学术方向
保护渣的密度
保护渣的密度大约为2800~3200kg· m-3。密度的温度系数
大约为每升高100℃降低5kg· m-3。熔渣的密度与保护渣成
分和原材料选择有关。
松散的粉末保护渣或者颗粒状的保护渣的密度称为“容 重”,它不仅与成分有关,而且与粉末的粒度或者颗粒的 大小及致密度有关。
钢铁冶金研究所&特殊钢冶金学术方向
保护渣粘性特性——粘度
化学稳定性差的保护渣,熔渣吸收钢水上浮的非金属氧化
物后,通常粘度变大,熔渣流动性变差,渗入结晶器铜板
与铸坯间的渣量减少,可能引起铸坯质量缺陷。
如果吸收的Al2O3夹杂很多,有可能在液相渣膜中形成霞石 类固相颗粒,恶化铸坯润滑,可能引起铸坯质量缺陷,严 重时会造成粘结漏钢。
夹渣、夹杂物 减少保护渣氧化铝含量 白点 降低保护渣Na含量
表面渗碳

连铸保护渣概述

连铸保护渣概述

连铸保护渣概述1 连铸保护渣的组成 (1)2 连铸保护渣的作用 (2)3 连铸保护渣进入结晶器的行为 (3)4 保护渣的主要理化性能指标 (5)二战后,战后恢复及经济发展的需求成为钢铁冶金工业发展的主要驱动力。

自50年代始,连铸技术的出现促进了钢铁冶金工业的蓬勃发展。

自60年代连铸结晶器保护渣技术的出现取代菜籽油以来,使连铸钢品种、连铸断面种类、连铸坯的质量、连铸生产率得以大幅度提高。

近年来,以高拉速、高连浇率、高作业率、及高质量为特征的高效连铸得到迅速的发展,成为钢铁企业降低成本、降低能耗、减少投资成、开拓市场、在激烈的世界钢铁市场竞争中利于不败之地的重要技术创新和钢铁企业结构优化的必然需要。

从70年代开始,连铸技术在装备先进的钢铁企业的板坯连铸浇铸速度逐渐提高,从1.0m/min左右上升到2.0/min 左右,目前最大铸速可达3.0/min,日本住友正在开发5.0m/min的大板坯连铸技术,意大利在小方坯连铸上拉速已经达到 5.0/min。

因此,以高拉速为主要特征的高效连铸技术的开发、应用、推广是优化我国连铸技术,提高连铸水平的重要发展方向。

由于高效连铸中的高拉速使结晶器中的热流及摩擦力增大、结晶器中钢液面波动加剧、出结晶器的铸坯坯壳变薄、渣耗急剧下降造成润滑不良和传热不均等,使得从常速连铸到高速连铸遇到了粘结漏钢和铸坯表面质量差两大难题,目前,为解决这些问题,就必须研究和开发具有相应物理和化学性能的结晶器保护渣,保证连铸过程中结晶器内的物理化学反应处于良好的状态。

以连铸连轧为基础的紧凑型生产流程是降低冶金产品生产成本、提高企业经济效益的一个重要途径,无缺陷铸坯生产技术是实现连铸连轧的关键,这对铸坯表面质量提出了更高要求,连铸保护渣对高表面质量铸坯的生产起着重要的保障作用,为此,国内外各炼钢厂都在寻求适合本厂连铸工艺特点的无缺陷铸坯生产用结晶器保护渣。

