人教版七年级数学下册第九章单元测试及答案

合集下载

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元检测卷 (附答案)

人教版七年级下册数学第九章《不等式和不等式组》单元测试卷(基础)总分:100分一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个B .3个C .4个D .5个2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B . C .D .3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<-B .11a b +>+C .22a b <D .33a b->- 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥xB .1x ≤C .2x ≥D .2x ≤7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .8.(2021·全国七年级)不等式组24020x x -⎧⎨+>⎩的解集在数轴上表示正确的是( )A .B .C .D .9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a >B .0a <C .3a >D .3a <10.(2021·广西北海市·八年级期末)若不等式组无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”).12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x⎧+>+⎪⎨--⎪⎩的最大整数解为__________.13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___.16.(2020·浙江绍兴市·八年级其他模拟)关于x 的不等式组314(1)x x x a->-⎧⎨<⎩的解是3x <,那么a 的取值范围是______.三、解答题一(每小题6分,共12分) 17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件. (1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?答案解析一、选择题(每小题4分,共40分)1.(2020·四川省巴中中学七年级期中)在下列数学表达式:①-20<,②2-50x ≥,③1x =,④2-x x ,⑤-2x ≠,⑥2-1x x +<中,是不等式的有( ) A .2个 B .3个C .4个D .5个【答案】C 【分析】根据不等式的定义,用“>”、“≥”、“<”、“≤”、“≠”等不等号表示不相等关系的式子是不等式进行判断即可得. 【详解】根据不等式的定义可知①-2<0;②2x-5>0;⑤x≠-2;⑥x+2>x-1为不等式, 共4个, 故选:C . 【点睛】本题考查了不等式,一般地,用不等号表示不相等关系的式子叫不等式,解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.2.(2020·重庆綦江区·七年级期末)把不等式x+2≤0的解集在数轴上表示出来,则正确的是( ) A . B .C .D .【答案】D 【解析】试题分析:根据一元一次不等式的解法解不等式x+2≤0,得x≤﹣2. 表示在数轴上为:.故选D考点:不等式的解集3.(2020·河南许昌市·)我市某一天的最高气温是9C ︒,最低气温是零下2C ︒,则当天我市气温变化范围()t C ︒是( )A .29t <<B .29t ≤≤C .29t -<<D .29t -≤≤【答案】D 【分析】利用不等式的定义即可得. 【详解】最高气温是9C ︒表示的是气温小于或等于9C ︒, 最低气温是零下2C ︒表示的是气温大于或等于2C -︒, 则当天我市气温变化范围是29t -≤≤, 故选:D . 【点睛】本题考查了列不等式,掌握列不等式的方法是解题关键.4.(2021·浙江杭州市·八年级期末)若a b >,则下列各式中一定成立的是( ) A .22a b -<- B .11a b +>+C .22a b <D .33a b->- 【答案】B 【分析】根据不等式的性质进行判断即可. 【详解】解:A 、在不等式两边同时减2,不等号方向不变,故错误; B 、在不等式两边同时加1,不等号方向不变,故正确; C 、在不等式两边同时乘2,不等号方向不变,故错误; D 、在不等式两边同时除以-3,不等号方向改变,故错误; 故选:B . 【点睛】本题考查了不等式的性质,解题关键是熟记不等式的性质,灵活运用不等式性质进行判断. 5.(2021·湖南怀化市·八年级期末)下列不等式中,变形错误的是( ) A .x y >则11x y +>+ B .若a b ->-则a b < C .12x y ->则2x y <- D .若35x -<则53x <-【答案】D根据不等式的性质解题:不等式的两边同时加(或减)同一个数(或式子),不等式的结果仍成立;不等式的两边同乘以(或除以)同一个不为零的正数,不等式的结果仍成立; 不等式的两边同乘以(或除以)同一个不为零的负数,不等式的方向要改变. 【详解】A. x y >则11x y +>+,正确,故A 不符合题意;B. 若a b ->-则a b <,正确,故B 不符合题意;C. 12x y ->则2x y <-,正确,故C 不符合题意; D. 若35x -<则53x >-,错误,故D 符合题意,故选:D . 【点睛】本题考查不等式的性质,是重要考点,难度较易,掌握相关知识是解题关键. 6.(2021·浙江温州市·八年级期末)不等式213x -≤的解是( ) A .1≥x B .1x ≤C .2x ≥D .2x ≤【答案】D 【分析】不等式移项合并,把x 系数化为1,即可求出解集. 【详解】不等式213x -≤, 移项合并得:24x ≤, 解得:2x ≤, 故选:D . 【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.7.(2021·沙坪坝区·重庆一中八年级期末)不等式480x -≥的解集在数轴上表示为( ) A .B .C .D .【分析】首先解出不等式的解集,然后看四个答案中哪个符合,即可解答;【详解】解:不等式4x-8≥0,4x≥8,x≥2;D符合;故选:D.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.8.(2021·全国七年级)不等式组24020xx-⎧⎨+>⎩的解集在数轴上表示正确的是()A .B .C .D .【答案】C【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】解:24020xx-⎧⎨+>⎩①②,解不等式①,得2x,解不等式②,得2x>-,∴不等式组的解集是22x-<,在数轴上表示为:,故选:C.【点睛】本题考查了一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解题的关键.9.(2021·湖南娄底市·八年级期末)如果不等式()33a x a ->-的解集是1x <,那么a 的取值范围是( ) A .0a > B .0a <C .3a >D .3a <【答案】D 【分析】根据不等式的性质,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案. 【详解】(3)3a x a ->-的解集是1x <,∴30a -<,解得:3a <, 故答案选D . 【点睛】本题考查了解一元一次不等式,由不等号方向改变,得出未知数的系数小于0是解题的关键. 10.(2021·广西北海市·八年级期末)若不等式组04x a x无解,则a 的取值范围为( )A .4a >B .4a ≤C .04a <<D .4a ≥【答案】D 【分析】不等式组整理后,根据不等式组无解确定出a 的范围即可. 【详解】解:不等式组整理得:4x a x,由不等式组无解,得到4a ≥. 故选:D . 【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.二、填空题(每小题5分,共30分)11.(2021·浙江宁波市·八年级期末)若a b >,则25a --________25b --(填“>”或“<”). 【答案】< 【分析】根据不等式的性质直接求解即可.【详解】∴22a b -<- ∴2525b a故答案是:<. 【点睛】本题考查了不等式的性质,熟悉相关性质是解题的关键.12.(2020·浙江杭州市·九年级期末)不等式组()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩的最大整数解为__________.【答案】3 【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集即可得出答案. 【详解】解:()5831131<722x x x x ⎧+>+⎪⎨--⎪⎩①②解不等式①可得:x >52-, 解不等式②可得:x <4, 则不等式组的解集为52-<x <4, ∴不等式组的最大整数解为3, 故答案为:3. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 13.(2021·贵州铜仁市·八年级期末)不等式组321215x x ->⎧⎨-≤⎩的正整数解是______.【答案】2或3 【分析】根据不等式的基本性质分别解两个不等式,然后取公共解集,最后找出整数解即可.解:321215x x ->⎧⎨-≤⎩①② 解①,得1x > 解②,得3x ≤∴该不等式组的解集为13x <≤ ∴该不等式组的整数解为2或3 故答案为2或3. 【点睛】此题考查的是求不等式组的整数解,掌握不等式组的解法是解决此题的关键.14.(2021·湖南娄底市·八年级期末)关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则此不等式组的解集是______________.【答案】13x -<≤. 【分析】根据不等式组解集确定的口诀,结合数轴,确定解集即可. 【详解】根据数轴的意义,得 不等式的解集为13x -<≤; 故答案为13x -<≤. 【点睛】本题考查了不等式组解集,利用数形结合思想,熟练掌握解集的确定要领是解题的关键. 15.(2021·湖南邵阳市·八年级期末)若关于x 的不等式组0721x m x -≤⎧⎨-≤⎩的解集中恰好有三个整数,则m 的取值范围是___. 【答案】5≤m <6 【分析】首先解不等式组求得解集,然后根据不等式组恰好有三个整数解,确定整数解,则可以得到一个关于m的不等式组求得m的范围.【详解】解:0 721 x mx-≤⎧⎨-≤⎩①②解不等式①,得:x m≤解不等式②,得:3x≥∴不等式组的解集为:3x m≤≤∵不等式组恰有三个整数解,∴不等式组的整数解为3、4、5,则5≤m<6.故答案为:5≤m<6.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16.(2020·浙江绍兴市·八年级其他模拟)关于x的不等式组314(1)x xx a->-⎧⎨<⎩的解是3x<,那么a的取值范围是______.【答案】a≥3【分析】先解第一个不等式得到x<3,由于不等式组的解集为x<3,则利用同大取大可得到a的范围.【详解】解:314(1)x xx a->-⎧⎨<⎩①,解①得x<3,而不等式组的解集为x<3,所以a≥3.故答案为:a≥3.【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.三、解答题一(每小题6分,共12分)17.(2021·广西北海市·八年级期末)解不等式:431132x x +-->,并把解集在数轴上表示出来.【答案】57x <;数轴见解析 【分析】 根据一元一次不等式的解法:去分母,去括号,移项、合并同类项,系数化1,即可得到x 的范围,再把所得的x 的范围在数轴上表示出来即可.【详解】431132x x +-->, 去分母,得()()243316x x +-->,去括号,得28936x x +-+>,移项、合并同类项,得75x ->-,系数化为1,得57x <. 在数轴上表示此不等式的解集如图:【点睛】本题考查了一元一次不等式的解法,以及在数轴上表示不等式的解集,解题关键是明确不等式的性质,两边同时除以一个负数不等号的方向要改变,在数轴上表示不等式的解集时“>”,“≥”向右画,“<”,“≤”向左画,“≥”,“≤”用实心点,“>”,“<”用空心圆.18.(2021·湖南邵阳市·八年级期末)解不等式组:31211213x x x x +≥-⎧⎪+⎨>-⎪⎩,并在数轴上表示解集 【答案】24x -≤<,数轴见解析【分析】分别解出这两个不等式,即可得到不等式组的解集.【详解】 解:31211213x x x x +≥-⎧⎪⎨+>-⎪⎩①②,解不等式①得2x ≥-,解不等式②得4x <,∴不等式组的解集为24x -≤<,在数轴上表示不等式的解集为:【点睛】本题考查解不等式组,解题的关键是掌握解不等式组的方法.四、解答题二(每小题9分,共18分)19.(2021·安徽六安市·七年级期末)关于x 、y 的方程组2564x y mx ny +=-⎧⎨-=⎩.与关于x 、y 的方程组35168x y nx my -=⎧⎨+=-⎩的解相同,求2021(2)m n +【答案】1【分析】 由题意,根据方程组的解相同得到2563516x y x y +=-⎧⎨-=⎩,从而得到22x y =⎧⎨=-⎩,再代入计算,求出m 、n 的值,即可得到答案.【详解】解:根据题意,由2563516x y x y +=-⎧⎨-=⎩, 解得:22x y =⎧⎨=-⎩,代入48mx ny nx my -=⎧⎨+=-⎩, 得224228m n n m +=⎧⎨-=-⎩, 解得:31m n =⎧⎨=-⎩;则20212021(2)(32)1m n +=-=;【点睛】 本题考查了解二元一次方程组,解题的关键是掌握解二元一次方程组的方法进行解题.20.(2021·湖南邵阳市·八年级期末)“一方有难,八方相助”是中华民族的优良传统.“新冠肺炎”疫情期间,我市向湖北省某县捐赠A 型医疗物资290件和B 型医疗物资100件.计划租用甲、乙两种型号的汽车共8辆运送过去.经了解,甲种汽车每辆最多能载A 型医疗物资40件和B 型医疗物资10件,乙种汽车每辆最多能载A 型医疗物资30件和B 型医疗物资20件.(1)请你帮助设计所有可能的租车方案;(2)如果甲种汽车每辆的运费是1200元,乙种汽车每辆的运费是1000元,这次运送的费用最少需要多少钱?【答案】(1)租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;(2)这次运送的费用最少需要9000元.【分析】(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,根据题意列一元一次不等式组,解一元一次不等式组,找到符合题意的解即可;(2)由(1)中结论,分别计算租车费用,再比较大小即可解题.【详解】解:(1)设租用甲种汽车x 辆,乙种汽车(8-x)辆,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:5x 6≤≤,所以符合条件的x 可以取5,6,租车的方案有两种:方案一:租用甲种汽车5辆,乙种汽车3辆;方案二:租用甲种汽车6辆,乙种汽车2辆;⨯+⨯=9000元;(2)方案一:租车的费用:1200510003⨯+⨯=9200元;方案二:租车的费用:1200610002所以这次运送的费用最少需要9000元.【点睛】本题考查一元一次不等式(组)的实际应用,是重要考点,难度较易,掌握相关知识是解题关键.。

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

【3套试题】人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)

