第20届全国高中生物理竞赛复赛试题

合集下载

答案--2020年全国物理竞赛复赛试卷A

答案--2020年全国物理竞赛复赛试卷A



试卷 1 答案
一、(40 分)如图所示,一个质量为 的大物块置于光滑水平面上,大物块内有一个长方形
光滑空腔,其中放有一个质量为 的小物块(视为质点)。两物块由一个劲度系数为 的弹
育 育 簧相连,且在运动过程中不会发生碰撞。一个周期性外力
( )作用于
大物块上,将其推前、拉后,在本题的讨论中,系统的振动已经达到稳态。在地面参考系中
, 取(1)问所得值,从而确保

三点始终处于同一竖直面内。分别求
教 教 出 A、B 两点所受支持力的大小(保留至一阶小量); (3)在(2)的基础上,把 A、B 两质点换成两个质量为 ,半径为 (
, 与 同阶)
育 教
圆 圆 圆 的均质圆盘,圆心分别连接在杆的两端。这种连接机构可以使两圆盘分别进行角速度可能不 同的自由转动,同时使圆盘与细杆保持垂直。已知两圆盘做纯滚动,其余条件同(2),要使
圆 圆 圆 的质点,以水平方向的初速度 与细杆发生完全非弹性碰撞,碰后二者粘连在一起。已知碰 撞点与地面的距离为 。



(1)求碰后系统的质心速度和转动角速度;
(2)已知
,若细杆尚未离开地面,当杆与水平面夹角为 时,求系统的转动角速度 ;
育 (3)在(2)的基础上,已知
的大小。
,
育 ,求杆与水平面夹角为 时地面对杆支持力

方 方 最大功率不同,空调外机均安装在室外。同时,房间与室外、房间与房间的热传递功率均正
育 育 (6)(7)式各 2 分,(8)式 4 分,(9)(10)式各 2 分,(11)(12)式各 2 分;第(3)问
16 分,(16)(17)(18)(19)式各 1 分,(20)式 2 分,(21)式 3 分,(22)(23)各 1 分,

中国高中生全国物理竞赛第20届复赛试题

中国高中生全国物理竞赛第20届复赛试题

第二十届全国中学生物理竞赛复 赛 试 卷全卷共七题,总分为140分。

一、(15分)图复20-1中a 为一固定放置的半径为R 的均匀带电导体球,O 为其球心。

已知取无限远处的电势为零时,球表面处的电势为U = 1000V 。

在离球心O 很远的O ′点附近有一质子b ,它以E k = 2000eV 的动能沿与O ′O 平行的的方向射向a 。

以l 表示b 与O ′O 线之间的垂直距离,要使质子b 能够与带电球体a 的表面相碰,试求l 的最大值。

把质子换成电子,再求l 的最大值。

二、(15分)U型管的两支管A、B和水平管都是由内径均匀的细玻璃管做成的,它们的内径与管长相比都可以忽略不计。

已知三部分的截面积分别为S A= 1.0×10−2cm2,S B= 3.0×10−2cm2,S C= 2.0×10−2cm2。

在C管中有一段空气柱,两侧被水银封闭,当温度为t1 = 27℃时,空气柱长为l = 30cm (如图复20-2所示),C中空气两侧的水银柱长分别为a = 2.0cm ,b = 3.0cm ,A、B两支管都很长,其中的水银柱高均为h = 12cm 。

大气压强保持为p0 = 76cmHg不变。

不考虑温度变化时管和水银的热膨胀。

试求气柱中空气温度缓慢升高到t = 97℃时空气的体积。

三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想。

其设想如下:沿地球的Array一条弦挖一通道,如图复20-3所示。

在通道的两个出口处A和B ,分别将质量为M的物体和质量为m的待发卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即将待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小。

这样待发卫星便有可能绕地球运动,成为一个人造卫星。

若人造卫星正好沿地球表面绕地球做圆周运动,则地心到该通道的距离为多少?已知M = 20m ,地球半径R0 = 6400km 。

2023年全国中学生物理竞赛决赛试题精华集

2023年全国中学生物理竞赛决赛试题精华集

光学专辑第21届预赛2023.9.5一、(15分)填空1.d.一个可见光光子的能量的数量级为_________J。

2.已知某个平面镜反射的光能量为入射光能量的80%。

试判断下列说法是否对的,并简述理由。

a.反射光子数为入射光子数的80%;b.每个反射光子的能量是入射光子能量的80%。

六、(15分)有一种高脚酒杯,如图所示。

杯内底面为一凸起的球面,球心在顶点O下方玻璃中的C点,球面的半径R=1.50cm,O到杯口平面的距离为8.0cm。

在杯脚底中心处P点紧贴一张画片,P点距O点6.3cm。

这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但假如斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物。

已知玻璃的折射率n1=1.56,酒的折射率n2=1.34。

试通过度析计算与论证解释这一现象。

第21届复赛四、(20分)目前,大功率半导体激光器的重要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的规定,对光束进行必需的变换(或称整形).假如能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和应用将是非常故意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明.如图,S 1、S 2、S 3 是等距离(h )地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan ()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能所有投射到这个组合透镜上,且经透镜折射后的光线能所有会聚于z 轴(以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线)上距离S 2为 L = 12.0 h 处的P 点.(加工时可对透镜进行外形的改变,但不能改变透镜焦距.)1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜应如何加工和组装,并求出有关数据.第20届预赛一、(20分)两个薄透镜L 1和L 2共轴放置,如图所示.已知L 1的焦距f 1=f , L 2的焦距f 2=—f ,两透镜间距离也是f .小物体位于物面P 上,物距u 1 =3f .(1)小物体经这两个透镜所成的像在L 2的__________边,到L 2的距离为_________,是__________倍(虚或实)、____________像(正或倒),放大率为_________________。

2020年第二十届全国应用物理竞赛试题及答案(word版) 新人教版 精品

2020年第二十届全国应用物理竞赛试题及答案(word版) 新人教版 精品

2020年第二十届全国应用物理竞赛试题一、选择题(每小题2分,共20分):以下各小题给出的四个选项中只有一个是正确的,把正确选项前面的字母填在题后的括号内。

1.2020年的诺贝尔物理学奖由三人分享,其中在光纤通信技术方所做的原创性工作而被称为“光纤之父”的美籍华人是()A.钱永健B.朱棣文C.高锟D.丁肇中2.晴朗无风的早晨,当飞机从空中飞过,在蔚蓝的天空中会留下一条长长的“尾巴”,如图1所示,这种现象俗称为“飞机拉烟”。

产生这一现象的原因之一是飞机在飞行过程中排出的暖湿气体遇冷所致。

在这一过程中,暖湿气体发生的物态变化是()A.熔化B.液化C.蒸发D.升华3.2020年1月2日起,我国北方大部分地区遭大范围降雪天气袭击。

大雪严重影响了民航、铁路和高速工路等交通,如图2所示。

在遇到这种天气时,为了尽快清除积雪,常用的办法是撒“融雪盐”,这是因为()A.“融雪盐”与少量水发生化学反应,产生的热量使周围的冰雪熔化B.“融雪盐”产生“保暖层”,使冰雪吸收足够的“地热”而熔化C.使雪形成“含融雪盐的雪”,“含融雪盐的雪”熔点低于当地温度,使雪熔化D.“融雪盐”有利于冰雪对阳光的吸收,从而加快冰雪的熔化4.小明发现户外地面以上的冬季供热管道每隔一段距离总呈现型,如图3所示。

其主要原因是()A.为了避开行人和建筑物B.为了美观C.为了避免管道因热胀冷缩导致的损坏D.为了方便工人师傅安装和检修5.体操、投掷、攀岩等体育活动都不能缺少的“镁粉”,它的学名是碳酸镁。

体操运动员在杠前都要在手上涂擦“镁粉”,其目的是A.仅仅是为了利用“镁粉”吸汗的作用,增加手和器械表面的摩擦而防止打滑B.仅仅是为了利用手握着器械并急剧转动时“镁粉”能起到衬垫作用,相当于在中间添加了一层“小球”做“滚动摩擦”C.仅仅是为了利用“镁粉”填平手掌的褶皱和纹路,使手掌与器械的接触面积增大,将握力变得更加实在和均匀D.上述各种功能都有6.小新同学家中的墙壁上竖直悬挂着一指针式电子钟,当其因电池电能不足而停止时。

第20届全国中学生物理竞赛预赛题参考答案文档

第20届全国中学生物理竞赛预赛题参考答案文档

第二十届全国中学生物理竞赛预赛题参考答案、评分标准一、参考解答(1) 右 f 实 倒 1 。

(2) 左 2f 实 倒 1 。

评分标准:本题20分,每空2分。

二、参考解答波长λ与频率ν的关系为 cνλ=, (1)光子的能量为 E h νν=, (2) 由式(1)、(2)可求得产生波长74.8610λ-=⨯m 谱线的光子的能量194.0910E ν-=⨯J (3)氢原子的能级能量为负值并与量子数n 的平方成反比: 21n E kn=-,n =1,2,3,… (4) 式中k 为正的比例常数。

氢原子基态的量子数n =1,基态能量1E 已知,由式(4)可得出1k E =- (5)把式(5)代入式(4),便可求得氢原子的n =2,3,4,5,… 各能级的能量,它们是19221 5.45102E k -=-=-⨯J , 193212.42103E k -=-=-⨯J ,194211.36104E k -=-=-⨯J ,205218.72105E k -=-=-⨯J 。

比较以上数据,发现1942 4.0910E E E ν-=-=⨯J 。

(6)所以,这条谱线是电子从4n =的能级跃迁到2n =的能级时发出的。

评分标准:本题20分。

式(3)4分,式(4)4分,式(5)4分,式(6)及结论共8分。

三、参考解答1. 操作方案:将保温瓶中90.0t =℃的热水分若干次倒出来。

第一次先倒出一部分,与温度为010.0t =℃的构件充分接触,并达到热平衡,构件温度已升高到1t ,将这部分温度为1t 的水倒掉。

再从保温瓶倒出一部分热水,再次与温度为t 的构件充分接触,并达到热平衡,此时构件温度已升高到2t ,再将这些温度为2t 的水倒掉。

然后再从保温瓶中倒出一部分热水来使温度为2t 的构件升温……直到最后一次,将剩余的热水全部倒出来与构件接触,达到热平衡。

只要每部分水的质量足够小,最终就可使构件的温度达到所要求的值。

2. 验证计算:例如,将1.200kg 热水分5次倒出来,每次倒出0m =0.240kg ,在第一次使热水与构件达到热平衡的过程中,水放热为1001()Q c m t t =- (1)构件吸热为110()Q cm t t '=- (2) 由11Q Q '=及题给的数据,可得1t =27.1℃ (3)同理,第二次倒出0.240kg 热水后,可使构件升温到2t =40.6℃ (4)依次计算出1t ~5t 的数值,分别列在下表中。

