2015中考数学计算题专项训练
2015陕西中考数学试题及答案word版
2015陕西中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -5B. 0C. 2D. -3答案:C2. 计算下列哪个表达式的结果为负数?A. 3 - (-2)B. -4 - 2C. 5 + (-3)D. 2 × (-3)答案:D3. 哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C4. 以下哪个是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax + bD. y = a/x + b5. 计算下列哪个表达式的结果是0?A. 3 × 0B. 0 - 0C. 0 + 0D. 0 ÷ 0答案:A6. 一个圆的半径是5厘米,那么它的面积是多少?A. 25π cm²B. 50π cm²C. 75π cm²D. 100π cm²答案:B7. 计算下列哪个表达式的结果为1?A. (-1)^2B. (-1)^3C. (-1)^4D. (-1)^5答案:C8. 一个等差数列的首项是3,公差是2,那么它的第五项是多少?A. 11B. 13C. 15D. 17答案:A9. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长度是A. 5B. 6C. 7D. 8答案:A10. 计算下列哪个表达式的结果为-1?A. (-1) × (-1)B. (-1) ÷ (-1)C. (-1) + (-1)D. (-1) - (-1)答案:C二、填空题(每题3分,共30分)11. 一个数的相反数是-7,那么这个数是________。
答案:712. 一个数的绝对值是5,那么这个数可以是________或________。
答案:5或-513. 一个数的平方是36,那么这个数可以是________或________。
2015年中考数学真题分类汇编 二次根式、分式和一元一次方程
二次根式、分式和一元一次方程一.选择题(共12小题)1.(2015•东营)下列计算正确的是()﹣=﹣=2.(2015•孝感)已知x=2﹣,则代数式(7+4)x2+(2+)x+的值是()C+﹣代入代数式(7+4)7+4)3+.3.(2015•咸宁)方程2x﹣1=3的解是()4.(2015•济南)若代数式4x﹣5与的值相等,则x的值是()C D5=,5.(2015•无锡)方程2x﹣1=3x+2的解为()6.(2015•大连)方程3x+2(1﹣x)=4的解是()=7.(2015•杭州)某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x公顷旱地改为林地,则可列方程()8.(2015•长沙)长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为()9.(2015•南充)学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是()10.(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.11.(2015•大庆)某品牌自行车1月份销售量为100辆,每辆车售价相同.2月份的销售量比1月份增加10%,每辆车的售价比1月份降低了80元.2月份与1月份的销售总额相同,则1月份的售价为()12.(2015•永州)永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为()二.填空题(共14小题)13.(2015•包头)计算:(﹣)×=8.﹣14.(2015•长沙)把+进行化简,得到的最简结果是2(结果保留根号).+..15.(2015•聊城)计算:(+)2﹣=5.+3=516.(2015•滨州)计算(+)(﹣)的结果为﹣1.,求出算式()﹣()﹣+)﹣17.(2015•黔西南州)已知x=,则x2+x+1=2.)﹣+1+)+18.(2015•甘孜州)已知关于x的方程3a﹣x=+3的解为2,则代数式a2﹣2a+1的值是1.+3+319.(2015•常州)已知x=2是关于x的方程a(x+1)=a+x的解,则a的值是.a.故答案为:.20.(2015•黑龙江)某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省18或46.8元.21.(2015•荆门)王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2千克,则甲种药材买了5千克.22.(2015•孝感)某市为提倡节约用水,采取分段收费.若每户每月用水不超过20m3,每立方米收费2元;若用水超过20m3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水28m3.23.(2015•牡丹江)某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为100元.24.(2015•嘉兴)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为.x=的值为,故答案为:.25.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.cm分钟,丙的水位上升cm分钟,丙的水位上升由题意得,t,×=65÷=分钟,×=,即经过分钟时容器的水到达管子底部,乙的水位上升+2×()﹣;∵乙的水位到达管子底部的时间为;+)÷÷分钟,2×(),综上所述开始注入或分钟的水量后,乙的水位比甲高故答案为cm或.26.(2015•湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.三.解答题(共4小题)27.(2015•大连)计算:(+1)(﹣1)+﹣()0.1+21+21=1+2.28.(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+8+2+2+8.29.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.[﹣()×[﹣[(﹣(×)﹣×1×30.(2015•广州)解方程:5x=3(x﹣4)。
2015中考数学试题分类汇总---数与式真题
1.实数选择题1.(2015湖南岳阳第1题3分)实数﹣2015的绝对值是( )2.(2015湖北荆州第1题3分)﹣2的相反数是( )3.(2015湖北鄂州第1题3分)的倒数是( )4(2015•福建泉州第1题3分)﹣7的倒数是( )5.(2015湖南邵阳第1题3分)计算(﹣3)+(﹣9)的结果是( )6. (2015辽宁大连,1,3分)﹣2的绝对值是( )7. (2015辽宁大连,9,3分)比较大小:3__________ -2(填>、<或=)8. (2015山东济宁,1,3分)23- 的相反数是( )9. (2015•甘肃武威,1题3分)64的立方根是( )A . 4 B . ±4 C . 8 D . ±810.(2015•四川甘孜、阿坝,第1题4分)计算2﹣3的结果是( )11(2015•浙江嘉兴,第6题4分)与无理数31 ) (A )4 (B )5 (C )6 (D )712.(2015•浙江湖州,第3题3分)4的算术平方根是( )A . ±2B . 2C . −2 13.(2015山东省德州市,1,3分)12-的结果是( )14.(2015•贵州六盘水,第1题3分)下列说法正确的是( )A .22-=-B .0的倒数是0C .4的平方根是2D .-3的相反数是315. (2015•四川凉山州,第1题4分)(()03.14π-的相反数是( )16.(2015呼和浩特,1,3分)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A .-3℃B .15℃C .-10℃D .-1℃17(2015•广东省,第7题,3分)在()00,2,3,5-- 这四个数中,最大的数是18. (2015•四川省宜宾市,第1题,3分)–15的相反数是( )19.(2015•安徽省,第1题,4分)在-4,2,-1,3这四个数中,比-2小的数是( ) 20.(2015•四川南充,第1题3分)计算3+(-3)的结果是( )21.(2015•江苏株洲,第1题3分)2的相反数是 ( )22.(2015•浙江宁波,第13题4分)实数8的立方根是( )23.(2015•安徽省,第11题,5分)-64的立方根是 ( )24.(2015•浙江滨州,第2题3分) 下列运算:sin 302==02,24ππ-==- .其中运算结果正确的个数为( )A .4 B .3 C .2 D .125.(2015•湖南省衡阳市,第1题3分)计算()012-+-的结果是( ). 26.(2015•江苏苏州,第4题3分)若()2m =-,则有 A .0<m <1 B .-1<m <0 C .-2<m <-1 D .-3<m <-227. (2015•浙江嘉兴,第1题4分)计算2-3的结果为( )28. (2015湖北鄂州第2题3分)某小区居民王先生改进用水设施,在5年内帮助他居住小区的居民累计节水39400吨,将39400用科学计数法表示( )29.(2015湖南邵阳第3题3分)2011年3月,英国和新加坡研究人员制造出观测极限为0.000 000 05米的光学显微镜,其中0.000 000 05米用科学记数法表示正确的是( )30.(2015• 山东威海,第 3题3分)据中国新闻网报道,在2014年11月17日公布的全球超级计算机500强榜单中,国防科技大学研制的“天河”二号超级计算机,以峰值计算速度每秒5.49亿亿次、持续计算速度每秒3.39亿亿次双精度浮点运算的优异性能位居榜首,第四次摘得全球运行速度最快的超级计算机桂冠.用科学记数法表示“5.49亿亿”,记作( )31.(2015•山东威海,第1题3分)检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是( )A . ﹣2B . ﹣3C . 3D . 532.(2015•山东潍坊,第 3题3分)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( )33.(2015•四川广安,第2题3分)在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为( )34.(2015•河南,第3题3分)据统计,2014年我国高新技术产品出口总额达40 570亿元,将数据40 570亿用科学记数法表示为( )35.(2015•黑龙江绥化,第4题 分)石墨烯是现在世界上最薄的纳米材料 ,其理论厚度仅是0.00000000034m ,这个数用科学记 数法表示正确的是( )36.(2015•广东省,第2题,3分)据国家统计局网站2014年12月4日发布消息,2014年广东省粮食总产量约为13 573 000吨,将13 573 000用科学记数法表示为 ( )37. (2015•绵阳第4题,3分)福布斯2015年全球富豪榜出炉,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为( )美元38 .(2015•四川省内江市,第2题,3分)用科学记数法表示0.0000061,结果是( ) 39.(2015•四川省宜宾市,第3题,3分)地球绕太刚每小时转动经过的路程约为110000米,将110000用科学记数法表示为 ( )40. (2015•浙江省绍兴市,第2题,4分) 中国电子商务研究中心监测数据显示,2015年中国轻纺的商品成交额达27 800 000 000元,将27 800 000 000用科学计数法表示为( )二.计算1. (2015•四川省内江市,第17题,7分)计算:()201220152sin 60122π-⎛⎫---+-+ ⎪⎝⎭2.(2015湖南荆州第11题3分)计算: 011223-⎛⎫+-+ ⎪⎝⎭3. (2015•浙江嘉兴,第17题8分)(1)计算:152--;4. (2015•四川眉山,第19题6分)计算:()101127π-⎛⎫-+- ⎪⎝⎭5.(2015•山东东营市计算:()()()120150133tan 30π---+-+)6.(2015•四川广安,第17题5分)计算:.(041220154cos 60--+-+--7. (2015• ,第15题6分)(1)计算: ()014sin 45π--8. (2015•绵阳第19题,16分)(1)计算:2311182cos 45-⎛⎫+--+- ⎪⎝⎭(2)解方程: 311221x x =-++9. (2015•甘肃武威,第19题4分)计算:()20150(160π-10.(2015•广东梅州,第18题7分)计算: (101320153-⎛⎫-- ⎪⎝⎭ 2.整式与因式分解一.小题1.(2015上海,第2题4分)当a >0时,下列关于幂的运算正确的是……( )()12012221.1;.;.;.A a B a a C a a D a a -==--=-=2. (2015•山东莱芜,第2题3分)下列计算结果正确的是( )A .B .C .D .3.(2015•淄博第2题,4分)下列式子中正确的是( )A . ()﹣2=﹣9B . (﹣2)3=﹣6C . =﹣2D .(﹣3)0=1 4.(2015•广东佛山,第8题3分)若(x +2)(x ﹣1)=2x +mx +n ,则m +n =( )A . 1B . ﹣2C . ﹣1D . 25.(2015湖南邵阳第6题3分)已知a +b =3,ab =2,则22a b +的值为( )A . 3B . 4C . 5D . 66.(2015•四川资阳,第3题3分)下列运算结果为6a 的是A .a 2+a 3B .a 2•a 3C .(-a 2)3D .a 8÷a 28. (2015•四川眉山,第2题3分)下列计算正确的是( )A . 3a +2a =6aB . a 2+a 3=a 5C . a 6÷a 2=a 4D . (a 2)3=a 59.(2015•江苏徐州,第3题3分)下列运算正确的是( )A . 3a 2﹣2a 2=1B . (a 2)3=a 5C . a 2•a 4=a 6D . (3a )2=6a 210. 2015•山东聊城,第5题3分)下列运算正确的是( )A . a 2+a 3=a 5B . (﹣a 3)2=a 6C . ab 2•3a 2b =3a 2b 2D . ﹣2a 6÷a 2=﹣2a 3 11.