人教版七年级数学下第九章不等式与不等式组复习检测试题(有答案)人教版七年级数学下册第九章不等式与不等式组单元测试题复习检测试卷(有答案)一、选择题1.下列式子:①-2<0;②2x+3y<0;③x=3;④x+y中,是不等式的个数有A. 1个B. 2个C. 3个 D . 4个2.若m>n,则下列不等式中一定成立的是()A. m+2<n+3B. 2m<3nC. a-m<a-nD. ma2>na23.数a、b在数轴上的位置如图所示,则下列不等式成立的是()A. a>bB. ab>0C. a+b>0D. a+b<04.若关于x的一元一次不等式组的解集是x<5,则m的取值范围是()A. m≥5B. m>5C. m≤5D. m<55.某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()A. n≤mB. n≤C. n≤D. n≤6.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A. 5本B. 6本C. 7本D. 8本7.不等式组的解集在数轴上表示正确的是()A. B.C. D.8.不等式组的解集是()A. x>4B. x≤3C. 3≤x<4D. 无解9.如果不等式组只有一个整数解,那么a的范围是()A. 3<a≤4B. 3≤a<4C. 4≤a<5D. 4<a≤510. 现有三种不同的物体:“甲、乙、丙”,用天平称了两次,情况如图所示,那么“甲、乙、丙”这三种物体按质量从大到小的顺序排列为A. 丙甲乙B. 丙乙甲C. 乙甲丙D. 乙丙甲二、填空题1.不等式组:的解集是2.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400m以外的安全区域甲工人在转移过程中,前40m只能步行,之后骑自行车。

人教版初中数学七年级下册第九章不等式与不等式组章节测试有答案

人教版初中数学七年级下册第九章不等式与不等式组章节测试有答案

七年级下册第九章不等式与不等式组章节测试一、单选题1.下列是一元一次不等式的是()A. 2x>1B. x−2<y−2C. 2<3D. x2<92.若x>y,则下列式子中错误的是()A. x﹣4>y﹣4B. x4>y4C. x+4>y+4D. ﹣4x>﹣4y3.若m>n,则下列各式中错误..的是()A. m﹣2>n﹣2B. 4m>4nC. ﹣3m>﹣3nD. m2>n24.如果a>b,下列各式中不正确的是()A. a-4>b-4B. -2a<-2bC. -1+a<-1+bD. −a3<−b35.不等式组{x≥−2x<1的解集在数轴上表示为().A. B. C. D.6.不等式5x﹣3≤2的解集是()A. x≤1B. x≤﹣1C. x≥﹣1D. x≥17.已知a<b,则下列四个不等式中不正确的是()A. 4a<4bB. ﹣4a<﹣4bC. a+4<b+4D. a﹣4<b﹣48.某校网课学习的要求是每周听课时长至少达到480分钟算合格.张飞前3天平均每天听课时长为90分钟,问张飞后2天平均每天听课时长不得少于多少分钟才能合格?设张飞后2天平均听课时长为x分钟,以下所列不等式正确的是()A. 90×3+2x≥480B. 90×3+2x≤480C. 90×3+2x<480D. 90×3+2x≥4809.已知关于x的不等式组{x−a>−1x−a<3的解集中任意一个x的值均不..在−1≤x≤3的范围内,则a的取值范围是()A. a>4或a<−4B. a≥4或a≤−4C. −4<a<4D. −4≤a≤410.不等式x−2≥−3x−18的负整数解共有()A. 1 个B. 2个C. 3个D. 4个11.已知关于x、y的方程组{ax+3y=12x−3y=0的解为整数,且关于x的不等式组{2(x+1)<x+53x>a−4有且仅有5个整数解,则所有满足条件的整数a的和为()A. ﹣1B. ﹣2C. ﹣8D. ﹣612.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打()折.A. 6B. 7C. 8D. 9二、填空题13.某电器商场促销,海尔某型号冰箱的售价是2500元,进价是1800元,商场为保证利润率不低于5%,则海尔该型号冰箱最多降价________元.14.已知不等式mx+n>0的解集为x<2,则mn +nm的值是________.15.一次新冠病毒防疫知识竞赛有25道题,评委会决定:答对一道题得4分,答错或不答一题扣1分,在这次知识竞赛中,小明被评为优秀(85分或85分以上),那么小明至少答对了________道题.16.“端午节”前,商场为促销定价为10元每袋的蜜枣粽子,采取如下方式优惠销售:若一次性购买不超过2袋,则按原价销售;若一次性购买2袋以上,则超过部分按原价的七折付款.张阿姨现有50元钱,那么她最多能买蜜枣粽子________袋.17.格格和妈妈到福利院看望失去父母的孤儿,她用自己的零花钱买来棒棒糖分给福利院的小朋友。

人教版七年级下第9章不等式与不等式组单元测试题含答案

人教版七年级下第9章不等式与不等式组单元测试题含答案

第九章不等式与不等式组时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1 •篮球联赛中,每场比赛都要分出胜负,每队胜 1场得2分,负1场得1分•某队预计在2012~2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛. 假设这个队在 将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是( )A • 2x+(32-x )Z48B . 2x —(32-x )3 48C . 2x (32 -x ) _ 48D . 2x _ 48x+2v=1+m一2. 方程组丿中,若未知数x 、V 满足x + v a 0,贝V m 的取值范围是()2x 十 y = 3A . m -4B . m _ -4C . m : -4D . m _ -43.某市自来水公司按如下标准收取水费: 若每户每月用水不超过 5m 2,则每立方米收费1.5元;若每户每月用水超过 5m 2,则超过部分每立方米收费15元,那么她家这个月的用水量(吨数为整数)至少是(4. 把不等式x J 一0的解集在数轴上表示出来,则正确的是5. 已知a b ,下列式子不成立的是(7.甲、乙两人从相距24km 的A , B 两地沿着同一条公路相向而行,已知甲的速度是乙的速2元,小颖家某月的水费不少于A • 10m 2B • 9m 2C • 8m 2D • 6m 2A . a 1 b 1B . 3a 3bD .如果c ::: 0,那么-2x — 1 5x + 26. 解不等式 2 — 6 — x < — 1,去分母,得( A . 3(2x — 1) — 5x + 2 — 6x w — 6 B . 3(2x — 1)— (5x + 2) — 6x > - 6 C . 3(2x — 1) — (5x + 2) — 6x < — 6 D . 3(2x — 1) — (5x + 2) — x w — 1度的两倍,若要保证在2h以内相遇,则甲的速度应()A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/hx — m v 0,3x — 1 > 2 (x — 1)无解,则m 的取值范围是()A . m w — 1B . m v — 1C . — 1v m w 0D . — 1 < m v 0 9.把一些图书分给几名同学,如果每人分 3本,那么余8本;如果前面的同学每人分 5本,那么最后一人就分不到 3本.则这些图书有()A . 23本B . 24本C . 25本D . 26本 10.定义[x]为不超过x 的最大整数,如[3.6] = 3, [0.6] = 0, [ — 3.6] = - 4•对于任意实数x ,下 列式子中错误的是()若点A (x + 3, 2)在第二象限,则x 的取值范围是的所有x 的值是三、解答题(共66分) 19. (8分)解不等式(组): 3x— 1(1)2x — 1 > 2 ;&关于X 的不等式组A . [x] = x (x 为整数)B . 0<x — [x]<1C . [x + y]w [x] + [y]D . [n + x] = n + [x]( n 为整数)11 . 填空题(每小题3分, 共24分) 1不等式一2x + 3v 0的解集是12. 13.1时,式子3+ x 的值大于式子2x — 1的值.14. 不等式组 x w 3*2,_x — 1<2 — 2x 的整数解是15. 某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元. 已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.16. 不等式组x + 1> 0,1 a — 3x v 0的解集是x >— 1,则a 的取值范围是 17. 定义一种法则 “ ” 如下:a (a >b ), 'b(例如:1 2 = 2 •若(一2m — 5) 3= 3, 则m 的取值范围是18. 按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件2x + 5>3 (x — 1)①,丫 x + 7 |4X > 2 ②•1 320.(8分)x 取哪些整数值时,不等式 4(x + 1) >2x — 1与2x < 2— 2x 都成立?121. (8分)若不等式3(x + 1) — 1<4(x — 1) + 3的最小整数解是方程 2x — mx = 6的解,求 m 2— 2m — 11 的值.22. (10分 )已知关于x , y 的方程组 的解满足Q0, y>0 ,求实数a 的取值范围.5x + 2>3 (x — 1),1 32X W —2X + 2a 有三个整数解,求实数 a 的取值范围.24. (10分 )光伏发电惠民生,据衢州晚报载,某家庭投资 4万元资金建造屋顶光伏发电 站,遇到晴天平均每天可发电 30度,其他天气平均每天可发电 5度,已知某月(按30天计)共 发电550度.(1) 求这个月晴天的天数;f3x +2y = 5a + 17,2x — 3y = 12a — 623. (10分 )已知关于x 的不等式组(2) 已知该家庭每月平均用电量为150度,结合图中信息,若按每月发电550度计算,至少需要几年才能收回成本(不计其他费用,结果取整数)./言息连接:根据国家相关规? 定.凡是屋顶光伏发电站生产的电,家庭用电后剩余部分,可以0.4576/度卖给电力公司.同时可获得政府补贴』.52元/度・丿25. (12分)为解决中小学大班额问题,东营市各县区今年将扩建部分中小学,某县计划对A、B两类学校进行扩建,根据预算,扩建2所A类学校和3所B类学校共需资金7800万元,扩建3所A类学校和1所B类学校共需资金5400万元.(1) 扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2) 该县计划扩建A、B两类学校共10所,扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的扩建资金分别为每所300万元和500万元•请问共有哪几种扩建方案?答案AABBD CBADC11. x> 6 12.X V—3 13.>—8 14.- 1, 0115. 816. a w — 317. m > — 4418. 131 或 26或 5或 5 19.解:⑴去分母得2(2x — 1) >3x — 1,解得x > 1.(4分)⑵解不等式①得x v 8, (5分)解不等式②得x > 1.(6分)所以不等式组的解集为1 v x v 8.(8 分)4 (x + 1) > 2—1,20. 解:依题意有 a* <23(2分)解得—2」3< x < 1.(5分)••• x 取整数值,•••当x 为—2,— 1, 0和 1 时,不等式 4(x + 1)>2x — 1 与2 — 2 x 成立.(8分)21•解:解不等式3(x + 1) — 1<4(x — 1)+ 3,得x>3.(3分)它的最小整数解是x = 4.(4分)把x1 =4代入方程2X — mx = 6,得m =— 1, 43x + 2y = 5a + 17,22.解:解方程组2x — 3y = 12a — 6,3a + 3> 0,(5分)•/x > 0, y > 0, ••• ; — 2a >0, (8分)解得—1 v a v 2.(10分)5x + 2>3 (x — 1)①,1 32x < 8 2x + 2a ②.5 5 解不等式 ①,得x >—2,解不等式 ②,得x < 4+ a , •原不等式组的解集为—2v x < 4+ a.(8分)•••原不等式组有三个整数解, ••• 0< 4+ a v 1, • — 4< a v — 3.(10分)24. 解:⑴设这个月有x 天晴天,由题意得30x + 5(30 — x ) = 550, (3分)解得x = 16.(4分)答:这个月有16天晴天.(5分)⑵设需要y 年可以收回成本,由题意得 (550 — 150) (0.52 + 0.45) 12y > 40000, (8分)解得172y > 8291.(9分)r y 是整数,•••至少需要9年才能收回成本.(10分)25. 解:⑴设扩建一所A 类和一所B 类学校所需资金分别为 x 万元和y 万元,由题意得 2x + 3y = 7800 ,x = 1200, 解得"i3x + y = 5400, 解得 y = 1800.2(6分).• m — 2m —8.(8 分)x= 3a + 3, y = 4—2a.23.解:1(4分)答:扩建一所A类学校所需资金为1200万元,扩建一所B类学校所需资金为1800万元.(⑵设今年扩建A类学校a所,则扩建B类学校(10 —a)所,由题意得(1200—300) a+( 1800—500)( 10 —a) < 11800300a + 500 (10—a) > 4000解得3< a< 5.(10分)•/ a取整数,a= 3,4, 5•即共有3种方案:方案一:扩建A类学校3所,B类学校7所;方案二:扩建A类学校4所,B类学校6所;方案三:扩建A类学校5所,B类学校5所.(12分)。

人教版初一数学下册《第九章单元试卷》(详尽答案版)

人教版初一数学下册《第九章单元试卷》(详尽答案版)

人教版初一数学下册第九章检测题一、选择题1.(2013·永州)若实数a,b,c在数轴上对应的点如图9-7所示,则下列式子中正确的是()图9-7A.a-c>b-cB.a+c<b+cC.ac>bcD.错误!未找到引用源。

<错误!未找到引用源。

2.下列说法中,正确的是()A.若-a>b>0,则ab<0B.若a>b,c≠0,则ac>bcC.若ab>0,则a>0,b>0D.若错误!未找到引用源。

>1,则a>b3.(2013·孝感)使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4B.4,5C.3,4,5D.不存在4.(2013·眉山)不等式组错误!未找到引用源。

的解集在数轴上表示为()5.(2013·雅安)不等式组错误!未找到引用源。

的整数解有()A.1个B.2个C.3个D.4个6.(2013·南通)若关于x 的方程mx-1=2x 的解为正实数,则m 的取值范围是( )A.m ≥2B.m ≤2C.m>2D.m<27.若关于x 的不等式2x-a ≤-1的解集如图9-8所示,则a 的值是( )图9-8A.0B.-3C.-2D.-18.若不等式组错误!未找到引用源。

