基因工程载体
基因工程载体
THANKS FOR WATCHING
感谢您的观看
基因诊断
利用基因工程载体携带特定的检测基因或标记物, 对疾病相关基因进行快速、灵敏的检测和诊断。
应用领域与前景
农业生产
通过基因工程载体将优良性状基因导入农作物或家畜家禽的 基因组中,改良品种性状,提高产量和品质。
前景
随着科学技术的不断进步和创新,基因工程载体的研究和应 用将更加深入和广泛。未来,基因工程载体有望在个性化医 疗、精准农业、生物安全等领域发挥更大的作用,为人类健 康和生活质量的提高做出更大的贡献。
人工染色体载体
概念
人工染色体载体是一种基于天然染色体结构设计的基因工程载体,可模拟天然染色体的功 能和特性。
优点
人工染色体载体具有较大的容量,可容纳多个外源基因和调控元件。此外,人工染色体载 体还具有稳定的遗传特性和较低的免疫原性,可实现外源基因的长期稳定表达和遗传。
缺点
人工染色体载体的构建和操作相对复杂,技术难度较大,且成本较高。目前主要应用于基 础研究和临床试验阶段。
潜在生态风险分析
基因污染
基因工程载体可能通过水平基因转移等方式,将外源基因 导入非目标生物体内,造成基因污染。
生态平衡破坏
外源基因的导入可能对目标生物及其相关生物种群的生态 平衡产生不良影响,如改变种间竞争关系、影响食物链等。
生物多样性减少
基因工程载体的广泛应用可能导致生物多样性减少,特别 是对一些濒危物种和生态系统的影响更为显著。
人类健康影响评估
食品安全问题
基因工程载体在食品生产中的应用,如转基因作物,可能对人体健 康产生潜在风险,如引发过敏反应、产生毒素等。
医药安全问题
基因治疗等医疗手段的应用,可能存在潜在的安全隐患,如基因编 辑的脱靶效应、基因治疗的副作用等。
基因工程第四章载体
(4) 插入失活型质粒载体
载体的克隆位点位于其某一个选择性 标记基因内部。
如pDF41、pDF42、pBR329。
外源DNA
抗菌素抗性
无抗菌素抗性
(5)正选择的质粒载体 Direct selection vectors
直接选择转化后的细胞。
只有带有选择标记基因的转化菌细胞才 能在选择培养基上生长。
如pUR2、pTR262等。
目前通用的绝大部分质粒载体都是正 选择载体。
(6) 表达型质粒载体
主要用来使外源基因表达出蛋白质产物。
注意启动子的性质,终止子、起始 密码、终止密码的阅读正确。
如果在大肠杆菌里表达,必须把所克隆的 真核生物的基因置于大肠杆菌的转录—翻 译信号控制之下。
表达载体的结构
1)普通载体元件
b)细菌抗性原理 Ampr基因编码-内酰胺酶,特异地 切割氨苄青霉素的-内酰胺环。
ii)氯霉素(chloramphenicol,Cml)
a)抑菌原理 通过与50S核糖体亚基结合,干扰细胞 蛋白质的合成并阻止肽键的形成。杀死 生长的细菌。
b)细菌抗性原理
Cmlr 编码乙酰转移酶,特异地使氯霉 素乙酰化而失活。
(2)长度 6.3 kb。
(3)选择标记
大肠杆菌素(colicin)E1和对E1免疫 的基因(immE1)
① colicin E1基因的结构
cea 结构基因
imm
kil
免疫基因 溶菌基因
② 杀死不含有ColE1细菌的原因 cea + kil基因产物
③ 不被其他细菌的colicin E1所杀死的原因 imm基因
① 双抗菌素抗性选择标记 插入失活,分两次先后选择: 没有获得载体的寄主细胞 在Amp或Tet中都死亡。
第三章基因工程载体
大肠杆菌的β-半乳糖苷酶基因lacZ系统
i
PO
lacZ
调控蛋白P
β-半乳糖苷酶 分解半乳糖
17
β-半乳糖苷酶基因lacZ突变体M15
a-互补显色反应(蓝白斑筛选)
i
PO
lacZ -
调控蛋白P
诱导剂IPTG α-肽段
β-半乳糖苷酶-
分解半乳糖
分解X-gal
产物呈现蓝色
18
互补显色反应
19
(四)带有尽可能多的单一限制性酶切位点 单一的限制性酶切位点可供外源DNA定点插入; 较多不同的单一限制酿酶切位点,可有选择地供
6
单链切割 连接
线性DNA (L型)