高中物理 原子物理竞赛试题分类汇编

高中物理 原子物理竞赛试题分类汇编

全国中学生物理竞赛分类汇编原子物理第21届预赛一、(15分)填空1.a .原子大小的数量级为__________m 。

b .原子核大小的数量级为_________m 。

c .氦原子的质量约为_________kg 。

(普朗克常量 h =6.63×10-34J ·s )2.已知某个平面镜反射的光能量为入射光能量的80%。

试判断下列说法是否正确,并简述理由。

a . 反射光子数为入射光子数的80%;b .每个反射光子的能量是入射光子能量的80%。

第21届复赛三、(15分)μ子在相对自身静止的惯性参考系中的平均寿命s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反应产生一批μ子,以v = 0.99c 的速度(c 为真空中的光速)向下运动并衰变.根据放射性衰变定律,相对给定惯性参考系,若t = 0时刻的粒子数为N (0), t 时刻剩余的粒子数为N (t ),则有()()τt N t N -=e 0,式中τ为相对该惯性系粒子的平均寿命.若能到达地面的μ子数为原来的5%,试估算μ子产生处相对于地面的高度h .不考虑重力和地磁场对μ子运动的影响.第20届预赛二、(20分)一个氢放电管发光,在其光谱中测得一条谱线的波长为4.86×10-7m .试计算这是氢原子中电子从哪一个能级向哪一个能级(用量子数n 表示)跃迁时发出的?已知氢原子基态(n =1)的能量为E l =一13.6eV =-2.18×10-18J ,普朗克常量为 h =6.63×10-34J ·s 。

第20届复赛 (无)第19届预赛 (无) 第19届复赛六、(20分)在相对于实验室静止的平面直角坐标系S 中,有一个光子,沿x 轴正方向射向一个静止于坐标原点O 的电子.在y 轴方向探测到一个散射光子.已知电子的静止质量为0m ,光速为c ,入射光子的能量与散射光子的能量之差等于电子静止能量的1/10. 1.试求电子运动速度的大小v ,电子运动的方向与x 轴的夹角θ;电子运动到离原点距离为0L (作为已知量)的A 点所经历的时间t ∆.2.在电子以1中的速度v 开始运动时,一观察者S '相对于坐标系S 也以速度v 沿S 中电子运动的方向运动(即S '相对于电子静止),试求S '测出的OA 的长度.第18届预赛四、(1 8分)在用铀 235作燃料的核反应堆中,铀 235核吸收一个动能约为0.025eV 的热中子(慢中子)后,可发生裂变反应,放出能量和2~3个快中子,而快中子不利于铀235的裂变.为了能使裂变反应继续下去,需要将反应中放出的快中子减速。

全国中学生物理竞赛分类汇编

全国中学生物理竞赛分类汇编

全国中学生物理竞赛分类汇编光学第21届预赛一、(15分)填空1.d.一个可见光光子的能量的数量级为_________J。

2.已知某个平面镜反射的光能量为入射光能量的80%。

试判断下列说法是否正确,并简述理由。

a.反射光子数为入射光子数的80%;b.每个反射光子的能量是入射光子能量的80%。

六、(15分)有一种高脚酒杯,如图所示。

杯内底面为一凸起的球面,球心在顶点O下方玻璃中的C点,球面的半径R=1.50cm,O到杯口平面的距离为8.0cm。

在杯脚底中心处P点紧贴一张画片,P点距O点6.3cm。

这种酒杯未斟酒时,若在杯口处向杯底方向观看,看不出画片上的景物,但如果斟了酒,再在杯口处向杯底方向观看,将看到画片上的景物。

已知玻璃的折射率n1=1.56,酒的折射率n2=1.34。

试通过分析计算与论证解释这一现象。

第21届复赛四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区等距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和应用.为了解决这个问题,需要根据具体应用的要求,对光束进行必需的变换(或称整形).如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和应用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其基本原理可通过如下所述的简化了的情况来说明.如图,S1、S2、S3 是等距离(h)地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为α =arctan()41的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h、半径为r =0.75 h的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能全部投射到这个组合透镜上,且经透镜折射后的光线能全部会聚于z轴(以S2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线)上距离S2为L = 12.0 h处的P点.(加工时可对透镜进行外形的改变,但不能改变透镜焦距.)1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜应如何加工和组装,并求出有关数据.第20届预赛一、(20分)两个薄透镜L1和L2共轴放置,如图所示.已知L1的焦距f1=f , L2的焦距f2=—f,两透镜间距离也是f.小物体位于物面P上,物距u1=3f.(1)小物体经这两个透镜所成的像在L2的__________边,到L2的距离为_________,是__________倍(虚或实)、____________像(正或倒),放大率为_________________。

2020高中物理竞赛复赛模拟试题

2020高中物理竞赛复赛模拟试题

2020高中物理竞赛复赛模拟试题及答案1.(40分)如下图所示的一盘绳圈竖直静立着水平地面上,且盘外的绳子一端被固定住,此时盘的半径为R0,质量面密度为σ,绳带厚度为b(即绳盘上相邻两白线圈之间距离,b<<R0)。

现给予绳圈一个图示平面内的通过盘心的打击冲量I,此后绳圈的运动都位于图示平面内,试求出盘心右移量s 与时间t(t不大,可以保证b<<R(t))关系。

解答:假设当盘受到打击冲量I时,下端绳子受到拉力的冲量为I T,之后盘心的速度为v0,角速度为v0R0,则由冲量定理:I−I T=M0v0其中:M0=σπR02对于盘心的角动量定理:I T R0=M02R0v0联立可得:v0=2I 3M0假设之后盘右行时受到下端的拉力为T,则有:动量定理:−T=ⅆ(Mv)ⅆt对于盘心的角动量定理:TR=ⅆ( MvR2)ⅆt且有:M=σπR2ⅆM=−σbvⅆt=2σπRⅆR 联立可得:R=√R02−bs π3ⅆ(Mv)Mv+ⅆRR=0 vR73=const(1−bsπR02)76⁄ⅆs=v0ⅆt由于t=0时s=0,于是有:s=πR02b[1−(1−13bv0t6πR02)613⁄]其中:v0=2I 3σπR022.(40分)能量损耗是电路问题中的一个常见问题。

我们考虑一个由电容、电阻和电源串联而成的简单电路,研究从电路接通直至电路达到稳态前的能量损耗问题。

电容值为C且初始不带电,电阻值为R。

记电路接通时t=0,请求出下列两种情况下由于暂态电流电源做的功W。

(1)电源是电压大小为ε的直流稳压电源。

(2)电源是交流电源,可以表示为εcos(ωt+θ)。

解:(1):稳定时电容上电量为Cε,易得电源做功为:Cε2(2):接通电路之后,回路的电压方程可以写为:这是一个一阶线性微分方程,普通形式是:其解为:其中C为常数,由函数的初始条件决定。

于是可以解出回路电压方程:由于初始不带电,可得:电流为:第一项指数衰减项i′(t)即为暂态电流项,电源做功为:∞W=∫εcos(ωt+θ)⋅i′(t)ⅆt也即:此即由于暂态电流电源做的功。

