七年级数学上册展开与折叠(课堂PPT)
合集下载
北师大版数学七年级上册第一章2展开与折叠第2课时柱体、锥体的展开与折叠课件
可以得到的几何体是( A )
A.三棱柱
B.四棱柱
C.三棱锥
D.四棱锥
3.如图,将圆柱的表面展开后得到的平面图形是( B )
4.【教材 P10 想一想·变式】下列选项经过折叠能围 成一个棱柱的是( D )
A
B
C
D
5.【2019·连云港】一个几何体的侧面展开图如 图所示,则该几何体的底面是( B )
半径为 或1 cm.
(1)如图②给出三种纸样甲、乙、丙,在甲、乙、丙 中,正确的有 甲、丙 ;
(2)从已知正确的纸样中选出一种,在原图上标注出尺
寸; (2)如图,标注尺寸只需在甲图或丙图中标出一种即
可
(3)利用你所选的一种纸样,求出包装盒的侧面积和 表面积(侧面积与两个底面积的和).
(3)S侧=(3+5+3+5)×13=208(cm2);S表=S侧+2S底= 208+2×3×5=238(cm2).
第一章 丰富的图形世界
2 展开与折叠 第2课时 柱体、锥体的展开与折
课前导读
课中导学
课后导练
1.圆柱的侧面展开图是 长方形 ,底面是 圆 ;直棱柱的侧面展开图是 长方形 ,底面是
多边形 . 2.圆锥的侧面展开图是 扇形 ,底面是
圆 ;棱锥的侧面展开图是 三角形组成的图 形,底面是 多边形 .
柱体的展开与折叠 例 1 如图,在第一行中找出与第二行对应的几何体的 表面展开图,并用线把它们连起来.
解:有4种粘贴法,如图:
谢谢观看
Thank you for watching
8.如图,请你在横线上写出哪种立体图形的表面能展 开成下面的图形.
三棱柱
ቤተ መጻሕፍቲ ባይዱ
六棱柱
展开与折叠课件PPT
01
读开头、读领头句、读结尾。
2.扫描式阅读。即阅读时视线要垂直移动,
02
瞄准重要字词即可。比如在阅读“那么,有
没有一种快速阅读的方法呢?”这句话时,
只要抓住“有学识快速阅读”这两个关键
词语,就理解这个句子的基本意思了
1.2 展开与折叠
快速阅读有三种表现方式
3.组合式阅读,即群读。要想做到群读需要经过不
北师大版 数学 七年级 上册
1.2 展开与折叠 (第1课时)
导入新知
1.2 展开与折叠
在生活中,我们经常见到正方体形状的盒子,为了 设计和制作的需要,我们应了解正方体盒子展开后的平 面图形.
将纸盒完全展开后 形状是怎样的?
导入新知
1.2 展开与折叠
做一做 下面图形中,都能围成一个正方体吗?
(1)
1.下面六个正方形连在一起的图形,经折叠后能围成正方体的图 形有哪几个?
√
A
B
C
√
E
F
D√
√
G
课堂检测
基础巩固题
1.2 展开与折叠
2.(广东深圳中考)把图折成一个正方体的盒子,折好 后与“中”相对的字是( C ) A.祝 B.你 C.顺 D.利
课堂检测
1.2 展开与折叠
基础巩固题
3.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图 中红线将其剪开展成平面图形,想一想,这个平面图形是( A )
1.2 展开与折叠
感谢观看
1.2 展开与折叠
初中生要掌握快速阅读的能力,这对 提高阅读效率是非常必要的。 高效学习经验 阅读书籍有快有慢
1.2 展开与折叠
初三学生刘某以737分的高分在7万名考生中 独占鳌头,成为重庆市近十年来中考丢分最 少的人,其中四科都是满分,这样的好成绩让 人瞠目。尽管如此,刘峻琳似乎还不满 足:“再仔细数学其实也可以拿满分
读开头、读领头句、读结尾。
2.扫描式阅读。即阅读时视线要垂直移动,
02
瞄准重要字词即可。比如在阅读“那么,有
没有一种快速阅读的方法呢?”这句话时,
只要抓住“有学识快速阅读”这两个关键
词语,就理解这个句子的基本意思了
1.2 展开与折叠
快速阅读有三种表现方式
3.组合式阅读,即群读。要想做到群读需要经过不
北师大版 数学 七年级 上册
1.2 展开与折叠 (第1课时)
导入新知
1.2 展开与折叠
在生活中,我们经常见到正方体形状的盒子,为了 设计和制作的需要,我们应了解正方体盒子展开后的平 面图形.
将纸盒完全展开后 形状是怎样的?
导入新知
1.2 展开与折叠
做一做 下面图形中,都能围成一个正方体吗?
(1)
1.下面六个正方形连在一起的图形,经折叠后能围成正方体的图 形有哪几个?