开环DNA
(oc型)
单链切割 连接
共价闭合环形DNA (SC型)
环形双链的质粒DNA分子具有三种不同构型
7
(三)质粒DNA的理化性质 质数DNA具有一般核酸分子的理化特性。
能溶于水,不溶于乙醇等有机溶剂, 在一定pH下可解离而带电荷 能吸收紫外线,可嵌入某些染料,如溴化乙锭。 比较能抗切割和抗变性。
9
(6)传递性:有些质粒在细菌间能够传递,具有传递性的 质粒带有一套与传递有关的基因。
(7)消除性:存在于宿主细胞中的质粒,可用某些办法将 其去除。
(8)复制类型:严紧型质粒的复制受到宿主细胞蛋白质合 成的严格控制,松弛型质粒的复制不受宿主细胞蛋白质 合成的严格控制。
(9)表现型:不同的质粒有不同的表型。如对抗生素的抗 性等。
个细菌细胞中所含有的质粒DNA分子的数目。
12
根据宿主细胞所含的拷贝数多少,可将质粒分成:
严紧型
低拷贝数的质粒,每个宿主细胞中仅含有 1-3份的拷贝,称这类质粒为“严紧型”复 制控制的质粒(stringent plasmid);
基因工程第五章-载体
cccDNA在较高高的温度和PH值条件下才会变性,(较线 性和开放环结构的DNA),如果变性,由于团在一起,条 件恢复后,会很快复性,形成cccDNA,线性和环状的变 性后,复性会形成杂乱的大分子团状结构,从而从体系中 沉淀下来。
3. 质粒DNA的分子量和拷贝数:
按质粒的分子量大小,可分为量大类: 3――7kb,拷贝数多; 70-150kb,含有与质粒功能有关的更多基因,可自我传 递(可编码一套控制质粒DNA转移的基因,所以可从一 个细胞转到另一个细胞),如果一个细胞含有这种质粒, 他可以带动小质粒进行传递转移。这种质粒的拷贝数低。
质粒的拷贝数:分子的多与寡是决定产量的重要因素。
pBR322 拷贝数大于25个 ColE1 15个 产量0.23ug/ml 0.11 ug/ml
基因克隆尽量选择松弛型质粒,如果是严紧型要进行质粒 复制子改造。
质粒的大小:通常质粒越大,拷贝数也越少,所以我们 在进行基因重组时,首先要选择分子量小的质粒,其次 质粒分子量大的要使外源基因的片断长度合适,不要过 大。
பைடு நூலகம் 2、pUC质粒载体:
pUC质粒载体:是由美国加利福尼亚大学的专家构建 的。是在pBR322质粒载体的基础上,组入了一个带 有多克隆位点的LacZ’基因,而发展成为具有双功能 检测特性的质粒载体。
最常用的克隆载体,优点: 具有更小的相对分子量和更高的拷贝数。 在构建pUC质粒载体时仅留下pBR322的复制起始起 始位点和AMP抗性基因,分子大大减小,他的拷贝数 可以达到500-700个/个细胞。 适合组织化学法检测重组子。有利于检测 具有多克隆位点,便于片断的插入。
沉淀出来。
第一步:(1)在5m1含相应抗生素的LB培养基中接种 一单菌落,于37℃剧烈振荡培养过夜。(2)将1.5m1 培养物倒入Eppendorf管中,用微量离心机于4℃以 12000rpm离心30秒。 (3)吸去培养液,使细菌沉淀 尽可能干燥。(4)将细菌沉淀重悬于100μl用冰预冷的 溶液I中(溶液Ⅰ:50mmol/L 葡萄糖, 25mmol/L Tris· (pH 8.0), 10mmol/L CI EDTA(pH 8.0,溶菌酶4-5mg,酶作用环境由缓冲 液提供)。剧烈振荡。须使细菌沉淀在溶液Ⅰ中完全分 散,将两个微量离心管的管底部互相接触,室温静止5 -30min,细胞壁降解。
基因工程的载体
常用抗生素的作用方式及抗性机理
抗生素名称 氨苄青霉素 (Amp) 氯霉素 (Cm) 卡那霉素 (Kan) 链霉素 (Sm) 四环素 (Tet) 作用方式 抗性机理 一种青霉素的衍生物,通过干扰 bla抗性基因编码的一种周质酶,即β-内 细菌胞壁合成之末端反应,而杀 酰胺酶,可特异的切割amp的β-内酰胺 死生长细胞。 环,从而失去杀菌效力。 一种抑菌剂,通过同核糖体50S 亚基的结合作用,干扰细胞蛋白 质的合成,并阻止肽键的形成。 cat抗性基因编码乙酰转移酶,特异地使 氯霉素乙酰化而失活