第全国高中物理竞赛复赛题试卷及参考解答

第全国高中物理竞赛复赛题试卷及参考解答

额份市来比阳光实验学校本卷共七题,总分值140分.一、(20分)薄膜材料气密性能的优劣常用其透气系数来加以评判.对于均匀薄膜材料,在一温度下,某种气体通过薄膜渗透时间,过的气体分子数dPSt k N ∆=,其中t 为渗透持续S 为薄膜的面积,d 为薄膜的厚度,P ∆为薄膜两侧气体的压强差.k 称为该薄膜材料在该温度下对该气体的透气系数.透气系数愈小,材料的气密性能愈好.图为测薄膜材料对空气的透气系数的一种装置示意图.EFGI 为渗透室,U 形管左管上端与渗透室相通,右管上端封闭;U 形管内横截面积A =0.150cm 2.中,首先测得薄膜的厚度d =0.66mm ,再将薄膜固于图中C C '处,从而把渗透室分为上下两,上面的容积30cm 00.25=V ,下面连同U 形管左管水面以上的总容积为V 1,薄膜能够透气的面积S =1.00cm 2.翻开开关K 1、K 2与大气相通,大气的压强P 1=1.00atm ,此时U 形管右管中气柱长度cm 00.20=H ,31cm 00.5=V .关闭K 1、K 2后,翻开开关K 3,对渗透室上迅速充气至气体压强atm 00.20=P ,关闭K 3并开始计时.两小时后, U 形管左管中的水面高度下降了cm 00.2=∆H .过程中,始终保持温度为C 0 .求该薄膜材料在C 0 时对空气的透气系数.〔本中由于薄膜两侧的压强差在过程中不能保持恒,在压强差变化不太大的情况下,可用计时开始时的压强差和计时结束时的压强差的平均值P ∆来代替公式中的P ∆.普适气体常量R = 1Jmol -1K -1,1.00atm = 1.013×105Pa 〕.二、(20分) 两颗人造卫星绕地球沿同一椭圆轨道同向运动,它们通过轨道上同一点的时间相差半个周期.轨道近地点离地心的距离是地球半径R 的2倍,卫星通过近地点时的速度RGM 43=v ,式中M 为地球质量,G 为引力常量.卫星上装有同样的角度测量仪,可测出卫星与任意两点的两条连线之间的夹角.试设计一种测量方案,利用这两个测量仪测太空中某星体与地心在某时刻的距离.〔最后结果要求用测得量和地球半径R 表示〕 三、(15分)子在相对自身静止的惯性参考系中的平均寿命v =s 100.260-⨯≈τ.宇宙射线与大气在高空某处发生核反产生一批子,以0.99c 的速度〔c 为真空中的光速〕向下运动并衰变.根据放射性衰变律,相对给惯性参考系,假设t = 0时刻的粒子数为N (0), t 时刻剩余的的粒子数为N (t ),那么有()()τt N t N -=e 0,式中为相对该惯性系粒子平均寿命.假设能到达地面的子数为原来的5%,试估算子产生处相对于地面的高度h .不考虑重力和地磁场对子运动的影响.四、(20分)目前,大功率半导体激光器的主要结构形式是由许多发光区距离地排列在一条直线上的长条状,通常称为激光二极管条.但这样的半导体激光器发出的是很多束发散光束,光能分布很不集中,不利于传输和用.为了解决这个问题,需要根据具体用的要求,对光束进行必需的变换〔或称整形〕.如果能把一个半导体激光二极管条发出的光变换成一束很细的平行光束,对半导体激光的传输和用将是非常有意义的.为此,有人提出了先把多束发散光会聚到一点,再变换为平行光的方案,其根本原理可通过如下所述的简化了的情况来说明.第21届生物理竞赛复赛题试卷K 3K 2P 1 V 1CC ΄P 0 V 0K 1如图,S 1、S 2、S 3 是距离〔h 〕地排列在一直线上的三个点光源,各自向垂直于它们的连线的同一方向发出半顶角为束.请使=arctan ()41的圆锥形光用三个完全相同的、焦距为f = 0h 、半径为r =0.75 h 的圆形薄凸透镜,经加工、组装成一个三者在同一平面内的组合透镜,使三束光都能投射到这个组合透镜上,且经透镜折射后的光线能会聚于z 轴〔以S 2为起点,垂直于三个点光源连线,与光束中心线方向相同的射线〕上距离S 2为 L = 12.0 h 处的P 点.〔加工时可对透镜进行外形的改变,但不能改变透镜焦距.〕 1.求出组合透镜中每个透镜光心的位置.2.说明对三个透镜如何加工和组装,并求出有关数据.五、(20分)如下图,接地的空心导体球壳内半径为R ,在空腔内一直径上的P 1和P 2处,放置电量分别为q 1和q 2的点电荷,q 1=q 2=q ,两点电荷到球心的距离均为a .由静电感与静电屏蔽可知:导体空腔内外表将出现感电荷分布,感电荷电量于-2q .空腔内部的电场是由q 1、q 2和两者在空腔内外表上的感电荷共同产生的.由于我们尚不知道这些感电荷是怎样分布的,所以很难用场强叠加原理直接求得腔内的电势或场强.但理论上可以证明,感电荷对腔内电场的奉献,可用假想的位于腔外的〔效〕点电荷来代替〔在此题中假想(效)点电荷为两个〕,只要假想的〔效〕点电荷的位置和电量能满足这样的条件,即:设想将整个导体壳去掉,由q 1在原空腔内外表的感电荷的假想〔效〕点电荷1q '与q 1共同产生的电场在原空腔内外表所在位置处各点的电势皆为0;由q 2在原空腔内外表的感电荷的假想〔效〕点电荷2q '与q 2共同产生的电场在原空腔内外表所在位置处各点的电势皆为0.这样确的假想电荷叫做感电荷的效电荷,而且这样确的效电荷是唯一的.效电荷取代感电荷后,可用效电荷1q '、2q '和q 1、q 2来计算原来导体存在时空腔内部任意点的电势或场强.1.试根据上述条件,确假想效电荷1q '、2q '的位置及电量. 2.求空腔内部任意点A 的电势U A .A 点到球心O 的距离为r ,OA 与1OP 的夹角为.六、(20分)如下图,三个质量都是m 的刚性小球A 、B 、C 位于光滑的水平桌面上〔图中纸面〕,A 、B 之间,B 、C 之间分别用刚性轻杆相连,杆与A 、B 、C 的各连接处皆为“铰链式〞的〔不能对小球产生垂直于杆方向的作用力〕.杆AB 与BC 的夹角为 ,</2.DE 为固在桌面上一块挡板,它与AB 连线方向垂直.现令A 、B 、C 一起以共同的速度v 沿平行于AB 连线方向向DE 运动,在C 与挡板碰撞过程中C 与挡板之间无摩擦力作用,求碰撞时当C 沿垂直于DE 方向的速度由v 变为0这一极短时间内挡板对C 的冲量的大小.七、〔25分〕如下图,有二平行金属导轨,相距l ,位于同一水ABCπ-αDxO yv 0c a bydLS 1 3αα2 h h zrP 2P 1 θRaa平面内〔图中纸面〕,处在磁感强度为B 的匀强磁场中,磁场方向竖直向下〔垂直纸面向里〕.质量均为m 的两金属杆ab 和cd 放在导轨上,与导轨垂直.初始时刻, 金属杆ab 和cd 分别位于x = x 0和x = 0处.假设导轨及金属杆的电阻都为零,由两金属杆与导轨构成的回路的自感系数为L .今对金属杆ab 施以沿导轨向右的瞬时冲量,使它获得初速0v .设导轨足够长,0x 也足够大,在运动过程中,两金属杆之间距离的变化远小于两金属杆的初始间距0x ,因而可以认为在杆运动过程中由两金属杆与导轨构成的回路的自感系数L 是恒不变的.杆与导轨之间摩擦可不计.求任意时刻两杆的位置x ab 和x cd 以及由两杆和导轨构成的回路中的电流i 三者各自随时间t 的变化关系.第21届生物理竞赛复赛题参考解答一、开始时U 形管右管中空气的体积和压强分别为 V 2 = HA 〔1〕p 2= p 1经过2小时,U 形管右管中空气的体积和压强分别为A H H V )(2∆-='〔2〕2222V V p p '='〔3〕渗透室下部连同U 形管左管水面以上气体的总体积和压强分别为HAV V ∆+='11 〔4〕H g p p Δ221ρ+'=〔5〕式中为水的密度,g 为重力加速度.由理想气体状态方程nRT pV =可知,经过2小时,薄膜下部增加的空气的摩尔数RTV p RT V p n 1111-''=∆ 〔6〕在2个小时内,通过薄膜渗透过去的分子数 A nN N ∆=〔7〕式中N A 为阿伏伽德罗常量.渗透室上部空气的摩尔数减少,压强下降.下降了p0V ΔnRTp =∆ 〔8〕经过2小时渗透室上中空气的压强为p p p ∆-='00〔9〕测试过程的平均压强差[])(211010p p ()p p p '-'+-=∆ 〔10〕根据义,由以上各式和有关数据,可求得该薄膜材料在0℃时对空气的透气系数11111s m Pa 104.2---⨯=∆=tSp Nd k 〔11〕评分: 此题20分.(1)、(2)、(3)、(4)、(5)式各1分,(6)式3分,(7)、(8)、(9)、(10) 式各2分,(11) 式4分.二、如图,卫星绕地球运动的轨道为一椭圆,地心位于轨道椭圆的一个焦点O处,设待测量星体位于C 处.根据题意,当一个卫星运动到轨道的近地点A 时,另一个卫星恰好到达远地点B 处,只要位于A 点的卫星用角度测量仪测出AO和AC 的夹角1,位于B 点的卫星用角度测量仪测出BO 和BC 的夹角2,就可以计算出此时星体C 与地心的距离OC .因卫星椭圆轨道长轴的长度远近+r r AB =(1)式中r 近、与r 远分别表示轨道近地点和远地点到地心的距离.由角动量守恒远远近近=r m r v mv (2)式中m 为卫星的质量.由机械能守恒远远近近--r GMm m r GMm m 222121v v = (3) R r 2=近, RGM 43=近v得 R r 6=远(4) 所以R R R AB 862=+=(5)在△ABC 中用正弦理 ()ABBC 211πsin sin ααα--=(6) 所以()AB BC 211sin sin ααα+=(7)地心与星体之间的距离为OC ,在△BOC 中用余弦理2222cos 2αBC r BC r OC ⋅-+=远远(8)由式(4)、(5)、(7)得 ()()212121212sin cos sin 24sin sin 1692ααααααα+-++=R OC (9)评分:此题20分.(1)式2分,(2)、(3)式各3分,(6) 、(8)式各3分, (9) 式6分.三、因子在相对自身静止的惯性系中的平均寿命根据时间膨胀效,在地球上观测到的子平均寿命为,()21c v -=ττ (1)代入数据得= ×10-5s(2) 相对地面,假设子到达地面所需时间为t ,那么在t 时刻剩余的子数为()()τt N t N -=e 0(3)根据题意有()()%5e 0==-τt N t N(4)对上式号两边取e 为底的对数得1005lnτ-=t (5)代入数据得s 1019.45-⨯=t (6)根据题意,可以把子的运动看作匀速直线运动,有t h v =(7)代入数据得 m 1024.14⨯=h(8)评分:此题15分. (1)式或(2)式6分,(4)式或(5)式4分,(7) 式2分,(8) 式3分.四、1.考虑到使3个点光源的3束光分αLS 1 α2h h 1S ' S 3’O 1 O 2(S 2’) O 3M ’u别通过3个透镜都成实像于P 点的要求,组合透镜所在的平面垂直于z 轴,三个光心O 1、O 2、O 3的连线平行于3个光源的连线,O 2位于z 轴上,如图1所示.图中M M '表示组合透镜的平面,1S '、2S '、3S '为三个光束中心光线与该平面的交点. 22O S = u 就是物距.根据透镜成像公式 fu L u111=-+(1)可解得因为要保证经透镜折射后的光线都能会聚于P 点,来自各光源的光线在投射到透镜之前不能交叉,必须有2u tan ≤h 即u ≤2h .在上式中取“-〞号,代入f 和L 的值,算得 h u )236(-=≈57h (2) 此解满足上面的条件.分别作3个点光源与P 点的连线.为使3个点光源都能同时成像于P 点,3个透镜的光心O 1、O 2、O 3分别位于这3条连线上〔如图1〕.由几何关系知,有h h h L u L O O O O 854.0)24121(3221≈+=-==(3)即光心O 1的位置在1S '之下与1S '的距离为h O O h O S 146.02111=-=' (4) 同理,O 3的位置在3S '之上与3S '的距离为0.146h 处.由(3)式可知组合透镜中相邻薄透镜中心之间距离必须于0.854h ,才能使S 1、S 2、S 3都能成像于P 点. 2.现在讨论如何把三个透镜L 1、L 2、L 3加工组装成组合透镜.因为三个透镜的半径r = 0.75h ,将它们的光心分别放置到O 1、O 2、O 3处时,由于21O O =32O O =0.854h <2r ,透镜必然发生相互重叠,必须对透镜进行加工,各切去一,然后再将它们粘起来,才能满足(3)式的要求.由于对称关系,我们只需讨论上半的情况.图2画出了L 1、L 2放在M M '平面内时相互交叠的情况〔纸面为M M '平面〕.图中C 1、C 2表示L 1、L 2的边缘,1S '、2S '为光束中心光线与透镜的交点,W 1、W 2分别为C 1、C 2与O 1O 2的交点.1S '为圆心的圆1和以2S '〔与O 2重合〕为圆心的圆2分别是光源S 1和S 2投射到L 1和L 2时产生的光斑的边缘,其半径均为 h u 439.0tan ==αρ (5) 根据题意,圆1和圆2内的光线必须能进入透镜.首先,圆1的K 点〔见图2〕是否落在L 1上?由几何关系可知()h r h h S O K O 75.0585.0146.0439.0111=<=+='+=ρ (6) 故从S 1发出的光束能进入L 1.为了保证光束能进入透镜组合,对L 1和L 2进行加工时必须保存圆1和圆2内的透镜.下面举出一种对透镜进行加工、组装的方法.在O 1和O 2之间作垂直于O 1O 2且分别与圆1和圆2相切的切线Q Q '和N N '.假设沿位于Q Q '和N N '之间且与它们平行的任意直线T T '对透镜L 1和L 2进行切割,去掉两透镜的弓形,然后把它们沿此线粘合就得到符合所需组合透镜的上半部.同理,对L 2的下半部和L 3进行切割,然后将L 2的下半部和L 3粘合起来,就得到符合需要的整个组合透镜.这个组合透镜可以将S 1、S 2、S 3发出的光线都会聚到P 点.0.146h 0.854h 0.439h0.439h h S 1’O 2 (S 2’)O 1W 1W 2 Q Q ’ N N ’TT ’ C 1 C 2’圆1 圆2图2 xx K现在计算Q Q '和N N '的位置以及对各个透镜切去的大小符合的条件.设透镜L 1被切去沿O 1O 2方向的长度为x 1,透镜L 2被切去沿O 1O 2方向的长度为x 2,如图2所示,那么对任意一条切割线T T ', x 1、x 2之和为h O O r x x d 646.022121=-=+=〔7〕由于T T '必须在Q Q '和N N '之间,从图2可看出,沿Q Q '切割时,x 1达最大值(x 1M ),x 2达最小值(x 2m ),代入r ,和11O S '的值,得h x M 457.01=(8)代入(7)式,得h x d x M m 189.012=-=(9)由图2可看出,沿N N '切割时,x 2达最大值(x 2M ),x 1达最小值(x 1m ), 代入r 和的值,得h x M 311.02= (10)h x d x M m 335.021=-=〔11〕由对称性,对L 3的加工与对L 1相同,对L 2下半部的加工与对上半部的加工相同. 