有解,则a 的取值范围是( )A.a ≤3B.a<3C.a<2D.a ≤29.(2013·宜昌)地球正面临第六次生物大灭绝!据科学家预测,到2050年,目前的四分之一到一半的物种将会灭绝或濒临灭绝.2012年底,长江江豚数量仅剩约1 000头,其数量年平均下降的百分率在13%~15%范围内.由此预测,2013年底剩下的数量可能为( )A.970头B.860头C.750头D.720头10.(2013·资阳)在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同.若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )A.10人B.11人C.12人D.13人二、填空题11.(2013·白银)不等式2x+9≥3(x+2)的正整数解是 .12.若点 P (a ,a-3)在第四象限,则a 的取值范围是 .13.(2013·株洲)一元一次不等式组错误!未找到引用源。

人教版七年级数学下册第九单元测试题及答案

人教版七年级数学下册第九单元测试题及答案

七年级数学下册第九单元测试题及答案The document was prepared on January 2, 2021(第1题)甲乙(40千克)甲丙(50千克)(第8题)七年级数学第九章不等式与不等式组单元测试卷班级 _______ 姓名 ________ 坐号 _______ 成绩 _______一、选择题每小题3分,共30分1、不等式的解集在数轴上表示如下,则其解集是A、x≥2B、x>-2C、x≥-2D、x≤-22、若0<x<1,则x、x2、x3的大小关系是A、x<x2<x3B、x<x3<x2C、x3<x2<xD、x2<x3<x3、不等式8-x>2的正整数解的个数是A、4B、1C、2D、34、若a为实数,且a≠0,则下列各式中,一定成立的是A、a2+1>1B、1-a2<0C、1+a1>1 D、1-a1>15、如果不等式⎩⎨⎧-byx<>2无解,则b的取值范围是A、b>-2B、b<-2C、b≥-2D、b≤-26、不等式组⎩⎨⎧++≥--8321)23(3xxx<的整数解的个数为A、3B、4C、5D、67、把不等式⎩⎨⎧-≥-3642>xx的解集表示在数轴上,正确的是A、C、8支点在中点处则甲的体重x的取值范围是A、x<40B、x>50C、40<x<50D、40≤x≤509、若a<b,则ac>bc成立,那么c应该满足的条件是A、c>0B、c<0C、c≥0D、c≤010、某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均每条b元,后来他又以每条2ba+元的价格把鱼全部卖给了乙,结果发现赔了钱,原因是A、a>bB、a<bC、a=bD、与ab大小无关二、填空题每小题3分,共18分11、用不等式表示:x的3倍大于4__________________________.12、若a>b,则a-3______b-3 -4a______-4b填“>”、“<”或“=”.13、当x ______时,代数式213-x -2x 的值是非负数. 14、不等式-3≤5-2x <3的正整数解是_________________.15、某射击运动员在一次训练中,打靶10次的成绩为89环,已知前6次射击的成绩为50环,则他第七次射击时,击中的环数至少是______环.16、某县出租车的计费规则是:2公里以内3元,超过2公里部分另按每公里元收费,李立同学从家出发坐出租车到新华书店购书,下车时付车费9元,那么李立家距新华书店最少有______公里.三、解下列等式组,并将解集在数轴上表示出来.每题5分,共15分 17、21-x +1≥x 18、⎩⎨⎧-++-148112x x x x >< 19、3≤37x -6≤6四、解答题每题6分,共18分20、求不等式组 ⎪⎩⎪⎨⎧+≤-4210112x x x > 的整数解. 21、当a 在什么范围取值时,方程组 ⎩⎨⎧--=+123232a y x a y x >的解都是正数22、若a 、b 、c 是△ABC 的三边,且a 、b 满足关系式|a -3|+b -4=0,c 是不等式组⎪⎪⎩⎪⎪⎨⎧++--21632433x x x x <> 的最大整数解,求△ABC 的周长. 五、第23题9分,第24题10分,共19分23、足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.一支足球队在某个赛季共需比赛14场,现已比赛了8场,输了一场,得17分,请问: 1前8场比赛中,这支球队共胜了多少场2这支球队打满14场,最高能得多少分3通过对比赛形势的分析,这支球队打满14场比赛,得分不低于29分,就可以达到预期的目标,请你分析一下,在后面的6场比赛中,这支球队至少要胜几场,才能达到预期目标24、双蓉服装店老板到厂家购A 、B 两种型号的服装,若购A 种型号服装9件,B 种型号服装10件,需要1810元;若购进A 种型号服装12件,B 种型号服装8件,需要1880元.1求A 、B 两种型号的服装每件分别为多少元2若销售一件A 型服装可获利18元,销售一件B 型服装可获利30元,根据市场需要,服装店老板决定:购进A 型服装的数量要比购进B 型服装的数量的2倍还多4件,且A 型服装最多可购进28件,这样服装全部售出后可使总的获利不少于699元,问有几种进货方案如何进货参考答案一、1、C ;2、C ;3、D ;4、A ;5、D ;6、B ;7、A ;8、C ;9、B ;10、A 二、11、3x >4; 12、>,<;13、x ≤-1;14、2,3,4;15、9环;16、8. 三、17、 x ≤1;18、x <2;19、1≤x ≤2四、20、6,7,8;21、a >73;22、3,4,4. 五、23、解:1设球队在前8场比赛中胜x 场,则平8-1-x =7-x 场,由题意得3x +7-x =17,解得x =52最后得分n 满足n ≤17+3×14-8=35.3球队要想达到预期目标,必须在余下14-8场比赛中得到29-17=12分,显然,胜4场比赛可积12分,从而实现目标,而6场比赛胜3场可积9分,余下3场每场均得1分,同样可得12分实现目标,所以球队要想实现目标,至少胜3场.24、解:1设A 种型号的服装每件x 元,B 种型号的服装每件y 元.依题意得:⎩⎨⎧=+=+18808121810109y x y x 解得:⎩⎨⎧==10090y x 2设B 型服装购进m 件,则A 型服装购进2m +4件,依题意得:⎩⎨⎧≤+≥+2842699)42(18m m 解得:219≤x ≤12.因为m 为正整数,所以m =10、11、12,2m +4=24、26、28.所以有三种进货方案:第一种:B 型服装购进10件,A 型服装购进24件;第二种:B 型服装购进11件,A 型服装购进26件;第三种:B 型服装购进12件,A 型服装购进28件;。

人教版七年级下《第九章不等式与不等式组》单元测试题含答案

人教版七年级下《第九章不等式与不等式组》单元测试题含答案

第九章 不等式与不等式组 一、选择题(本大题共 6 小题,每小题 4 分,共 24 分) 1.已知实数 a,b,若 a>b,则下列结论正确的是( A.a-5<b-5 B.2+a<2+b C. < 3 3)a bD.3a>3b2.不等式 3(x-1)≤5-x 的非负整数解有( ) A.1 个 B.2 个 C.3 个 D.4 个 3.关于 x 的一元一次不等式 A.14m-2x3≤-2 的解集为 x≥4,则 m 的值为()B.7 C.-2 D.2 2x+1 3x+2   - >1, 2 4.不等式组 3 的解集在数轴上表示正确的是( 3-x≥2)图 9-Z-1 5.如果关于 x 的不等式组 3x-1>4(x-1), x<m 的解集为 x<3,那么 m 的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥3 6.某种毛巾原零售价为每条 6 元,凡一次性购买两条以上,商家推出两种优惠销售办法,第一种: “两条 按原价,其余按七折付款” ;第二种: “全部按原价的八折付款” .若想在购买相同数量的情况下,要使第一种 办法比第二种办法得到的优惠多,最少要购买毛巾( ) A.4 条 B.5 条 C.6 条 D.7 条 二、填空题(本大题共 5 小题,每小题 4 分,共 20 分) x≤3x+2, 7.不等式组 的解集为________. 3x-2(x-1)<4 3x+4≥0,   8.不等式组1 的所有整数解的积为________. x-24≤1  2  9.定义新运算:对于任意实数 a,b,都有 a⊕b=a(a-b)+1,其中等式右边是通常的加法、减法及乘法 运算,如:2⊕5=2×(2-5)+1=2×(-3)+1=-5.那么不等式 3⊕x<13 的解集为________. 10.若不等式组x+a≥0, 1-2x>x-2 有解,则 a 的取值范围是________. 2x-b≥0, 11.若不等式组 的解集为 3≤x≤4,则不等式 ax+b<0 的解集为________. x+a≤0 三、解答题(本大题共 7 小题,共 56 分) 4x-1 12.(6 分)解不等式 -x>1,并把它的解集在数轴上表示出来. 3x-3(x-2)≥4,   13.(8 分)解不等式组2x-1 x+1 并将它的解集在数轴上表示出来. < ,  2  5-x-1≥-2x+1,   14.(8 分)已知关于 x 的不等式组1 其中实数 a 是不等于 2 的常数, 请依据 a 的取值情 1 (x-2a)+ x<0,  2 2 况求出不等式组的解集.15.(8 分)已知关于 x,y 的方程组 x+y=3a+9,  x-y=5a+1的解都为正数,求 a 的取值范围.16.(8 分)旅游者参观某河流风景区,先乘坐摩托艇顺流而下,然后逆流返回.已知水流的速度是每小时 3 千米, 摩托艇在静水中的速度是每小时 18 千米. 为了使参观时间不超过 4 小时, 旅游者最远可走多少千米?17.(8 分)某校计划购买一批篮球和足球,已知购买 2 个篮球和 1 个足球共需 320 元,购买 3 个篮球和 2 个足球共需 540 元. (1)求每个篮球和每个足球的售价; (2)如果学校计划购买这两种球共 50 个,总费用不超过 5500 元,那么最多可购买多少个足球?18.(10 分)现有一个种植总面积为 540 m 的长方形塑料温棚,分垄间隔套种草莓和西红柿共 24 垄,种植 的草莓或西红柿单种农作物的总垄数不低于 10 垄,又不超过 14 垄(垄数为正整数),它们的占地面积、产量、 利润分别如下: 占地面积 2 (m /垄) 西红柿 草莓 30 15 产量(千 克/垄) 160 50 利润(元/ 千克) 1.1 1.62(1)若设草莓共种植了 x 垄,请说明共有几种种植方案,分别是哪几种; (2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?详解详析 1.[答案] D 2.[解析] C 去括号,得 3x-3≤5-x. 移项、合并同类项,得 4x≤8. 系数化为 1,得 x≤2. ∴不等式的非负整数解有 0,1,2,共 3 个. 故选 C. 1 3.[解析] D 去分母,得 m-2x≤-6,移项,得-2x≤-m-6,系数化为 1,得 x≥ m+3. 2 ∵关于 x 的一元一次不等式 故选 D. 2x+1 3x+2 4.[解析] B 解不等式 - >1,得 x<-2,解不等式 3-x≥2,得 x≤1,∴不等式组的解集 3 2 为 x<-2,故选 B. 5.[解析] D 由 3x-1>4(x-1),得 x<3,而不等式组的解集也为 x<3,∴m≥3.故选 D. 6.[解析] D 设购买毛巾 x 条.由题意得 6×2+6×0.7(x-2)<6×0.8x, 解得 x>6. ∵x 为整数,∴x 最小为 7. 故选 D. 7.[答案] -1≤x<2 x≤3x+2,① [解析]  3x-2(x-1)<4.② m-2x31 ≤-2 的解集为 x≥4,∴ m+3=4,解得 m=2. 2由①,得 x≥-1.由②,得 x<2,所以-1≤x<2. 8.[答案] 0 9.[答案] x>-1 [解析] 由题意得 3(3-x)+1<13, 解得 x>-1. 10.[答案] a>-1 3 11.[答案] x> 2 2x-b≥0,① [解析]  x+a≤0.② 解不等式①,得 x≥ . 2 解不等式②,得 x≤-a. ∴不等式组的解集为 ≤x≤-a. 2 2x-b≥0, ∵不等式组 的解集为 3≤x≤4, x+a≤0 bb∴ =3,-a=4,∴b=6,a=-4, 2b∴不等式 ax+b<0 可化为-4x+6<0, 3 解得 x> . 2 12.解:去分母,得 4x-1-3x>3. 移项、合并同类项,得 x>4. 在数轴上表示不等式的解集如图所示:x-3(x-2)≥4,①   13.解:2x-1 x+1 < .②  2  5由①得-2x≥-2,即 x≤1. 由②得 4x-2<5x+5,即 x>-7. 所以原不等式组的解集为-7<x≤1. 在数轴上表示不等式组的解集为:-x-1≥-2x+1,①   14.解:1 1 (x-2a)+ x<0.②  2 2 解不等式①,得 x≥2. 解不等式②,得 x<a. 故当 a>2 时,不等式组的解集为 2≤x<a;当 a<2 时,不等式组无解. 15.解:解方程组,得 ∵解都为正数,4a+5>0,  ∴  -a+4>0.  x=4a+5, y=-a+4. 5 解得- <a<4. 4 16.解:设旅游者可走 x 千米.根据题意,得 + ≤4,解得 x≤35. 18+3 18-3 答:旅游者最远可走 35 千米. 17.解:(1)设每个篮球和每个足球的售价分别为 x 元、y 元,2x+y=320, x=100,   根据题意,得 解得   3x+2y=540, y=120.xx答:每个篮球和每个足球的售价分别为 100 元、120 元. (2)设购买足球 a 个,则购买篮球(50-a)个, 根据题意,得 120a+100(50-a)≤5500, 解得 a≤25. 答:最多可购买 25 个足球.18.解:(1)根据题意可知西红柿种了(24-x)垄,则 15x+30(24-x)≤540,解得 x≥12. 又因为 x≤14,且 x 是正整数, 所以 x 的值为 12,13,14. 故共有三种种植方案: 方案一:种植草莓 12 垄,种植西红柿 12 垄; 方案二:种植草莓 13 垄,种植西红柿 11 垄; 方案三:种植草莓 14 垄,种植西红柿 10 垄. (2)方案一获得的利润为 12×50×1.6+12×160×1.1=3072(元); 方案二获得的利润为 13×50×1.6+11×160×1.1=2976(元); 方案三获得的利润为 14×50×1.6+10×160×1.1=2880(元). 由计算可知,方案一即种植西红柿和草莓各 12 垄,获得的利润最大,最大利润是 3072 元.。