近十年来,国内外连铸保护渣的开发,以满足连铸生产的需要、充分发挥保护渣的作用为主要目的,同时在保护渣原料、制作工艺、保护渣的基础理论研究方面进行了大量的工作。

连铸保护渣基础知识-

连铸保护渣基础知识-
现象; D.保护渣的保温性能较差,主要体现在灰粉大、碳量低这些方面; 从以上情况可以看出,出现结冷钢的根本原因在于钢水温度控制
和工艺控制。
17
6.液渣层厚度(mm) 液渣层厚度是保护渣的一个重要指标,液渣层厚薄决定着能否确
保铸坯充分的润滑。板坯铸机要求液渣层厚度在8-15mm之间。 7.渣耗量(kg/t) 我国渣耗量普遍采用kg/t来表示,即每吨钢消耗多少公斤保护渣。
连铸保护渣基础知识
目录简介
保护渣的基本组成 汉冶板坯连铸保护渣化学成分及性能
保护渣的主要作用及功能 连铸保护渣主要理化性能 保护渣常见的物理指标 保护渣在使用过程中的性能体现 板坯保护渣的种类
2
保护渣基础知识
保护渣的基本组成
化学成份:CaO、SiO2、Na2O+K2O、F-、C及原材料代入的杂质Al2O3 和Fe2O3(或FeO),以及根据品种特殊需要加入的其它组份如MgO、 BaO、SrO、Li2O、B2O3等。
8
保护渣常见的物理指标
保护渣常见物理指标有:容重(g/cm3)、熔点、粘度、粒度 (目)、凝固温度、结晶温度、析晶温度和析晶率等。
1.容重(g/cm3) 单位是:克/立方厘米,常规上我们空心颗粒保护渣的容重在
0.45~0.9g/cm3之间; 粉渣类的比重和实心颗粒渣的比重稍大。 2.熔点(℃) 单位是:摄氏度,常规我们保护渣的熔点在900~1250℃这个范围
内,熔点的高低与保护渣的类型有关,没有一个确定标准。 一般上,高拉速用保护渣要采用熔点适当偏低的保护渣,液相线
温度低的钢种要采用熔点适当偏低的保护渣。
9
保护渣常见的物理指标
3.粘度(pa.s ) 粘度是保护渣比较重要的一项指标,粘度的国际单位为:pa.s(帕.

不锈钢连铸保护渣

不锈钢连铸保护渣

不锈钢连铸保护渣【摘要】连铸保护渣对连铸工艺的顺行起着至关重要的作用,本文介绍了连铸保护渣的发展历程、连铸保护渣的成分及作用,重点阐述了不锈钢连铸保护渣在不锈钢生产中的重要性、不锈钢生产中常出现的“冷皮”等问题,并提出了不锈钢连铸保护渣成分选择的依据。

【关键词】连铸,保护渣,不锈钢,TiO21引言自连续铸钢技术成功的应用于钢铁冶金过程,便迅速的取代了模铸,成为连接炉外精炼和金属凝固成形的重要环节。

而连铸工序的顺行与连铸坯质量的提高,和连铸保护渣的应用密切相关。

在连续浇注时,中间包与结晶器的保护浇注是在结晶器保护渣和浸入式水口的共同配合下实现的,二者任缺其一都不能都不能得到质量合格的铸坯,所以结晶器保护渣现在已经发展成为了一门专门的技术。

2保护渣的发展历程及不锈钢连铸保护渣2.1连铸保护渣的发展历程自首次采用保护渣进行保护浇注至今已经接近50年时间,保护渣技术不断发展,保护渣的功能和在连铸工艺中的地位也日益得到各国连铸工作者的高度重视,各国纷纷对保护渣进行多方研究,以开发出适合各国国情的保护渣,从而使铸坯质量不断改善提高。

当前,我国钢铁年产量已经超过7亿吨,连铸比也达到98%以上,保护渣的需求占世界首位,,所以对不同钢种保护渣的研究刻不容缓。

纵观保护渣的发展历程,可以发现连铸保护渣的发展主要经历了以下的几个过程[1]:20世纪60年代为保护渣的初步开发和探索应用阶段;70年代是保护渣的研究和应用比较活跃的时期;80年代,由于高速连铸及直接轧制等技术的发展,带动了保护渣研究和应用的进一步发展;90年代,是保护渣的研制理论进一步成熟和制造技术飞跃发展的时期,围绕微合金钢、不锈钢等钢种、高拉速连铸无缺陷铸坯的要求进行了丰富的设计,保护渣的品种进一步丰富,同时计算机辅助设计技术也开始应用到保护渣的开发设计之中。