评分:此题20分.第1问10分,其中〔2〕式5分,〔3〕式5分,第2问10分,其中(5)式3分,(6)式3分,(7)式2分,(8)式、(9)式共1分,(10)式、(11)式共1分.如果学生解答中没有(7)—(11)式,但说了“将图2中三个圆锥光束照射到透镜保存,透镜其它可根据需要磨去〔或切割掉〕〞给3分,再说明将加工后的透镜组装成透镜组合时必须保证O 1O 2=O 1O 2=0.854h ,再给1分,即给(7)—(11)式的全分〔4分〕. 五、1.解法Ⅰ:如图1所示,S 为原空腔内外表所在位置,1q '的位置位于1OP 的线上的某点B 1处,2q '的位置位于2OP 的线上的某点B 2处.设A 1为S 面上的任意一点,根据题意有0111111='+B A q kP A q k(1)0212212='+B A q kP A q k (2)怎样才能使 (1) 式成立呢?下面分析图1中11A OP ∆与11B OA ∆的关系.假设效电荷1q '的位置B 1使下式成立,即211R OB OP =⋅ (3) 即 1111OB OA OA OP =(4)那么 1111B OA A OP ∽△△有RaOA OP B A P A ==111111 (5)由 (1)式和 (5)式便可求得效电荷1q '11q aRq -=' (6)由 (3) 式知,效电荷1q '的位置B 1到原球壳中心位置O 的距离aR OB 21=(7)同理,B 2的位置使2112B OA A OP ∽△△,用类似的方法可求得效电荷22q aRq -=' (8)B 2B 1P 2 P 1O Ra a θ图1SA 1效电荷2q '的位置B 2到原球壳中心O 位置的距离 aR OB 22=(9)解法Ⅱ:在图1中,设111r P A =,111r B A '=,d OB =1.根据题意,1q 和1q '两者在A 1点产生的电势和为零.有01111=''+r q k r q k 〔1'〕 式中1221)cos 2(θRa a R r -+= 〔2'〕1221)cos 2(θRd d R r -+=' 〔3'〕 由〔1'〕、〔2'〕、〔3'〕式得)cos 2()cos 2(22212221θθRa a R q Rd d R q -+'=-+ 〔4'〕 〔4'〕式是以θcos 为变量的一次多项式,要使〔4'〕式对任意θ均成立,号两边的相系数相,即)()(22212221a R q d R q +'=+ 〔5'〕a q d q 2121'=〔6'〕由〔5'〕、〔6'〕式得0)(2222=++-aR d R a ad 〔7'〕 解得aR a R a d 2)()(2222-±+=〔8'〕由于效电荷位于空腔外部,由〔8'〕式求得aR d 2=〔9'〕由〔6'〕、〔9'〕式有212221q aR q =' 〔10'〕考虑到〔1'〕式,有11q aRq -=' 〔11'〕 同理可求得aR OB 22=〔12'〕22q aR q -=' 〔13'〕2.A 点的位置如图2所示.A 的电势由q 1、1q '、q 2、2q '共同产生,即 ⎪⎪⎭⎫ ⎝⎛-+-=A B a R A P A B a R A P kq U A 22111111 (10)因22221cos 2⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=a R aR r r A B θ代入 (10) 式得图2⎪⎪⎭⎫++-+++422222cos 2cos 21R raR r a Ra ra r θθ (11)评分:此题20分.第1问18分,解法Ⅰ中(1)、(2)、(6)、(7)、(8)、(9) 式各3分.解法Ⅱ的评分可参考解法Ⅰ. 第2问2分,即(11)式2分.六、令I 表示题述极短时间t 内挡板对C 冲量的大小,因为挡板对C 无摩擦力作用,可知冲量的方向垂直于DE ,如下图;I '表示B 、C 间的杆对B 或C 冲量的大小,其方向沿杆方向,对B 和C 皆为推力;C v 表示t 末了时刻C 沿平行于DE方向速度的大小,B v 表示t 末了时刻B 沿平行于DE 方向速度的大小,⊥B v 表示t 末了时刻B 沿垂直于DE 方向速度的大小.由动量理, 对C 有Cm I v ='αsin (1) v m I I ='-αcos(2)对B 有B m I v ='αsin(3)对AB 有()⊥-='B m I v v 2cos α(4)因为B 、C 之间的杆不能伸、缩,因此B 、C 沿杆的方向的分速度必相.故有αααsin cos sin B B C v v v -=⊥(5)由以上五式,可解得v m I αα22sin 31sin 3++= (6)评分:此题20分. (1)、(2)、(3)、(4)式各2分. (5)式7分,(6)式5分. 七、解法Ⅰ:当金属杆ab 获得沿x 轴正方向的初速v 0时,因切割磁力线而产生感电动势,由两金属杆与导轨构成的回路中会出现感电流.由于回路具有自感系数,感电流的出现,又会在回路中产生自感电动势,自感电动势将阻碍电流的增大,所以,虽然回路的电阻为零,但回路的电流并不会趋向无限大,当回路中一旦有了电流,磁场作用于杆ab 的安培力将使ab 杆减速,作用于cd 杆的安培力使cd 杆运动.设在任意时刻t ,ab 杆和cd 杆的速度分别为v 1和v 2〔相对地面参考系S 〕,当v 1、v 2为正时,表示速度沿x 轴正方向;假设规逆时针方向为回路中电流和电动势的正方向,那么因两杆作切割磁力线的运动而产生的感电动势()21v v -=Bl E(1)当回路中的电流i 随时间的变化率为t i ∆∆时,回路中的自感电动势tiLL ∆∆-=E (2)根据欧姆律,注意到回路没有电阻,有0=+L E E(3)金属杆在导轨上运动过程中,两杆构成的系统受到的水平方向的合外力为零,系统的质心作匀速直线运动.设系统质心的速度为V C ,有 C mV m 20=v(4)得B ACπ-αD20v =C V (5)V C 方向与v 0相同,沿x 轴的正方向.现取一的参考系S ',它与质心固连在一起,并把质心作为坐标原点O ',取坐标轴x O ''与x 轴平行.设相对S '系,金属杆ab 的速度为u ,cd 杆的速度为u ',那么有 u V C +=1v (6)u V C '+=2v(7)因相对S '系,两杆的总动量为零,即有0='+u m mu(8) 由(1)、(2)、(3)、(5)、(6) 、(7) 、(8)各式,得ti LBlu ∆∆=2 (9)在S '系中,在t 时刻,金属杆ab 坐标为x ',在t +t 时刻,它的坐标为x x '∆+',那么由速度的义tx u ∆'∆=(10)代入 (9) 式得i L x Bl ∆='∆2(11)假设将x '视为i 的函数,由〔11〕式知i x ∆'∆为常数,所以x '与i 的关系可用一直线方程表示b i BlLx +='2 (12)式中b 为常数,其值待.现在t =时刻,金属杆ab 在S '系中的坐标x '=021x ,这时i = 0,故得0212x i Bl L x +=' (13)或⎪⎭⎫⎝⎛-'=0212x x L Bl i (14)021x 表示t =时刻金属杆ab 的位置.x '表示在任意时刻t ,杆ab 的位置,故⎪⎭⎫⎝⎛-'021x x 就是杆ab 在t 时刻相对初始位置的位移,用X 表示,021x x X -'= (15)当X >0时,ab 杆位于其初始位置的右侧;当X <0时,ab 杆位于其初始位置的左侧.代入(14)式,得X LBli 2= (16)这时作用于ab 杆的安培力XLl B iBl F 222-=-= (17)ab 杆在初始位置右侧时,安培力的方向指向左侧;ab 杆在初始位置左侧时,安培力的方向指向右侧,可知该安培力具有弹性力的性质.金属杆ab 的运动是简谐振动,振动的周期()Ll B m T 222π2= (18)在任意时刻t , ab 杆离开其初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(19)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得ab 杆的振动速度⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-=ϕt TT A u π2sin π2(20)(19)、(20)式分别表示任意时刻ab 杆离开初始位置的位移和运动速度.现在t =0时刻,ab 杆位于初始位置,即X = 0速度故有解这两式,并注意到(18)式得2π3=ϕ(21)22400mLBlT A vv ==π (22)由此得ab 杆的位移t TmL Bl t TmL BlX π2sin 222π3π2cos 2200v v =⎪⎭⎫ ⎝⎛+=〔23〕由 (15) 式可求得ab 杆在S '系中的位置t TmL Blx x π2sin 222100abv +=' (24)因相对质心,任意时刻ab 杆和cd 杆都在质心两侧,到质心的距离相,故在S '系中,cd 杆的位置t TmL Blx x π2sin 222100cdv --='(25) 相对地面参考系S ,质心以021v =C V 的速度向右运动,并注意到〔18〕式,得ab杆在地面参考系中的位置t mL Bl mL Blt x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v (26)cd 杆在S 系中的位置t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔27〕回路中的电流由 (16) 式得t mL Bl L m t T mL BlL Bl i ⎪⎪⎭⎫ ⎝⎛==2sin 2π2sin 22200v v (28)解法Ⅱ:当金属杆在磁场中运动时,因切割磁力线而产生感电动势,回路中出现电流时,两金属杆都要受到安培力的作用,安培力使ab 杆的速度改变,使cd 杆运动.设任意时刻t ,两杆的速度分别为v 1和v 2〔相对地面参考系S 〕,假设规逆时针方向为回路电动势和电流的正方向,那么由两金属杆与导轨构成的回路中,因杆在磁场中运动而出现的感电动势为()21v v -=Bl E(1’)令u 表示ab 杆相对于cd 杆的速度,有Blu L =E(2’)当回路中的电流i 变化时,回路中有自感电动势E L ,其大小与电流的变化率成正比,即有tiLL ∆∆-=E (3’)根据欧姆律,注意到回路没有电阻,有由式(2’)、(3’)两式得tiLBlu ∆∆= (4’)设在t 时刻,金属杆ab 相对于cd 杆的距离为x ',在t +t 时刻,ab 相对于cd 杆的距离为x '+x '∆,那么由速度的义,有tx u ∆'∆=(5’)代入 4' 式得i L x Bl ∆='∆(6’)假设将x '视为i 的函数,由(6’)式可知,i x ∆'∆为常量,所以x '与i 的关系可以用一直线方程表示,即b i BlLx +=' (7’)式中b 为常数,其值待.现在t =时刻,金属杆ab 相对于cd 杆的距离为0x ,这时i = 0,故得 0x i Bl Lx +=' (8’) 或()0x x L Bli -'= (9’)0x 表示t =时刻金属杆ab 相对于cd 杆的位置.x '表示在任意时刻t 时ab杆相对于cd 杆的位置,故()0x x -'就是杆ab 在t 时刻相对于cd 杆的相对位置相对于它们在t =时刻的相对位置的位移,即从t =到t =t 时间内ab 杆相对于cd 杆的位移0x x X -'=(10')于是有X L Bli = (11’)任意时刻t ,ab 杆和cd 杆因受安培力作用而分别有加速度a ab 和a cd ,由牛顿律有 ab ma iBl =- (12’)cd ma iBl =(13’)两式相减并注意到9'式得()XLl B iBl a a m 22cd ab22-=-=- (14’)式中()cd ab a a -为金属杆ab 相对于cd 杆的加速度,而X 是ab 杆相对cd 杆相对位置的位移.Ll B 222是常数,说明这个相对运动是简谐振动,它的振动的周期()Ll B m T 222π2= (15’)在任意时刻t ,ab 杆相对cd 杆相对位置相对它们初始位置的位移⎪⎭⎫⎝⎛+=ϕt T A X π2cos(16’)A 为简谐振动的振幅,为初相位,都是待的常量.通过参考圆可求得X 随时间的变化率即速度⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=ϕT T A V π2sin π2(17’)现在t =0时刻,杆位于初始位置,即X = 0,速度0v =V 故有解这两式,并注意到(15’) 式得由此得t mL Bl mL Bl t TmL BlX ⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+=2sin 22π3π2cos 200v v (18’)因t = 0时刻,cd 杆位于x = 0 处,ab 杆位于x = x 0 处,两者的相对位置由x 0表示;设t 时刻,cd 杆位于x = x cd 处,ab 杆位于x = x ab 处,两者的相对位置由x ab -x cd 表示,故两杆的相对位置的位移又可表示为X = x ab -x cd -x 0(19’)所以t mL Bl mL Blx x x ⎪⎪⎭⎫ ⎝⎛+=-2sin 200cd ab v (20’)(12’)和(13’)式相加, 得由此可知,两杆速度之和为一常数即v 0,所以两杆的位置x ab 和x cd 之和为x ab +x cd = x 0+v 0t (21’)由(20’)和(21’)式相加和相减,注意到(15’)式,得 t mL BlmL Bl t x x ⎪⎪⎭⎫ ⎝⎛++=2sin 2221000ab v v 〔22’〕t mL Bl mL Blt x ⎪⎪⎭⎫ ⎝⎛-=2sin 222100cd v v 〔23’〕由(11’)、〔19’〕(22’)、(23’)式得回路中电流t mL Bl L m i ⎪⎪⎭⎫ ⎝⎛=2sin 20v 〔24’〕评分:此题25分.解法Ⅰ 求得(16)式8分,(17)、(18)、(19)三式各2分. (23)式4分,(24)、(25)二式各2分,(26)、(27)、(28)三式各1分.解法Ⅱ的评分可参照解法Ⅰ评分中的相式子给分.。