λ噬菌体载体
结构特点: ①线性双链DNA分子 ②具非必需区(约1/3长度) ③两端具12个核苷酸单链互补粘性末端 ④可在E.coli中大量繁殖 ⑤可克隆15Kb左右的外源DNA
(2)质粒的基本特性
1) 2) 3) 4) 5) 自主复制性 不相容性 可扩增性 可转移性 携带遗传标记 野生型的质粒DNA上往往携带一个或多个遗传 标记基因,这使得寄主生物产生正常生长非必需 的附加性状,包括:抗生素、抗抗生素、抗重金 属、产生细菌毒素等。对DNA重组分子的筛选具有 重要意义。
(3)质粒DNA的转移
质粒自主转移
导入
+
自主转移
+
无DNA转移
donor
H H
H
+
辅助转移
H
+
质粒的辅助转移
H
H
+
Notransfer
质粒的重组转移
R-重组DNA分子
重组
+
DNA 转移
R
+ R
(4)质粒的命名
人工组建的质粒 第一个字母是质粒的英文名字(Plasmid)的第一 个字符p, 用小写。后面有两个字母是大写,代表质 粒的发现者和实验室名称,再后面是质粒的编号。
4基因工程-载体
4.质粒是基因工程的常用载体,下列关于它的说法正确的是( D )
A.具有环状结构的染色体,能够携带目的基因 DNA B.含蛋白质,从而能完成生命活动 C.是 RNA,能够指导蛋白质的合成 D.能够自我复制,从而保持连续性
—CTTAAG—
—G —CTTAA
EcoR I切点
AATTC— G—
碱基互补配对
(2)DNA 连接酶是基因操作的“分子缝合针”,其作用是把基于________
能力而黏合在一起但存在的切口封闭,进而才可能形成有意义的__重__组__D_N_A。 (某些)病毒
(3)逆转录酶也常被用于基因工程,其存在于________(生物)中,催化以
___m_R_N_A__为模板合成 DNA 的过程。
某些生化表型基因
在质粒作为载体时其上必须有至少一个标记基因存在。 即:限制酶切割位点不能破坏全部标记基因
a,b,c为酶切位点, a,c为限制酶Ⅰ切割位点;b为限制酶Ⅱ切割位点, (限制酶Ⅰ能切开限制酶Ⅱ的序列,限制酶Ⅱ不能切
开限制酶Ⅰ的序列) 选限制酶Ⅱ
则应选那种限制酶? 含有该质粒的细胞将来在什么培养基上能存活? 在什么培养基不能存活?
B.①④⑥
C.①③⑥⑦
D.②③⑥⑦
类型二 质粒结构和功能 例 2►目前基因工程所用的质粒载体主要是以天然细菌质粒的各种元件为基 础重新组建的人工质粒,pBR322 质粒是较早构建的质粒载体,其主要结构如下 图所示。
(1)构建人工质粒时要有抗性基因,以便于_筛___选__(_鉴__别___)目___的__基___因__是_______ _____________________________________否__导___入__受__体___细__胞__________。
基因工程基因工程的载体
2020/4/4
苏州科技学院生物系
叶亚新
第三章 基因工程的载体
作为基因工程载体的基本功能
1. 运送外源基因高效转入受体细胞 2. 为外源基因提供复制能力或整合能力 3. 为外源基因的扩增或表达提供条件
2020/4/4
苏州科技学院生物系
叶亚新
第三章 基因工程的载体
作为基因工程载体必须具备的基本条件
1)标记基因与宿主细胞 2)标记基因产物的作用机制: Apr 3)标记基因的结构与适用范围: 基因启动子, 翻译起始
序列, 密码子偏爱性
4)标记基因的结构变化对功能的影响: LacZ, GUS
4. 常用的遗传标记基因
1) 四环素抗性基因(Tcr)
Tetracycline 可结合在核糖体30s亚基中的一种蛋白 质分子上,抑制核糖体的转位过程。四环素抗性基因编码 一种399 AAs蛋白质,与细菌细胞膜结合,阻止四环素分 子进入细菌细胞。
第三章 基因工程的载体
载体:携带外源基因进入受体细胞的工具 用于基因工程的载体
•细菌质粒载体 •噬菌体λ衍生载体 •Cosmid载体 •Phagemid载体
•酵母质粒载体 •真核病毒载体 •Bacmid载体 •YAC载体
2020/4/4