当前,主要是围绕无氟保护渣、超低碳钢保护渣等特殊保护渣进行更深层次的研究。

2.2不锈钢连铸保护渣特殊钢是衡量一个国家科技发展水平的一个标志,当前我国在普碳钢的生产方面已经达到世界先进水平,但是在合金钢和特殊钢的生产上差距还很大。

连铸理论及工艺-结晶器保护渣

连铸理论及工艺-结晶器保护渣

连铸理论及工艺
流入坯壳和结晶器间隙内的液态渣形成渣膜,以控制铸坯向结晶器传热速度,保持坯壳均匀生长。

2010-11-293

这是一个以硅灰形态存在的低熔化温度区,,恰与保护渣碱度要求相
℃:

A
B
11
几种保护渣成分范例:
2010-11-2917
几种主要助熔剂对保护渣熔化温度的影响规律
熔化速度
保护渣熔化速度的影响因素
31
32
凡是能向炉渣中提供多余氧离子和取代氧离子的物质,均可以使炉渣粘度降低。

这些物质包括几乎所有的碱金属氧化物和碱土金属氧化物。

保护渣粘度测定方法
z 熔渣吸收Al 2O 3的量主要取决于
α。

本图表示的是根据上式计算得到的不同α(或β)的保护渣,Al 2O 3随时间的变化。

其中α和β具有相同的意义,β的量纲为g/(cm 2.s)。

α和β表征保护渣吸收Al 2O 3能力的大小,其值主要受化学成分的影响。

40
2010-11-2941
2010-11-2950。

保护渣使用特点

保护渣使用特点

SiO2 Al2O3 Fe2O3 Cfree CO2 H2O
31.5-33.5% 4.5-6.0 % <1.0% 3.0-4.5% 6.5-8.0% <1.0%
0.11Pas
mesh size (mm) 0.5 0.125 0.063 residue(weight %) 10.0~50.0 80.0~99.0 95.0~100.0
不同类保护渣示差热DTA曲线示意图
16
熔化温度和熔化速度
保护渣熔化温度和熔化速度对保护渣液渣层高度及坯壳 与结晶器壁之间的流入有重要影响。 与结晶器壁之间的流入有重要影响。
影响保护渣熔化速率的因素: 影响保护渣熔化速率的因素: 自由碳含量; 自由碳含量; 碳颗粒的粒度; 碳颗粒的粒度; 保护渣熔化温度; 保护渣熔化温度; 保护渣原料粒度; 保护渣原料粒度; 拉速。 拉速。
17
保护渣组成对性能的影响
18
19
1991 Steelmaking Conference Proceedings, p617
20
添加Na2O、Li2O来降低保护渣粘度
21
F、B2O3、Al2O3对保护渣粘度的影响
22
23
24
25
Li2O、MgO对保护渣熔点的影响
26
Li2O、MgO对保护渣熔化时间的影响
ST-SP/TY300 1.07-1.13 32.77-39.77% 7.78-8.78% 4.03-5.03% 5.45 6.45% 5.45-6.45% 1120 ℃ 1154 ℃ 1163 ℃ SiO2 Al2O3 Fe2O3 CO2 H2O 29.43-35.43% 6.87-7.87 % 1.46-2.46% 6.5-8.0% <0.5% 0.5%

连铸保护渣课件.

连铸保护渣课件.