全国中学生物理竞赛复赛题(十三届到二十届)

全国中学生物理竞赛复赛题(十三届到二十届)

O
的大小和方向如何?
a
r
O/
〔注〕已知:装置不变时,
不同的静电平衡带电状态可以
叠加,叠加后仍为静电平衡状 态。
图复13 - 4
五、有一个用伸缩性极小且不漏气的布料制作的气球(布的质量可忽略不计),直径为 d = 2.0 米。球内充有压强 p0 =1.005×105 帕的气体。该布料所能承受的最大不被撕破力为
1. 试求将次点电荷由 E 点缓慢移至 A 点外力需做功的正负大小 , 并说明理 由. 2..P 为球心正下方的一点 ,OP=R. 试求将次点电荷由 E 点缓慢移至 P 点外力 需做功的正负及大小,并说明理由 五。( 16 ) 某暗盒内是由若干定值电阻连接成的电路。从该电路中引出四个端钮 1 , 1 ′, 2 , 2 ′,如图 4 ( a )所示。
A 的加速度是 ________;
B 的加速度是 _________;
C 的加速度是 _________;
三 (10 分 )
测定患者的血沉 , 在医学上有助于医生对病情作出判断 , 设血液是由红血球 和血浆组成的悬浮液 . 将次悬浮液放入竖直放置的血沉管内 , 红血球就会在 血浆中匀速下沉 , 其下沉速率称为血沉 . 某人的血沉 υ 的值大约是 10 毫米/ 小时. 如果把红血球近似看作是半径为 R 的小球 , 且认为它在血浆中所受的 粘滞阻力为 f=6πηRυ .
九 .(20 分 ) 如图 8, 电源的电动势为 U, 电动势为 U, 电动器的电容为 C,K 是单刀双掷 开关 .MN,PQ 是两根位于同一水平面的平行光滑长导轨 , 它们的电阻可以忽略 不计 . 两导轨间距为 L, 导轨处磁感应强度为 B 的均匀磁场中 , 磁场方向垂 直于两导轨所在的平面并指向图中纸面向里的方向 .l1 和 l2 是两根横放在导 轨上的导体小棒 , 它们在导轨上滑动时与导轨保持垂直并接触良好,不计摩擦. 两小棒的电阻相同,质量分别为 m1 和 m2,且 m1<m2, 开始时两根小棒均静止在导轨 上 , 现将开关 K 先合向 1, 然后合向 2. 求 :

第二十届复赛7题讨论

第二十届复赛7题讨论

对第二十届全国中学生物理竞赛复赛试卷第七题参考解答的讨论清华大学附中孟卫东[摘要]第二十届全国中学生物理竞赛复赛试卷第七题提供的参考解答,在原题背景下,仅考虑了一种情况;本文指出其漏解的部分,并给出讨论和详解。

[关键词]物理竞赛复赛试卷参考解答漏解模型动摩擦因数恢复系数水平方向竖直方向第二十届全国物理竞赛复赛试卷第七大题原题是:如图所示将一铁饼状小物块在离地面高为h处沿水平方向以初速v0抛出。

已知物块碰地弹起时沿竖直方向的分速度的大小与碰撞前沿竖直方向的分速度的之比为 e(e <1)。

又知沿水平方向物块与地面之间的滑动摩擦系数为µ(≠0);每次碰碰撞过程的时间都非常短,而且都是“饼面”着地。

求物块沿水平方向运动地最远距离。

[原题提供的参考答案]:设物块在A1点第一次与地面碰撞,碰撞前水平速度仍为V0,竖直速度为(1)碰撞后物块的竖直速度变为u1,根据题意,有u1=eu0 (2)设物块的质量为m, 碰撞时间为Δt, 因为碰撞时间极短,物块与地面间沿竖直方向的作用力比重力大得多,可忽略重力的作用。

这样,物块对地面正压力的大小为N1= (m u0 + m u1)/Δt (3)水平方向动量的变化是水平方向摩擦力的冲量作用的结果,设水平方向速度变为v 1,则有m v 1 - mv0= -µN1Δt (4)由以上各式得v 1= v0 –(1+e)µ u0 (5)同理,在落地点A2, A3……An,,其碰撞后的竖直速度分别为u2 =e2u0 ,u3 = e3u0,……u n= e n u0, (6)其水平速度分别为v2= v0-(1+e)µ(1+e) u0,v3= v0-(1+e)µ(1+e +e2) u0,……v n= v0-(1+e)µ(1+e +e2 +…+e n-1 ) u0 (7)由式(6)可知,只有当碰撞次数n→∞时,碰地后竖直方向分速度u n才趋于0。

2023年全国中学生物理竞赛决赛试题精华集

2023年全国中学生物理竞赛决赛试题精华集

光学专辑第21届预赛2023.9.5一、(15分)填空a.1. d. 一个可见光光子的能量的数量级为_________J。

b.2.已知某个平面镜反射的光能量为入射光能量的80%。

试判断下列说法是否对的, 并简述理由。

c.反射光子数为入射光子数的80%;b. 每个反射光子的能量是入射光子能量的80%。

六、(15分)有一种高脚酒杯, 如图所示。

杯内底面为一凸起的球面, 球心在顶点O下方玻璃中的C点, 球面的半径R=1.50cm, O到杯口平面的距离为8.0cm。

在杯脚底中心处P点紧贴一张画片, P点距O点6.3cm。

这种酒杯未斟酒时, 若在杯口处向杯底方向观看, 看不出画片上的景物, 但假如斟了酒, 再在杯口处向杯底方向观看, 将看到画片上的景物。

已知玻璃的折射率n1=1.56, 酒的折射率n2=1.34。

试通过度析计算与论证解释这一现象。

第21届复赛四、(20分)目前, 大功率半导体激光器的重要结构形式是由许多发光区等距离地排列在一条直线上的长条状, 通常称为激光二极管条. 但这样的半导体激光器发出的是很多束发散光束, 光能分布很不集中, 不利于传输和应用. 为了解决这个问题, 需要根据具体应用的规定, 对光束进行必需的变换(或称整形). 假如能把一个半导体激光二极管条发出的光变换成一束很细的平行光束, 对半导体激光的传输和应用将是非常故意义的. 为此, 有人提出了先把多束发散光会聚到一点, 再变换为平行光的方案, 其基本原理可通过如下所述的简化了的情况来说明.如图, S1.S2.S3 是等距离(h)地排列在一直线上的三个点光源, 各自向垂直于它们的连线的同一方向发出半顶角为( =arctan 的圆锥形光束.请使用三个完全相同的、焦距为f = 1.50h、半径为r =0.75 h的圆形薄凸透镜, 经加工、组装成一个三者在同一平面内的组合透镜, 使三束光都能所有投射到这个组合透镜上, 且经透镜折射后的光线能所有会聚于z轴(以S2为起点, 垂直于三个点光源连线, 与光束中心线方向相同的射线)上距离S2为L = 12.0 h处的P点.(加工时可对透镜进行外形的改变, 但不能改变透镜焦距.)1. 求出组合透镜中每个透镜光心的位置.2.说明对三个透镜应如何加工和组装, 并求出有关数据.第20届预赛(20分)两个薄透镜L1和L2共轴放置, 如图所示. 已知L1的焦距f1=f , L2的焦距f2=—f, 两一、透镜间距离也是f. 小物体位于物面P上, 物距u1 =3f.(1)小物体经这两个透镜所成的像在L2的__________边, 到L2的距离为_________, 是__________倍(虚或实)、____________像(正或倒), 放大率为_________________。

全国中学生物理竞赛复赛试题及参考答案

全国中学生物理竞赛复赛试题及参考答案

全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v . (2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4)[(4)式也可用下述方法得到:由 (1)、(2) 式得22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得220sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan 0gR θθθθ=-=v v . (4’)将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v . (5)以max sin θ为未知量,方程(5)的一个根是sin q =0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为22max 0max 2sin sin 20gR gR θθ+-=v . (6)其解为20maxsin 14gR θ⎫=-⎪⎪⎭v . (7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=v v ,(8) 考虑到(4)式有max ==v评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C2l r =v v . (1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v . (2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3) 由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v . (3’) 同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++. (7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8) 轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9) 由此得2022(2)28r l r F t m l r-∆=+v . (10) 方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r -'∆=-+v ,(11) 方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为 k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为 1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为 ()[]q q q = (3)式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为 ()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4)在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6)将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8)所以23k E k L λω= (9)2. 由题意,杆的动能为,c ,r k k k E E E =+ (10)其中, 22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得16k = (14)于是E k =16lw 2L 3. (15)3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭(16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19) ()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1) 式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为 21(2)(2)2()Qq h R m mg h R kh R R-=---v . (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有 max (2)(2)0()Q q h R mg h R kh R R---=-. (3)由此得 max ()mg h R RQ kq-=. (4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得 max ()mg h R V q-=(6) 评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)xy z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)xy z E E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1) 在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+-(2) 两参考系中电荷、合力和速度的变换关系为 ,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足 ()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+-(7) 利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得 00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故 0(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-. (10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v . (11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1)1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3)2221()l l T T α∆=- (4) 联立以上各式得2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)x忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处. 对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8)由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ==. (9)由此得y A θθ===. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m =,其中m 为任意正整数,则49,,,m m m y y y ===. (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 eV ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有 E e +E g =¢E e +¢E g . (1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=. (2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c . (3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ'=[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得 22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e em cE E -. (8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e 2c 42E e. (9) 代入数据,得¢E g »29.7´106eV . (10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。