(2015•山东临沂,第11题3分)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,….按照上述规律,第2015个单项式是( )(A ) 2015x 2015. (B ) 4029x 2014. (C ) 4029x 2015. (D ) 4031x 2015.12.(2015•山东日照 ,第11题3分)观察下列各式及其展开式:(a +b )2=a 2+2ab +b 2(a +b )3=a 3+3a 2b +3ab 2+b 3(a +b )4=a 4+4a 3b +6a 2b 2+4ab 3+b 4(a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5…请你猜想(a +b )10的展开式第三项的系数是( )A . 36B . 45C . 55D . 6613.(3分)(2015•山东日照 ,第3题3分)计算(﹣a 3)2的结果是( )A . a 5B . ﹣a 5C . a 6D . ﹣a 615.(2015•,第7 题3分)下列运算正确的是( )()2224444.36;.426;A mn m nB x x x x -=-++= ()()()()222.;.C xy xy xyD a b a b a b ÷-=----=-16.( 2015•四川广安,第8题3分)一个等腰三角形的两条边长分别是方程x 2﹣7x +10=0的两根,则该等腰三角形的周长是( )A . 12 B . 9 C . 13 D . 12或917. (2015山东省德州市,5,3分)一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为( )A .8B .9C .13D .1518. (2015•四川省宜宾市,第5题,3分)把代数式3x 3 –12x 2+12x 分解因式,结果正确的是( )A .3x (x 2–4x +4)B . 3x (x –4)2C . 3x (x +2)(x –2)D . 3x (x –2)219. (2015•浙江省台州市,第1题)单项式2a 的系数是( )A .2B .2aC .1D .a20.(2015湖北鄂州第3题3分)下列运算正确的是( )A .a 4•a 2=a 8B .(a 2 )4=a 6C .(ab )2=ab 2D .2a 3÷a =2a 221.(2015•湖北省武汉市,第3题3分)把a 2-2a 分解因式,正确的是( )A .a (a -2)B .a (a +2)C .a (a 2-2)D .a (2-a )22.(2015•山东莱芜,第13题4分) 分解因式:. 23.(2015山东青岛,第9题,3分)计算:.________232723=÷-⋅a a a a24.(2015威海,第15题4分)因式分解:221218x y xy y -+-=25.(2015•江苏无锡,第11题2分)分解因式:8﹣2x 2=26.(2015•泉州第19题9分)先化简,再求值:(x ﹣2)(x +2)+x 2(x ﹣1),其中x =﹣1. 27.(2015湖南岳阳第10题4分)分解因式:x 2﹣9= (x +3)(x ﹣3) .28(2015湖北荆州第12题3分)分解因式:ab 2﹣ac 2= a (b +c )(b ﹣c ) .29 (2015湖北鄂州第12题3分)分解因式:a 3b -4ab = . 30.(2015•福建泉州第9题4分)因式分解:x 2﹣49= (x +7)(x ﹣7) .31.(2015•甘肃武威,第11题3分)分解因式:x 3y ﹣2x 2y +xy =32.(2015•四川省内江市,第13题,5分)分解因式:2x 2y ﹣8y = 2y (x +2)(x ﹣2) . 33. (2015•四川省内江市,第25题,6分)已知实数a ,b 满足:22111,1,a b a b +=+=则2015a b -34.(2015•山东潍坊第15 题3分)因式分解:ax 2﹣7ax +6a =35.(2015•北京市,第11题,3分)分解因式:5x 3-10x 2+5x =_________.36. (2015辽宁大连,10,3分)若a =49,b =109,则ab -9a 的值为:__________. 三.解答题1. (2015•四川省内江市,第26题,12分)(1)填空:(a ﹣b )(a +b )= ( ) ;(a ﹣b )(a 2+ab +b 2)= ( ) ;(a ﹣b )(a 3+a 2b +ab 2+b 3)= ( ) .(2)猜想:(a ﹣b )(an ﹣1+an ﹣2b +…+abn ﹣2+bn ﹣1)= ( ) (其中n 为正整数,且n ≥2). (3)利用(2)猜想的结论计算:29﹣28+27﹣…+23﹣22+2.2.(2015•广东梅州,第19题)已知2,a b +=-求代数式()()2122a b a b a -+++的值3.(2015·湖南省衡阳市,第21题6分)先化简,再求值,其中,.。
2015中考数学试题及答案word版
2015中考数学试题及答案word版一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2是最小的素数B. 1是最小的素数C. 0是最小的素数D. 0不是素数正确答案:A2. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 任意三角形正确答案:B3. 一个数的相反数是它本身,这个数是?A. 0B. 1C. -1D. 2正确答案:A4. 如果一个角的补角是120°,那么这个角的度数是?A. 60°B. 30°C. 45°D. 90°正确答案:A5. 计算下列哪个表达式的结果为0?A. 3-3B. 2+2C. 4×0D. 5÷5正确答案:C6. 一个数的平方根是它本身,这个数是?A. 1B. -1C. 0D. 1或-1正确答案:C7. 以下哪个选项是正确的?A. 任何数的绝对值都是正数B. 0的绝对值是0C. 负数的绝对值是负数D. 正数的绝对值是负数正确答案:B8. 一个数的立方根是它本身,这个数是?A. 1B. -1C. 0D. 1或-1正确答案:C9. 以下哪个选项是正确的?A. 任何数的平方都是正数B. 0的平方是0C. 负数的平方是负数D. 正数的平方是负数正确答案:B10. 计算下列哪个表达式的结果为1?A. 2÷2B. 3-2C. 4×0.25D. 5-4正确答案:A二、填空题(每题3分,共15分)1. 一个数的绝对值是5,这个数可能是______或______。
答案:5或-52. 一个角的余角是30°,那么这个角的度数是______。
答案:60°3. 如果一个数的平方是9,那么这个数是______或______。
答案:3或-34. 一个数的立方是-8,那么这个数是______。
答案:-25. 一个数的倒数是它本身,这个数是______。
答案:1或-1三、解答题(每题10分,共55分)1. 计算下列表达式的值:(1) 2x + 3y = 7(2) 3x - 2y = 8解:将方程(1)乘以2,方程(2)乘以3,然后相加,得到:7x = 23,所以 x = 23/7。
2015年中考数学试题及答案
2015年中考数学含试题数 学 试 题 卷本卷共六大题,24小题,共120分。
考试时间120分钟一、选择题(本大题共6小题,每小题3分,共18分) 1、比-2013小1的数是( )A 、-2012B 、2012C 、-2014D 、2014 2、如图,直线l 1∥l 2,∠1=40°,∠2=75°,则∠3=( ) A 、70° B 、65° C 、60° D 、55°3、从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a得到一个如图所示的零件,则这个零件的左视图是( ) A 、 B 、 C 、 D 、 4、某红外线遥控器发出的红外线波长为0.000 00094m ,用科学计数法表示这个数是( )A 、9.4×10-7mB 、9.4×107mC 、9.4×10-8mD 、9.4×108m 5、下列计算正确的是( )A 、(2a -1)2=4a 2-1B 、3a 6÷3a 3=a 2C 、(-ab 2) 4=-a 4b 6D 、-2a +(2a -1)=-1 6、某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。
某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。
假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( )A 、240x +4=160x -10B 、240x -4=160x -10C 、240x -10 +4=160xD 、240x -10 -4=160x二、填空题(本大题共8小题,每小题3分,共24分) 7、因式分解:xy 2-x = 。
8、已知x =1是关于x 的方程x 2+x +2k =0的一个根,则它的另一个根是 。
9、已知2x 3y =13 ,则分式x -2y x +2y的值为 。
精品 2015年全国数学中考计算题真题汇总
精品 2015年全国数学中考计算题真题汇总精品2015年全国中考数学真题计算题汇总分解因式:5x-10x=5x(1-2)=5x*(-2)= -10x因式分解:ax+ay=a(x+y)分解因式:m3-m=m(m2-1)=m(m+1)(m-1)分解因式:2x-2y=2(x-y)分解因式:a2-2a=a(a-2)分解因式:mn-4mn=-3mn分解因式a-9的结果是(a+3)(a-3)分解因式:2mx-6my=2m(x-3y)分解因式:x-x=0因式分解:x-4x=x(1-4)=-3x因式分解:x-9x=x(1-9)=-8x分解因式:x3-xy2=x(x2-y2)=x(x+y)(x-y)计算(x - l)(x+2)的结果是(x-1)(x+2)=x2+x-2若实数a、b满足(4a+4b)(4a+4b-2)-8=0,则a+b=1/2定义运算“*”,规定x*y=ax+by,其中a、b为常数,且1*2=5,2*1=6,则2*3=13若一元二次方程ax-bx-2015=0有一根为x=-1,则a+b=2014关于x的一元二次方程ax+bx=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=0,b≠0若2m-n2=4,则代数式10+4m-2n2的值为10+4m-2n2=10+4(2+n2)-2n2=8+4n2若a2-3b=5,则6b-2a2+2015=2015-2a2+6b=2015-2(a2-3b)=2010把二次函数y=x2-12x化为形如y=a(x-h)+k的形式:y=(x-6)2-36若x+x+m=(x-3)(x+n)对___成立,则n=4如果a/c=c/e=e/a,且a+c+e=3(b+d+f),那么k=(a+b+c+d+e+f)/6已知关于x的一元二次方程x-2x-k=0有两个相等的实数根,则k值为1已知一元二次方程x-4x-3=0的两根为m,n,则m-mn+n=31页第1页共两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为4.5若x2+x+m=(x-3)(x+n)对___成立,则n=-4关于x的不等式组{2x+1>3,a-x>1}的解集为14不等式组{3x-5<2x。
初三中考数学计算题专项训练
2015年中考数学计算题专项训练一、训练一(代数计算)1. 计算: (1)3082145+-Sin (2)(3)2×(-5)+23-3÷12 (4)22+(-1)4+(5-2)0-|-3|;(5)︒+-+-30sin 2)2(20 (6)()()022161-+--2. 345tan 32312110-︒-⨯⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-- 3. ()()()︒⨯-+-+-+⎪⎭⎫ ⎝⎛-30tan 331212012201031100124. ()()112230sin 4260cos 18-+︒-÷︒--- 5.1201002(60)(1)|28|(301)21cos tan -÷-+--⨯--二、训练二(分式化简)注意:此类要求的题目,如果没有化简,直接代入求值一分不得!考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算1.. 2.21422---x x x3.(a+b )2+b (a ﹣b ). 4. 11()a a a a --÷ 5.2111x x x -⎛⎫+÷ ⎪⎝⎭6、化简求值(1)⎝⎛⎭⎫1+ 1x -2÷ x 2-2x +1 x 2-4,其中x =-5. (2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a ++-⋅+,其中a 2-1. (4))252(423--+÷--a a a a , 1-=a(5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值.(6)22121111x x x x x -⎛⎫+÷⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值7、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x xy x y x ++÷⎪⎪⎭⎫ ⎝⎛++-,其中1=x ,2-=y .10、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°)三、训练三(求解方程)1. x 2﹣4x+1=0. 2. 2322-=+x x 3. 3x = 2x -14. 已知|a ﹣1|+=0,求方裎+bx=1的解.5. x 2+4x -2=06. x x -1 - 31-x= 2四、训练四(解不等式)1、,并写出不等式组的整数解. 2、⎪⎩⎪⎨⎧<+>+.221,12x x3、,并求的值. 4、⎩⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
2015年中考数学真题分类汇编 因式分解(2)