人教版数学七年级下册 第9章《不等式与不等式组》单元测试(含答案)

人教版数学七年级下册  第9章《不等式与不等式组》单元测试(含答案)

人教版数学七年级下册第9章《不等式与不等式组》单元测试一.选择题(共10小题,满分30分)1.下列各式中:①﹣5<7:②3y﹣6>0:③a=6:④2x﹣3y;⑤a≠2:⑥7y﹣6>y+2,不等式有()A.2个B.3个C.4个D.5个2.对不等式a>b进行变形,结果正确的是()A.a﹣b<0B.a﹣2>b﹣2C.2a<2b D.1﹣a>1﹣b 3.已知关于x的不等式组有解,则a的取值不可能是()A.0B.1C.2D.﹣24.若不等式组的解为x>﹣b,则下列各式正确的是()A.a≥b B.a≤b C.a>b D.a<b5.不等式5x﹣3≤2的解集是()A.x≤1B.x≤﹣1C.x≥﹣1D.x≥16.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.用不等式表示:“a的与b的和为正数”,正确的是()A.a+b>0B.C.a+b≥0D.8.关于x的不等式组有解,那么m的取值范围为()A.m≤﹣1B.m<﹣1C.m≥﹣1D.m>﹣19.P,Q,R,S四个小朋友玩跷跷板,结果如图所示,则他们的体重大小关系为()A.R<Q<P<S B.Q<R<P<S C.Q<R<S<P D.Q<P<R<S 10.如图,按下面的程序进行运算.规定:程序运行到“判断结果是否大于35”为一次运算.若运算进行了2次停止,则x的取值范围是()A.11<x≤19B.11<x<19C.11<x<19D.11≤x≤19二.填空题(共6小题,满分24分)11.如a>b,则﹣1﹣a﹣1﹣b.12.若(m﹣2)x2m+1﹣1>5是关于x的一元一次不等式,则该不等式的解集为.13.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价元.14.若关于x的不等式组有且只有五个整数解,则k的取值范围是.15.已知关于x,y的二一次方程组的解满足x+y<1,则a的取值范围.16.对于有理数m,我们规定[m]表示不大于m的最大整数,例如[1.2]=1,[3]=3,[﹣2.5]=﹣3,若[]=﹣5,则整数x的取值是.三.解答题(共8小题,满分66分)17.解下列不等式(组):(1)4x﹣1<2x﹣3(2)18.若不等式3(x﹣2)+5<4(x﹣1)+6的最小整数解为方程2x﹣ax=3的解,求a的值.19.解不等式组.解:解不等式①,得.解不等式②,得.在同一数轴上表示两个不等式是解集如下:(在下面空白处画出图形)∴该不等式组的解集为.20.解不等式组:并把它的解集在数轴上表示出来.21.已知方程组的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?22.现有1元和5角的硬币共15枚,这些硬币的总币值小于9.5元.根据此信息,小强、小刚两名同学分别列出不完整的不等式如下:小强:x+<9.5,小刚:0.5x+<9.5.(1)根据甲、乙两名同学所列的不等式,请你分别指出未知数x表示的意义;(2)在横线上补全小强、小刚两名同学所列的不等式:小强:x+<9.5,小刚:0.5x+<9.5;(3)任选其中一个不等式,求可能有几枚5角的硬币.(写出完整的解答过程)23.永州市在进行“六城同创”的过程中,决定购买A,B两种树对某路段进行绿化改造,若购买A种树2棵,B种树3棵,需要2700元;购买A种树4棵,B种树5棵,需要4800元.(1)求购买A,B两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?24.感知:分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式>0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①或②解不等式组①,得x>3,解不等式组②,得x<﹣.所以原分式不等式的解集为x>3或x<﹣.探究:请你参考小亮思考问题的方法,解不等式<0.应用:不等式(x﹣3)(x+5)≤0的解集是.参考答案一.选择题(共10小题)1.【解答】解:数学表达式①﹣5<7;②3y﹣6>0;⑤a≠2;⑥7y﹣6>y+2是不等式,故选:C.2.【解答】解:∵a>b,∴a﹣b>0,∴选项A不符合题意;∵a>b,∴a﹣2>b﹣2,∴选项B符合题意;∵a>b,∴2a>2b,∴选项C不符合题意;∵a>b,∴﹣a<﹣b,∴1﹣a<1﹣b,∴选项D不符合题意.故选:B.3.【解答】解:∵关于x的不等式组有解,∴a<2,∵0<2,1<2,﹣2<2,∴a的取值可能是0、1或﹣2,不可能是2.故选:C.4.【解答】解:∵不等式组的解为x>﹣b,∴﹣a≤﹣b,整理得:a≥b,故选:A.5.【解答】解:移项得,5x≤2+3,合并同类项得,5x≤5,系数化为1得,x≤1.故选:A.6.【解答】解:由(1)得,x>﹣1,由(2)得,x≤2,故原不等式组的解集为:﹣1<x≤2.故选:D.7.【解答】解:用不等式表示:“a的与b的和为正数”为a+b>0,故选:A.8.【解答】解:,解不等式x﹣m<0,得:x<m,解不等式3x﹣1>2(x﹣1),得:x>﹣1,∵不等式组有解,∴m>﹣1.故选:D.9.【解答】解:依题意,得:,∴Q<R<P<S.故选:B.10.【解答】解:由题意得,解得:11<x≤19,故选:A.二.填空题(共6小题)11.【解答】解:∵a>b,∴﹣a<﹣b,∴﹣1﹣a<﹣1﹣b.故答案为:<.12.【解答】解:根据不等式是一元一次不等式可得:2m+1=1且m﹣2≠0,∴m=0∴原不等式化为:﹣2x﹣1>5解得x<﹣3.故答案为:x<﹣3.13.【解答】解:设每套童装的售价为x元,依题意,得:1000x﹣10%×1000x﹣88×1000≥20000,解得:x≥120.故答案为:120.14.【解答】解:解不等式2x﹣k>0得x>,解不等式x﹣2≤0,得:x≤2,∵不等式组有且只有5个整数解,∴﹣3≤<﹣2,解得﹣6≤k<﹣4,故答案为:﹣6≤k<﹣4.15.【解答】解:,①+②得,5(x+y)=3﹣2a,即x+y=(3﹣2a),∵x+y<1,∴(3﹣2a)<1,解得a>﹣1,故答案为a>﹣1.16.【解答】解:∵[m]表示不大于m的最大整数,∴﹣5≤<﹣4,解得:﹣17≤x<﹣14,∴整数x为﹣17,﹣16,﹣15,故答案为﹣17,﹣16,﹣15.三.解答题(共8小题)17.【解答】解:(1)移项合并得:2x<﹣2,解得:x<﹣1;(2),解不等式①得:x<﹣,解不等式②得:x≤﹣3,则不等式组的解集为x≤﹣3.18.【解答】解:解不等式3(x﹣2)+5<4(x﹣1)+6,去括号,得:3x﹣6+5<4x﹣4+6,移项,得3x﹣4x<﹣4+6+6﹣5,合并同类项,得﹣x<3,系数化成1得:x>﹣3.则最小的整数解是﹣2.把x=﹣2代入2x﹣ax=3得:﹣4+2a=3,解得:a=.19.【解答】解:.解:解不等式①,得x>﹣1,解不等式②,得x<﹣,在同一数轴上表示两个不等式是解集如下:所以该不等式组的解集是﹣1<x<﹣,故答案为:x>﹣1,x<﹣,﹣1<x<﹣.20.【解答】解:,解不等式①,可得x≥﹣1不等式②,可得x<5∴不等式组的解集为﹣1≤x<5在数轴上表示出来为:21.【解答】解:(1)∵①+②得:2x=﹣6+2a,x=﹣3+a,①﹣②得:2y=﹣8﹣4a,y=﹣4﹣2a,∵方程组的解x为非正数,y为负数,∴﹣3+a≤0且﹣4﹣2a<0,解得:﹣2<a≤3;(2)∵﹣2<a≤3,∴|a﹣3|+|a+2|=3﹣a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<﹣,∵﹣2<a≤3,∴a的值是﹣1,∴当a为﹣1时,不等式2ax+x>2a+1的解为x<1.22.【解答】解:(1)根据题意小强、小刚两名同学分别列出尚不完整的不等式如下:小强:x+0.5×(15﹣x)<9.5 小刚:0.5x+1×(15﹣x)<9.5小强:x表示小明有1元硬币的枚数;小刚:x表示小明有5角硬币的枚数.(2)由(1)知小强:x+0.5×(15﹣x)<9.5 小刚:0.5x+1×(15﹣x)<9.5故答案为:0.5×(15﹣x)、1×(15﹣x).(3)设小刚可能有5角的硬币x枚,根据题意得出:0.5x+(15﹣x)<9.5解得:x>11,∵x是自然数,∴x可取12,13、14、15,答:小刚可能有5角的硬币12枚,13枚,14枚,15枚.23.【解答】解:(1)设购买A种树每棵需要x元,B种树每棵需要y元,依题意,得:,解得:.答:购买A种树每棵需要450元,B种树每棵需要600元.(2)设购进A种树m棵,则购进B种树(100﹣m)棵,依题意,得:,解得:48≤m≤50.∵m为整数,∴m为48,49,50.当m=48时,100﹣m=100﹣48=52;当m=49时,100﹣m=100﹣49=51;当m=50时,100﹣m=100﹣50=50.答:有三种购买方案,第一种:A种树购买48棵,B种树购买52棵;第二种:A种树购买49棵,B种树购买51棵;第三种:A种树购买50棵,B种树购买50棵.24.【解答】解:探究:<0.根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①,或②,解不等式组①,得<x<2,解不等式组②得此不等式组无解.所以原分式不等式的解集为<x<2;应用:(x﹣3)(x+5)≤0,原不等式可化为不等式组:①或②,解不等式组①得:不等式组无解,解不等式组②得:﹣5≤x≤3,所以不等式(x﹣3)(x+5)≤0的解集是﹣5≤x≤3,故答案为:﹣5≤x≤3.。

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

新七年级数学下册第九章《不等式与不等式组》检测试题(含答案解析)

人教版七年级下册数学第九章不等式与不等式组单元试题一、选择题(共10小题,每小题3分,共30分) 1.下列不等式变形正确的是( ) A .由a >b ,得ac >bc B .由a >b ,得a -2<b -2 C .由-12>-1,得-a2>-aD .由a >b ,得c -a <c -b2.若a >b ,则下列各式中一定成立的是( )A .a +2<b +2B .a -2<b -2C .a 2>b2D .-2a >-2b3.不等式组⎩⎨⎧x -2≥-1,3x >9的解集在数轴上可表示为( )4.不等式-12x +1>2的解集是( )A .x >-12B .x >-2C .x <-2D .x <-125.某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多的利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( )A .82元B .100元C .120元D .160元6.如图,天平右盘中的每个砝码的质量为10 g ,则物体M 的质量m (g)的取值范围在数轴上可表示为( )7.甲、乙两人从相距24 km 的A ,B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度是( )A .小于8 km/hB .大于8 km/hC .小于4 km/hD .大于4 km/h8.小聪用100元钱去购买笔记本和钢笔共15件,已知每本笔记本5元,每支钢笔7元,小聪最多能买钢笔( )A .10支B .11支C .12支D .13支 9.如果不等式组⎩⎨⎧ x >a ,x <2恰有3个整数解,则a 的取值范围是( )A .a ≤-1B .a <-1C .-2≤a <-1D .-2<a ≤-110.不等式组⎩⎨⎧x +3>0,-x ≥-2的整数解有( )A .0个B .5个C .6个D .无数个 二、填空题(共5小题,每小题4分,共20分) 11.不等式2x +1>0的解集是 . 12.不等式x -5>4x -1的最大整数解是 . 13.若不等式组⎩⎨⎧1+x >a ,2x -4≤0有解,则a 的取值范围是 .14.当x 时,式子3x -5的值大于5x +3的值. 15.“x 的4倍与2的和是负数”用不等式表示为 . 三、解答题(共5小题,每小题10分,共50分) 16.解不等式组:⎩⎨⎧1-3x ≤5-x ,4-5x >-x ,并把解集在数轴上表示出来.17.阅读以下计算程序:(1)当x =1 000时,输出的值是多少?(2)问经过二次输入才能输出y 的值,求x 的取值范围.18.某书店在一次促销活动中规定:消费者消费满200元或超过200元就可以享受打折优惠,一名同学为班级买奖品,准备买6本影集和若干支钢笔,已知影集每本15元,钢笔每支8元,问他至少要买多少支钢笔才能享受打折优惠?19.若使二元一次方程组⎩⎨⎧3x -2y =m +2,2x +y =m -5中x 的值为正数,y 的值为负数,则m的取值范围是什么?20.某商店欲购进A,B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元.(1)求A,B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A,B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?参考答案一、选择题(共10小题,每小题2分,共20分)1-5 DCDCC 6-10 CBCCB二、填空题(共5人教版七年级数学下册第九章不等式与不等式组检测试题人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题。