苏州科技学院生物系
叶亚新
发展概况
1. 第一阶段(1977年前):天然质粒和重组质粒的利用,
2020/4/4
苏州科技学院生物系
叶亚新
2) 氨苄青霉素抗性基因(Apr)
Ampicillin可抑制细菌细胞膜上参与细胞壁合成酶类的活性。Apr 抗性基因编码一种分泌到细菌细胞周间质的酶,催化β—内酰胺环的 水解,使氨苄青霉素失活。
3) 氯霉素抗性基因(Cmr)
基因工程第三章基因工程的载体
基因工程载体的种类
质粒载体
质粒是一种裸露的、独立于细菌 拟核DNA之外的DNA分子,具有 自我复制能力,可携带外源DNA 片段。
病毒载体
病毒载体是指能够将外源DNA片 段插入到病毒基因组中,并利用 病毒的复制机制将外源DNA片段 导入到受体细胞中的媒介。
基因工程载体的作用
基因转移
基因工程载体能够将外源DNA片 段导入到受体细胞中,实现基因 的转移和表达。
通过优化载体结构,提高其在宿主细胞内的稳定性,降低丢失和突变 的风险。
开发NA的载体,提高基因工 程的效率和安全性。
拓展载体功能
通过基因工程技术对载体进行改造,赋予其新的功能,如表达调控、 靶向输送等。
智能化载体
利用合成生物学和纳米技术,开发具有智能响应能力的基因工程载体, 实现基因治疗的精准化和个性化。
利用基因工程载体生产食品添加剂、 酶制剂等,提高生产效率和产品质量。
THANKS FOR WATCHING
感谢您的观看
此外,噬菌体载体还可以用于疫苗研 发和生物治疗等领域。
04 人工染色体载体
人工染色体的概念与特性
人工染色体是一种通过基因工程技术 构建的染色体,具有与天然染色体相 似的结构和功能。
人工染色体具有高容量、可定制和可 调控等特性,能够承载和表达大量的 外源基因,为基因治疗、生物制药等 领域提供了新的工具。
质粒载体的应用
总结词
质粒载体在基因工程中广泛应用于基因克隆、表达和基因治疗等领域。
详细描述
质粒载体此外,质粒载体还可以用于基因治疗和疫苗研制等领域, 为疾病治疗和预防提供了新的手段。
03 噬菌体载体
噬菌体的生物学特性
基因克隆
基因工程载体可作为基因克隆的 工具,将外源DNA片段插入到载 体中,通过复制和扩增实现基因 克隆。
基因工程载体
第三章基因工程载体体外获得的任一DNA片段,必须插入到可以自我复制的载体内,再转入宿主细胞,才能得到复制和进行表达。
基因工程载体(Vectors)就是携带外源基因进入受体细胞进行繁殖和表达的一种工具。
载体的功能运送外源基因高效转入受体细胞为外源基因提供复制能力或整合能力为外源基因的扩增或表达提供必要的条件基因工程中3种主要类型的载体:1.质粒载体2.噬菌体载体3.柯斯质粒(cosmid)载体基因工程对载体的要求(1)在宿主细胞内能独立复制。
(2)有选择性标记。
(3)有一段多克隆位点。
外源DNA插入其中不影响载体的复制。
(4)分子量小,拷贝数多。
(5)容易从宿主细胞中分离纯化。
第一节质粒(plasmid)载体质粒是一种独立于染色体外的双链闭环的DNA分子,具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。
质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。
(一)质粒的构形环形双链的质粒DNA在提取过程中通常出现三种不同的构型:①共价闭合环形DNA(cccDNA)②开环DNA(open circular,ocDNA)③线形DNA(linear,lDNA)(二)质粒的转移性指质粒从一个细胞转移到另一个细胞的特性。
接合型质粒:除了带有自我复制所必需的遗传信息外,还带有一套控制细菌配对和质粒接合转移的基因。
如:F质粒(性质粒或F因子)甚至能使寄主染色体上的基因随其一道转移到原先不存在该质粒的受体菌中。
不符合基因工程的安全要求。
非接合型质粒:带有自我复制所必需的遗传信息,但失去了控制细菌配对和质粒接合转移的基因,因而不能从一个细胞转移到另一个细胞。
如R质粒(抗性质粒)、Col质粒(细菌素质粒)。