全国中学生物理竞赛复赛试题及参考答案

全国中学生物理竞赛复赛试题及参考答案

第30届全国中学生物理竞赛复赛考试试题解答与评分标准一、(15分)一半径为R 、内侧光滑的半球面固定在地面上,开口水平且朝上. 一小滑块在半球面内侧最高点处获得沿球面的水平速度,其大小为0v (00≠v ). 求滑块在整个运动过程中可能达到的最大速率. 重力加速度大小为g .参考解答:以滑块和地球为系统,它在整个运动过程中机械能守恒. 滑块沿半球面内侧运动时,可将其速度v 分解成纬线切向 (水平方向)分量ϕv 及经线切向分量θv . 设滑块质量为m ,在某中间状态时,滑块位于半球面内侧P 处,P 和球心O 的连线与水平方向的夹角为θ. 由机械能守恒得2220111sin 222m mgR m m ϕθθ=-++v v v (1) 这里已取球心O 处为重力势能零点. 以过O 的竖直线为轴. 球面对滑块的支持力通过该轴,力矩为零;重力相对于该轴的力矩也为零. 所以在整个运动过程中,滑块相对于轴的角动量守恒,故0cos m R m R ϕθ=v v .(2)由 (1) 式,最大速率应与θ的最大值相对应max max ()θ=v v . (3)而由 (2) 式,q 不可能达到π2. 由(1)和(2)式,q 的最大值应与0θ=v 相对应,即max ()0θθ=v . (4) [(4)式也可用下述方法得到:由 (1)、(2) 式得 22202sin tan 0gR θθθ-=≥v v .若sin 0θ≠,由上式得22sin 2cos gRθθ≤v .实际上,sin =0θ也满足上式。