人教版初中七年级下册数学第九章单元测试卷3附答案解析

人教版初中七年级下册数学第九章单元测试卷3附答案解析

单元测验卷选择题.一)(3分)下列不等式组中,无解的是(1..BA..DC.3分)若|x﹣1|=1﹣x,则x的值范围是(2.()A.x≤1B.x<1 C.x≥1 D.x>1的解集为()3.(3分)不等式组A.x>B.x<﹣1 C.﹣1<x<D.x>﹣有解,则m的取值范围是()4.(3分)如果不等式组A.m<B.m≤C.m>D.m≥5.(3分)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为()A.●■▲B.▲■●C.■●▲D.■▲●二.专心填一填6.(3分)如果关于x的不等式(a﹣1)x<a+5的解集为x<4,则a的值为.7.(3分)不等式组的解集为.8.(3分)在平面直角坐标系中,已知点A(7﹣2m,5﹣m)在第二象限内,且m为整数,则A点坐标为..(3分)某校一次普法知识竞赛共有30道题.规定答对一道题得49分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了道题.10.(3分)一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为mg.三.用心做一做11.解不等式:﹣≤...解不等式组:12的整数解..求不等式组1314.一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度v 不变,v满足什么条件?15.某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折销售,但要保证利润不低于10%,求至少要打几折(精确到0.1折).四.潜心想一想16.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?17.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备租用甲、乙两种货车,将这批救灾物资一次性全部运往灾区,它们的载货量和租金如下表:甲种货车乙种货车3045载货量(吨/辆)300400租金(元/辆)如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.参考答案与试题解析一.选择题1.(3分)下列不等式组中,无解的是()A.B.C.D.【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】分别根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:A、,<﹣由①得:x,x>﹣由②得:在数轴上表示为:,∴不等式组的解集为:空集即无解,符合题意;B、由①得:x<﹣,由②得:x>﹣,在数轴上表示为:,x<﹣<,不合题意;∴不等式组的解集为:﹣C、x>﹣由①得:,x>﹣由②得:,在数轴上表示为:,x>﹣,不合题意;∴不等式组的解集为:D、,x<﹣,由①得:x<﹣,由②得:在数轴上表示为:,x<﹣∴不等式组的解集为:,不合题意;故选:A.【点评】此题主要考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.2.(3分)若|x﹣1|=1﹣x,则x的值范围是()A.x≤1B.x<1 C.x≥1 D.x>1【考点】15:绝对值.【专题】11 :计算题.【分析】根据绝对值的意义由|x﹣1|=1﹣x得出x﹣1≤0,然后求解即可.【解答】解:∵|x﹣1|=1﹣x,∴x﹣1≤0,∴x≤1,故选A.【点评】本题考查了绝对值:,掌握若a>0,则|a|=a;若a=0,则|a|=0;若a <0,则|a|=﹣a是本题的关键,是一道基础题.3.(3分)不等式组的解集为()B.x<﹣1 C.﹣1<x<DA.x>.x>﹣【考点】CB:解一元一次不等式组.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解答】解:,,>由①得:x,x>﹣1由②得:,不等式组的解集为:x>.故选:A同大取此题主要考查了解一元一次不等式组,关键是掌握解集的规律:【点评】大;同小取小;大小小大中间找;大大小小找不到.)有解,则m的取值范围是(分)如果不等式组4.(3A.m<B.m≤C.m>D.m≥【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】由①得x≤;由②得x≥m,故其解集为m≤x≤,即m≤.【解答】解:由①得:x≤由②得:x≥m∴其解集为m≤x≤∴m≤.故选B.【点评】解不等式组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则解答.5.(3分)设“●■▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“●■▲”这三种物体质量从大到小顺序排列应为()A.●■▲B.▲■●C.■●▲D.■▲●【考点】C2:不等式的性质.【专题】23 :新定义.【分析】根据第一个不等式,可得■与▲的关系,根据第二个不等式,可得●与■的关系,根据不等式的传递性,可得答案.【解答】解:第一个不等式,■<▲,根据第二个不等式,●<■,故选:B.【点评】本题考查了不等式的性质,不等式当传递性是解题关键.二.专心填一填6.(3分)如果关于x的不等式(a﹣1)x<a+5的解集为x<4,则a的值为3.【考点】C3:不等式的解集.【专题】11 :计算题.【分析】根据已知不等式的解集得出a﹣1>0且=4,求出方程的解即可.【解答】解:∵关于x的不等式(a﹣1)x<a+5的解集为x<4,∴a﹣1>0且=4,,解得:a=3是所得方程的解,经检验a=3.故答案为:3解此题的关键【点评】本题考查了解分式方程,一元一次不等式的解集的应用,.且=4是得出a﹣1>07.(3分)不等式组的解集为﹣4<x<﹣3.【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】分别解不等式,再将不等式的解利用数轴表示出,进而得出不等式组的解集.【解答】解:,解①得:x<2,解②得:x>﹣4,解③得:x<﹣3,在数轴上表示为:,∴不等式组的解集为:﹣4<x<﹣3.故答案为:﹣4<x<﹣3.【点评】此题主要考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.)在第二象限内,且m,5﹣分)在平面直角坐标系中,已知点A(7﹣2m38.(.,1)为整数,则A点坐标为(﹣1m:一元一次不等式组的整数解.CC【考点】D1:点的坐标;:计算题.11 【专题】m纵坐标是正数列出不等式组求出【分析】根据第二象限内点的横坐标是负数,的值,然后解答即可.m的取值范围,再求出)在第二象限内,m5﹣7﹣2m,(【解答】解:∵点A,∴,>解不等式①得,m,<5解不等式②得,m,<5∴<m为整数,∵m,∴m=4,﹣12×4=∴7﹣2m=7﹣,4=1﹣m=5﹣5A点坐标为(﹣1,1∴).故答案为:(﹣1,1).【点评】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(3分)某校一次普法知识竞赛共有30道题.规定答对一道题得4分,答错或不答一道题得﹣1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了24道题.【考点】C9:一元一次不等式的应用.【分析】在这次竞赛中,小明获得优秀(90分或90分以上),即小明的得分≥90分,设小明答对了x题.就可以列出不等式,求出x的值.【解答】解:设小明答对了x题.故(30﹣x)×(﹣1)+4x≥90,解得:x≥24.故答案为:x≥24.【点评】解决问题的关键是读懂题意,找到关键描述语,正确利用代数式表示出小明的得分.10.(3分)一种药品的说明书上写着:“每日用量60~120mg,分4次服用”,一次服用这种药量x(mg)范围为15mg<x<30mg.【考点】C1:不等式的定义.【专题】11 :计算题.【分析】用60÷4,120÷4得到每天服用这种药的剂量.【解答】解:∵每日用量60~120mg,分4次服用,∴60÷4=15(mg/次),120÷4=30(mg/次),故答案是:15mg<x<30.【点评】本题考查的是不等式的定义,本题需注意应找到每天服用60mg时4次每次的剂量;每天服用120mg时4次每次的剂量,然后找到最大值与最小值.三.用心做一做11.解不等式:﹣≤.【考点】C6:解一元一次不等式.【专题】11 :计算题.【分析】不等式去分母,去括号,移项合并,将x系数化为1,即可求出解集.【解答】解:去分母得:4(2x﹣1)﹣6(10﹣x)≤3x,去括号得:8x﹣4﹣60+6x≤3x,移项合并得:11x≤64,解得:x≤.【点评】此题考查了解一元一次不等式,其步骤为:去分母,去括号,移项合并,将x系数化为1,求出解集.12.解不等式组:.【考点】CB:解一元一次不等式组.【专题】11 :计算题.【分析】根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:,,3x﹣3由①得:2x+2≥,≤5解得:x,1)4(x﹣由②得:3x>,4解得:x<在数轴上表示为:,.<∴不等式组的解集为:x4解此类题目常常要结合数轴来【点评】此题主要考查了一元一次不等式组的解,判断.的整数解.13.求不等式组【考点】CC:一元一次不等式组的整数解.【专题】11 :计算题.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,,x解①得:<3,解②得:x≥则不等式组的解集是:3..则不等式组的整数解是:2【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.一艘轮船从某江上游的A地匀速驶到下游的B地用了10小时,从B地匀速返回A地用了不到12小时,这段江水流速为3千米/时,轮船往返的静水速度v 不变,v满足什么条件?【考点】C9:一元一次不等式的应用.【专题】12 :应用题.【分析】从B到A用了不到12小时,则可得从B到A 12小时走的路程大于从A 到B 10小时走的路程,列出不等式求解即可.【解答】解:由题意得,从A到B的速度为:(v+3)千米/时,从B到A的速度为:(v﹣3)千米/时,∵从B地匀速返回A地用了不到12小时,∴12(v﹣3)>10(v+3),解得:v>33.答:v满足的条件是大于33千米/小时.【点评】本题考查了一元一次不等式的应用,解答本题的关键是仔细审题,得出不等关系,难度一般.15.某种商品的进价为800元,出售时标价为1200元.后来由于该商品积压,商店准备打折销售,但要保证利润不低于10%,求至少要打几折(精确到0.1折).【考点】C9:一元一次不等式的应用.【专题】124:销售问题.【分析】利润率不低于10%,即利润要大于或等于800×10%元,设打x折,则售价是1200x元.根据利润率不低于10%就可以列出不等式,求出x的范围.【解答】解:设打x折,根据题意得出:1200×﹣800≥则800×10%,解得x≥7.33,答:要保证利润不低于10%,至少要打7.4折.【点评】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.四.潜心想一想16.某工厂组织旅游活动.如果租用了54座的客车若干辆,恰好坐满;如果租用72座的客车则可少租2辆,并且有1辆车剩余了一半以下的座位.已知租用54座的客车每辆2000元,租用72座客车每辆3000元,怎样租车合算?【考点】C9:一元一次不等式的应用.【专题】128:优选方案问题.【分析】设单独租用54座客车需x辆.根据单独租用54座客车若干辆,则刚好坐满和全部租用72座客车,则可少租2辆车,并且所租用的客车中除有1辆车剩余不到一半的空位,其余车辆全部坐满列出一元一次不等式组,解答即可.【解答】解:设单独租用54座客车需x辆.根据题意列一元一次不等式组可得:,解得8<x<10,由于车辆数必须为整数,所以x=9,54×9=486(人),∵≈37(元),≈41,∴租用54座的客车越多越省钱,∴当租用9辆54座的客车时,正好坐满,而且最省钱.【点评】本题考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式组.17.为支援四川雅安地震灾区,某市民政局组织募捐了240吨救灾物资.现准备它们的载货量和租将这批救灾物资一次性全部运往灾区,乙两种货车,租用甲、.金如下表:甲种货车乙种货车3045载货量(吨/辆)300400租金(元/辆)如果计划租用6辆货车,且租车的总费用不超过2300元,求最省钱的租车方案.【考点】CE:一元一次不等式组的应用.【分析】先设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意列出不等式组,求出x的取值范围,再根据x为正整数,求出租车方案,再分别求出每种方案的费用,即可得出答案.【解答】解:设租甲型货车x辆,则乙型货车(6﹣x)辆,根据题意得:,解得:4≤x≤5,∵x为正整数,∴共有两种方案,方案1:租甲型货车4辆,乙型货车2辆,方案2:租甲型货车5辆,乙型货车1辆,方案1的费用为:4×400+2×300=2200元;方案2的费用为:5×400+1×300=2300元;2200<2300,则选择方案1最省钱,即最省钱的租车方案是租甲型货车4辆,乙型货车2辆.【点评】此题考查了一元一次不等式组的应用,关键是读懂题意,根据题目中的数量关系列出不等式组,注意x为正整数.。

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)