符合基因工程的安全要求。
R质粒:带有一种或数种抗生素抗性基因,使寄主获得同样的抗生素抗性性状(resistance)。
Col质粒:细菌素通过与敏感细菌细胞壁的结合作用,抑制一种或数种细胞生命过程。
基因工程常用的三种载体
基因工程常用的三种载体载体是基因工程中常用的一种工具,用于将外源基因导入宿主细胞中并进行表达。
常见的载体有质粒、病毒和人工染色体。
本文将分别介绍这三种载体的特点、用途和优缺点。
1. 质粒:质粒是圆形、双链DNA分子,广泛应用于基因工程中。
质粒的构建相对简单,可以通过DNA重组技术来插入外源DNA 片段。
质粒通常包含由宿主细胞识别的来源于细菌或酵母的起源序列,以实现在细胞中的复制和维持。
此外,质粒上还包含选择性标记基因和表达调控元件,以便筛选和调控目标基因的表达。
质粒在基因工程中有着广泛的应用。
首先,质粒载体可以在大肠杆菌等常见细菌中表达外源基因,用于重组蛋白的产生和纯化,或进行功能研究。
此外,质粒也可以构建用于植物和动物细胞的转染,用于基因转导和基因治疗等领域的研究。
质粒的优点在于构建简单,易于操作,并且可以在多种细胞中进行表达。
然而,质粒的转染效率较低,不适合大规模基因转导。
此外,在某些细胞中,质粒的稳定性较差,易丧失外源基因。
2. 病毒:病毒是一类依赖于细胞代谢活动的生物体,可以将外源基因导入宿主细胞并进行复制和表达。
常见的基因工程病毒载体包括腺病毒、逆转录病毒和腱实病毒等。
病毒载体的主要特点是高效的基因转导能力和细胞特异性。
由于病毒依赖于细胞进行复制和表达,因此病毒载体能够实现高效转导和表达目标基因。
此外,病毒载体还可以通过选择性修饰病毒表面蛋白来实现对特定细胞的特异性转染,进一步提高基因转导效率。
病毒载体被广泛应用于基因治疗和基因敲除等研究领域。
在基因治疗中,病毒载体能够将替代基因导入患者细胞中,以治疗某些遗传性疾病。
在基因敲除中,病毒载体则可以导入携带某种特殊序列的DNA片段,进而敲除靶基因。
然而,病毒载体也存在一些限制。
首先,病毒复制过程中可能引起细胞毒性反应,对细胞造成伤害。
其次,病毒载体的构建和生产相对复杂,需要严格的无菌操作和关键的质控步骤。
3. 人工染色体:人工染色体是一种合成的染色体模拟体,可用于将大片段基因组DNA导入宿主细胞中。
基因工程载体
基因工程载体是指用于携带外源基因,并在细胞内进行复制和表达的分子。 它们是改造生物的基础。
基因工程载体的类型
质粒
常用于细菌表达,包括原核生物和真核生物的质粒。
病毒载体
包括腺病毒、逆转录病毒等,常用于转导和转化细胞。
工具基因
可直接或间接编码外源蛋白质,还可辅助其他载体用于目的基因的快速识别与筛选。
用于表达重组蛋白等药物,开 发快速且经济有效的制剂工艺。
基因工程载体可用于生物药物及生产技术的研发,是生物医药领域的重要组成部分。
基因工程载体的设计和构建
1
槽式开阔系统
通过个性化定制载体的结构、比例、含量和形态,提升载体的反应性和扩散性。
2
基因簇筛选
可通过对质粒载体进行簇分析和筛选,去除异质体和残留DNA等,提升载体质 量。
3
切割与黏合
运用限制性内切酶、酶切ligase、PCR反应等技术,制备并放大载体。
基因工程载体的后续研究和发展
1 功能扩展
以基因载体为核心,引导基因工程技术的快速发展。
2 多样性构建
以创新设计为核心,开发绿色化、精简化、标准化、差异化、低耗能的基因载体构建平 台。
3 质量控制
研究基因工程质量控制的理论、方法及其结构化的过程,以期提升载体质量,并引导其 向更广泛领域扩展。
常见的基因工程载体
1
慢病毒
2
常用于生物学研究中的基因修饰技术,
有望成为治疗人类遗传病的一种有效工
3
具。
大肠杆菌BL21
用于重组表达外源蛋白,是最常用的质 粒载体。
转座子
可用于转移基因,可以使植物和动物的 产生长期、稳定、准确的基因转移。基因工程载体的特点和优势
第三章 基因工程载体
表达载体与克隆载体的区别