由上式可知 max 22max 0sin 2cos gRθθ=v .由(3)式有222max max 0max ()2sin tan0gR θθθθ=-=v v .(4’)]将max ()0θθ=v 代入式(1),并与式(2)联立,得()2220max max max sin 2sin 1sin 0gR θθθ--=v .(5)以max sin θ为未知量,方程(5)的一个根是sin q=0,即q =0,这表示初态,其速率为最小值,不是所求的解. 于是max sin 0θ≠. 约去max sin θ,方程(5)变为 22max 0max 2sin sin 20gR gR θθ+-=v .(6)其解为20maxsin 14gR θ⎫=⎪⎪⎭v .(7)注意到本题中sin 0θ≥,方程(6)的另一解不合题意,舍去. 将(7)式代入(1)式得,当max θθ=时,(22012ϕ=+v v , (8)考虑到(4)式有max ==v (9)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式1分,(4) 式3分, (5) 式1分,(6) 式1分,(7) 式1分, (9) 式2分.二、(20分)一长为2l 的轻质刚性细杆位于水平的光滑桌面上,杆的两端分别固定一质量为m 的小物块D 和一质量为m α(α为常数)的小物块B ,杆可绕通过小物块B 所在端的竖直固定转轴无摩擦地转动. 一质量为m 的小环C 套在细杆上(C 与杆密接),可沿杆滑动,环C 与杆之间的摩擦可忽略. 一轻质弹簧原长为l ,劲度系数为k ,两端分别与小环C 和物块B 相连. 一质量为m 的小滑块A 在桌面上以垂直于杆的速度飞向物块D ,并与之发生完全弹性正碰,碰撞时间极短. 碰撞 时滑块C 恰好静止在距轴为r (r >l )处.1. 若碰前滑块A 的速度为0v ,求碰撞过程中轴受到的作用力的冲量;2. 若碰后物块D 、C 和杆刚好做匀速转动,求碰前滑块A 的速度0v 应满足的条件.参考解答:1. 由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束. 设碰后A 、C 、D 的速度分别为A v 、C v 、D v ,显然有D C 2l r =v v .(1)以A 、B 、C 、D 为系统,在碰撞过程中,系统相对于轴不受外力矩作用,其相对于轴的角动量守恒D C A 0222m l m r m l m l ++=v v v v .(2)由于轴对系统的作用力不做功,系统内仅有弹力起作用,所以系统机械能守恒. 又由于碰撞时间t ∆很小,弹簧来不及伸缩碰撞已结束,所以不必考虑弹性势能的变化. 故2222D C A 011112222m m m m ++=v v v v . (3)由 (1)、(2)、(3) 式解得2200022222248,,888C D A lr l r l r l r l r===-+++v v v v v v (4)[代替 (3) 式,可利用弹性碰撞特点0D A =-v v v .(3’)同样可解出(4). ]设碰撞过程中D 对A 的作用力为1F ',对A 用动量定理有221A 0022428l r F t m m m l r+'∆=-=-+v v v ,(5)方向与0v 方向相反. 于是,A 对D 的作用力为1F 的冲量为221022428l r F t m l r+∆=+v (6)方向与0v 方向相同.以B 、C 、D 为系统,设其质心离转轴的距离为x ,则22(2)2mr m l l r x m αα++==++.(7)质心在碰后瞬间的速度为C 0224(2)(2)(8)l l r x r l r α+==++v v v . (8)轴与杆的作用时间也为t ∆,设轴对杆的作用力为2F ,由质心运动定理有 ()210224(2)28l l r F t F t m m l rα+∆+∆=+=+v v . (9)由此得2022(2)28r l r F t m l r -∆=+v . (10)方向与0v 方向相同. 因而,轴受到杆的作用力的冲量为2022(2)28r l r F t m l r-'∆=-+v , (11)方向与0v 方向相反. 注意:因弹簧处在拉伸状态,碰前轴已受到沿杆方向的作用力;在碰撞过程中还有与向心力有关的力作用于轴. 但有限大小的力在无限小的碰撞时间内的冲量趋于零,已忽略.[代替 (7)-(9) 式,可利用对于系统的动量定理21C D F t F t m m ∆+∆=+v v . ][也可由对质心的角动量定理代替 (7)-(9) 式. ]2. 值得注意的是,(1)、(2)、(3) 式是当碰撞时间极短、以至于弹簧来不及伸缩的条件下才成立的. 如果弹簧的弹力恰好提供滑块C 以速度02248C lrl r =+v v 绕过B 的轴做匀速圆周运动的向心力,即()222C 022216(8)l r k r m m r l r -==+ v v(12) 则弹簧总保持其长度不变,(1)、(2)、(3) 式是成立的. 由(12)式得碰前滑块A 的速度0v 应满足的条件0=v (13)可见,为了使碰撞后系统能保持匀速转动,碰前滑块A 的速度大小0v 应满足(13)式.评分标准:本题20分.第1问16分,(1)式1分, (2) 式2分,(3) 式2分,(4) 式2分, (5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分,(9) 式2分,(10) 式1分,(11) 式1分; 第2问4分,(12) 式2分,(13) 式2分.三、(25分)一质量为m 、长为L 的匀质细杆,可绕过其一端的光滑水平轴O 在竖直平面内自由转动. 杆在水平状态由静止开始下摆, 1. 令mLλ=表示细杆质量线密度. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其转动动能可表示为k E k L αβγλω=式中,k 为待定的没有单位的纯常数. 已知在同一单位制下,两物理量当且仅当其数值和单位都相等时才相等. 由此求出α、β和γ的值.2. 已知系统的动能等于系统的质量全部集中在质心时随质心一起运动的动能和系统在质心系(随质心平动的参考系)中的动能之和,求常数k 的值.3. 试求当杆摆至与水平方向成θ角时在杆上距O 点为r 处的横截面两侧部分的相互作用力. 重力加速度大小为g .提示:如果)(t X 是t 的函数,而))((t X Y 是)(t X 的函数,则))((t X Y 对t 的导数为d (())d d d d d Y X t Y Xt X t=例如,函数cos ()t θ对自变量t 的导数为dcos ()dcos d d d d t t tθθθθ=参考解答:1. 当杆以角速度ω绕过其一端的光滑水平轴O 在竖直平面内转动时,其动能是独立变量λ、ω和L 的函数,按题意 可表示为k E k L αβγλω= (1)式中,k 为待定常数(单位为1). 令长度、质量和时间的单位分别为[]L 、[]M 和[]T (它们可视为相互独立的基本单位),则λ、ω、L 和k E 的单位分别为1122[][][],[][],[][],[][][][]k M L T L L E M L T λω---==== (2)在一般情形下,若[]q 表示物理量q 的单位,则物理量q 可写为()[]q q q = (3) 式中,()q 表示物理量q 在取单位[]q 时的数值. 这样,(1) 式可写为()[]()()()[][][]k k E E k L L αβγαβγλωλω= (4) 在由(2)表示的同一单位制下,上式即()()()()k E k L αβγλω= (5) [][][][]k E L αβγλω= (6) 将 (2)中第四 式代入 (6) 式得22[][][][][][]M L T M L T αγαβ---= (7)(2)式并未规定基本单位[]L 、[]M 和[]T 的绝对大小,因而(7)式对于任意大小的[]L 、[]M 和[]T 均成立,于是1,2,3αβγ=== (8) 所以23k E k L λω= (9) 2. 由题意,杆的动能为,c ,r k k k E E E =+ (10) 其中,22,cc 11()222k L E m L λω⎛⎫== ⎪⎝⎭v (11) 注意到,杆在质心系中的运动可视为两根长度为2L的杆过其公共端(即质心)的光滑水平轴在铅直平面内转动,因而,杆在质心系中的动能,r k E 为 32,r 2(,,)222k k L L E E k λωλω⎛⎫== ⎪⎝⎭(12)将(9)、 (11)、 (12)式代入(10)式得 2323212222L L k L L k λωλωλω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭(13)由此解得 16k = (14)于是E k =16lw 2L 3. (15) 3. 以细杆与地球为系统,下摆过程中机械能守恒sin 2k L E mg θ⎛⎫= ⎪⎝⎭ (16) 由(15)、(16)式得w =以在杆上距O 点为r 处的横截面外侧长为()L r -的那一段为研究对象,该段质量为()L r λ-,其质心速度为22c L r L rr ωω-+⎛⎫'=+= ⎪⎝⎭v . (18) 设另一段对该段的切向力为T (以θ增大的方向为正方向), 法向(即与截面相垂直的方向)力为N (以指向O 点方向为正向),由质心运动定理得()()cos t T L r g L r a λθλ+-=- (19)()()sin n N L r g L r a λθλ--=- (20)式中,t a 为质心的切向加速度的大小()3cos d d d d d 2d 2d dt 4ct L r g L r L r a t t Lθωωθθ+'++====v (21) 而n a 为质心的法向加速度的大小()23sin 22n L r g L r a Lθω++==. (22) 由(19)、(20)、(21)、(22)式解得 ()()23cos 4L r r L T mg L θ--= (23)()()253sin 2L r L r N mg L θ-+=(24)评分标准:本题25分.第1问5分, (2) 式1分, (6) 式2分,(7) 式1分,(8) 式1分;第2问7分, (10) 式1分,(11) 式2分,(12) 式2分, (14) 式2分;不依赖第1问的结果,用其他方法正确得出此问结果的,同样给分;第3问13分,(16) 式1分,(17) 式1分,(18) 式1分,(19) 式2分,(20) 式2分,(21) 式2分,(22) 式2分,(23) 式1分,(24) 式1分;不依赖第1、2问的结果,用其他方法正确得出此问结果的,同样给分.四、(20分)图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成. 质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴). 液滴开始下落时相对于地面的高度为h . 设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g . 若容器初始电势为零,求容器可达到的最高电势max V .参考解答:设在某一时刻球壳形容器的电量为Q . 以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器 G 出口自由下落到容器口的过程. 根据能量守恒有2122Qq Qqmgh km mgR kh R R+=++-v . (1)式中,v 为液滴在容器口的速率,k 是静电力常量. 由此得液滴的动能为21(2)(2)2()Qq h R m mg h R k h R R-=---v . (2)从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有max (2)(2)0()Q q h R mg h R kh R R---=-.(3)由此得max ()mg h R RQ kq-=.(4)容器的最高电势为maxmax Q V kR= (5) 由(4) 和 (5)式得max ()mg h R V q-=(6)评分标准:本题20分. (1)式6分, (2) 式2分,(3) 式4分,(4) 式2分, (5) 式3分,(6) 式3分.五、(25分)平行板电容器两极板分别位于2dz =±的平面内,电容器起初未被充电. 整个装置处于均匀磁场中,磁感应强度大小为B ,方向沿x 轴负方向,如图所示.1. 在电容器参考系S 中只存在磁场;而在以沿y 轴正方向的恒定速度(0,,0)v (这里(0,,0)v 表示为沿x 、y 、z 轴正方向的速度分量分别为0、v 、0,以下类似)相对于电容器运动的参考系S '中,可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B '''. 试在非相对论情形下,从伽利略速度变换,求出在参考系S '中电场(,,)x y z E E E '''和磁场(,,)x y z B B B '''的表达式. 已知电荷量和作用在物体上的合力在伽利略变换下不变.2. 现在让介电常数为ε的电中性液体(绝缘体)在平行板电容器两极板之间匀速流动,流速大小为v ,方向沿y 轴正方向. 在相对液体静止的参考系(即相对于电容器运动的参考系)S '中,由于液体处在第1问所述的电场(,,)xy z E E E '''中,其正负电荷会因电场力作用而发生相对移动(即所谓极化效应),使得液体中出现附加的静电感应电场,因而液体中总电场强度不再是(,,)xy z E E E ''',而是0(,,)x y zE E E εε''',这里0ε是真空的介电常数. 这将导致在电容器参考系S 中电场不再为零. 试求电容器参考系S 中电场的强度以及电容器上、下极板之间的电势差. (结果用0ε、ε、v 、B 或(和)d 表出. )参考解答:1. 一个带电量为q 的点电荷在电容器参考系S 中的速度为(,,)x y z u u u ,在运动的参考系S '中的速度为(,,)x y z u u u '''. 在参考系S 中只存在磁场(,,)(,0,0)x y z B B B B =-,因此这个点电荷在参考系S 中所受磁场的作用力为0,,x y z z y F F qu B F qu B==-= (1)在参考系S '中可能既有电场(,,)xy z E E E '''又有磁场(,,)x y z B B B ''',因此点电荷q 在S '参考系中所受电场和磁场的作用力的合力为(),(),()x x y z z y y yx z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B '''''''=+-'''''''=-+'''''''=+- (2)两参考系中电荷、合力和速度的变换关系为,(,,)(,,),(,,)(,,)(0,,0)x y z x y z x y z x y z q q F F F F F F u u u u u u '='''='''=-v (3)由(1)、 (2)、 (3)式可知电磁场在两参考系中的电场强度和磁感应强度满足()0,,()xy z z y yx z z x z z x yy x y E u B u B E u B u B u B E u B u B u B '''+--='''-+=-'''+--=v v (4)它们对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,),(,,)(,0,0)xy z xy z E E E B B B B B '''='''=-v (5)可见两参考系中的磁场相同,但在运动的参考系S '中却出现了沿z 方向的匀强电场.2. 现在,电中性液体在平行板电容器两极板之间以速度(0,,0)v 匀速运动. 电容器参考系S 中的磁场会在液体参考系S '中产生由(5)式中第一个方程给出的电场. 这个电场会把液体极化,使得液体中的电场为(,,)(0,0,)xy z E E E B εε'''=v . (6) 为了求出电容器参考系S 中的电场,我们再次考虑电磁场的电场强度和磁感应强度在两个参考系之间的变换,从液体参考系S '中的电场和磁场来确定电容器参考系S 中的电场和磁场. 考虑一带电量为q 的点电荷在两参考系中所受的电场和磁场的作用力. 在液体参考系S '中,这力(,,)x y z F F F '''如(2)式所示. 它在电容器参考系S 中的形式为(),(),()x x y z z y y y x z z x z z x y y x F q E u B u B F q E u B u B F q E u B u B =+-=-+=+- (7)利用两参考系中电荷、合力和速度的变换关系(3)以及(6)式,可得00,,()x y z z y y x z z x z z x y y x y E u B u B E u B u B u B BE u B u B u B εε+-=-+=-+-=+-v v (8)对于任意的(,,)x y z u u u 都成立,故(,,)(0,0,(1)),(,,)(,0,0)x y z x y z E E E B B B B B εε=-=-v (9) 可见,在电容器参考系S 中的磁场仍为原来的磁场,现由于运动液体的极化,也存在电场,电场强度如(9)中第一式所示.注意到(9)式所示的电场为均匀电场,由它产生的电容器上、下极板之间的电势差为z V E d =-.(10)由(9)式中第一式和(10)式得01V Bd εε⎛⎫=- ⎪⎝⎭v .(11)评分标准:本题25分.第1问12分, (1) 式1分, (2) 式3分, (3) 式3分,(4) 式3分,(5) 式2分;第2问13分, (6) 式1分,(7) 式3分,(8) 式3分, (9) 式2分, (10) 式2分,(11) 式2分.六、(15分)温度开关用厚度均为0.20 mm 的钢片和青铜片作感温元件;在温度为20C ︒时,将它们紧贴,两端焊接在一起,成为等长的平直双金属片. 若钢和青铜的线膨胀系数分别为51.010-⨯/度和52.010-⨯/度. 当温度升高到120C ︒时,双金属片将自动弯成圆弧形,如图所示. 试求双金属片弯曲的曲率半径. (忽略加热时金属片厚度的变化. )参考解答:设弯成的圆弧半径为r ,金属片原长为l ,圆弧所对的圆心角为φ,钢和青铜的线膨胀系数分别为1α和2α,钢片和青铜片温度由120C T =︒升高到2120C T =︒时的伸长量分别为1l ∆和2l ∆. 对于钢片1()2dr l l φ-=+∆ (1) 1121()l l T T α∆=- (2) 式中,0.20 mm d =. 对于青铜片2()2dr l l φ+=+∆ (3) 2221()l l T T α∆=- (4) 联立以上各式得 2122121212()()2.010 mm 2()()T T r d T T αααα++-==⨯-- (5)评分标准:本题15分. (1)式3分, (2) 式3分,(3) 式3分,(4) 式3分, (5) 式3分.七、(20分)一斜劈形透明介质劈尖,尖角为θ,高为h . 今以尖角顶点为坐标原点,建立坐标系如图(a)所示;劈尖斜面实际上是由一系列微小台阶组成的,在图(a)中看来,每一个小台阶的前侧面与xz 平面平行,上表面与yz 平面平行. 劈尖介质的折射率n 随x 而变化,()1n x bx =+,其中常数0b >. 一束波长为λ的单色平行光沿x 轴正方向照射劈尖;劈尖后放置一薄凸透镜,在劈尖与薄凸透镜之间放一档板,在档板上刻有一系列与z 方向平行、沿y 方向排列的透光狭缝,如图(b)所示. 入射光的波面(即与平行入射光线垂直的平面)、劈尖底面、档板平面都与x 轴垂直,透镜主光轴为x 轴. 要求通过各狭缝的透射光彼此在透镜焦点处得到加强而形成亮纹. 已知第一条狭缝位于y =0处;物和像之间各光线的光程相等.1. 求其余各狭缝的y 坐标;2. 试说明各狭缝彼此等距排列能否仍然满足上述要求.图(a) 图(b) 参考解答:1. 考虑射到劈尖上某y 值处的光线,计算该光线由0x =到x h =之间的光程()y δ. 将该光线在介质中的光程记为1δ,在空气中的光程记为2δ. 介质的折射率是不均匀的,光入射到介质表面时,在0x = 处,该处介质的折射率()01n =;射到x 处时,该处介质的折射率()1n x bx =+. 因折射率随x线性增加,光线从0x =处射到1x h =(1h 是劈尖上y 值处光线在劈尖中传播的距离)处的光程1δ与光通过折射率等于平均折射率()()()1111110111222n n n h bh bh =+=++=+⎡⎤⎣⎦ (1) 的均匀介质的光程相同,即2111112nh h bh δ==+ (2)hx忽略透过劈尖斜面相邻小台阶连接处的光线(事实上,可通过选择台阶的尺度和档板上狭缝的位置来避开这些光线的影响),光线透过劈尖后其传播方向保持不变,因而有21h h δ=- (3)于是()212112y h bh δδδ=+=+. (4)由几何关系有 1tan h y θ=. (5)故()22tan 2b y h y δθ=+. (6)从介质出来的光经过狭缝后仍平行于x 轴,狭缝的y 值应与对应介质的y 值相同,这些平行光线会聚在透镜焦点处.对于0y =处,由上式得d 0()=h . (7)y 处与0y =处的光线的光程差为()()220tan 2b y y δδθ-=. (8) 由于物像之间各光线的光程相等,故平行光线之间的光程差在通过透镜前和会聚在透镜焦点处时保持不变;因而(8)式在透镜焦点处也成立. 为使光线经透镜会聚后在焦点处彼此加强,要求两束光的光程差为波长的整数倍,即22tan ,1,2,3,2b y k k θλ== . (9) 由此得y A θθ==. (10) 除了位于y =0处的狭缝外,其余各狭缝对应的y 坐标依次为,,,,A . (11)2. 各束光在焦点处彼此加强,并不要求(11)中各项都存在. 将各狭缝彼此等距排列仍可能满足上述要求. 事实上,若依次取,4,9,k m m m = ,其中m 为任意正整数,则49,,,m m m y y y === . (12),光线在焦点处依然相互加强而形成亮纹. 评分标准:本题20分.第1问16分, (1) 式2分, (2) 式2分, (3) 式1分,(4) 式1分,(5) 式2分,(6) 式1分,(7) 式1分,(8) 式1分, (9) 式2分, (10) 式1分,(11) 式2分; 第2问4分,(12) 式4分(只要给出任意一种正确的答案,就给这4分).八、(20分)光子被电子散射时,如果初态电子具有足够的动能,以至于在散射过程中有能量从电子转移到光子,则该散射被称为逆康普顿散射. 当低能光子与高能电子发生对头碰撞时,就会出现逆康普顿散射. 已知电子静止质量为e m ,真空中的光速为 c . 若能量为e E 的电子与能量为E γ的光子相向对碰,1. 求散射后光子的能量;2. 求逆康普顿散射能够发生的条件;3. 如果入射光子能量为2.00 e V ,电子能量为 1.00´109 eV ,求散射后光子的能量. 已知 m e =0.511´106 eV /c 2. 计算中有必要时可利用近似:如果1x <<»1-12x .参考解答:1. 设碰撞前电子、光子的动量分别为e p (0e p >)、p γ(0p γ<),碰撞后电子、光子的能量、动量分别为,,,ee E p E p γγ''''. 由能量守恒有E e +E g =¢E e +¢E g .(1)由动量守恒有cos cos ,sin sin .e eep p p p p p γγγαθαθ''+=+''=.(2)式中,α和θ分别是散射后的电子和光子相对于碰撞前电子的夹角. 光子的能量和动量满足E g =p g c ,¢E g =¢p g c .(3)电子的能量和动量满足22224e e e E p c m c -=,22224e e e E p c m c ''-= (4)由(1)、(2)、(3)、(4)式解得e E E E γγ+'=(5)[由(2)式得22222()2()cos ee e p c p c p c p c p c p c p c γγγγθ'''=++-+此即动量p '、ep '和e p p γ+满足三角形法则. 将(3)、(4)式代入上式,并利用(1)式,得22(2)()22cos 2e e e E E E E E E E E E E E γγγγγγγγθθ''+-+=+--此即(5)式. ]当0θ→时有e E E E γγ+'=(6)2. 为使能量从电子转移到光子,要求¢E g >E g . 由(5)式可见,需有E E γγ'-=>此即E γ 或 e p p γ>(7)注意已设p e >0、p g <0.3. 由于2e e E m c >>和e E E γ>>,因而e p p p γγ+>>,由(5)式可知p p γγ'>>,因此有0θ≈. 又242e e e m cE E -.(8)将(8)式代入(6)式得¢E g »2E e E g2E g +m e2c 42E e. (9)代入数据,得 ¢E g »29.7´106eV .(10)评分标准:本题20分.第1问10分, (1) 式2分, (2) 式2分, (3) 式2分,(4) 式2分,(5) 或(6)式2分; 第2问5分,(7) 式5分;第3问5分,(8) 式2分, (9) 式1分, (10) 式2分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十届全国中学生物理竞赛复赛试卷全卷共七题,总分为140分。