烧结渣
烧结型粉渣的生产程序如下: (1) 在化学成分相当稳定的粉状混合物中拌入大约5% 焦末和18%水分 (2) 通过圆盘造球机将混合料造成小球
(3) 通过蓖式烧结机对预处理的混合物进行烧结
(4) 把烧结物磨细到适宜的粒度范围 (5)通过加入某种有机物水溶液,将粉状烧结渣与一 定数量的细炭粉进行混合造球,然后烘干 优点:其熔化均匀性好,在连铸中应用取得了良好的效果。 但其生产比较复杂,故使用范围受到了一定的限制。
第五节
矿物特性及对铸坯质量的影响
第一节
连铸过程中钢液弯月面的形状
第二节 第三节
坯壳及铸坯表面振痕的形成 结晶器和铸坯间渣膜的形成和作用
第一节 第二节 第三节 第四节
保护渣原料种类及要求 连铸保护渣的配制及加工 连铸保护渣的使用 连铸保护渣的选择
第一节
板坯连铸保护渣
第二节
第三节 第四节 第五节非金属夹杂物,它包括由浇注 系统带入的耐材和脱氧产物。如 不能将其溶解和吸收被卷入坯壳 会形成表面和皮下夹杂缺陷。从 热力学观点来看,硅酸盐系熔渣 是能吸收和溶解这些非金属夹杂 物的。
钢液面上的液态渣填充到结晶器 和坯壳间的 润滑功能十分重要。 其润滑作用与形成的渣膜的厚度、 均匀性和结构有关,其实实际上 是流体润滑。这要求熔渣具有玻 璃态的性能,熔渣内不应有高熔 点出现。
硅酸盐和氟化物,配入金属氧化剂。
1. 预熔渣 这种渣是将含Cao和SiO2 的材料、氟化物和其他含Na+ 的材料按一定 的化学成分要求配渣再经以下工艺流程制造: 粉末原料 混合 造球 入炉 熔化
预熔渣料
预熔颗粒渣
颗粒 化 干燥
粉碎 混合
加炭质材料
优点:1) 其化学成分和相成分均匀,在结晶器内能均匀熔化,形成稳定 的熔渣层,结晶器与铸坯间形成的渣膜较均匀,从而获得表面质量良好的 铸坯。2) 对钢种和连铸工艺参数的适应较强,保护渣成品不易吸潮,储 存期长。 缺点: 生产工艺复杂,产品价格高于混合型粉渣很多,推广使用受到了 限制。

连铸保护渣技术介绍

连铸保护渣技术介绍

连铸保护渣技术介绍1.连铸保护渣的作用是什么?在浇注过程中,要向结晶器钢水面上不断添加粉末状或颗粒状的渣料,称为保护渣。

保护渣的作用有以下几方面:(1)绝热保温防止散热;(2)隔开空气,防止空气中的氧进入钢水发生二次氧化,影响钢的质量;(3)吸收溶解从钢水中上浮到钢渣界面的夹杂物,净化钢液;(4)在结晶器壁与凝固壳之间有一层渣膜起润滑作用,减少拉坯阻力,防止凝壳与铜板的粘结;(5)充填坯壳与结晶器之间的气隙,改善结晶器传热。

一种好的保护渣,应能全面发挥上述五个方面作用,以达到提高铸坯表面质量,保证连铸顺行的目的。

2.对保护渣熔化模式有何要求?在连铸过程中加入到结晶器的保护渣,要完成上述五个方面的功能,必须要求保护渣粉有规定的熔化模式,也就是要求在钢水面上形成所谓粉渣层—烧结层一液渣层的所谓三层结构。

添加到结晶器高温钢液(1500℃左右)面上低熔点(1100~1200℃)的渣粉,靠钢液提供热量,在钢液面上形成了一定厚度的液渣覆盖层(约10~l5mm),钢水向粉渣层传热减慢,在液渣层上的粉渣受热作用,渣粉之间互相烧结在一起形成所谓烧结层(温度在900~600℃),在烧结层上粉渣接受从钢水传递的热量更少,温度低(<500℃),故保持为粉状,均匀覆盖在钢水面上,防止了钢水散热,阻止了空气中的氧进入钢水。