因式分解一.选择题(共18小题)1.(2015•连云港)下列运算正确的是()A.235 B. 5A﹣23A C.A2•A36D.()222考点:同底数幂的乘法;合并同类项;完全平方公式.分析:根据同类项、同底数幂的乘法和完全平方公式计算即可.解答:解:A、2A与3B不能合并,错误;B、5A﹣23A,正确;C、A2•A35,错误;D、()22+22,错误;故选B.点评:此题考查同类项、同底数幂的乘法和完全平方公式,关键是根据法则进行计算.2.(2015•营口)下列计算正确的是()A.|﹣2﹣2 B.A2•A36C.(﹣3)﹣2=D.=3考点:同底数幂的乘法;绝对值;算术平方根;负整数指数幂.分析:分别根据绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则对各选项进行逐一计算即可.解答:解:A、原式=2≠﹣2,故本选项错误;B、原式5≠A6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.点评:本题考查的是同底数幂的乘法,熟知绝对值的性质、同底数幂的乘法法则、负整数指数幂的运算法则及数的开方法则是解答此题的关键.3.(2015•包头)下列计算结果正确的是()A.2A33=3A6B.(﹣A)2•A3=﹣A6C.(﹣)﹣2=4D.(﹣2)0=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2A33=3A3,故错误;B、(﹣A)2•A35,故错误;C、正确;D、(﹣2)0=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(2015•宿迁)计算(﹣A3)2的结果是()A.﹣A5B.A5C.﹣A6D.A6考点:幂的乘方与积的乘方.分析:根据幂的乘方计算即可.解答:解:(﹣A3)26,故选D点评:此题考查幂的乘方问题,关键是根据法则进行计算.5.(2015•潍坊)下列运算正确的是()A.B.3x2y﹣x23C.D.(A2B)36B3考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x22x2y,∴选项B不正确;∵,∴选项C不正确;∵(A2B)36B3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①()(m,n是正整数);②()(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.(2015•荆州)下列运算正确的是()A.=±2 B.x2•x36C.D.(x2)36考点:幂的乘方与积的乘方;实数的运算;同底数幂的乘法.分析:根据算术平方根的定义对A进行判断;根据同底数幂的乘法对B进行运算;根据同类二次根式的定义对C进行判断;根据幂的乘方对D进行运算.解答:解:2,所以A错误;B.x2•x35,所以B错误;不是同类二次根式,不能合并;D.(x2)36,所以D正确.故选D.点评:本题考查实数的综合运算能力,综合运用各种运算法则是解答此题的关键.7.(2015•哈尔滨)下列运算正确的是()A.(A2)57B.A2•A46C.3A2B﹣32=0 D.()2=考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据幂的乘方、同底数幂的乘法和同类项合并计算即可.解答:解:A、(A2)510,错误;B、A2•A46,正确;C、3A2B与32不能合并,错误;D、()2=,错误;故选B.点评:此题考查幂的乘方、同底数幂的乘法和同类项合并,关键是根据法则进行计算.8.(2015•株洲)下列等式中,正确的是()A.3A﹣21 B.A2•A35C.(﹣2A3)2=﹣4A6D.(A﹣B)22﹣B2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.分析:结合选项分别进行幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等运算,然后选择正确选项.解答:解:A、3A﹣2,原式计算错误,故本选项错误;B、A2•A35,原式计算正确,故本选项正确;C、(﹣2A3)2=4A6,原式计算错误,故本选项错误;D、(A﹣B)22﹣22,原式计算错误,故本选项错误.故选B.点评:本题考查了幂的乘方和积的乘方、合并同类项、同底数幂的乘法、完全平方公式等知识,掌握运算法则是解答本题关键.9.(2015•潜江)计算(﹣2A2B)3的结果是()A.﹣6A6B3B.﹣8A6B3C.8A6B3D.﹣8A5B3考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算法则求解.解答:解:(﹣2A2B)3=﹣8A6B3.故选B.点评:本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.10.(2015•湖北)下列运算中正确的是()A.A3﹣A2B.A3•A412C.A6÷A23D.(﹣A2)3=﹣A6考点同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.:分析:根据合并同类项,可判断A;根据同底数幂的乘法,可判断B;根据同底数幂的除法,可判断C;根据积的乘方,可判断D.解答:解:A、合并同类项系数相加字母部分不变,故A错误;B、同底数幂的乘法底数不变指数相加,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.点评:本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.11.(2015•梅州)下列计算正确的是()A.23B.x2•x36C.(x3)26D.x9÷x33考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:A、原式不能合并,错误;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用幂的乘方运算法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.解答:解:A、原式不能合并,错误;B、原式5,错误;C、原式6,正确;D、原式6,错误.故选C.点评:此题考查了同底数幂的除法,合并同类项,同底数幂的乘法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.12.(2015•淮安)计算A×3A的结果是()A.A2B.3A2C.3A D.4A 考点:单项式乘单项式.分析:根据单项式与单项式相乘,把它们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:A×33A2,故选:B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.13.(2015•黄石)下列运算正确的是()A.4m﹣3 B.2m2•m3=2m5C.(﹣m3)29D.﹣(2n)=﹣2n考点:单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.分析:分别利用合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则化简各式判断即可.解答:解:A、4m﹣3m,故此选项错误;B、2m2•m3=2m5,正确;C、(﹣m3)26,故此选项错误;D、﹣(2n)=﹣m﹣2n,故此选项错误;故选:B.点评:此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和幂的乘方、去括号法则等知识,正确掌握运算法则是解题关键.14.(2015•铜仁市)下列计算正确的是()A.A22=2A4B.2A2×A3=2A6C.3A﹣21 D.(A2)36考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项法则、单项式乘法、幂的乘方的运算方法,利用排除法求解.解答:解:A、应为A22=2A2,故本选项错误;B、应为2A2×A3=2A5,故本选项错误;C、应为3A﹣21,故本选项错误;D、(A2)36,正确.故选:D.点评:本题主要考查了合并同类项的法则,幂的乘方的性质,单项式的乘法法则,熟练掌握运算法则是解题的关键.15.(2015•黔东南州)下列运算正确的是()A.(A﹣B)22﹣B2B.3﹣2 C.A(A2﹣A)2D.考点:单项式乘多项式;立方根;合并同类项;完全平方公式.分析:根据完全平方公式,合并同类项,单项式乘多项式,立方根的法则进行解答.解答:解:A、应为(A﹣B)22﹣22,故本选项错误;B、3﹣2,正确;C、应为A(A2﹣A)3﹣A2,故本选项错误;D、应为=2,故本选项错误.故选:B.点评:本题考查了完全平方公式,合并同类项,单项式乘多项式,立方根,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.16.(2015•佛山)若(2)(x﹣1)2,则()A. 1 B.﹣2 C.﹣1 D. 2考点:多项式乘多项式.分析:依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.解答:解:∵原式2﹣22,∴1,﹣2.∴1﹣2=﹣1.故选:C.点评:本题考查了多项式的乘法,熟练掌握多项式乘以多项式的法则是解题的关键.17.(2015•酒泉)下列运算正确的是()A.x224B.(A﹣B)22﹣B2C.(﹣A2)3=﹣A6D.3A2•2A3=6A6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x22=2x2,错误;B、(A﹣B)22﹣22,错误;C、(﹣A2)3=﹣A6,正确;D、3A2•2A3=6A5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.18.(2015•常德)下列等式恒成立的是()A.()222B.()22B2C.A426D.A224考点:完全平方公式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:原式各项计算得到结果,即可做出判断.解答:解:A、原式22+2,错误;B、原式2B2,正确;C、原式不能合并,错误;D、原式=2A2,错误,故选B.点评:此题考查了完全平方公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则及公式是解本题的关键.二.填空题(共12小题)19.(2015•苏州)计算:A•A2= A3.考点:同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即•计算即可.解答:解:A•A21+23.故答案为:A3.点评:本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.20.(2015•天津)计算;x2•x5的结果等于x7.考点:同底数幂的乘法.分析:根据同底数幂的乘法,可得答案.解答:解:x2•x52+57,故答案为:x7.点评:本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加.21.(2015•柳州)计算:A×A2.考点:同底数幂的乘法.分析:根据同底数幂的乘法计算即可.解答:解:A×2.故答案为:A2.点评:此题考查同底数幂的乘法,关键是根据同底数幂的乘法法则计算.22.(2015•安顺)计算:= 9 .考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据同底数幂的乘法,可得(﹣3)2011•(﹣3)2,再根据积的乘方,可得计算结果.解答:解:(﹣3)2013•(﹣)2011=(﹣3)2•(﹣3)2011•(﹣)2011=(﹣3)2•{,﹣3×(﹣),}2011=(﹣3)2=9,故答案为:9.点评:本体考查了幂的乘方与积的乘方,先根据同底数幂的乘法计算,再根据积的乘方计算.23.(2015•大庆)若A25,B216,则().考点:幂的乘方与积的乘方.分析:根据幂的乘方与即的乘方,即可解答.解答:解:∵A25,B216,∴()2=5,()2=16,∴,∴,故答案为:.点评:本题考查了幂的乘方与即的乘方,解决本题的关键是注意公式的逆运用.24.(2015•黔东南州)A6÷A2= A4.考点:同底数幂的除法.分析:根据同底数幂的除法,可得答案.解答:解:A6÷A24.故答案为:A4.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.25.(2015•宝应县一模)已知103,102,则102m﹣n的值为.考点:同底数幂的除法;幂的乘方与积的乘方.分析:根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.解答:解:10232=9,102m﹣102m÷10,故答案为:.点评:本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.26.(2015•漳州)计算:2A2•A4= 2A6.。
【9份】2015年全国各地中考数学试题(真题)分类汇编(精品推荐)
二、填空题
1.(2015•南京)若式子 在实数范围内有意义,则x的取值范围是.
2.(2015•南京)计算 的结果是.
3.(2015•四川自贡)化简: =.
考点:绝对值、无理数、二次根式
分析:本题关键是判断出 值得正负,再根据绝对值的意义化简.
略解:∵ ∴ ∴ ;故应填 .
4.(2015•四川自贡)若两个连续整数 满足 ,则 的值是.
A.x≤2 B. x≥2 C. x<2 D.x>2
6.(2015•浙江杭州)若 k<<k+1(k是整数),则k=( )
A. 6B.7C. 8D. 9
【答案】D.
【考点】估计无理数的大小.
【分析】∵ ,
∴k=9. B. C. D.
8.(2015•重庆B)计算 的值是()
考点:无理数、二次根式、求代数式的值.
分析:本题关键是判断出 值是在哪两个连续整数之间.
略解:∵ ∴ ∴ ∴ ;故应填7.
5.(2015•四川资阳)已知: ,则 的值为_________.
三.解答题
1.(2015•江苏苏州)计算: .
【考点分析】考察实数计算,中考必考题型。难度很小。
【详细分析】解:原式=3+5-1=7.