七年级数学下册《第九章不等式与不等式组》单元测试卷-附答案(人教版)一、单选题1.若a<b ,则下列各式中不成立的是( )A .22a b +<+B .22a b < C .22a b -<- D .22a b -<-2.不等式10x -<的解集是( )A .1x >B .1x >-C .1x <D .1x <-3.不等式组 233412x x x +>⎧⎪⎨-≤-⎪⎩ 的解集在数轴上应表示为( )A .B .C .D .4.在平面直角坐标系中,点M (1+m ,2m ﹣3)不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.若(m ﹣1)x >m ﹣1 的解集是 x <1,则 m 的取值范围是( )A .m >1B .m≤﹣1C .m <1D .m≥16.如图所示,在数轴上表示了某不等式的解集,则这个不等式可能是( )A .x≤1B .x≤-1C .x≥1D .x≥-17.一次知识竞赛共有15道题.竞赛规则是:答对1题记8分,答错1题扣4分,不答记0分.若甲同学总分超过了85分,且有1道题没答,则甲同学至少答对了() A .11道题B .12道题C .13道题D .14道题8.关于x 的不等式23x m +>的解如图所示,则m 的值为( ).A .1-B .5-C .1D .59.不等式组{5x −1>3x −4−13x ≤23−x的整数解的和为( )A .1B .0C .29D .3010.把一些书分给几名同学,如果每人分3本,那么余8本;如果前面的每名同学分5本,那么最后一人就分不到3本,共有()名同学. A .5B .6C .7D .8二、填空题11.用不等号填空:如果>0a b -,那么a b .12.某测试共有20道题,每答对一道得5分,每答错或不答一道题扣1分,设小明答对了x 道题,若小明得分要超过80分,则小明至少要答对 道题.13.如果不等式组4x x m≥⎧⎨<⎩有解,那么m 的取值范围是 .14.在平面直角坐标系中,已知点P (m ﹣3,4﹣2m ),m 是任意实数.(1)当m =0时,点P 在第 象限.(2)当点P 在第三象限时,求m 的取值范围 .三、计算题15.解不等式:215132x x -+-≤1. 16.解不等式组:()53133143x x x x ⎧-<-⎪⎨-+≥-⎪⎩四、解答题17.已知一种卡车每辆至多能载3吨货物.现有100吨黄豆,若要一次运完这批黄豆,至少需要这种卡车多少辆?18.解不等式:2 (3x -1)≤x +3,并把它的解集在数轴上表示出来.19.解不等式组()()2810433112x x x x ⎧+≤--⎪⎨+-<⎪⎩,并写出它的所有整数解. 五、综合题20.(1)若x>y ,请比较2-3x 与 2-3y 的大小,并说明理由. (2)若x>y ,请比较(a -3)x 与(a -3)y 的大小.21.2022年是富川县大力发展香芋种植的一年,某香芋种植大户聘请了一些临时工帮种植一批香芋,每个工人每天可以种植一亩香芋,计划9天种完,种植3天后由于气象台预测几天后将会有暴雨,为使香芋的种植不受到暴雨的影响,所以该种植大户又聘请了5个工人一起种植香芋,恰好提前两天完成了种植任务.(1)问该香芋种植大户种植了多少亩香芋?第一批请了多少个工人帮种植香芋?(2)种植过程中每天中午都要给每个工人提供一份快餐,已知烧鹅饭每个21元,排骨蒸饭每个18元,在种植的最后一天,该种植大户计划帮工人们订快餐的总花费不超过300元,则最多能订多少个烧鹅饭?22.先阅读理解下面的例题,再按要求解答下列问题.例题:解不等式()()330x x -+>.解:由有理数的乘法法则“两数相乘,同号得正,异号得负”,得3030x x -<⎧⎨+<⎩①,3030x x ->⎧⎨+>⎩②解不等式组①,得3x <-,解不等式组②,得3x >,()()330x x ∴-+>的解集为3x >或3x <-.(1)满足()()22310x x -+>的x 的取值范围是 ;(2)仿照材料,解不等式()()3150x x -+<.参考答案与解析1.【答案】C【解析】【解答】解:A 、∵a <b∴a+2<b+2,故本选项不符合题意; B 、∵a <b ∴22a b< ,故本选项不符合题意; C 、∵a <b∴-2a >-2b ,故本选项符合题意; D 、∵a <b∴a-2<b-2,故本选项不符合题意; 故答案为:C .【分析】根据不等式的性质,即不等式两边同加上或同减去同一个数,不等号方向不变,不等式两边同乘以或同除以同一个正数,不等号方向不变,同乘以或同除以同一个负数,不等号方向改变,据此分别判断即可.2.【答案】A【解析】【解答】解:10x -<1x -<- 1x >故答案为:A.【分析】根据不等式的性质两边同时减1、再两边同时除以-1,把不等式的系数化为1,即可解答.3.【答案】C【解析】【解答】解: 233412x x x +>⎧⎪⎨-≤-⎪⎩①② 解①得 1x > 解②得 2x ≤∴不等式组的解集为 12x <≤ 将解集表示在数轴上如C 选项所示 故答案为:C .【分析】先解不等式组,然后按照大于向右画,小于向左画,有等号是实心圆点,无等号是空心圆点的原则即可确定答案.4.【答案】B【解析】【解答】解:A.由 10230m m +>⎧⎨->⎩ 知m > 32 ,此时点M 在第一象限;B.由 10230m m +<⎧⎨->⎩知m 无解,即点M 不可能在第二象限;C.由 10230m m +<⎧⎨-<⎩知m <﹣1,此时点M 在第三象限;D.由 10230m m +>⎧⎨-<⎩ 知﹣1<m < 32 ,此时点M 在第四象限;故答案为:B.【分析】根据各象限内点的坐标符号特点列出关于m 的不等式组,解之求出m 的范围,从而得出答案.5.【答案】C【解析】【解答】解:∵(m-1)x >m-1的解集是 x <1∴m-1<0∴m<1. 故答案为:C.【分析】根据不等式的性质可得m-1<0,求解可得m 的范围.6.【答案】C【解析】【解答】由题意得x≥1.故答案为:C.【分析】根据数轴直接写出不等式的解集即可。

人教版数学七年级下册第九章测试卷(含答案)

人教版数学七年级下册第九章测试卷(含答案)

初中数学人教版七年级下学期 第九章测试卷一、单选题(共6题;共12分)1. ( 2分 ) 下列不等式变形中不正确的是( )A. 由 a >b ,得 b <aB. 由 −a >−b ,得 a <bC. 由 −ax >a ,得 x >−1D. 由 −12x <y ,得 x >−2y 2. ( 2分 ) 若 a >b ,则下列不等式中成立的是( )A. a +2<b +2B. a -2<b -2C. 2a <2bD. -2a <-2b3. ( 2分 ) 如图 所示的不等式的解集是( )A. a >1B. a <1C. a≥1D. a≤14. ( 2分 ) 不等式 −3x >6 的解集是( )A. x >−2B. x <−2C. x >2D. x <25. ( 2分 ) 运行程序如图所示,规定:从“输入一个值x”到“结果是否>26”为一次程序操作,如果程序操作进行了2次后停止,那么满足条件的所有整数x 的和为( )A. 30B. 35C. 42D. 396. ( 2分 ) 关于x 的不等式组 {2x <3(x −3)+13x+24>x +a 有四个整数解,则a 的取值范围是( ) A. ﹣ 114 <a≤﹣ 52 B. ﹣ 114 ≤a <﹣ 52 C. ﹣ 114 ≤a≤﹣ 52 D. ﹣ 114 <a <﹣ 52 二、填空题(共4题;共4分)7. ( 1分 ) 若 x >y , (a −3)x <(a −3)y ,则 a 的取值范围为________.8. ( 1分 ) 如图,数轴上所表示的关于 x 的不等式是________.9. ( 1分 ) 某次知识竞赛共20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过160 分.设他答对了 x 道题,则根据题意可列不等式________.10. ( 1分 ) 出租车按分段累加的方法收费:3公里以内(含3公里)收5元;超过3公里且不超过10公里的部分每公里收2元;超过10公里的部分每公里收3元.每次坐车另加燃油附加费1元,不足1公里以1公里计算.若小明从学校坐出租车到家用了38元的钱,设小明家到学校的距离为x 公里,则x 的取值范围是________.三、计算题(共1题;共20分)11. ( 20分 ) 解不等式(组),并把解集表示在数轴上。

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

新人教版七年级数学下册第九章《不等式与不等式组》单元测试题(含答案解析)

人教版七年级下册数学单元练习卷:第九章 不等式与不等式组一、填空题(本大题共10小题,每小题3分,共30分) 1.如果1<x <2,那么(x –1)(x –2)__________0.(填写“>”、“<”或“=”)2.写出一个解集为x <–1,且未知数的系数为2的一元一次不等式:__________. 3.当x __________时,式子–2(x –1)的值小于8.4.不等式组1023x x x -<⎧⎨+>⎩的解集是__________.5.不等式2x +5>4x –1的正整数解是__________.6.一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最少打__________折.7.某商品的售价是528元,商家出售一件这样的商品可获利润是进价的10%~20%,设进价为x 元,则x 的取值范围是__________.8.已知关于x 的不等式组12634x x a -<⎧⎨+≤⎩只有两个整数解,则a 的取值范围__________.9.2x ≥的最小值是a ,6x ≤-的最大值是b ,则a +b =__________. 10.已知不等式组1x a x b ≥--⎧⎨-≥-⎩①②在同一条数轴上表示不等式①②的解集如图,则b –a的值为__________.二、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 11.不等式x +1>3的解集是 A .x >1B .x >–2C .x >2D .x <212.在数轴上表示不等式x –1≤0的解集,正确的是 A .B .C .D .13.x 与3的和的一半是负数,用不等式表示为A .12x +3>0 B .12x +3<0 C .12(x +3)<0D .12(x +3)>014.下列说法中,错误的是 A .x =1是不等式x <2的解B .–2是不等式2x –1<0的一个解C .不等式–3x >9的解集是x =–3D .不等式x <10的整数解有无数个 15.若–12a ≥b ,则a ≤–2b ,其根据是 A .不等式的两边加(或减)同一个数(或式子),不等号的方向不变 B .不等式的两边乘(或除以)同一个正数,不等号的方向不变 C .不等式的两边乘(或除以)同一个负数,不等号的方向改变 D .以上答案均不对16.下列不等式中,不含有1x =-这个解的是 A .213x +≤- B .213x -≥-C .213x -+≥D .213x --≤17.不等式组()1132230x x x ⎧+≥-⎪⎨⎪-->⎩的最大整数解为A .8B .6C .5D .418.关于x 的不等式组()3141x x x m⎧->-⎨<⎩的解集为x <3,那么m 的取值范围为A .m =3B .m >3C .m <3D .m ≥319.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?则小明至少答对的题数是 A .11道 B .12道C .13道D .14道20.阅读理解:我们把a b c d 称作二阶行列式,规定它的运算法则为a cad bc b d=-,例如1324=1423=2⨯-⨯-,如果231xx-0>,则x 的取值范围是A .x >1B .x <–1C .x >3D .x <–3三、解答题(本大题共8小题,共60分.解答应写出文字说明、证明过程或演算步骤) 21.解不等式()2263x x -≤-,并写出它的正整数解.22.解不等式组26623212x x x x -<-⎧⎪⎨++>⎪⎩,并写出它的整数解.23.已知关于x 的不等式x a <7的解也是不等式2752x a a->–1的解,求a 的取值范围.24.解不等式组:()262311x x x x ⎧-≤⎪>-⎨⎪-<+⎩①②③.请结合题意,完成本题的解答.(1)解不等式①,得__________,依据是:__________. (2)解不等式③,得__________.(3)把不等式①,②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.25.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:(1)若a –b >0,则a __________b ; (2)若a –b =0,则a __________b ; (3)若a –b <0,则a __________b .这种比较大小的方法称为“求差法比较大小”. 请运用这种方法尝试解决下面的问题:比较4+3a 2–2b +b 2与3a 2–2b +1的大小.26.分子、分母都是整式,并且分母中含有未知数的不等式叫做分式不等式.小亮在解分式不等式253xx+->0时,是这样思考的:根据“两数相除,同号得正,异号得负”,原分式不等式可转化为下面两个不等式组:①25030xx+>⎧⎨->⎩或②25030xx+<⎧⎨-<⎩,解不等式组①,得x>3,解不等式组②,得x<–5 2 .所以原分式不等式的解集为x>3或x<–5 2 .请你参考小亮思考问题的方法,解分式不等式342xx--<0.27.如果一元一次方程的根是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程.(1)在方程①3x–1=0,②2103x+=,③x–(3x+1)=–5中,不等式组25312x xx x-+>-⎧⎨->-+⎩的关联方程是________;(2)若不等式组112132xx x⎧-<⎪⎨⎪+>-+⎩的一个关联方程的根是整数,则这个关联方程可以是________(写出一个即可);(3)若方程3–x=2x,3+x=122x⎛⎫+⎪⎝⎭都是关于x的不等式组22x x mx m<-⎧⎨-≤⎩的关联方程,直接写出m的取值范围.28.为降低空气污染,启东飞鹤公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年载客量如表:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客量总和不少于680万人次.请你设计一个方案,使得购车总费用最少.参考答案1.【答案】<2.【答案】2x <–2(答案不唯一) 3.【答案】>–3 4.【答案】31x -<< 5.【答案】1,2 6.【答案】9 7.【答案】440≤x ≤480 8.【答案】4<a ≤7 9.【答案】–4 10.【答案】1311.【答案】C 12.【答案】D 13.【答案】C 14.【答案】C 15.【答案】C 16.【答案】A 17.【答案】C 18.【答案】D 19.【答案】D 20.【答案】A21.【解析】去括号得:2x –4≤6–3x ,移项得:2x +3x ≤6+4, 整理解得:x ≤2, 正整数解为1,2.22.【解析】由不等式2x –6<6–2x 得:x <3.由不等式2x +1>32x +得:13x >. ∴不等式组的解集为133x <<.又x 为整数,∴x =1,2.∴原不等式组的整数解为1,2.23.【解析】解不等式27152x a a-->人教版七年级数学下册第九章不等式与不等式组单元测试题一、 选择题。