√
A
B
C
√
E
F
D√
√
G
课堂检测
基础巩固题
1.2 展开与折叠
2.(广东深圳中考)把图折成一个正方体的盒子,折好 后与“中”相对的字是( C ) A.祝 B.你 C.顺 D.利
课堂检测
1.2 展开与折叠
基础巩固题
3.如图,有一个无盖的正方体纸盒,下底标有字母“M”,沿图 中红线将其剪开展成平面图形,想一想,这个平面图形是( A )
1.2 展开与折叠
感谢观看
1.2 展开与折叠
初中生要掌握快速阅读的能力,这对 提高阅读效率是非常必要的。 高效学习经验 阅读书籍有快有慢
1.2 展开与折叠
初三学生刘某以737分的高分在7万名考生中 独占鳌头,成为重庆市近十年来中考丢分最 少的人,其中四科都是满分,这样的好成绩让 人瞠目。尽管如此,刘峻琳似乎还不满 足:“再仔细数学其实也可以拿满分
2024年秋季新北师大版七年级上册数学教学课件 1.2.1 正方体的展开与折叠
爱心.诚心.细心.耐心,让家长放心.孩子安心。
一三二或二三一型(展开图可归结为五个小方块组 成“三二相连”的基本图形,另外一个小方块的位 置有三种情况)
图示
类型 二二二型(两两错开,像阶梯一样,故称“两两
错开一阶梯”)
图示
三三型(和二二二型类似的“阶梯型”)
特别提醒:正方体的表面展开图的形状多种多样,注意不要遗漏 也不要重复,同时注意展开图中有 “7”字形、“凹”字形或“田”字形 时,围不成正方体,也就不是正方体的表面展开图。
同学们,今天我们学习了哪些主要内容呢? 正方体的11种表面展开图;判断一个展开图能不能折成正 方体;正方体展开图中的相对面。 今天我们通过动手操作的过程,感受了正方体的展开与折 叠,下节课我们将继续探索其他几何体的展开与折叠,同 学们共同期待吧!
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
2.下面两个图形经过折叠能否围成一个正方体?
第一个图形可以,第二个图形不可以。
3.下图中的图形可以折成一个正方体盒子,折好以后,与“1”面相 邻的面是什么?相对的面是什么?
与1相邻的面是数字4,5,6,2所在的面; 相对的面是数字3所在的面
小组展示 1.下列展开图中,是正方体展开图的是( C )
3.通过让学生充分经历实践、探索、交流的过程,使学生养成正 确的学习态度。
旧知回顾
1.正方体有几个面?几条棱?几个顶点? 6个面,6条棱,8个顶点。
2.正方体的棱与棱均__相___等__,面与面均____相___同。
壁虎吃蚊子问题
情境导入 蚊子
壁虎
如图是壁虎和蚊子的位置,请同学们思考壁虎如何经过最短的路径来 到蚊子的地方?
1.请同学们阅读教材8页“尝试·思考”前的内容,让学生将课前准备好 的小正方体纸盒沿某些棱任意剪开,展成一个平面图形,并完成下 列问题。
一三二或二三一型(展开图可归结为五个小方块组 成“三二相连”的基本图形,另外一个小方块的位 置有三种情况)
图示
类型 二二二型(两两错开,像阶梯一样,故称“两两
错开一阶梯”)
图示
三三型(和二二二型类似的“阶梯型”)
特别提醒:正方体的表面展开图的形状多种多样,注意不要遗漏 也不要重复,同时注意展开图中有 “7”字形、“凹”字形或“田”字形 时,围不成正方体,也就不是正方体的表面展开图。
同学们,今天我们学习了哪些主要内容呢? 正方体的11种表面展开图;判断一个展开图能不能折成正 方体;正方体展开图中的相对面。 今天我们通过动手操作的过程,感受了正方体的展开与折 叠,下节课我们将继续探索其他几何体的展开与折叠,同 学们共同期待吧!
同学们,通过这节课的学习, 你有什么收获呢?
谢谢 大家
2.下面两个图形经过折叠能否围成一个正方体?
第一个图形可以,第二个图形不可以。
3.下图中的图形可以折成一个正方体盒子,折好以后,与“1”面相 邻的面是什么?相对的面是什么?
与1相邻的面是数字4,5,6,2所在的面; 相对的面是数字3所在的面
小组展示 1.下列展开图中,是正方体展开图的是( C )
3.通过让学生充分经历实践、探索、交流的过程,使学生养成正 确的学习态度。
旧知回顾
1.正方体有几个面?几条棱?几个顶点? 6个面,6条棱,8个顶点。
2.正方体的棱与棱均__相___等__,面与面均____相___同。
壁虎吃蚊子问题
情境导入 蚊子
壁虎
如图是壁虎和蚊子的位置,请同学们思考壁虎如何经过最短的路径来 到蚊子的地方?
1.请同学们阅读教材8页“尝试·思考”前的内容,让学生将课前准备好 的小正方体纸盒沿某些棱任意剪开,展成一个平面图形,并完成下 列问题。
北师大2022课标版初中数学七年级上册第一章1.2 展开与折叠课件(共18张PPT)
D.6
1
23
Байду номын сангаас
45
6
五、总结提升
同学们一定有许多感想与收获,能把 自己的感想与收获说出来与大家分享 一下吗?