涉及的公式为:金额=单价×数量
金额
单价
数量
乒乓球
1.5×20=30
1.5
20
球拍
22
将相关数据代入①即可解得:
解:设购买球拍 个,依题意得:
解之得:
由于 取整数,故 的最大值为7。
6.(山东菏泽)13.不等式组 的解集是__________-1≤x<3
7.(云南)已知不等式组 ,其解集在数轴上表示正确的是( )
2014-2015中考数学计算题及应用题分类汇编
美联教育2015中考部分复习集合1.(1) 计算:()3222143-⎪⎭⎫⎝⎛-⨯+(2)先化简,后求值:)2())((-+-+b b b a b a , 其中.1,2-==b a2. 解分式方程:x x x-+--3132=1。
3.(1) 计算:02338(2sin 452005)(tan 602)3---︒-+︒-(2)解不等式组,并把解集在数轴上表示出来12(3)3322x x x--≤⎧⎪⎨-<⎪⎩4.先化简,再请你用喜爱的数代入求值5. 计算:6. 计算:10)21()2006(312-+---+。
7.解不等式组:⎩⎨⎧+-062513><x x 。
8.解分式方程:21211=++-x x x 。
9.已知2x -3=0,求代数式x (x 2-x )+x 2(5-x )-9的值。
10. 解不等式组:53(4)223 1.x x >-+⎧⎨-⎩,≥11. 先化简再求值:2221412211a a a a a a --÷+-+-,其中a 满足20a a -=2232214()2442x x x x x x x x x +---÷--+-12.计算1303)2(2514-÷-+⎪⎭⎫ ⎝⎛+-13、计算22)145(sin 230tan 3121-︒+︒--14、计算)+()-(+-ab b a ]a b a b b a a [2÷15. 计算:-22 + (12-1)0 + 2sin30º16 .计算: 131-⎪⎭⎫ ⎝⎛+0232006⎪⎪⎭⎫ ⎝⎛-3-tan60°.17.解不等式组 3(2)451214x x x x x ⎧⎪⎨⎪⎩-+<-+≥-方程组与不等式组的应用题某计算器经销商计划到某计算器生产厂家购进A型和B型两种计算器,A型计算器单价50元,B型计算器单价22元,并且用于购进A、B两种型号计算器的金额相等(1)若计划购进的A型和B型计算机共288只,求经销商需要准备多少资金?(2)经过商谈,A型计算器100只起售,超过100只的部分每只优惠20%,B型计算器50只起售,超过50只的部分每只优惠2元,该经销商若计划购进的计算器总量既不少于385只,又不多于390只,该经销商有哪几种购进计算机的方案?他做多需要准备多少资金?2.李大爷一年前买入了相同数量的A、B两种种兔,目前他所养的这两种种兔的数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只,(1)求一年前李大爷共买了多少只种兔?(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只,如果要求卖出的A种种兔少于B种.且总获利不低于280元,那么他又哪几种卖兔方案?哪种方案获利最大?请求出最大获利?3.甲乙两家公司共有150名工人,甲公司每名工人月工资1200元,乙公司每名工人月工资为1500元,两家公司每月需要付给工人工资共计19.5万元,(1)求甲、乙公司分别有多少名工人?(2)经营一段时间后发现,乙公司工人人均月产值是甲公司工人的3.2倍,于是甲公司决定内部调整,选拔了本公司部分工人到新的岗位,调整后,原岗位工人和新岗位工人的人均的月产值分别为调整前的1.2倍和4倍,且甲公司新岗位工人的月生产总值小于乙公司月生产总值的40%,甲公司的月生产总值大于乙公司的月生产总值,求甲公司选拔到新岗位有多少人?4.哈尔滨市正在进行道路的全面拓宽改造,哈尔滨市某水泥厂凭借其多年的生产实力和质量优势,被城建工程总指挥部指定为主要水泥供应厂家,负责生产供应A,B两种标号的水泥,已知四月份该厂每天生产AB两种标号的水泥共70吨,其中B标号的水泥比A标号的水泥多10吨,又知生产1吨的A标号的水泥可获利200元,生产1吨B标号的水泥可获利100元,(1)求该厂四月份一天的利润是多少元?(2)由于生产时存在污染问题,因此该厂五月份改进了生产技术,这样不但解决了污染问题,而且每天比以前多生产出10吨水泥,虽然利润比以前少了些,但仍不少于9000元,求该厂五月份每天生产A标号的水泥最少多少吨?5.某企业2008年利润为1500万元,2010年克服全球金融危机的不利影响,仍实现利润2160万元,从2008年到2010年,如果每年利润的年增长率相同,求(1)该企业2009年盈利多少万元?(2)若该企业预计2011年盈利不低于3024万元,盈利的年增长率至少为多少?6.(河南省)某公司为了扩大经营,决定购进6台机器用于生产某种活塞.现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机器所耗资金不能超过34万元.甲乙价格(万元/台)7 5每台日产量(个)100 60(1)按该公司要求可以有几种购买方案?(2)若该公司购进的6台机器的日生产能力不能低于380个,那么为了节约资金应选择哪种方案?7.(茂名市)今年6月份,我市某果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆将这批水果全部运往深圳,已知甲种货车可装荔枝4吨和香蕉1吨,一种货车可装荔枝香蕉各2吨;(1)该果农按排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,则该果农应选择哪种方案?使运费最少?最少运费是多少元?8.(武汉中考题)2004年8月中旬,我市受14号台风“云娜”的影响后,部分街道路面积水比较严重.为了改善这一状况,市政公司决定将一总长为1200m的排水工程承包给甲、乙两工程队来施工.若甲、乙两队合做需12天完成此项工程;若甲队先做了8天后,剩下的由乙队单独做还需18天才能完工.问甲、乙两队单独完成此项工程各需多少天?又已知甲队每施工一天需要费用2万元,乙队每施工一天需要费用1万元,要使完成该工程所需费用不超过35万元,则乙工程队至少要施工多少天?9. (潍坊中考题)为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维护交通秩序.若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?10. (武汉市)某加工厂以每吨3000元的价格购进50吨原料进行加工,若进行粗加工,每吨加工费为600元,需13天,每吨售价4000元;若进行精加工,每吨加工费为900元,需12天,每吨售价4500元,现将这50吨原料全部加工完.(1)设其中粗加工x吨,获利y元,求y与x的函数关系式(不要求写自变量的范围);(2)如果必须在20天内完成,如何安排生产才能获得最大利润?最大利润是多少?分式方程应用题分类解析一、营销类应用性问题例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg 是多少元?2、经销某种商品,由于进货价降低了6.4%,使得利润提高了8%,那末原来这种商品的利润率是多少?二、工程类应用性问题例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由.三、行程中的应用性问题例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.四、轮船顺逆水应用问题例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度五、浓度应用性问题例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%?六、货物运输应用性问题例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a次、a次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t.问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每11。
2015年深圳市中考数学试题及答案
广东省深圳市2015年中考数学试卷一、选择题:1、15-的相反数是( )A 、15B 、15-C 、151D 、151-2、用科学计数法表示316000000为( )A 、71016.3⨯B 、81016.3⨯C 、7106.31⨯D 、6106.31⨯3、下列说法错误的是( )A 、2a a a =•B 、a a a 32=+C 、523)(a a =D 、413a a a =÷-4、下列图形既是中心对称又是轴对称图形的是( )5、下列主视图正确的是( )6、在一下数据90,85,80,80,75中,众数、中位数分别是( )A 、8075,B 、80,80C 、85,80D 、90,807、解不等式12-≥x x ,并把解集在数轴上表示( )8、二次函数)0(2≠++=a c bx ax y 的图像如下图所示,下列说法正确的个数是()○10>a ;○20>b ;○30<c ;○4042>-ac b 。
A 、B 、2C 、3D 、49、如图,AB 为⊙O 直径,已知为∠DCB=20o ,则∠DBA 为( )A 、o 50B 、o 20C 、o 60D 、o7010、某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元。
A 、140B 、120C 、160D 、10011、如图,已知⊿ABC ,AB<BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC=BC ,则下列选项正确的是( )12、如图,已知正方形ABCD 的边长为12,BE=EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB于G ,连接DG ,现在有如下4个结论:○1⊿ADG ≌⊿FDG ;○2GB=2AG ; ○3⊿GDE ∽BEF ;○4S ⊿BEF =572。
在以上4个结论中,正确的有( ) A 、1B 、2C 、3D 、4二、填空题:13、因式分解:=-2233b a 。
2015中考数学计算题专项训练
2015年中考数学计算题专项训练2.计算:345tan 3231211-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--3.计算:()()()︒⨯-+-+-+⎪⎭⎫⎝⎛-30tan 331212012201031100124.计算:()()112230sin 4260cos 18-+︒-÷︒---5.计算:120100(60)(1)|2(301)cos tan -÷-+- 6、化简求值(1)⎝⎛⎭⎫1+1x -2÷ x 2-2x +1 x 2-4,其中x =-5.(2)(a ﹣1+)÷(a 2+1),其中a=﹣1.(3)2121(1)1a a a a++-⋅+,其中a (4))252(423--+÷--a a a a , 1-=a (5))12(1aa a a a --÷-,并任选一个你喜欢的数a 代入求值. (6)22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入求值 7、先化简:再求值:⎝⎛⎭⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =2+ 2 .8、先化简,再求值:a -1a +2·a 2+2a a 2-2a +1÷1a 2-1,其中a 为整数且-3<a <2.9、先化简,再求值:222211y xy x x y x y x ++÷⎪⎪⎭⎫⎝⎛++-,其中1=x ,2-=y . 10、先化简,再求值:222112()2442x x x x x x-÷--+-,其中2x =(tan45°-cos30°) 三、训练三(求解方程)1. 解方程x 2﹣4x+1=0. 2。
解分式方程2322-=+x x 3.解方程:3x = 2x -1 . 4。
已知|a ﹣1|+=0,求方裎+bx=1的解. 5.解方程:x2+4x -2=0 6。
中考数学计算题100道(58页)
《中考数学计算题100道(58页)》一、有理数计算1. 计算:(3) + 7 × (2)2. 计算:(4 5) × (6) ÷ 33. 计算:3 × (4) + 5 × 2 84. 计算:(2/3) × (9/4) ÷ (3/8)5. 计算:(5/8) + (3/4) (1/2)二、整式计算6. 计算:2x 3x + 47. 计算:5a^2 3a^2 + 2a8. 计算:4xy 2xy + 6x^29. 计算:(3m + 2n) (2m n)10. 计算:(4ab 3a^2b) ÷ ab三、分式计算11. 计算:(1/2) ÷ (1/3)12. 计算:(3/4) + (2/5) (1/2)13. 计算:(2/3) × (5/6) ÷ (4/9)14. 计算:(a/b) + (b/a)15. 计算:(x/y) (y/x) + 1《中考数学计算题100道(58页)》四、一元一次方程计算16. 解方程:5x 3 = 2x + 417. 解方程:4 3y = 7y 218. 解方程:2/3 z + 1 = 5/619. 解方程:3(2m 1) = 4m + 220. 解方程:5k 15 = 3 2k五、二元一次方程组计算21. 解方程组:\[\begin{cases}2x + 3y = 8 \\x y = 1\end{cases}\]22. 解方程组:\[\begin{cases}4a 3b = 7 \\2a + b = 5\end{cases}\]23. 解方程组:\[\begin{cases}5m + n = 14 \\3m 2n = 1\end{cases}\]24. 解方程组:\[\begin{cases}6p 2q = 16 \\3p + q = 7\end{cases}\]25. 解方程组:\[\begin{cases}x + 4y = 9 \\2x 3y = 1\end{cases}\]六、不等式与不等式组计算26. 解不等式:3x 5 > 2x + 127. 解不等式:4 2y ≤ 3y 128. 解不等式:1/2 a 3 > 1/4 a + 229. 解不等式组:\[\begin{cases}2x 3 > 1 \\x + 4 < 7\end{cases}\]30. 解不等式组:\[\begin{cases}3y + 2 ≥ 5 \\y 1 < 2\end{cases}\]七、乘法公式计算31. 计算:(a + b)^232. 计算:(x y)^233. 计算:(2m + 3n)(m n)34. 计算:(3x 4y)(4x + 3y)35. 计算:(a + b + c)(a b + c)八、因式分解36. 因式分解:x^2 937. 因式分解:a^2 4b^238. 因式分解:2x^2 + 5x + 339. 因式分解:3y^2 6y + 340. 因式分解:4m^2 12mn + 9n^2《中考数学计算题100道(58页)》九、分式化简与计算41. 化简分式:(x^2 y^2) / (x + y)42. 化简分式:(a^3 + b^3) / (a + b)43. 计算分式:1/2 + 1/3 1/644. 计算分式:(2/5) / (1/2) + (3/4)45. 计算分式:(x/y) (y/x) + 2/(x + y)十、根式计算46. 计算根式:√(49) √(16)47. 计算根式:√(64) + √(121)48. 计算根式:√(2/3) × √(3/2)49. 计算根式:√(27) ÷ √(3)50. 计算根式:√(a^2 + b^2)(假设a和b为正数)十一、一元二次方程计算51. 解方程:x^2 5x + 6 = 052. 解方程:2y^2 4y 6 = 053. 解方程:3z^2 + 12z + 9 = 054. 解方程:4m^2 12m + 9 = 055. 解方程:5n^2 + 10n = 0十二、函数计算56. 计算函数值:f(x) = 2x + 3,当x = 1时,求f(x)的值。
2015年中考数学试题及答案word
2015年中考数学试题及答案word一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. πC. 0.33333...D. √4答案:B2. 一个矩形的长是宽的两倍,若宽为x,则其面积为?A. 2x^2B. x^2C. 4x^2D. x答案:A3. 一个数的相反数是-5,这个数是?A. 5B. -5C. 0D. 10答案:A4. 下列哪个方程的解是x=2?A. 2x + 3 = 7B. 3x - 2 = 4C. 4x - 5 = 3D. 5x + 6 = 16答案:A5. 一个等腰三角形的两边长分别为3和5,其周长是多少?A. 11B. 13C. 16D. 14答案:B6. 一个圆的半径为3,其面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C7. 函数y=2x+3中,当x=1时,y的值是多少?A. 5B. 6C. 7D. 8答案:A8. 下列哪个选项表示的是正比例关系?A. y = 2xB. y = x^2C. y = 1/xD. y = √x答案:A9. 一个数的立方根等于它本身,这个数是?A. 0B. 1C. -1D. 所有选项答案:D10. 一个数的平方等于9,这个数是?A. 3B. -3C. ±3D. 9答案:C二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可能是______。