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

新七年级数学下册第九章《不等式与不等式组》单元检测试卷(含答案)

人教版数学七年级下册第9章《不等式与不等式组》检测题(含答案)人教版七年级数学下册第九章不等式与不等式组单元测试题检测题一、单选题(每小题只有一个正确答案)1.下列各式是一元一次不等式的是()A.B.C.D.2.若a>b,则下列各式中一定成立的是()A.ma>mb B.c2a>c2b C.(1+c2)a>(1+c2)b D.1﹣a>1﹣b 3.如果的解集是,那么的取值范围是()A.B.C.D.4.如图,天平左盘中物体A的质量为,,天平右盘中每个砝码的质量都是1g,则的取值范围在数轴上可表示为()A.B.C.D.5.已知不等式组有解,则的取值范围为()A.a>-2 B.a≥-2 C.a<2 D.a≥26.将不等式组的解集在轴上表示出来,应是( )A. B.C. D.>的整数解的个数为()7.不等式组A.0个B.2个C.3个D.无数个8.已知不等式组的解集是2<x<3,则关于x的方程ax+b=0的解为( ) A.x=B.x=C.x=D.x=9.已知0≤a–b≤1且1≤a+b≤4,则a的取值范围是( )A.1≤a≤2B.2≤a≤3C.≤a≤D.≤a≤10.已知(m+4)x|m|–3+6>0是关于x的一元一次不等式,则m的值为()A.4 B.±4 C.3 D.±311.若点M(2m﹣1,m+3)在第二象限,则m取值范围是()A.m> B.m<﹣3 C.﹣3<m< D.m<12.某校组织开展“校园安全”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分.小明参加本次竞赛得分要超过100分,他至少要答对题()A.13道 B.14道 C.15道 D.16道二、填空题13.不等式组的解集是____________;14.若,则比较大小:________.15.如果三个连续自然数的和不大于9,那么这样自然数共有_____组.16.不等式3(x﹣1)≤5﹣x的非负整数解有_____个.17.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4<0的解集为_____.三、解答题18.求不等式的解集,并把解集在数学轴表示出来(1)3x+2<2x+4(2)19.解下列不等式组,并把它们的解集在数轴上表示出来.(1)><; (2)<20.已知2x+3=2a,y-2a=4,并且a-<x+y≤2a+,求a的取值范围.21.某慈善组织租用甲、乙两种货车共16辆,把蔬菜266吨、水果169吨全部运到灾区,已知一辆甲种货车同时可装蔬菜18吨、水果10吨;一辆乙种货车同时可装蔬菜16吨、水果11吨.(1)若将这批货物一次性运到灾区,有哪几种租车方案?(2)若甲种货车每辆需付燃油费1500元,乙种货车每辆需付燃油费1200元,应选(1)中的哪种方案,才能使所付的燃油费最少?最少的燃油费是多少元?22.由于雾霾天气持续笼罩某地区,口罩市场出现热卖.某商店用8000元购进甲、乙两种口罩,销售完后共获利2800元,其进价和售价如下表:(1)求该商店购进甲、乙两种口罩各多少袋?(2)该商店第二次仍以原价购进甲、乙两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2倍,甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于3680元,则乙种口罩最低售价为每袋多少元?23.已知实数是一个不等于的常数,解不等式组,并根据的取值情况写出其解集.24.阅读下列材料:解答“已知,且,,试确定的取值范围”的过程如下:解:,又,,又,同理得:由得,的取值范围是请按照上述方法,解答下列问题:若,且,,求的取值范围;若,且,,求最大值.参考答案1.B2.C3.B4.D5.C6.C7.C8.D9.C10.A11.C12.B 13.﹣9<x≤﹣3 14.> 15.3组. 16.3 17.18.(1)x<2;(2)x ≤-5.19.(1)不等式组的解集为x>3;(2)不等式组的解集为-1≤x人教版年级数学下册第九章 不等式与不等式组单元测试题 人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题1.设a >b >0,c 为常数,给出下列不等式:①a-b >0;②ac>bc ;③1a <1b ;④b 2>ab ,其中正确的不等式有( ) A .1个B .2个C .3个D .4个2.已知,下列式子不成立的是( )A .B .C .D .如果,那么3.在关于x ,y 的方程组⎩⎪⎨⎪⎧2x +y =m +7,x +2y =8-m 中,未知数满足x≥0,y >0,那么m 的取值范围在数轴上应表示为( )4.方程组中,若未知数、满足,则的取值范围是( )A .B .C .D .5.某市自来水公司按如下标准收取水费:若每户每月用水不超过,则每立方米收费元;若每户每月用水超过,则超过部分每立方米收费元,小颖家某月的水费不少于元,那么她家这个月的用水量(吨数为整数)至少是( ) A .B .C .D .6.甲、乙两人从相距24km 的A ,B 两地沿着同一条公路相向而行,已知甲的速度是乙的速度的两倍,若要保证在2h 以内相遇,则甲的速度应( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h7.把一些图书分给几名同学,如果每人分3本,那么余8本;如果前面的同学每人分5本,那么最后一人就分不到3本.则这些图书有( )A .23本B .24本C .25本D .26本8.定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[-3.6]=-4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x -[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数)9.某射击运动员在一次比赛中(共10次射击,每次射击最多是10环),前6次射击共中52环.如果他要打破89环的记录,那么第7次射击不能少于( ) A .5环B .6环C .7环D .8环10.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位,要求租用的车辆不留空座,也不能超载.租车方案共有( )种.A. 2B. 3C. 4D. 5二、填空题1.若点A (x +3,2)在第二象限,则x 的取值范围是________. 2.当x ________时,式子3+x 的值大于式子12x -1的值.3.某班级从文化用品市场购买了签字笔和圆珠笔共15支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了________支.4.定义一种法则“”如下:a b =⎩⎪⎨⎪⎧a (a >b ),b (a ≤b ).例如:=2.若(-2m -=3,则m 的取值范围是__________.5.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的所有x 的值是______________.6.不等式组⎩⎪⎨⎪⎧x +1>3(1-x ),1+2x 3≤x 的解集是____________.三、解答题1.解不等式,并把解集在数轴上表示出来:(1)2(x +1)-1≥3x+2;(2)2x -13-9x +26≤1.2.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)2的解,试求a 的取值范围.3.已知关于x ,y 的方程组⎩⎪⎨⎪⎧x +2y =1,①x -y =m.②(1)求这个方程组的解(用含m 的式子表示);(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.4.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2 200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?5.某服装厂生产一种西装和领带,西装每套定价200元,领带每条定价40元.厂方在开展促销活动期间,向客户提供两种优惠方案:方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.现某客户要到该服装厂购买西装20套,领带x条.(1)若x=30,通过计算可知方案一购买较为合算;(只填“方案一”或“方案二”,不要求解题过程)(2)当x>20时,①该客户按方案一购买,需付款(40x+3__200)元;(用含x的式子表示)②该客户按方案二购买,需付款(36x+3__600)元;(用含x的式子表示)③这两种方案中,哪一种方案更省钱?参考答案: 一、选择题。

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

最新人教版七年级数学下册第九章《不等式与不等式组》测试卷(含答案解析)