一、(15分)图中a为一固定放置的半径为R的均匀带电球体,O为其球心.己知取无限远处的电势为零时,球表面处的电势为U=1000 V.在离球心O很远的O′点附近有一质子b,它以E k=2000 eV 的动能沿与O'O平行的方向射向a.以l表示b与O'O线之间的垂直距离,要使质子b能够与带电球体a的表面相碰,试求l的最大值.把质子换成电子,再求l的最大值.二、(15分)U 形管的两支管 A 、B 和水平管C 都是由内径均匀的细玻璃管做成的,它们的内径与管长相比都可忽略不计.己知三部分的截面积分别为 2A 1.010S -=⨯cm 2,2B 3.010S -=⨯cm 2,2C 2.010S -=⨯cm 2,在 C 管中有一段空气柱,两侧被水银封闭.当温度为127t =℃时,空气柱长为l =30 cm (如图所示),C 中气柱两侧的水银柱长分别为 a =2.0cm ,b =3.0cm ,A 、B 两支管都很长,其中的水银柱高均为h =12 cm .大气压强保持为 0p =76 cmHg 不变.不考虑温度变化时管和水银的热膨胀.试求气柱中空气温度缓慢升高到 t =97℃时空气的体积.三、(20分)有人提出了一种不用火箭发射人造地球卫星的设想.其设想如下:沿地球的一条弦挖一通道,如图所示.在通道的两个出口处A和B,分别将质量为M的物体和质量为m的待发射卫星同时自由释放,只要M比m足够大,碰撞后,质量为m的物体,即待发射的卫星就会从通道口B冲出通道;设待发卫星上有一种装置,在待发卫星刚离开出口B时,立即把待发卫星的速度方向变为沿该处地球切线的方向,但不改变速度的大小.这样待发卫星便有可能绕地心运动,成为一个人造卫星.若人造卫星正好沿地球表面绕地心做圆周运动,则地R=6400 km.假定地球是质量均匀分心到该通道的距离为多少?己知M=20m,地球半径布的球体,通道是光滑的,两物体间的碰撞是弹性的.四、(20分)如图所示,一半径为R、折射率为n的玻璃半球,放在空气中,平表面中央半径为h的区域被涂黑.一平行光束垂直入射到此平面上,正好覆盖整个表面.Ox为以球心O为原0点,与平而垂直的坐标轴.通过计算,求出坐标轴Ox上玻璃半球右边有光线通过的各点(有光线段)和无光线通过的各点(无光线段)的分界点的坐标.五、(22分)有一半径为R的圆柱A,静止在水平地面上,并与竖直墙面相接触.现有另一质量与A相同,半径为r的较细圆柱B,用手扶着圆柱A,将B放在A的上面,并使之与墙面相接触,如图所示,然后放手.己知圆柱A与地面的静摩擦系数为0.20,两圆柱之间的静摩擦系数为0.30.若放手后,两圆柱体能保持图示的平衡,问圆柱B与墙面间的静摩擦系数和圆柱B的半径r的值各应满足什么条件?六、(23分)两个点电荷位于x 轴上,在它们形成的电场中,若取无限远处的电势为零,则在正x 轴上各点的电势如图中曲线所示,当0x →时,电势U →∞:当x →∞时,电势0U →;电势为零的点的坐标0x , 电势为极小值0U -的点的坐标为 0ax (a >2)。

试根据图线提供的信息,确定这两个点电荷所带电荷的符号、电量的大小以及它们在x 轴上的位置.v抛出.己知物七、(25分)如图所示,将一铁饼状小物块在离地面高为h处沿水平方向以初速块碰地弹起时沿竖直方向的分速度的大小与碰前沿竖直方向的分速度的大小之比为e(<1=.又知沿水平方向物块与地面之间的滑动摩擦系数为 (≠0):每次碰撞过程的时间都非常短,而且都是“饼面”着地.求物块沿水平方向运动的最远距离.第二十届全国中学生物理竞赛复赛试题参考解答、评分标准一、参考解答令m 表示质子的质量,0v 和v 分别表示质子的初速度和到达a 球球面处的速度,e 表示元电荷,由能量守恒可知2201122mv mv eU =+ (1)因为a 不动,可取其球心O 为原点,由于质子所受的a 球对它的静电库仑力总是通过a 球的球心,所以此力对原点的力矩始终为零,质子对O 点的角动量守恒。

所求l 的最大值对应于质子到达a 球表面处时其速度方向刚好与该处球面相切(见复解20-1-1)。

以max l 表示l 的最大值,由角动量守恒有max 0mv l mvR = (2)由式(1)、(2)可得max l = (3)代入数据,可得max l (4) 若把质子换成电子,则如图复解20-1-2所示,此时式(1)中e 改为e -。

同理可求得max l = (5)评分标准:本题15分。

式(1)、(2)各4分,式(4)2分,式(5)5分。

二、参考解答在温度为1(27273)K=300K T =+时,气柱中的空气的压强和体积分别为10p p h =+,(1)当气柱中空气的温度升高时,气柱两侧的水银将被缓慢压入A 管和B 管。

设温度升高到2T 时,气柱右侧水银刚好全部压到B 管中,使管中水银高度增大CBbS h S ∆=(3) 由此造成气柱中空气体积的增大量为C V bS '∆= (4) 与此同时,气柱左侧的水银也有一部分进入A 管,进入A 管的水银使A 管中的水银高度也应增大h ∆,使两支管的压强平衡,由此造成气柱空气体积增大量为A V hS ''∆=∆ (5) 所以,当温度为2T 时空气的体积和压强分别为21V V V V '''=+∆+∆ (6)21p p h =+∆ (7)由状态方程知112212p V p V T T =(8) 由以上各式,代入数据可得2347.7T =K (9) 此值小于题给的最终温度273370T t =+=K ,所以温度将继续升高。

从这时起,气柱中的空气作等压变化。

当温度到达T 时,气柱体积为22TV V T =(10) 代入数据可得30.72cm V = (11) 评分标准:本题15分。

求得式(6)给6分,式(7)1分,式(9)2分,式(10)5分,式(11)1分。

三、参考解答位于通道内、质量为m 的物体距地心O 为r 时(见图复解20-3),它受到地球的引力可以表示为 2GM mF r'=, (1) 式中M '是以地心O 为球心、以r 为半径的球体所对应的那部分地球的质量,若以ρ表示地球的密度,此质量可以表示为 343M r ρπ'=(2) 于是,质量为m 的物体所受地球的引力可以改写为 43F G m r πρ= (3)作用于质量为m 的物体的引力在通道方向的分力的大小为 sin f F θ= (4)sin xrθ= (5) θ为r 与通道的中垂线OC 间的夹角,x 为物体位置到通道中点C 的距离,力的方向指向通道的中点C 。

在地面上物体的重力可以表示为 02GM mmg R =(6)式中0M 是地球的质量。

由上式可以得到 043g G R πρ= (7)由以上各式可以求得 0mgf x R =(8) 可见,f 与弹簧的弹力有同样的性质,相应的“劲度系数”为 0mgk R =(9) 物体将以C为平衡位置作简谐振动,振动周期为2T =0x =处为“弹性势能”的零点,设位于通道出口处的质量为m 的静止物体到达0x =处的速度为0v ,则根据能量守恒,有2220011()22mv k R h =- (10) 式中h 表示地心到通道的距离。

解以上有关各式,得22200R h v g R -= (11)可见,到达通道中点C 的速度与物体的质量无关。

设想让质量为M 的物体静止于出口A 处,质量为m 的物体静止于出口B 处,现将它们同时释放,因为它们的振动周期相同,故它们将同时到达通道中点C 处,并发生弹性碰撞。

碰撞前,两物体速度的大小都是0v ,方向相反,刚碰撞后,质量为M 的物体的速度为V ,质量为m 的物体的速度为v ,若规定速度方向由A 向B 为正,则有00Mv mv MV mv -=+, (12)22220011112222Mv mv MV mv +=+ (13) 解式(12)和式(13),得 03M mv v M m-=+ (14)质量为m 的物体是待发射的卫星,令它回到通道出口B 处时的速度为u ,则有22220111()222k R h mu mv -+= (15) 由式(14)、(15)、(16)和式(9)解得222208()()R h M M m u g R M m --=+ (16)u 的方向沿着通道。

根据题意,卫星上的装置可使u 的方向改变成沿地球B 处的切线方向,如果u 的大小恰能使小卫星绕地球作圆周运动,则有20200M m u G m R R = (17)由式(16)、(17)并注意到式(6),可以得到h (18)评分标准:本题20分。

求得式(11)给7分,求得式(16)给6分,式(17)2分,式(18)3分,式(19)2分。

四、参考解答图复解20-4-1中画出的是进入玻璃半球的任一光线的光路(图中阴影处是无光线进入的区域),光线在球面上的入射角和折射角分别为i 和i ',折射光线与坐标轴的交点在P 。

令轴上OP 的距离为x ,MP 的距离为l ,根据折射定律,有 sin sin i n i'= (1)在OMP ∆中sin sin l xi i ='(2) 2222cos l R x Rx i =+- (3)由式(1)和式(2)得 x nl =再由式(3)得2222(2c o s )x n R x R x i =+- 设M 点到Ox 的距离为h ,有sin h R i =, cos R i =得22222x R x n =+-2221(1)20x R n --= (4)解式(4)可得21n x n ±=- (5)为排除上式中应舍弃的解,令0h →,则x 处应为玻璃半球在光轴Ox 上的傍轴焦点,由上式2(1)111n n n nx R R R n n n ±→=-+-或由图可知,应有x R >,故式(5)中应排除±号中的负号,所以x 应表示为x = (6)上式给出x 随h 变化的关系。

因为半球平表面中心有涂黑的面积,所以进入玻璃半球的光线都有0h h ≥,其中折射光线与Ox 轴交点最远处的坐标为0x =(7)在轴上0x x >处,无光线通过。

随h 增大,球面上入射角i 增大,当i 大于临界角C i 时,即会发生全反射,没有折射光线。

与临界角C i 相应的光线有 C C 1sin h R i Rn== 这光线的折射线与轴线的交点处于C x ==(8)在轴Ox 上C R x x <<处没有折射光线通过。

由以上分析可知,在轴Ox 上玻璃半球以右 C 0x x x ≤≤ (9) 的一段为有光线段,其它各点属于无光线段。

相关文档
最新文档