答案:±512. 一个数的平方是25,这个数可能是______。
答案:±513. 一个数的倒数是2,这个数是______。
答案:1/214. 一个数的立方是8,这个数是______。
答案:215. 一个数除以2余1,除以3余2,除以4余3,这个数最小是______。
答案:5716. 一个等差数列的首项是3,公差是2,第5项是______。
答案:1117. 一个等比数列的首项是2,公比是3,第3项是______。
答案:1818. 一个直角三角形的两个直角边长分别是3和4,斜边长是______。
重庆市2015年中考数学24题专题练习(20题).doc
重庆市2015年中考24专题练习1.如图1,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连结GE 、GF . (1)求证:△≌△.(1)证明:∵四边形ABCD 是正方形∴OA=OB ,∠AOE=∠BOG=90° ∵BH ⊥AF ∴∠AHG=90°∴∠GAH+∠AGH=90°=∠OBG+∠AGH ∴∠GAH=∠OBG ∴△OAE ≌△OBG.(2)四边形BFGE 是菱形,理由如下: ∵∠GAH=∠BAH,AH=AH, ∠AHG=∠AHB ∴△AHG ≌△AHB ∴GH=BH∴AF 是线段BG 的垂直平分线 ∴EG=EB,FG=FB ∵∠BEF=∠BAE+∠ABE=5.67454521=+⨯,∠BFE=90°-∠BAF=67.5° ∴∠BEF=∠BFE ∴EB=FB∴EG=EB=FB=FG∴四边形BFGE 是菱形(3)设OA=OB=OC=a ,菱形GEBF 的边长为b. ∵四边形BFGE 是菱形,∴GF ∥OB, ∴∠CGF=∠COB=90°,图1∴∠GFC=∠GCF=45°, ∴CG=GF=b(也可由△OAE ≌△OBG 得OG=OE=a -b,OC -CG=a -b,得CG=b )∴OG=OE=a-b,在Rt △GOE 中,由勾股定理可得:22)(2b b a =-,求得b a 222+= ∴AC=b a )22(2+=,AG=AC -CG=b )21(+ ∵PC ∥AB, ∴△CGP ∽△AGB, ∴12)21(-=+==b bAG CG GB PG , 由(1)△OAE ≌△OBG 得AE=GB , ∴12-=PG(2)若∠AEB=75°,求∠7.(2013•北碚区校级二模)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:AE=AF;(2)若∠AEB=75°,求∠CPD的度数8.(2013•北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.(1)求证:DP平分∠ADC;(2)若∠AEB=75°,AB=2,求△DFP的面积.9.(2013•重庆模拟)如图,正方形ABCD中,E是AD的中点,F是AB边上的一点,连接FE 并延长与CD的延长线相交于点G,作EH⊥FG交BC的延长线于点H.(1)若BC=8,BF=5,求线段FG的长;(2)求证:EH=2EG.10. 如图,在平行四边形ABCD中,BE平分∠ABC,交AD于E,点G是CD的中点,GE的延长线交BA的延长线于点F,∠EBC+∠DGE=90°。
2015河北中考数学试卷及答案
一.选择题(1-10小题每小题3分,11-16小题每小题3分,共42分.每小题的四个选项中只有一个是正确的)1.(3分)(2015•河北)计算:3﹣2×(﹣1)=()A.5 B.1 C.﹣1 D.6【考点】有理数的混合运算.【分析】先算乘法,再算减法,由此顺序计算即可.【解答】解:原式=3﹣(﹣2)=3+2=5.故选:A.【点评】此题考查有理数的混合运算,掌握运算顺序与符号的判定是解决问题的关键.2.(3分)(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数【考点】立方根;相反数;倒数;无理数.【分析】根据相反数、倒数、立方根,即可解答.【解答】解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.【点评】本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.3.(3分)(2015•河北)一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.【考点】剪纸问题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右翻折,向右上角翻折,打出一个圆形小孔,展开得到结论.故选C.【点评】此题主要考查了剪纸问题;学生的动手能力及空间想象能力是非常重要的,做题时,要注意培养.4.(3分)(2015•河北)下列运算正确的是()A.()﹣1=﹣B.6×107=6000000C.(2a)2=2a2 D.a3•a2=a5【考点】幂的乘方与积的乘方;科学记数法—原数;同底数幂的乘法;负整数指数幂.【分析】A:根据负整数指数幂的运算方法判断即可.B:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数,据此判断即可.C:根据积的乘方的运算方法判断即可.D:根据同底数幂的乘法法则判断即可.【解答】解:∵=2,∴选项A不正确;∵6×107=60000000,∴选项B不正确;∵(2a)2=4a2,∴选项C不正确;∵a3•a2=a5,∴选项D正确.故选:D.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了科学记数法﹣原数,要熟练掌握,解答此题的关键是要明确:科学记数法a×10n表示的数“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的数.若科学记数法表示较小的数a×10﹣n,还原为原来的数,需要把a的小数点向左移动n位得到原数.5.(3分)(2015•河北)如图所示的三视图所对应的几何体是()A. B.C.D.【考点】由三视图判断几何体.【分析】对所给四个几何体,分别从主视图和俯视图进行判断.【解答】解:从主视图可判断A,C、D错误.故选B.【点评】本题考查了由三视图判断几何体:由三视图想象几何体的形状,首先应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.6.(3分)(2015•河北)如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【考点】三角形的外接圆与外心.【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.【点评】此题主要考查了三角形外心的定义,正确把握外心的定义是解题关键.7.(3分)(2015•河北)在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.8.(3分)(2015•河北)如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°【考点】平行线的性质;垂线.【分析】如图,作辅助线;首先运用平行线的性质求出∠DGC的度数,借助三角形外角的性质求出∠ACD即可解决问题.【解答】解:如图,延长AC交EF于点G;∵AB∥EF,∴∠DGC=∠BAC=50°;∵CD⊥EF,∴∠CDG=90°,∴∠ACD=90°+50°=140°,故选C.【点评】该题主要考查了垂线的定义、平行线的性质、三角形的外角性质等几何知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用平行线的性质、三角形的外角性质等几何知识点来分析、判断、解答.9.(3分)(2015•河北)已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【考点】方向角.【分析】根据方向角的定义,即可解答.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D符合.故选:D.【点评】本题考查了方向角,解决本题的关键是熟记方向角的定义.10.(3分)(2015•河北)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.【解答】解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.【点评】此题考查了反比例函数的应用,关键是根据题意设出解析式,根据函数的解析式得出函数的图象.11.(2分)(2015•河北)利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×2【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:利用加减消元法解方程组,要消去x,可以将①×(﹣5)+②×2.故选D【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.(2分)(2015•河北)若关于x的方程x2+2x+a=0不存在实数根,则a的取值范围是()A.a<1 B.a>1 C.a≤1 D.a≥1【考点】根的判别式.【分析】根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.【解答】解:∵关于x的方程x2+2x+a=0不存在实数根,∴b2﹣4ac=22﹣4×1×a<0,解得:a>1.故选B.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.13.(2分)(2015•河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是()A.B.C.D.【考点】概率公式.【分析】由一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为与点数3相差2的有2种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为点数3相差2的有2种情况,∴掷一次这枚骰子,向上的一面的点数为点数3相差2的概率是:=.故选B.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2015•河北)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【考点】两条直线相交或平行问题.【专题】计算题.【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.15.(2分)(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P 到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.16.(2分)(2015•河北)如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以【考点】图形的剪拼.【专题】压轴题.【分析】根据图形可得甲可以拼一个边长为的正方形,图乙可以拼一个边长为的正方形.【解答】解:所作图形如图所示,甲乙都可以拼一个与原来面积相等的正方形.故选:A.【点评】本题考查了图形的简拼,解答本题的关键是根据题意作出图形.二.填空题(4个小题,每小题3分,共12分)17.(3分)(2015•河北)若|a|=20150,则a= ±1 .【考点】绝对值;零指数幂.【分析】先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.【解答】解:∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.【点评】本题考查了绝对值,解决本题的关键是熟记互为相反数的两个数绝对值相等.18.(3分)(2015•河北)若a=2b≠0,则的值为.【考点】分式的化简求值.【专题】计算题.【分析】把a=2b代入原式计算,约分即可得到结果.【解答】解:∵a=2b,∴原式==,故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(3分)(2015•河北)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2= 24°.【考点】多边形内角与外角.【分析】首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.【解答】解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.20.(3分)(2015•河北)如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3;…这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n= 9 .【考点】等腰三角形的性质.【专题】压轴题.【分析】根据等腰三角形的性质和三角形外角的性质依次可得∠A1AB的度数,∠A 2A1C的度数,∠A3A2B的度数,∠A4A3C的度数,…,依此得到规律,再根据三角形外角小于90°即可求解.【解答】解:由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,…,∵∠BOC=9°,∴∠A1AB=18°,∠A2A1C=27°,∠A3A2B=36°的度数,∠A4A3C=45°,…,∴9°n<90°,解得n<10.由于n为整数,故n=9.故答案为:9.【点评】考查了等腰三角形的性质:等腰三角形的两个底角相等;三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角的和.三.解答题(共6个小题,共66分)21.(10分)(2015•河北)老师在黑板上书写了一个正确的演算过程随后用手掌捂住了如图所示的一个二次三项式,形式如图:(1)求所捂的二次三项式;(2)若x=+1,求所捂二次三项式的值.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】(1)根据题意列出关系式,去括号合并即可得到结果;(2)把x的值代入计算即可求出值.【解答】解:(1)设所捂的二次三项式为A,根据题意得:A=x2﹣5x+1+3x=x2﹣2x+1;(2)当x=+1时,原式=7+2﹣2﹣2+1=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2015•河北)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB= CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.【考点】平行四边形的判定;命题与定理.【分析】(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.【解答】解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(3)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.【点评】此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.23.(10分)(2015•河北)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y毫米.(1)只放入大球,且个数为x大,求y与x大的函数关系式(不必写出x大的范围);(2)仅放入6个大球后,开始放入小球,且小球个数为x小①求y与x小的函数关系式(不必写出x小范围);②限定水面高不超过260毫米,最多能放入几个小球?【考点】一次函数的应用.【分析】(1)根据每放入一个大球水面就上升4毫米,即可解答;(2)①根据y=放入大球上面的高度+放入小球上面的高度,即可解答;②根据题意列出不等式,即可解答.+210;【解答】解:(1)根据题意得:y=4x大=6时,y=4×6+210=234,(2)①当x大∴y=3x+234;小+234≤260,②依题意,得3x小解得:,为自然数,∵x小∴x最大为8,即最多能放入8个小球.小【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式、一元一次不等式.24.(11分)(2015•河北)某厂生产A,B两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如表统计表及不完整的折线图.A,B产品单价变化统计表并求得了A产品三次单价的平均数和方差:2=[(6﹣5.9)2+(5.2﹣5.9)2+(6.5﹣5.9)2]==5.9,sA(1)补全如图中B产品单价变化的折线图.B产品第三次的单价比上一次的单价降低了25 %(2)求B产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A产品的单价仍为6.5元/件,B产品的单价比3元/件上调m%(m>0),使得A产品这四次单价的中位数是B产品四次单价中位数的2倍少1,求m的值.