Hale Waihona Puke 强启动子,一个可诱导的强启动子可使外源基因 有效的转录 在启动子下游区和ATG(起始密码子)上游区有 一个好的核糖体结合位点序列(SD序列),促进 蛋白质翻译 在外源基因插入序列的下游区要有一个强转录终 止序列,保证外源基因的有效转录和mRNA的稳 定性
表达型载体(expression vector)
Apr TcS为重组子 Apr Tcr为原载体 ApS Tcr为重组子 即为非重组子
pUC系列的质粒载体
pBR322质粒的复制起点 Amp抗性基因,但核苷酸序列不含有原来限制 性核酸内切酶的单一酶切位点 大肠杆菌β-半乳糖酶基因(lacZ)的启动子及其 编码α-肽链的DNA序列,此结构特称为lacZ‘基 因 位于lacZ'基因中的靠近5”端的一段多克隆位点 (MCS ,multiple cloning sites)区,但它 并不破坏该基因的功能
4、
去除两 个PstI
pBR318 (6.3Kb)
酶切 体外重组 酶切
pBR313
EcoRII片 断去掉
pBR322 (4.3Kb)
pBR320 (2.8Kb)
四、常用质粒载体类型
1、克隆质粒载体
2、表达质粒载体
3、多功能质粒载体
4、穿梭质粒载体
1、克隆质粒载体
克隆质粒载体是指专用于基因或DNA片断无性繁
pBR322插入失活效应
筛 选 重 组 子 的 示 意 图
Amp r
1)限制酶切 2)DNA重组 无DNA插入
Tc
有DNA插入
Amp r Tcr
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程课程论文:基因工程载体的探索学号:A09120248姓名:金文杰班级:生技1203任课教师:任桂萍基因工程载体的探索摘要基因工程是要按人们的意愿去有目的地改造,创建生物遗传性,因此其最基本的工程就是要得到目的基因或核酸序列的克隆。
基因工程载体是基因工程所必需的工具,是能将分离或合成的基因导入细胞的DNA分子,有质粒DNA、病毒DNA、λ噬菌体的衍生物三种主要类型。
植物、动物、微生物所用的质粒可能不同,在不同条件下所需的质粒也不同,所选用的质粒按需要选用。
在基因操作过程中使用载体有两个用途:一是用它作为运载工具,将目的基因转移到宿主细胞中去;二是利用它在宿主细胞内对目的基因进行大量的复制。
较常见的几种载体有:质粒pUC19、M13、科斯载体等。
关键词:载体、质粒、λ噬菌体、病毒DNA一、理想载体要求:对理想的基因工程载体一般至少有以下几点要求;能在宿主细胞中复制繁殖,而且最好要有较高的自主复制能力;容易进入宿主细胞,而且进入效率越高越好;容易插入外来核酸片段,插入后不影响其进入宿主细胞和在细胞中的复制,这就要求载体DNA上要有合适的限制性核酸内切酶位点,且每种酶的切位点最好只有一个;容易从宿主细胞中分离纯化出来,这才便于重组操作;有容易被识别筛选的标志,当其进入宿主细胞、或携带着外来的核酸序列进入宿主细胞都能容易被辨认和分离出来。
这才介于克隆操作。
二、常见质粒1、质粒pUC19最常用的大肠杆菌克隆用质粒pUC19,此质粒的复制起点处序列经过改造,能高频率起动质粒复制,使一个细菌pUC19的拷贝数可达500-700个;质粒携带一个抗氨芐青霉素基因,编码能水解β-内酰胺环,从而被坏氨芐青霉素的酶,当用pUC19转化细菌后放入含氨芐青霉素的培养基中,凡不含pUC19者都不能生长,结果长出的细菌就是都含有pUC19的;pUC19还携带细菌lac操纵元中的lacI和lacZ基因编码,β-半乳糖苷酶N端状146个氨基酸的段落,当培养基中含有诱导物IPTG(isopropyl-thiogalactoside异丙基-硫代半乳糖苷)和Xgal(5-bromo-4- chloro-3-indolyl-β-D-galactopyranoside)时,lacZ ' 基因被诱导表达产生的β-半乳糖苷酶N端肽与宿主菌表达的C端肽互补而具有β-半乳糖苷酶活性(质粒和宿主编码的肽段各自都没有酶活性,两都融为一体而具酶活性,称为α-互补,α-complementation),半乳糖苷酶水解Xgal而使菌落呈现蓝色;在lacZ '中间又插入了一段人工设计合成的DNA序列,其中密集多个常用的限制性核酸内切酶的位点,使外来的基因和序列能很方便地被插入此位置,当外来序列插入后则破坏了lacZ '编码的半乳糖苷酶活性,生长的菌落就呈白色,这种颜色标志的变化就很容易区分和挑选含有和不含有插入序列或基因的转化菌落,称为蓝白筛选法。