七年级数学第9章《不等式和不等式组》同步测试一、选择题(每题3分,共30分):1、若a >b ,则下列各式中一定成立的是( ) A .ma >mbB .c 2a >c 2bC .(1+c 2)a >(1+c 2)b D .1﹣a >1﹣b2、在数轴上表示不等式x >-2的解集,正确的是( )3、不等式a >b ,两边同时乘m 得am <bm ,则一定有( ) A .m =0B .m <0C .m >0D .m 为任何实数4、下列说法中,错误的是( ) A .x =1是不等式x <2的解B .-2是不等式2x -1<0的一个解C .不等式-3x >9的解集是x =-3D .不等式x <10的整数解有无数个5、已知实数a ,b 满足a +1>b +1,则下列选项错误的为( ) A .a >bB .a +2>b +2C .-a <-bD .2a >3b6、已知不等式组 有解,则 的取值范围为( )A .a>-2B .a≥-2C .a<2D .a≥27、如果不等式组⎩⎪⎨⎪⎧2x -1>3(x -1),x<m 的解集是x <2,那么m 的取值范围是( )A .m =2B .m >2C .m <2D .m≥28、小明准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x-45≥300 B. 30x+45≥300 C. 30x-45≤300 D. 30x+45≤3009、对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若[x +410]=5,则x 的取值可以是( )A .40B .45C .51D .5610、若关于x 的不等式组⎩⎪⎨⎪⎧x -a≤0,2x +3a >0的解集中至少有5个整数解,则正数a 的最小值是( )A .3B .2C .1D.23二、填空题(每题3分,共15分):11、不等式3(x ﹣1)≤5﹣x 的非负整数解有_____个. 12、已知0≤a–b≤1且1≤a+b≤4,则a 的取值范围是13、已知关于x 的不等式组⎩⎪⎨⎪⎧5-3x≥-1,a -x <0无解,则a 的取值范围是 .14、若实数3是不等式2x -a -2<0的一个解,则a 可取的最小正整数为 . 15、某校规定期中考试成绩的40%和期末考试成绩的60%的和作为学生成绩总成绩.该校李红同学期中数学考了85分,她希望自己学期总成绩不低于90分,则她在期末考试中数学至少应得多少分?设她在期末应考x 分,可列不等式为 . 三、解答题(共55分):16、(6分)在爆破时,如果导火索燃烧的速度是每秒钟0.8 cm ,人跑开的速度是每秒钟4 m ,为了使点导火索的人在爆破时能够跑到100 m 以外的安全地区,设导火索的长为s cm. (1)用不等式表示题中的数量关系;(2) 要使人能跑到安全地区,则导火索的长度至少多长?17、(6分)已知关于x 的不等式ax <-b 的解集是x >1,求关于y 的不等式by >a 的解集.18、(8分)已知关于x 的不等式2m -mx 2>12x -1.(1)当m =1时,求该不等式的解集;(2)m 取何值时,该不等式有解,并求出解集.19、(8分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?20、(10分)解不等式组并在数轴上表示解集.(1)⎩⎪⎨⎪⎧2x<5,①3(x +2)≥x+4,②(2) ⎩⎪⎨⎪⎧x -32(2x -1)≤4,①1+3x 2>2x -1,②21、(8分)春平中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买8个A 型放大镜和5个B 型放大镜需用220元;购买4个A 型放大镜和6个B 型放大镜需用152元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)春平中学决定购买A 型放大镜和B 型放大镜共75个,总费用不超过1 180元,那么最多可以购买多少个A 型放大镜?22、(9分)某科技有限公司准备购进A 和B 两种机器人来搬运化工材料,已知购进A 种机器人2个和B 种机器人3个共需16万元,购进A 种机器人3个和B 种机器人2个共需14万元,请解答下列问题:(1)求A 、B 两种机器人每个的进价;(2)已知该公司购买B 种机器人的个数比购买A 种机器人的个数的2倍多4个,如果需要购买A 、B 两种机器人的总个数不少于28个,且该公司购买的A 、B 两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?参考答案: 一、选择题:1、C2、C3、B4、C5、D6、C7、D8、B9、C 10、B 二、填空题: 11、3 12、≤a≤13、a≥2 14、515、40%×85+60%x≥90 三、解答题:16、(1)4×s0.8>100.(2)25 cm17、∵不等式ax <-b 的解集是x >1,∴a<0,-ba =1.∴b=-a ,b >0.∴不等式by >a 的解集为y >ab =-1,即不等式by >a 的解集为y >-1.18、(1)当m =1时,该不等式为2-x 2>12x -1,解得x <2.(2)∵2m -mx 2>12x -1,∴2m-mx >x -2.∴-mx -x >-2-2m.∴(m+1)x <2(1+m). ∵该不等式有解,∴m+1≠0,即m≠-1. 当m >-1时,不等式的解集为x <2; 当x <-1时,不等式的解集为x >2. 19、(1)120×0.95=114(元).(2)设购买商品的价格为x 元.由题意,得0.8x +168<0.95x.解得x >1 120. 当购买商品的价格超过1 120元时,采用方案一更合算. 20、(1)解不等式①,得x <52人教版七年级数学下册 第九章 不等式与不等式组 单元测试题(解析版)一、选择题(共10小题,每小题3分,共30分)1.2019年2月1日某市最高气温是8℃,最低气温是-2℃,则当天该市气温变化范围t (℃)是( )A .t >8B .t <2C . -2<t <8D . -2≤t ≤82.下列x 的值中,是不等式x >3的解的是( )A . -3B . 0C . 2D . 43.下列不等式变形正确的是( )A . 由a >b ,得ac >bcB . 由a >b ,得a -2<b -2C . 由-21>-1,得-2a>-a D . 由a >b ,得c -a <c -b4.如果a +b <0,且b >0,那么a ,b ,-a ,-b 的大小关系为( ) A .a <b <-a <-b B . -b <a <-a <b C .a <-b <-a <b D .a <-b <b <-a5.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <36.若关于x 、y 的二元一次方程组的解满足x -y >-2,则a 的取值范围是( )A .a <4B . 0<a <4C . 0<a <10D .a <107.已知点M (1-2m ,m -1)在第四象限内,那么m 的取值范围是( ) A .m >1 B .m <21 C .21<m <1D .m <21或m >18.已知不等式组有解,则a 的取值范围为( )A .a >-2B .a ≥-2C .a <2D .a ≥29.在关于x 、y 的方程组中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( ) A . B .C .D .10.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是( )A . 5B . 6C . 7D . 8二、填空题(共8小题,每小题3分,共24分)11.某不等式的解集在数轴上的表示如图所示,则该不等式的解集是___________.12.如果2x -5<2y -5,那么-x ______-y .(填“<、>、或=”) 13.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______. 14.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________. 15.不等式组:的解集是________.16.关于x 的不等式组的解集为1<x <4,则a 的值为________.17.把m 个练习本分给n 个学生.若每人分3本,则余80本;若每人分5本,则最后一个同学有练习本但不足5本.那么n =________.18.圣诞节班主任老师购买了一批贺卡准备送给学生,若每人三张,那么还余59张,若每人5张,那么最后一个学生分到贺卡,但不足四张,班主任购买的贺卡共______张.三、解答题(共7小题,共66分) 19.(8分)解不等式:6x -1≤5;把解集在数轴上表示出来.20. (8分)阅读理解:我们把称作二阶行列式,规定他的运算法则为=ad -bc .如=2×5-3×4=-2.如果有>0,求x 的解集.21. (8分)已知方程组的解为非负数,求整数a 的值.22. (8分)若关于x 的方程2x -3m =2m -4x +4的解不小于87-,求m 的最小值.23. (10分)解不等式组:并把解集在数轴上表示出来.24. (12分)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?25. (12分)学校计划利用校友慈善基金购买一些平板电脑和打印机.经市场调查,已知购买1台平板电脑比购买3台打印机多花费600元,购买2台平板电脑和3台打印机共需8 400元.(1)求购买1台平板电脑和1台打印机各需多少元?(2)学校根据实际情况,决定购买平板电脑和打印机共100台,要求购买的总费用不超过168 000元,且购买打印机的台数不低于购买平板电脑台数的2倍.请问最多能购买平板电脑多少台?答案解析1.【答案】D【解析】由题意得-2≤t ≤8.故选D. 2.【答案】D【解析】∵不等式x >3的解集是所有大于3的数,∴4是不等式的解.故选D. 3.【答案】D【解析】A.由a >b ,得ac >bc (c >0),故此选项错误; B .由a >b ,得a -2>b -2,故此选项错误; C .由-21>-1,得-2a>-a (a >0),故此选项错误; D .由a >b ,得c -a <c -b ,此选项正确.故选D. 4.【答案】D【解析】∵设b =1,a =-2,则有-b =-1,-a =2,a <-b <b <-a .故选D. 5.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A. 6.【答案】D【解析】在关于x 、y 的二元一次方程组中,①+②,得4x -4y =2-a ,即x -y =21-4a, ∵x -y >-2,∴21-4a>-2,解得a <10,故选D. 7.【答案】B【解析】根据题意,可得解不等式①,得m <21,解不等式②,得m <1,∴m <21,故选B. 8.【答案】C 【解析】不等式组由(1)得x ≥a ,由(2)得x <2,故原不等式组的解集为a ≤x <2, ∵不等式组有解,∴a 的取值范围为a <2.故选C.9.【答案】C【解析】①×2-②,得3x=3m+6,即x=m+2,把x=m+2代入②,得y=3-m,由x≥0,y>0,得到解得-2≤m<3,表示在数轴上,如图所示:,故选C.10.【答案】B【解析】设小张同学应该买的球拍的个数为x,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.11.【答案】x>-2【解析】观察数轴可得该不等式的解集为x>-2.故答案为x>-2.12.【答案】>【解析】如果2x-5<2y-5,两边都加5可得2x<2y;同除以(-2)可得-x>-y.13.【答案】3-a【解析】∵关于x的不等式(a-2)x>a-2解集为x<1,∴a-2<0,即a<2,∴原式=3-a.故答案为3-a.14.【答案】k>4【解析】由方程3(x+2)=k+2去括号移项,得3x=k-4,∴x=,∵关于x的方程3(x+2)=k+2的解是正数,∴x=>0,∴k>4.15.【答案】x>5【解析】解①得x>1,解②得x>5,所以不等式组的解集为x>5.故答案为x>5.16.【答案】5【解析】解不等式2x+1>3,得x>1,解不等式a-x>1,得x<a-1,∵不等式组的解集为1<x <4,∴a -1=4,即a =5,故答案为5.17.【答案】41或42 【解析】根据题意得解得40<n <42.5,∵n 为整数,∴n 的值为41或42.故答案为41或42.18.【答案】152【解析】设本班有x 人(x 是正整数),最后的学生得到的贺卡为y (y 是整数,0<y ≤3), 根据题意有3x +59=5(x -1)+y ,解得x =32-21y ,由于x 取正整数,y 为整数,0<y ≤3,∴y 只能取2,∴x =32-1=31,那么班主任购买的贺卡数为3x +59=152(张),故填152.19.【答案】6x -1≤5,6x ≤6,x ≤1,在数轴上表示为【解析】利用不等式的性质1及性质2求出解集.20.【答案】解:由题意得2x -(3-x )>0,去括号得2x -3+x >0,移项合并同类项得3x >3,把x 的系数化为1得x >1.【解析】首先看懂题目所给的运算法则,再根据法则得到2x -(3-x )>0,然后去括号、移项、合并同类项,再把x 的系数化为1即可.21.【答案】解: ①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1; ②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1; 则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.22.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =,根据题意,得≥87-,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-41.所以当m ≥-41时,方程的解不小于87-,m 的最小值为-41. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于87-,即可得到关于m 的不等式,即可求得m 的范围,从而求解. 23.【答案】解:解不等式①,得x <2,解不等式②,得x ≥-1,在数轴上表示为:∴不等式组的解集为-1≤x <2.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了,确定不等式组的解集.24.【答案】解:(1)每辆A 型车和B 型车的售价分别是x 万元,y 万元. 则解得答:每辆A 型车的售价为18万元,每辆B 型车的售价为26万元;(2)设购买A 型车a 辆,则购买B 型车(6-a )辆, 则依题意得解得2≤a ≤341. ∵a 是正整数,∴a =2或a =3.∴共有两种方案:方案一:购买2辆A 型车和4辆B 型车; 人教版数学七年级下册单元测试卷:第9章 一元一次不等式(组)人教版七年级数学下册第九章 不等式与不等式组单元测试题一、选择题(本大题共8小题,每小题3分,共32分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题:(每小题3分,共30分)
1.已知a <b ,则下列不等式中不正确的是( ).
A.4a <4b
B.a +4<b +4 C.-4a <-4b D.a -4<b -4
2.不等式1
132
x +<的正整数解有( ).
A.1个
B.2个 C.3个
D.4个
3.满足-1<x ≤2的数在数轴上表示为( ).
4.如果|x -2|=x -2,那么x 的取值范围是( ).
A.x ≤2
B.x ≥2 C.x <2
D.x >2
5.从甲地到乙地有16千米,某人以4千米/时~8千米/时的速度由甲地到乙地,则他用的
时间大约为( ).
A.1小时~2小时 B.2小时~3小时 C.3小时~4小时 D.2小时~4小时 6.不等式组102(1)x x x +<⎧⎨
-⎩

≤的解集是( ).
A.x <-1 B.x ≤2 C.x >1 D.x ≥2
7.不等式2+x <6的非负整数解有( )
A .2个
B .3个
C .4个
D .5个 8.下图所表示的不等式组的解集为( )
A .x 3
B .32 x -
C .2- x
D .32 x -
9.若方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ).
A.m >-1.25
B.m <-1.25 C.m >1.25
D.m <1.25
A . B. C. D.
10.某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),
超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是( ). A.5千米
B.7千米
C.8千米
D.15千米
二、填空题(每题3分,共30分)
11.已知三角形的两边为3和4,则第三边a 的取值范围是________. 12.如图9-1,在数轴上表示某不等式组中的两个不等式的解集,
则该不等式组的解集为 .
13.若11|1|-=--x x ,则x 的取值范围是 .
14.不等式组1
10210x x ⎧+>⎪⎨⎪->⎩,

的解为 .
15.当0<<a x 时,2x 与ax 的大小关系是_______________.
16.若点P (1-m ,m )在第二象限,则(m -1)x >1-m 的解集为_______________. 17.已知x =3是方程
2
a
x -—2=x —1的解,那么不等式(2—5a )x <3
1的解集是 .
18.若不等式组841
x x x m +-⎧⎨⎩的解集是x >3,则m 的取值范围是 .
19.小明用100元钱购得笔记本和钢笔共30件,已知每本笔记本2元,每只钢笔5元.那么小明最多能买 只钢笔.
20.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打 . 三、解答题(本题共 8个小题,共32分)
21.解不等式:1
12
x x >+
22.解不等式组,并把它的解集表示在数轴上:
3(1)7251.3x x x
x --⎧⎪
⎨--<⎪⎩
≤,
① ②
图9-1
23.x 为何值时,代数式5
1
23--
+x x 的值是非负数?
24.已知:关于x 的方程m x m x =--+2
1
23的解是非正数,求m 的取值范围.
四、解答题(本题共3个小题,其中,25、26每题9分,27题10分,共28分)
25.北京奥运会期间,某旅行社组团去北京观看某场足球比赛,入住某宾馆.已知该宾馆一楼房间比二楼房间少5间,该旅游团有48人,若全部安排在一楼,每间住4人,房间不够,每间住5人,有房间没住满.若全部安排在二楼,每间住3人,房间不够,每间住4人,则有房间没住满.你能根据以上信息确定宾馆一楼有多少房间吗?
26.国庆节期间,电器市场火爆.某商店需要购进一批电视机和洗衣机,根据市场调查,决
定电视机进货量不少于洗衣机的进货量的一半.电视机与洗衣机的进价和售价如下表: 计划购进电视机和洗衣机共100台,商店 最多可筹集资金161 800元.
(1)请你帮助商店算一算有多少种进货方案? (不考虑除进价之外的其它费用)
(2)哪种进货方案待商店销售购进的电视机
与洗衣机完毕后获得利润最多?并求出最多利润.
(利润=售价-进价)
27.今秋,某市白玉村水果喜获丰收,果农王灿收获枇杷20吨,桃子12吨.现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨.
(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?
(2)若甲种货车每辆要付运输费300元,乙种货车每辆要付运输费240元,则果农王灿应选择哪种方案,使运输费最少?最少运费是多少?
第九章 不等式与不等式组参考答案
一、选择
1.C 2.C 3.B 4.B 5.D 6.A 7.C 8.A 9.A 10.C 二、填空
11.1<a <7 12.x <2 13.x <1 14.21x -<< 15.2x >ax 16.x >-1
17.x <1
9
18.m <3 19.13支 20.7折
三、解答题 21.解析:(1)112x x -
>,1
12
x >,所以2x >. 22.解析:解不等式①,得2x -≥; 解不等式②,得1
2
x <-. 在同一条数轴上表示不等式
①②的解集,如答图9-1
所以,原不等式组的解集是1
22x -<-≤.
23.解析:由题意可得
31025x x +--≥,解不等式x ≥17
3
-. 24.解析:解关于x 的方程
m x m x =--+2123,得344
m
x -=
,因为方程解为非正数,所以有344m -≤0,解之得,m ≥3
4
. 四、
25.解析:设该宾馆一楼有x 间房,则二楼有(x +5)间房,由题意可得不等式组
4485483(5)484(5)48
x x x x ⎧⎪⎪

+⎪⎪+⎩,解这个不等式组可得9.6<x <11,因为x 为正整数,所以x =10 即该宾馆一楼有10间房间.
26.解析:(1)设商店购进电视机x 台,则购进洗衣机(100-x )台,根据题意,得
1(100),
218001500(100)161800.
x x x x ⎧
≥-⎪⎨
⎪+-≤⎩ ,解不等式组,得 1333≤x ≤1393.即购进电视机最少34台,最多39台,商店有6种进货方案.
答图9-1
(2)设商店销售完毕后获利为y元,根据题意,得y=(2000-1800)x+(1600-1500)(100-x)=100x+10000.∵100>0,∴当x最大时,y的值最大.即当x=39时,商店获利最多为13900元.
27.解析:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题意,得
4x + 2(8-x)≥20,且x + 2(8-x)≥12,解此不等式组,得x≥2,且x≤4,即2≤x≤4.
∵x是正整数,∴x可取的值为2,3,4.因此安排甲、乙两种货车有三种方案:
甲种货车乙种货车
方案一2辆6辆
方案二3辆5辆
方案三4辆4辆
(2300×3 + 240×5 = 2100元;方案三所需运费300×4 + 240×4 = 2160元.所以王灿应选择方案一运费最少,最少运费是2040元.。

相关文档
最新文档