【考点】方差;统计表;折线统计图;算术平均数;中位数.【分析】(1)根据题目提供数据补充折线统计图即可;(2)分别计算平均数及方差即可;(3)首先确定这四次单价的中位数,然后确定第四次调价的范围,根据“A产品这四次单价的中位数是B产品四次单价中位数的2倍少1”列式求m即可.【解答】解:(1)如图2所示:B产品第三次的单价比上一次的单价降低了=25%,(2)=(3.5+4+3)=3.5,==,∵B产品的方差小,∴B产品的单价波动小;(3)第四次调价后,对于A产品,这四次单价的中位数为=;对于B产品,∵m>0,∴第四次单价大于3,∵﹣1>,∴第四次单价小于4,∴×2﹣1=,∴m=25.【点评】本题考查了方差、条形统计图、算术平均数、中位数的知识,解题的关键是根据方差公式进行有关的运算,难度不大.25.(11分)(2015•河北)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为yc ,求yc的最大值,此时l上有两点(x1,y1),(x2,y 2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:yC=﹣h2+1,则由二次函数的最值的求法易得yc的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.【解答】解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则yC=﹣h2+1.当h=0时,yC=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A (﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.【点评】本题考查了二次函数综合题.该题涉及到了待定系数法求二次函数解析式,二次函数图象上点的坐标特征,二次函数最值的求法以及点的坐标与图形的性质等知识点,综合性比较强,难度较大.解答(3)题时,注意对h的值根据实际意义进行取舍.26.(14分)(2015•河北)平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).发现:(1)当α=0°,即初始位置时,点P 在直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;(3)如图2,当点P恰好落在BC边上时,求a及S阴影拓展:如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.探究:当半圆K与矩形ABCD的边相切时,求sinα的值.【考点】圆的综合题.【专题】压轴题.【分析】(1)在,当OQ过点B时,在Rt△OAB中,AO=AB,得到∠DOQ=∠ABO=45°,求得α=60°﹣45°=15°;(2)如图2,连接AP,由OA+AP≥OP,当OP过点A,即α=60°时,等号成立,于是有AP≥OP﹣OA=2﹣1=1,当α=60°时,P、A之间的距离最小,即可求得结果(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,得到∠POH=30°,求得α=60°﹣30°=30°,由于AD∥BC,得到∠RPO=∠POH=30°,求出∠RKQ=2×30°=60°,于是得到结果;拓展:如图5,由∠OAN=∠MBN=90°,∠ANO=∠BNM,得到△AON∽△BMN求出BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,求出x的取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,于是得到∠KSO=∠KTB=90°,作KG⊥OO′于G,在Rt△OSK中,求出OS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣在Rt △KGO′中,∠O′=30°,求得KG=KO′=﹣,在Rt△OGK中,求得结果;②当半圆K与AD相切于T,如图6,同理可得sinα的值③当半圆K与CD切线时,点Q与点D重合,且为切点,得到α=60°于是结论可求.【解答】解:发现:(1)在,当OQ过点B时,在Rt△OAB中,AO=AB,∴∠DOQ=∠ABO=45°,∴α=60°﹣45°=15°;(2)如图2,连接AP,∵OA+AP≥OP,当OP过点A,即α=60°时,等号成立,∴AP≥OP﹣OA=2﹣1=1,∴当α=60°时,P、A之间的距离最小,∴PA的最小值=1;(3)如图2,设半圆K与PC交点为R,连接RK,过点P作PH⊥AD于点H,过点R作RE⊥KQ于点E,在Rt△OPH中,PH=AB=1,OP=2,∴∠POH=30°,∴α=60°﹣30°=30°,∵AD∥BC,∴∠RPO=∠POH=30°,∴∠RKQ=2×30°=60°,∴S扇形KRQ==,在Rt△RKE中,RE=RK•sin60°=,∴S△PRK =•RE=,∴S阴影=+;拓展:如图5,∵∠OAN=∠MBN=90°,∠ANO=∠BNM,∴△AON∽△BMN,∴,即,∴BN=,如图4,当点Q落在BC上时,x取最大值,作QF⊥AD于点F,BQ=AF=﹣AO=2﹣1,∴x的取值范围是0<x≤2﹣1;探究:半圆K与矩形ABCD的边相切,分三种情况;①如图5,半圆K与BC相切于点T,设直线KT与AD,OQ的初始位置所在的直线分别交于点S,O′,则∠KSO=∠KTB=90°,△OSK中,作KG⊥OO′于G,在RtOS==2,在Rt△OSO′中,SO′=OS•tan60°=2,KO′=2﹣,在Rt△KGO′中,∠O′=30°,∴KG=KO′=﹣,∴在Rt△OGK中,sinα===,②当半圆K与AD相切于T,如图6,同理可得sinα====;③当半圆K与CD切线时,点Q与点D重合,且为切点,∴α=60°,∴sinα=sin60,综上所述sinα的值为:或或.【点评】本题考查了矩形的性质,直线与圆的位置关系,勾股定理,锐角三角函数,根据题意正确的画出图形是解题的关键.。
2015年中考数学真题分类汇编 分式和二次根式
分式和二次根式一.选择题(共17小题)1.(2015•南昌)计算(﹣1)0的结果为()A.1 B.﹣1 C.0 D.无意义考点:零指数幂.分析:根据零指数幂的运算方法:a0=1(a≠0),求出(﹣1)0的结果为多少即可.解答:解:∵(﹣1)0=1,∴(﹣1)0的结果为1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:(1)a0=1(a≠0);(2)00≠1.2.(2015•陕西)计算:(﹣)0=()A.1 B.﹣C.0 D.考点:零指数幂.分析:根据零指数幂:a0=1(a≠0),求出(﹣)0的值是多少即可.解答:解:(﹣)0=1.故选:A.点评:此题主要考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.3.(2015•凉山州)(π﹣3.14)0的相反数是()A.3.14﹣πB.0 C. 1 D.﹣1考点:零指数幂;相反数.分析:首先利用零指数幂的性质得出(π﹣3.14)0的值,再利用相反数的定义进行解答,即只有符号不同的两个数交互为相反数.解答:解:(π﹣3.14)0的相反数是:﹣1.故选:D.点评:本题考查的是相反数的定义以及零指数幂的定义,正确把握相关定义是解题关键.4.(2015•上海)当a>0时,下列关于幂的运算正确的是()A.a0=1 B.a﹣1=﹣a C.(﹣a)2=﹣a2D.考点:负整数指数幂;有理数的乘方;分数指数幂;零指数幂.分析分别利用零指数幂的性质以及负指数幂的性质和分数指数幂的性质分别分析求出即可.:解答:解:A、a0=1(a>0),正确;B、a﹣1=,故此选项错误;C、(﹣a)22,故此选项错误;D、(a>0),故此选项错误.故选:A.点评:此题主要考查了零指数幂的性质以及负指数幂的性质和分数指数幂的性质等知识,正确把握相关性质是解题关键.5.(2015•莱芜)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地B.甲先到达B地C.乙先到达B地D.谁先到达B地与速度v有关考点:列代数式(分式).分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A地到B地所用时间,然后比较大小即可判定选择项.解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.6.(2015•甘孜州)使二次根式的有意义的x的取值范围是()A.x>0 B.x>1 C.x≥1D.x≠1考点:二次根式有意义的条件.分析:根据中a≥0得出不等式,求出不等式的解即可.解答解:要使有意义,必须x﹣1≥0,解得:x≥1.:故选C . 点评: 本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x 的不等式,难度适中. 7.(2015•黄冈)下列结论正确的是( ) A . 3a 3b ﹣a 22B .单项式﹣x 2的系数是﹣1C .使式子有意义的x 的取值范围是x >﹣1D . 若分式的值等于0,则±1 考点:二次根式有意义的条件;合并同类项;单项式;分式的值为零的条件.分析:根据合并同类项,可判断A ;根据单项式的系数是数字因数,可判断B ;根据二次根式的被开方数是非负数,可判断C ;根据分式的分子为零分母不为零,可判断D .解答: 解:A 、合并同类项系数相加字母部分不变,故A 错误;B 、单项式﹣x 2的系数是﹣1,故B 正确;C 、式子有意义的x 的取值范围是x >﹣2,故C 错误; D 、分式的值等于0,则1,故D 错误; 故选:B .点评:本题考查了二次根是有意义的条件,二次根式有意义的条件是分式的分子为零分母不为零,二次根式有意义的条件是被开方数是非负数.8.(2015•随州)若代数式+有意义,则实数x 的取值范围是( ) A . x ≠1 B . x ≥0 C . x ≠0 D . x ≥0且x ≠1考点: 二次根式有意义的条件;分式有意义的条件.分析: 先根据分式及二次根式有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.解答: 解:∵代数式+有意义,∴,解得x ≥0且x ≠1.故选D . 点评: 本题考查的是二次根式及分式有意义的条件,熟知二次根式具有非负性是解答此题的关键.9.(2015•荆门)当1<a <2时,代数式1﹣的值是( ) A . ﹣1 B . 1 C . 2a ﹣3 D . 3﹣2a考点: 二次根式的性质与化简.分析: 首先判断出a ﹣2<0,1﹣a <0,进而利用绝对值以及二次根式的性质化简求出即可.解答:解:∵当1<a<2时,∴a﹣2<0,1﹣a<0,∴1﹣2﹣﹣1=1.故选:B.点评:此题主要考查了二次根式以及绝对值的化简,正确得出各项符号是解题关键.10.(2015•重庆)化简的结果是()A.4B.2C.3D.2考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解:=2.故选:B.点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.11.(2015•淮安)下列式子为最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12.(2015•扬州)下列二次根式中的最简二次根式是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、符合最简二次根式的定义,故本选项正确;B、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;C、原式=,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、被开方数含分母,不是最简二次根式,故本选项错误;故选:A点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2015•贵港)计算×的结果是()A.B.C.3D.5考点:二次根式的乘除法.分析:根据二次根式的乘法计算即可.解答:解:×=.故选B.点评:此题考查二次根式的乘法,关键是根据二次根式的乘法法则进行计算.14.(2015•新疆)下列运算结果,错误的是()A .﹣(﹣)=B.(﹣1)0=1 C.(﹣1)+(﹣3)=4 D.×=考点:二次根式的乘除法;相反数;有理数的加法;零指数幂.分析:分别利用去括号法则以及零指数幂的性质和有理数加法以及二次根式乘法运算法则化简各式求出即可.解答:解:A、﹣(﹣)=,正确,不合题意;B、(﹣1)0=1,正确,不合题意;C、(﹣1)+(﹣3)=﹣4,错误,符合题意;D、×=,正确,不合题意;故选:C.点评:此题主要考查了去括号法则以及零指数幂的性质和有理数加法以及二次根式乘法运算等知识,正确掌握运算法则是解题关键.15.(2015•烟台)下列等式不一定成立的是()A .=(b≠0)B.a3•a﹣5=(a≠0)C.a2﹣4b2=(2b)(a﹣2b)D.(﹣2a3)2=4a6考点:二次根式的乘除法;幂的乘方与积的乘方;因式分解-运用公式法;负整数指数幂.分析:分别利用二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则化简求出即可.解答:解:A、=(a≥0,b>0),故此选项错误,符合题意;B、a3•a﹣5=(a≠0),正确,不合题意;C、a2﹣4b2=(2b)(a﹣2b),正确,不合题意;D、(﹣2a3)2=4a6,正确,不合题意.故选:A.点评:此题主要考查了二次根式的性质以及负整数指数幂的性质和平方差公式以及积的乘方运算法则等知识,正确掌握运算法则是解题关键.16.(2015•安徽)计算×的结果是()A.B. 4 C.D. 2 考点:二次根式的乘除法.分析:直接利用二次根式的乘法运算法则求出即可.解答:解:×4.故选:B.点评:此题主要考查了二次根式的乘法运算,正确化简二次根式是解题关键.17.(2015•凉山州)下列根式中,不能与合并的是()A.B.C.D.考点:同类二次根式.分析:将各式化为最简二次根式即可得到结果.解答:解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项合题意;D、,本选项不合题意;故选C.点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二.填空题(共9小题)18.(2015•河北)若2b≠0,则的值为.考点:分式的化简求值.专题:计算题.分析:把2b代入原式计算,约分即可得到结果.解答:解:∵2b,∴原式,故答案为:点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2015•河南)计算:(﹣3)0+3﹣1= .考点:负整数指数幂;零指数幂.分析:根据任何非零数的零次幂等于1,有理数的负整数指数次幂等于正整数次幂的倒数进行计算即可得解.解答:解:(﹣3)0+3﹣1=1.故答案为:.点评:本题主要考查了零指数幂,负指数幂的运算.负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.20.(2015•威海)计算:20+()﹣1的值为 3 .考点:负整数指数幂;零指数幂.分析:根据0次幂和负整数指数幂,即可解答.解答: 解:20+()﹣1=1+2=3.故答案为:3.点评: 本题考查了0次幂和负整数指数幂,解决本题的关键是熟记相关法则.21.(2015•泰州)2﹣1等于 . 考点: 负整数指数幂.分析:负整数指数幂:a ﹣()p ,依此计算即可求解. 解答: 解:2﹣1=1=.故答案是:.点评: 本题考查了负整数指数幂.负整数指数为正整数指数的倒数.22.(2015•贵港)若在实数范围内有意义,则x 的取值范围是 x ≥﹣2 . 考点: 二次根式有意义的条件.分析: 根据二次根式有意义的条件:被开方数为非负数可得2≥0,再解不等式即可.解答: 解:∵二次根式在实数范围内有意义,∴被开方数2为非负数, ∴2≥0,解得:x ≥﹣2. 故答案为:x ≥﹣2.点评: 此题主要考查了二次根式中被开方数的取值范围,关键把握二次根式中的被开方数是非负数.23.(2015•南京)计算的结果是 5 .考点: 二次根式的乘除法. 分析: 直接利用二次根式的性质化简求出即可.解答: 解:=×=5. 故答案为:5.点评: 此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.24.(2015•泰州)计算:﹣2等于 2 .考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答: 解:原式=3﹣=2.故答案为:2. 点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.25.(2015•哈尔滨)计算﹣3= .考点:二次根式的加减法.专题:计算题.分析:原式各项化为最简二次根式,合并即可得到结果.解答:解:原式=2﹣3×=2﹣=.故答案为:.点评:此题考查了二次根式的加减法,熟练掌握运算法则是解本题的关键.26.(2015•眉山)计算:2= ﹣.。