根据用途可以对质粒进行改造,例如:根据鼠李糖乳杆菌D- ldhD-乳酸脱氢酶基因序列, 设计扩增同源臂 D1和 D2的引物,扩增同源臂D1的引物为 Lr-d1-H和 Lr-d1-X,扩增同源臂 D2的引物为Lr-d2-E和Lr-d2-A。
分析载体pU C19-CM和D-ldh基因的序列,分别在引物Lr-d1-H和Lr-d1-X的5’端添加H ind 和Xho酶切位点;在引物 Lr-d2-E和Lr-d2-A 的5端添加 EcoR和Apa酶切位点。
利用这2对引物扩增得到的同源臂分别插入到载体pUC19-CMHind和Xho酶切位点、EcoR和Apa酶切位点中,得到自杀质粒 pUC19-CM-D测序确定序列插入的正确性利用引物 Pkd3-cm-1和 Pkd3-cm-2从质粒pKD3上扩增到氯霉素抗性基因CM, 大小为1200bp。
质粒 pUC19和基因CM分别经Pst和Sac内切酶处理后连接, 转入大肠杆菌 JM 109中,PCR酶切鉴定及测序结果表明基因 CM 正确插入到质粒 pU C19中, 载体 pU C19-CM 构建成功。
由同源臂 D1引物 Lr-d1-H和Lr- d1-X扩增长约为180bp左右的基因片段,由同源臂 D2的引物Lr-d2-E和L r-d2-A 扩增出了约237 bp的基因片段。
将2个同源臂片段和 pUC19-CM 载体经酶切处理连接后, 转化至大肠杆菌 JM 109中,PCR酶切鉴定及测序结果表2个同源臂正确插入载体 pUC19-CM的氯霉素基因的两端,自杀质粒pUC19-CM-D构建成功。
自杀质粒的应用是构建基因缺失工程菌的重要手段之一。
自杀质粒的复制需要一种特殊蛋白,大多数细菌不产生这种蛋白质。
因此,当进入寄主细胞时;要么不能复制,被消除;要么被整合入染色体上,和染色体一起复制。
利用自杀质粒的这个特点,该研究中将2个同源臂片断D1 和D2,克隆入自杀载体pUC19-CM 中, 利用缺失基因两端的同源片断,定位自杀质粒的整合位点。
利用同源性 DNA片断可发生重组的原理, 构建精确基因缺失菌株。
在多数情况下, 利用自杀质粒可随心所欲缺失大多数基因的任何部分。
2、M13噬菌体它是一种丝状噬菌体,内有一个环状单链DNA分子,长6407个核苷酸,含DNA复制和噬菌体增殖所需的遗传信息。
M13DNA的复制起始位点定位在基因间隔区内。
但是基因间隔区的有些核苷酸序列即使发生突变、缺失或插入外源DNA片段,也不会影响M13DNA 的复制,这为M13DNA构建克隆载体提供了条件。
M13 噬菌体的生物学 M13 噬菌体颗粒是丝状的,只感染F+(含F质粒,能产生性菌毛)的大肠杆菌。
感染宿主后通常不裂解宿主细胞,而是从感染的细胞中分泌出噬菌体颗粒,宿主细胞仍能继续生长和分裂。
但生长水平比未感染组低。
M13 噬菌体的基因组为单链 DNA (+DNA),由 6407 的碱基组成。
基因组 90% 以上的序列可编码蛋白质,共有 11 个编码基因,基因之间的间隔区多为几个碱基。
较大的间隔位于基因Ⅷ和基因Ⅲ以及基因Ⅱ和基因Ⅳ之间,其间有调节基因表达和 DNA 合成的元件。
M13 噬菌体基因组可编码 3 类蛋白质,包括复制蛋白(基因Ⅱ,Ⅴ和Ⅹ),形态发生蛋白(基因Ⅰ,Ⅳ和Ⅺ),结构蛋白(基因Ⅲ、Ⅵ、Ⅶ、Ⅷ和Ⅸ)。
所有结构蛋白在形态发生之前都插入在宿主细胞的质膜中。
基因组 DNA 为正链,按基因Ⅱ至基因Ⅳ方向合成,与噬菌体的 mRNA 序列同义。
在宿主细胞内,感染性的单链噬菌体 DNA (正链)在宿主酶的作用下转变成环状双链 DNA ,用于 DNA 的复制,因此这种双链 DNA 称为复制型 DNA (replicative form DNA),即RF DNA。