在拉坯过程中,由于结晶器上下振动和凝固坯壳向下运动的作用,钢液面的液渣层不断通过钢水与铜壁的界面而挤入坯壳与铜壁之间,在铜壁表面形成一层固体渣膜,而在凝壳表面形成一层液体渣膜,这层液体渣膜在结晶器壁与坯壳表面起润滑作用,就象马达轴转动时加了润滑油一样。

同时,渣膜充填了坯壳与铜壁之间气隙,减少了热阻,改善了结晶的传热。

随着拉坯的进行,钢液面上的液渣不断消耗掉,而烧结层下降到钢液面熔化成液渣层,粉渣层变成烧结层,再往结晶器添加新的渣粉,使其保持为三层结构,如此循环,保护渣粉不断消耗。

3.如何实现使结晶器保护渣粉形成所谓“三层结构”?要发挥保护渣5个方面功能,就必须使添加到结晶器渣粉形成“三层结构”。

连铸保护渣的分类编制说明

连铸保护渣的分类编制说明

《连铸保护渣的分类》编制说明1、工作简介1.1任务来源根据工信部工信厅科[2011]75号文《关于印发2011年第一批行业标准修订计划的通知》的要求,由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草《连铸保护渣分类(2010-3479T-YB)》。

1.2主要工作过程及参编单位接到标准编制任务后,我们迅速组建了标准起草工作组。

标准起草工作组组建后,首先收集了国内外有关资料,了解连铸保护渣生产企业有关技术发展动态,并对我国连铸保护渣生产企业的生产现状作了调研,明确了工作重点和进程安排。

2011年5月1—2日,标准起草工作组召开了第一次工作会议。

会议上进一步明确了行业标准起草工作要求,就标准的基本框架及内容进行了充分讨论,研究了标准宣贯教材的编写工作并对工作组成员分工、工作进度及时限要求作了具体安排。

2011年6月,标准起草组根据前期工作情况提出了该标准征求意见稿的初稿。

该征求意见稿的初稿已发给全国钢标准化技术委员会的相关专家征求意见,并对专家的意见进行了研究、分析和采纳,形成该标准的征求意见稿。

标准起草单位主要由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草。

2、编制目的连铸技术是优化现代钢铁产业结构的关键性技术,而结晶器保护渣对于改善铸坯质量,稳定连铸操作至关重要。

我国从上世纪70年代开始就进行了一系列保护渣的试验研究,现已建起了数家相当规模的生产厂家,为我国钢铁工业提供了所需要的保护渣产品。

由于连铸保护渣产品的特殊性,除相关的检、试验分析方法标准外,一直没有制定相应的产品标准。

目前,保护渣市场较为混乱,用户选择保护渣没有依据很不方便。

为了规范市场,保证钢铁生产的质量,满足钢厂用户对不同钢种使用保护渣的选择,急需制定连铸保护渣的分类标准,为今后统一连铸保护渣产品标准提供基础保障。

3、标准编制原则本标准是结合目前国内外产品类型的实际情况,并针对于不同市场需求而制订。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《连铸保护渣的分类》编制说明
1、工作简介
1.1任务来源
根据工信部工信厅科[2011]75号文《关于印发2011年第一批行业标准修订计划的通知》的要求,由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草《连铸保护渣分类(2010-3479T-YB)》。