2015年福建省泉州市中考数学试卷(含解析版)
2015年福建省泉州市中考数学试卷一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2015•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣2.(3分)(2015•泉州)计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b23.(3分)(2015•泉州)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.4.(3分)(2015•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁5.(3分)(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.76.(3分)(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.17.(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.二、填空题(共10小题,每小题4分,满分40分)8.(4分)(2015•泉州)比较大小:4(填“>”或“<”)9.(4分)(2015•泉州)因式分解:x2﹣49=.10.(4分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为.11.(4分)(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=°.12.(4分)(2015•泉州)方程x2=2的解是.13.(4分)(2015•泉州)计算:+=.14.(4分)(2015•泉州)如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.15.(4分)(2015•泉州)方程组的解是.16.(4分)(2015•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=.17.(4分)(2015•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于cm;弦AC所对的弧长等于cm.三、解答题(共9小题,满分89分)18.(9分)(2015•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.19.(9分)(2015•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.20.(9分)(2015•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.21.(9分)(2015•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.22.(9分)(2015•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是°.(2)请你帮学校估算此次活动共种多少棵树.23.(9分)(2015•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?24.(9分)(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?25.(13分)(2015•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.2015年福建省泉州市中考数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)1.(3分)(2015•泉州)﹣7的倒数是()A.7 B.﹣7 C.D.﹣【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣7的倒数是﹣,故选:D.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•泉州)计算:(ab2)3=()A.3ab2B.ab6C.a3b6 D.a3b2【考点】幂的乘方与积的乘方.【分析】根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,幂的乘方,底数不变指数相乘解答.【解答】解:(ab2)3,=a3(b2)3,=a3b6故选C.【点评】主要考查积的乘方的性质,熟练掌握运算性质是解题的关键,要注意符号的运算.3.(3分)(2015•泉州)把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】先解的不等式,然后在数轴上表示出来.【解答】解:解不等式x+2≤0,得x≤﹣2.表示在数轴上为:.故选:D.【点评】本题考查了解一元一次不等式、在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.4.(3分)(2015•泉州)甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.020<0.021<0.022,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(3分)(2015•泉州)如图,△ABC沿着由点B到点E的方向,平移到△DEF,已知BC=5.EC=3,那么平移的距离为()A.2 B.3 C.5 D.7【考点】平移的性质.【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离=BE=5﹣3=2,进而可得答案.【解答】解:根据平移的性质,易得平移的距离=BE=5﹣3=2,故选A.【点评】本题考查平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,本题关键要找到平移的对应点.6.(3分)(2015•泉州)已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【考点】三角形三边关系.【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边列出不等式即可.【解答】解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5,故选:B.【点评】本题考查的是三角形的三边关系,掌握三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.7.(3分)(2015•泉州)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【专题】压轴题.【分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选:C.【点评】此主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.二、填空题(共10小题,每小题4分,满分40分)8.(4分)(2015•泉州)比较大小:4>(填“>”或“<”)【考点】实数大小比较;二次根式的性质与化简.【专题】推理填空题.【分析】根据二次根式的性质求出=4,比较和的值即可.【解答】解:4=,>,∴4>,故答案为:>.【点评】本题考查了二次根式的性质和实数的大小比较等知识点,关键是知道4=,题目较好,难度也不大.9.(4分)(2015•泉州)因式分解:x2﹣49=(x+7)(x﹣7).【考点】因式分解-运用公式法.【分析】利用平方差公式直接进行分解即可.【解答】解:x2﹣49=(x﹣7)(x+7),故答案为:(x﹣7)(x+7).【点评】此题主要考查了平方差公式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).10.(4分)(2015•泉州)声音在空气中每小时约传播1200千米,将1200用科学记数法表示为 1.2×103.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1200=1.2×103,故答案为:1.2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(4分)(2015•泉州)如图,在正三角形ABC中,AD⊥BC于点D,则∠BAD=30°°.【考点】等边三角形的性质.【分析】根据正三角形ABC得到∠BAC=60°,因为AD⊥BC,根据等腰三角形的三线合一得到∠BAD的度数.【解答】解:∵△ABC是等边三角形,∴∠BAC=60°,∵AB=AC,AD⊥BC,∴∠BAD=∠BAC=30°,故答案为:30°.【点评】本题考查的是等边三角形的性质,掌握等边三角形的三个内角都是60°和等腰三角形的三线合一是解题的关键.12.(4分)(2015•泉州)方程x2=2的解是±.【考点】解一元二次方程-直接开平方法.【分析】利用直接开平方法求解即可.【解答】解:x2=2,x=±.故答案为±.【点评】本题考查了解一元二次方程﹣直接开平方法,注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b 同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.13.(4分)(2015•泉州)计算:+=2.【考点】分式的加减法.【专题】计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式===2,故答案为:2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2015•泉州)如图,AB和⊙O切于点B,AB=5,OB=3,则tanA=.【考点】切线的性质.【分析】由于直线AB与⊙O相切于点B,则∠OBA=90°,AB=5,OB=3,根据三角函数定义即可求出tanA.【解答】解:∵直线AB与⊙O相切于点B,则∠OBA=90°.∵AB=5,OB=3,∴tanA==.故答案为:.【点评】本题主要考查了利用切线的性质和锐角三角函数的概念解直角三角形的问题.15.(4分)(2015•泉州)方程组的解是.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=3,即x=1,把x=1代入①得:y=﹣3,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.(4分)(2015•泉州)如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=50°.【考点】圆内接四边形的性质.【专题】计算题.【分析】根据圆内接四边形的任意一个外角等于它的内对角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCE=∠A=50°.故答案为50°.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补;圆内接四边形的任意一个外角等于它的内对角.17.(4分)(2015•泉州)在以O为圆心3cm为半径的圆周上,依次有A、B、C三个点,若四边形OABC为菱形,则该菱形的边长等于3cm;弦AC所对的弧长等于2π或4πcm.【考点】菱形的性质;等边三角形的判定与性质;弧长的计算.【专题】压轴题;分类讨论.【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出∠AOC,根据弧长公式的计算计算即可.【解答】解:连接OB和AC交于点D,∵四边形OABC为菱形,∴OA=AB=BC=OC,∵⊙O半径为3cm,∴OA=OC=3cm,∵OA=OB,∴△OAB为等边三角形,∴∠AOB=60°,∴∠AOC=120°,∴==2π,∴优弧==4π,故答案为3,2π或4π.【点评】本题考查了弧长的计算,菱形的性质,等边三角形的判定和性质,解题关键是熟练掌握弧长公式l=,有一定的难度.三、解答题(共9小题,满分89分)18.(9分)(2015•泉州)计算:|﹣4|+(2﹣π)0﹣8×4﹣1+÷.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负整数指数幂法则计算,最后一项利用二次根式的除法法则变形,计算即可得到结果.【解答】解:原式=4+1﹣2+3=6.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.(9分)(2015•泉州)先化简,再求值:(x﹣2)(x+2)+x2(x﹣1),其中x=﹣1.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=x2﹣4+x3﹣x2=x3﹣4,当x=﹣1时,原式=﹣5.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(9分)(2015•泉州)如图,在矩形ABCD中.点O在边AB上,∠AOC=∠BOD.求证:AO=OB.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题.【分析】首先根据矩形的性质得到∠A=∠B=90°,AD=BC,利用角角之间的数量关系得到∠AOD=∠BOC,利用AAS证明△AOD≌△BOC,即可得到AO=OB.【解答】解:∵四边形ABCD是矩形,∴∠A=∠B=90°,AD=BC,∵∠AOC=∠BOD,∴∠AOC﹣∠DOC=∠BOD﹣∠DOC,∴∠AOD=∠BOC,在△AOD和△BOC中,,∴△AOD≌△BOC,∴AO=OB.【点评】本题主要考查了矩形的性质的知识,解答本题的关键是证明△AOD≌△BOC,此题难度不大.21.(9分)(2015•泉州)为弘扬“东亚文化”,某单位开展了“东亚文化之都”演讲比赛,在安排1位女选手和3位男选手的出场顺序时,采用随机抽签方式.(1)请直接写出第一位出场是女选手的概率;(2)请你用画树状图或列表的方法表示第一、二位出场选手的所有等可能结果,并求出他们都是男选手的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)根据4位选手中女选手只有1位,求出第一位出场是女选手的概率即可;(2)列表得出所有等可能的情况数,找出第一、二位出场都为男选手的情况数,即可求出所求的概率.【解答】解:(1)P(第一位出场是女选手)=;(2)列表得:所有等可能的情况有12种,其中第一、二位出场都是男选手的情况有6种,则P(第一、二位出场都是男选手)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(9分)(2015•泉州)清明期间,某校师生组成200个小组参加“保护环境,美化家园”植树活动.综合实际情况,校方要求每小组植树量为2至5棵,活动结束后,校方随机抽查了其中50个小组,根据他们的植树量绘制出如图所示的两幅不完整统计图.请根据图中提供的信息,解答下面的问题:(1)请把条形统计图补充完整,并算出扇形统计图中,植树量为“5棵树”的圆心角是72°.(2)请你帮学校估算此次活动共种多少棵树.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)利用360°乘以对应的比例即可求解;(2)先求出抽查的50个组植树的平均数,然后乘以200即可求解.【解答】解:(1)植树量为“5棵树”的圆心角是:360°×=72°,故答案是:72;(2)每个小组的植树棵树:(2×8+3×15+4×17+5×10)=(棵),则此次活动植树的总棵树是:×200=716(棵).答:此次活动约植树716棵.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(9分)(2015•泉州)如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.(1)求k的值;(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】(1)根据函数y=的图象过点A(,1),直接求出k的值;(2)过点D作DE⊥x轴于点E,根据旋转的性质求出OD=OB=2,∠BOD=60°,利用解三角形求出OE和OD的长,进而得到点D的坐标,即可作出判断点D是否在该反比例函数的图象上.【解答】解:(1)∵函数y=的图象过点A(,1),∴k=xy=×1=;(2)∵B(2,0),∴OB=2,∵△AOB绕点O逆时针旋转60°得到△COD,∴OD=OB=2,∠BOD=60°,如图,过点D作DE⊥x轴于点E,DE=OE•sin60°=2×=,OE=OD•cos60°=2×=1,∴D(1,),由(1)可知y=,∴当x=1时,y==,∴D(1,)在反比例函数y=的图象上.