通过θ复制方式,RF DNA 进行扩增,基因的转录也随即开始。
基因组中的任意一个启动子都可以启动基因的转录,单方向地终止于下游的终止子。
启动子和终止子的位置关系使得靠近终止子的基因转录更频繁。
当基因Ⅱ蛋白在亲代RF DNA的正链特定位点上产生一个切口时,便启动噬菌体基因组进行滚环复制。
此时,在大肠杆菌的 DNA聚合酶Ⅰ的作用下,以负链为模板在切口的 3'末端加入核苷酸,并持续 DNA 的合成,用新合成的 DNA 替换原有的正链。
当复制叉环绕模板整整一周时,被取代的正链由基因Ⅱ产物切去,经环化后形成单位长度的噬菌体基因组DNA 。
在感染开始的 15~20 分钟内,这些子代正链在宿主细胞酶的作用下,又转变成RF DNA,然后以之为模板继续转录并继续合成子代正链 DNA 。
当感染细胞内累计有 100-200个RF DNA 时,细胞内也产生了足够的单链 DNA 结合蛋白,即基因Ⅴ蛋白。
该蛋白可以抑制翻译活性,特别是抑制基因Ⅱ mRNA 的翻译,并且强烈地结合在新合成的正链 DNA 上,阻止其转化成 RF DNA。
此时,DNA 的合成几乎只产生子代正链 DNA 。
另外,基因Ⅹ蛋白和基因Ⅴ蛋白也是噬菌体特异 DNA 合成的强力抑制子,从而限制感染细胞内 RF DNA 的数量。
结果,感染细胞内 RF DNA 的数目和子代正链 DNA 的产生速率都能保持适度。
其中M13mp系列对野生型M13加以改造,插入了多克隆位点和LacZ基因,可容纳外源DNA300-400bp,可用于制备DNA测序时用的单链模板和核酸探针。
3、科斯载体美国的Colins等人研制了一种称为科斯质粒(cosmid) 的新型基因载体,它是带有噬菌体 cos 位点的质粒。
噬菌体的环DNA 易于自发地在某一个特定的位点断裂,成为线状分子。
断裂的两端由于存在互补的核普酸,即成粘性末端。
噬菌体的线状DN A 也容易自发地通过粘性末端而重新连接成环状分子。
这个粘性末端,就称为cos 位点。
cos位点还有一个重要的作用,就是能识别噬菌体的外壳蛋白质。
凡具有cos位点的任何DNA分子,只要在长度上符合一定要求,就可以与人外壳蛋白质结合而被包装成类似噬菌体的颗粒。
Colins等人即研制了带有 cos位点的质粒,它作为基因载体,兼有细菌质粒和噬菌体的优点。
一方面可以插入大片段的外源DNA (约4一6万个碱基对),因而有利于研究真核生物的基因(真核基因DNA分子较大;)另一方面,又能像噬菌体那样进行体外包装,并感染大肠杆菌,形成克隆,以制成基因文库(Genelibrary )。
科斯质粒本身的长度约为5一6千个碱基对,能嵌人的外源D NA 近于它本身长度的 10倍。
cos 位点的大小是400个碱基对左右。
应用各种质粒不同长度的片段,接上cos 位点,可制成各种不同长度的科斯质粒,以接受各种不同长度的外源 DNA。
由于又噬菌体蛋白质外壳能包装的DNA长度是一定的,故科斯质粒可接受的外源 DNA长度等于又噬菌体DNA 长度减去科斯质粒本身的长度。
这样, 选用和研制一种特定长度的科斯质粒,就可以接受特定长度的外源 DNA,然后体外包装又噬菌体的蛋白质外壳。
这就很容易根据 DNA 分子的长度来纯化作为目的基因的外源DNA。
4、动物病毒载体质粒和噬菌体载体只能在细菌中繁殖,不能满足真核DNA重组需要。
感染动物的病毒可改造用作动物细胞的载体。
由于动物细胞的培养和操作较复杂、花费也较多,因而病毒载体构建时一般都把细菌质粒复制起始序列放置其中。
使载体及其携带的外来序列能方便地在细菌中繁殖和克隆,然后再引入真核细胞。
目前病毒载体常用者有改造来自猴肾病毒SV40(Simian Virus 40)、逆转录病毒和昆虫杆状病毒等,使用这些病毒载体的目的多为将目的基因或序列放入动物细胞中表达或试验其功能、或作基因治疗等。
发展前景现在,对于原核生物特别是大肠杆菌以及植物基因工程载体的研究已经相当深入,已有多种具有优良特性的载体可用于基因工程。