1.2主要工作过程及参编单位
接到标准编制任务后,我们迅速组建了标准起草工作组。

标准起草工作组组建后,首先收集了国内外有关资料,了解连铸保护渣生产企业有关技术发展动态,并对我国连铸保护渣生产企业的生产现状作了调研,明确了工作重点和进程安排。

2011年5月1—2日,标准起草工作组召开了第一次工作会议。

会议上进一步明确了行业标准起草工作要求,就标准的基本框架及内容进行了充分讨论,研究了标准宣贯教材的编写工作并对工作组成员分工、工作进度及时限要求作了具体安排。

2011年6月,标准起草组根据前期工作情况提出了该标准征求意见稿的初稿。

该征求意见稿的初稿已发给全国钢标准化技术委员会的相关专家征求意见,并对专家的意见进行了研究、分析和采纳,形成该标准的征求意见稿。

标准起草单位主要由河南省西保冶材集团有限公司、冶金工业信息标准研究院等单位负责起草。

2、编制目的
连铸技术是优化现代钢铁产业结构的关键性技术,而结晶器保护渣对于改善铸坯质量,稳定连铸操作至关重要。

我国从上世纪70年代开始就进行了一系列保护渣的试验研究,现已建起了数家相当规模的生产厂家,为我国钢铁工业提供了所需要的保护渣产品。

由于连铸保护渣产品的特殊性,除相关的检、试验分析方法标准外,一直没有制定相应的产品标准。

目前,保护渣市场较为混乱,用户选择保护渣没有依据很不方便。

为了规范市场,保证钢铁生产的质量,满足钢厂用户对不同钢种使用保护渣的选择,急需制定连铸保护渣的分类标准,为今后统一连铸保护渣产品标准提供基础保障。

3、标准编制原则
本标准是结合目前国内外产品类型的实际情况,并针对于不同市场需求而制订。

4、标准内容说明
4.1、关于适用范围
本标准规定了连铸保护渣的分类、命名和型号构成与划分的原则和方法。

本标准适用于连铸保护渣,主要用于识别连铸保护渣的类型及其差异。

4.2分类
4.2.1按铸坯断面分类
连铸保护渣适用铸坯断面分4类,见表1。

连铸保护渣按铸坯断面分类及代码
表1分类及代码
4.2.2按材料处理分类
连铸保护渣按原材料处理工艺分类,见表2。

连铸保护渣用材料分类及代码
表2材料分类及代码
4.2.3按形状分类
连铸保护渣的按外形分为2类,见表3。

连铸保护渣外表形状分类及代码
表3外表形状分类及代码
4.2.4按适用钢种分类
连铸保护渣按适用的钢种分为5类,见表4。

表4 连铸保护渣适用钢种分类及代码
4.3代号命名
4.3.1连铸保护渣代号一般是由适用钢种或铸坯断面加上基本名称组成。

4.3.2连铸保护渣代号用于区别具体连铸保护渣品种,它位于连铸保护渣名称之前。

4.3.3连铸保护渣代号由三个拉丁字母和一个或两个字母或数字混合组成。

字母表示连铸保护渣类别代号,位于型号的最前部;第一位表示连铸保护渣适用铸坯断面代号;第二位表示连铸保护渣基本材料代码,也可以省略;第三位表示连铸保护渣外表形状代码;第四位表示连铸保护渣适用钢种代码。

在第三位字母和第四位字母或数字之间加有半字线(读成“之”),把基本名称代号与序号分开。

连铸保护渣序号用于区别同类、同名称连铸保护渣的不同品种。

4.3.4连铸保护渣代号命名举例
代号含义简称FRK-D 预熔型低碳钢方坯空心颗粒连铸保护渣低碳钢方坯连铸渣
BRK—G 预熔型高碳钢板坯空心颗粒连铸保护渣高碳钢板坯连铸渣
HK 异型坯空心颗粒连铸保护渣异型坯连铸保护渣
YK-1 圆坯空心颗粒连铸保护渣圆坯连铸保护渣
JO 开浇渣
5关于专利
本标准不涉及专利内容。

6关于标准的一致性
本标准与国家相关技术标准和法规保持一致,没有冲突。

7标准的应用
本标准为推荐性标准。

8标准的实施措施
本标准应由工信部牵头,在主管单位和技术归口单位的支持下大力推进标准的实施,规范连铸保护渣分类,提高钢材质量,促进结构调整等。

相关文档
最新文档