【点评】本题主要考查了反比例函数图象上点的坐标特征以及图形的旋转的知识,解答本题的关键掌握旋后的两个图形对应边相等,对应角相等,此题难度不大.24.(9分)(2015•泉州)某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?【考点】二次函数的应用.【分析】(1)设AB=x米,根据等式x+x+BC=69+3,可以求出BC的表达式;(2)得出面积关系式,根据所求关系式进行判断即可.【解答】解:(1)设AB=x米,可得BC=69+3﹣2x=72﹣2x;(2)小英说法正确;矩形面积S=x(72﹣2x)=﹣2(x﹣18)2+648,∵72﹣2x>0,∴x<36,∴0<x<36,∴当x=18时,S取最大值,此时x≠72﹣2x,∴面积最大的不是正方形.【点评】本题主要考查二次函数的应用,借助二次函数解决实际问题.其中在确定自变量取值范围时要结合题目中的图形和长>宽的原则,找到关于x的不等式.25.(13分)(2015•泉州)(1)如图1是某个多面体的表面展开图.①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)【考点】几何变换综合题.【专题】压轴题.【分析】(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点,据此解答即可.②根据图示,要使沿BC、GH将展开图剪成三块,恰好拼成一个矩形,则△BMC应满足两个条件:△BMC中的三个内角有一个是直角;△BMC中的一条直角边和DH的长度相等,据此解答即可.(2)首先判断出矩形ACKL、BIJC、AGHB为棱柱的三个侧面,且四边形DGAL、EIBH、FKCJ须拼成与底面△ABC全等的另一个底面的三角形,AC=LK,且AC=DL+FK,,同理,可得,据此判断出△ABC∽△DEF,即可判断出S△DEF=4S△ABC;然后求出该三棱柱的侧面积与表面积的比值是多少即可.【解答】解:(1)①根据这个多面体的表面展开图,可得这个多面体是直三棱柱,点A、M、D三个字母表示多面体的同一点.②△BMC应满足的条件是:a、∠BMC=90°,且BM=DH,或CM=DH;b、∠MBC=90°,且BM=DH,或BC=DH;c、∠BCM=90°,且BC=DH,或CM=DH;(2)如图2,连接AB、BC、CA,,∵△DEF是由一个三棱柱表面展开图剪拼而成,∴矩形ACKL、BIJC、AGHB为棱柱的三个侧面,且四边形DGAL、EIBH、FKCJ须拼成与底面△ABC全等的另一个底面的三角形,∴AC=LK,且AC=DL+FK,∴,同理,可得,∴△ABC∽△DEF,∴,即S△DEF=4S△ABC,∴,即该三棱柱的侧面积与表面积的比值是.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了相似三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了直三棱柱的表面展开图的特征和应用,要熟练掌握.26.(13分)(2015•泉州)阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.【考点】二次函数综合题;勾股定理;矩形的判定与性质.【专题】综合题;压轴题;阅读型.【分析】(1)如图1,只需令x=0,即可得到点C的坐标.根据题意可得AC=AE,从而有∠AEC=∠ACE.易证AE∥CO,从而有∠AEC=∠OCE,即可得到∠ACE=∠OCE,同理可得∠OCF=∠BCF,然后利用平角的定义即可证到∠ECF=90°;(2))①过点P作PH⊥EF于H,分点H在线段EF上(如图2①)和点H在线段EF的延长线(或反向延长线)上(如图2②)两种情况讨论,然后只需运用勾股定理及平方差公式即可证到PE2+PF2﹣2PM2=2EM2,即PE2+PF2=2(PM2+EM2);②连接CD,PM,如图3.易证▱CEDF是矩形,从而得到M是CD的中点,且MC=EM,然后根据①中的结论,可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).由MC=EM可得PC2+PD2=PE2+PF2.根据PE=PF=3可求得PC2+PD2=18.根据1<PD<2可得1<PD2<4,即1<18﹣PC2<4,从而可求出PC的取值范围.【解答】解:(1)当x=0时,y=k•0+1=1,则点C的坐标为(0,1).根据题意可得:AC=AE,∴∠AEC=∠ACE.∵AE⊥EF,CO⊥EF,∴AE∥CO,∴∠AEC=∠OCE,∴∠ACE=∠OCE.同理可得:∠OCF=∠BCF.∵∠ACE+∠OCE+∠OCF+∠BCF=180°,∴2∠OCE+2∠OCF=180°,∴∠OCE+∠OCF=90°,即∠ECF=90°;(2)①过点P作PH⊥EF于H,Ⅰ.若点H在线段EF上,如图2①.∵M为EF中点,∴EM=FM=EF.根据勾股定理可得:PE2+PF2﹣2PM2=PH2+EH2+PH2+HF2﹣2PM2=2PH2+EH2+HF2﹣2(PH2+MH2)=EH2﹣MH2+HF2﹣MH2=(EH+MH)(EH﹣MH)+(HF+MH)(HF﹣MH)=EM(EH+MH)+MF(HF﹣MH)=EM(EH+MH)+EM(HF﹣MH)=EM(EH+MH+HF﹣MH)=EM•EF=2EM2,∴PE2+PF2=2(PM2+EM2);Ⅱ.若点H在线段EF的延长线(或反向延长线)上,如图2②.同理可得:PE2+PF2=2(PM2+EM2).综上所述:当点H在直线EF上时,都有PE2+PF2=2(PM2+EM2);②连接CD、PM,如图3.∵∠ECF=90°,∴▱CEDF是矩形,∵M是EF的中点,∴M是CD的中点,且MC=EM.由①中的结论可得:在△PEF中,有PE2+PF2=2(PM2+EM2),在△PCD中,有PC2+PD2=2(PM2+CM2).∵MC=EM,∴PC2+PD2=PE2+PF2.∵PE=PF=3,∴PC2+PD2=18.∵1<PD<2,∴1<PD2<4,∴1<18﹣PC2<4,∴14<PC2<17.∵PC>0,∴<PC<.【点评】本题主要考查了二次函数的性质、等腰三角形的性质、平行线的性质、平角的定义,矩形的判定与性质、勾股定理、解不等式、平方差公式等知识,还考查了阅读理解能力、运用已有经验解决问题的能力,第(2)小题中,运用勾股定理是解决第①小题的关键,运用①中的结论是解决第②小题的关键.参与本试卷答题和审题的老师有:2300680618;fangcao;dbz1018;1286697702;1987483819;妮子;zjx111;sd2011;HJJ;sks;HLing;gsls;张其铎;733599;zhjh;放飞梦想;1160374(排名不分先后)菁优网2015年12月17日祝福语祝你考试成功!。
2015年中考数学试题及答案(解析版)
中考数学试卷一.选择题(本大题共8小题,每小题3分,满分24分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请将正确选项填在括号内。
)1.(2013宜宾)下列各数中,最小的数是()A.2 B.﹣3 C.﹣D.0考点:有理数大小比较.分析:根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,进行比较即可.解答:解:∵﹣3<﹣<0<2,∴最小的数是﹣3;故选B.点评:此题考查了有理数的大小比较,要熟练掌握任意两个有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小.2.(2013宜宾)据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108B.3.3×109C.3.3×107D.0.33×1010考点:科学记数法—表示较大的数.专题:计算题.分析:找出所求数字的位数,减去1得到10的指数,表示成科学记数法即可.解答:解:330000000用科学记数法表示为3.3×108.故选A.点评:此题考查了科学记数法﹣表示较大的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(2013宜宾)下列水平放置的四个几何体中,主视图与其它三个不相同的是()A. B. C.D.考点:简单几何体的三视图.分析:分别找到四个几何体从正面看所得到的图形比较即可.解答:解:A.主视图为长方形;B.主视图为长方形;C.主视图为长方形;D.主视图为三角形.则主视图与其它三个不相同的是D.故选D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(2013宜宾)要判断小强同学的数学考试成绩是否稳定,那么需要知道他最近几次数学考试成绩的()A.方差 B.众数 C.平均数D.中位数考点:方差;统计量的选择.分析:根据方差的意义作出判断即可.解答:解:要判断小强同学的数学考试成绩是否稳定,只需要知道他最近几次数学考试成绩的方差即可.故选A.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(2013宜宾)若关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是()A.k<1 B.k>1 C.k=1 D.k≥0考点:根的判别式.分析:判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.解答:解:∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,a=1,b=2,c=k,∴△=b2﹣4ac=22﹣4×1×k>0,∴k<1,故选:A.点评:此题主要考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.(2013宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行 B.对角线相等C.对角线互相平分D.两组对角分别相等考点:矩形的性质;菱形的性质.分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解.解答:解:A.矩形与菱形的两组对边都分别平行,故本选项错误;B.矩形的对角线相等,菱形的对角线不相等,故本选项正确;C.矩形与菱形的对角线都互相平分,故本选项错误;D.矩形与菱形的两组对角都分别相等,故本选项错误.故选B.点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.7.(2013宜宾)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A.3 B.5 C.7 D.9考点:算术平均数.分析:由已知中图象表示某棵果树前x年的总产量y与n之间的关系,可分析出平均产量的几何意义为原点与该点边线的斜率,结合图象可得答案.解答:解:若果树前x年的总产量y与n在图中对应P(x,y)点则前x年的年平均产量即为直线OP的斜率,由图易得当x=7时,直线OP的斜率最大,即前7年的年平均产量最高,x=7.故选C.点评:本题以函数的图象与图象变化为载体考查了斜率的几何意义,其中正确分析出平均产量的几何意义是解答本题的关键.8.(2013宜宾)对于实数a、b,定义一种运算“⊗”为:a⊗b=a2+ab﹣2,有下列命题:①1⊗3=2;②方程x⊗1=0的根为:x1=﹣2,x2=1;③不等式组的解集为:﹣1<x<4;④点(,)在函数y=x⊗(﹣1)的图象上.其中正确的是()A.①②③④B.①③C.①②③D.③④考点:二次函数图象上点的坐标特征;有理数的混合运算;解一元二次方程-因式分解法;解一元一次不等式组;命题与定理.专题:新定义.分析:根据新定义得到1⊗3=12+1×3﹣2=2,则可对①进行判断;根据新定义由x⊗1=0得到x2+x﹣2=0,然后解方程可对②进行判断;根据新定义得,解得﹣1<x<4,可对③进行判断;根据新定义得y=x⊗(﹣1)=x2﹣x﹣2,然后把x=代入计算得到对应的函数值,则可对④进行判断.解答:解:1⊗3=12+1×3﹣2=2,所以①正确;∵x⊗1=0,∴x2+x﹣2=0,∴x1=﹣2,x2=1,所以②正确;∵(﹣2)⊗x﹣4=4﹣2x﹣2﹣4=﹣2x﹣2,1⊗x﹣3=1+x﹣2﹣3=x﹣4,∴,解得﹣1<x<4,所以③正确;∵y=x⊗(﹣1)=x2﹣x﹣2,∴当x=时,y=﹣﹣2=﹣,所以④错误.故选C.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式.也考查了阅读理解能力、解一元二次方程以及解一元一次不等式组.二.填空题(本大题共8小题,每小题3分,满分24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学计算题专项训练
【亲爱的同学们,如果这试卷是蔚蓝的天空,你就是那展翅翱翔的雄鹰;如果这试卷是碧绿的草原,你就是那驰骋万里的骏马。
只要你自信、沉着、放松、细心,相信你一定比雄鹰飞得更高,比骏马跑得更快!】
一、集训一(代数计算)
1. 计算:
(1)30821
45+-Sin (2)
(3)2×(-5)+23-3÷1
2 (4)22+(-1)4+(5-2)0-|-3|;
(5)( 3 )0 - ( 12 )-2 + tan45°
2.计算:345tan 32
31211
0-︒-⨯⎪⎭⎫
⎝⎛+⎪⎭⎫
⎝⎛--
3.计算:()()()︒⨯-+-+-+⎪⎭⎫
⎝⎛-30tan 331212012201031100102
4.计算:()()0112230sin 4260cos 18-+︒-÷︒---
502
38(2452005)(tan 602)3---︒-+︒-
6.计算:1201002(60)(1)|28|(301)21cos tan -÷-+--⨯--
二、集训二(分式化简)
注意:此类要求的题目,如果没有化简,直接代入求值一分不得! 考点:①分式的加减乘除运算 ②因式分解 ③二次根式的简单计算 1. . 2。
21
422---x x x
3. 11()a a a a --÷ 3.2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
4、化简求值
(1)⎝⎛⎭⎫1+ 1 x -2÷ x 2
-2x +1
x 2-4,其中x =-5.
(2)2
121
(1)1a a a a ++-⋅+,其中a 2
(3))25
2(423--+÷--a a a a
, 1-=a
(4))1
2(1
a a a a a --÷-,并任选一个你喜欢的数a 代入求值.
(5)22121
111x x x x x -⎛⎫+÷ ⎪+--⎝⎭然后选取一个使原式有意义的x 的值代入
5、化简求值: 11
1(11222+---÷-+-m m m m m m ),
其中m =3
6、先化简,再求代数式2221111x x x x -+---的值,其中x=tan600-tan450
7、化简:x x x x x x x x x 416
)44122
(2222+-÷+----+, 其中22+=x
8、计算:33
2141222+-
+÷⎪⎭⎫ ⎝⎛---+a a a a a a a .
9、先化简,再求值:13x -·32
269122x x x x
x x x -+----,其中x =-6.
10、先化简,再求值:a -1a +2·a 2+2a
a 2-2a +1÷1
a 2-1,其中a 为整数且-3<a <2.
11、先化简,再求值:222211y xy x x
y x y x ++÷⎪⎪⎭
⎫
⎝⎛++-,其中1=x ,2-=y .
12、先化简,再求值:
2221
12
()2442x x x x x x -÷--+-,其中2x =(tan45°-cos30°)
13、先化简再求值:1112421222-÷+--•+-a a a a a a ,其中a 满足20a a -=.
14、化简:22222369x y x y y x y x xy y x y
--÷-++++.
三、集训三(求解方程)
1. 解方程x 2﹣4x+1=0. 2。
解分式方程
2322-=+x x
3.解方程:3x = 2x -1
. 4。
已知|a ﹣1|+=0,求方裎+bx=1的解. 5.解方程:x 2+4x -2=0 6。
解方程:
x x -1 - 31-
x = 2.
7. .解分式方程:2
641313-=--x x 四、集训四(解不等式)
1.解不等式组
,并写出不等式组的整数解.
2.解不等式组()()()
⎩⎨⎧+≥--+-14615362x x x x
4.解不等式组⎪⎩⎪⎨⎧<+>+.22
1,12x x 5.解方程组,并求的值.
6. 解不等式组⎩
⎪⎨⎪⎧x +23 <1,2(1-x )≤5,并把解集在数轴上表示出来。
7. 解不等式组31311212
3x x x x +<-⎧⎪++⎨+⎪⎩≤,并写出整数解.
五、集训五(综合演练)
1、如图,在一块五边形场地的五个角修建五个半径为2米的扇花台,那么五个花台的总面积是______平方米.(结果中保留π)
2、已知a 、b 互为相反数,并且523=-b a ,则=+22b a .
3、已知⎩⎨⎧=+=+6252y x y x 那么x-y 的值是( )
A. 1
B. ―1
C. 0
D. 2
4、若不等式组220x a b x ->⎧⎨->⎩的解集是11x -<<,求()2010a b +的值 第11题。