正方体的展开与折叠
1、同一个立体图形有多种不同的展开图
平面图形
{ 正方体有11种展开图
141型 6种 231型 3种 222型 1种 33型 1种
展
折
开
叠
立体图形
2、不同的展开图可以折叠成同一个立体图形
〔三〕问题探究,拓展提升 ?1. 既然都是正方体,为什么剪出的平面
图形会不一样呢?
?2. 一个正方体要将其展开成一个平面图 形,必须沿几条棱剪开?
?3. 正方体相对两个面在其展开图中的位 置有什么关系?
三、猜想实践,发展几何直觉 1.把一个正方体的外表沿某些棱剪开,展成一个平面图 形,你能得到下面的些平面图形吗?
2.下面哪一个图形经过折叠可以得到正方体?
四、巩固基础,达标检测 ) (以下图形中为正方体的平面展开图的是 .1
2.将“创立文明城市〞六个字分别
写在一个正方体的六个面上,这个正方
体的平面展开图如下图,那么在这个正
方体中,和“创〞相对的字是( )
A.文 B.明 C.城
D.市
) (以下平面图形中不能围成正方体的是 .3
1.2 展开与折叠〔第1课时〕 〔北师大版七年级 上册〕
一、创设情景,导入新课
在生活中,我们经常见到正方体形状的盒子.
将纸盒完全展开 后形状是怎样的?
学习 目 标
1.通过动手操作,使学生能将一个正方体的外表沿某些棱剪开,展 开成一个平面图形; 2.会判断一个平面图形是不是正方体的外表展开图。 重点:将一个正方体的外表沿某些棱展开,展成平面图形;外表展 开图的识别。 难点:鼓励学生尽可能多地将一个正方体展成平面图形,并用语言 描述其过程。
5.3展开与折叠(课件)-七年级数学上册(苏科版)【01】
02 知识精讲 注意:下列平面图形不是正方体的展开图哦~
正方体的展开图
L型
田字型
凹字型
02 知识精讲
探究2:为什么要剪7条棱, 才能得到正方体的展开图呢?
∵正方体共12条棱, 每种展开图内都有5条棱相连, ∴要剪7条棱。
03 典例精析
例1、下列七个图形中是正方体的平面展开图的有( B )
“二二二”型,√
02 知识精讲
同一个正方体展开所得到的平面图形有11种, 在展成平面图形的过程中,一共剪了7条棱。
02 知识精讲 探究1:11种展开图,如何快速记忆呢?
做好分类就行 啦~
“一四一”型
02 知识精讲 “三三”型
“二三一”型 “二二二”型
02 知识精讲
正方体的展开图
“一四一”型:6个 “二三一”型:3个 “三三”型:1个 “二二二”型:1个
× “一四一”型,√
×
×
A. 1个
×
B. 2个
×
C. 3个
D. 4个
03 典例精析
例2、如图是一个正方体,如图哪个选项是它的展开图( B )
A.
B.
C.
D.
03 典例精析 例3、一个正方体的表面展开图如图所示,把它折成正方体后
,与“山”字相对的字是(D )
A.水 B.绿 C.建 D.共
正方体找某一面的对面的口诀: 隔面有面是对面,隔面无面就拐弯。
例3、如图是一个不完整的正方体平面展开图,需再添上一个面, 折叠后才能围成一个正方体.下列添加方式(图中阴影部分)正
确的是( D )
A.
×
B.
×
C.
×
D.
√常见几何体的侧面展开图:来自(1)圆柱:矩形(长方形) (2)圆锥:扇形 (3)正方体:矩形(长方形)
展开与折叠精选课件PPT
1.以小组为单位,用手中的剪刀将准备好的正 方体的表面沿某些棱剪开, 说一说是怎样剪
的.
2.比较是否有重复的,有些展开图通过旋转后
是一样的.
3.把正方体中任意两个相对面作为 上下底面,其余四面作为侧面,将上、 下底面与侧面相连的四条棱各任意 剪开三条,再将四条侧棱任意剪开一
条,就可以得到正方体的平面展开图.
小丽制作了一个如下图所示的正方体礼品盒, 其对面图案都相同,那么这个正方体的平面展 开图可能是 ( A )
A
B
C
D
〔解析〕基本方法是先定上下,后定左右,可 知A正确.故选A.
检测反馈
1.下列各图形中,经过折叠能围成一个正 方体的是 ( )
1.下列各图形中,经过折叠能围成一个正方体的
是
A
()
解析:由平面图形的折叠及正方体的
2021/3/2
8
正方体展开图分类
第一类,1,4, 1型,共六种。
2021/3/2
9
第二类,2,3,1型,共三种。
2021/3/2
10
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
2021/3/2
11
总结规律
一四一, 二三一, 一在图层可任意, 三个二, 成阶梯,两个三,
目状连.
二、找正方体相邻或相对的面 1.从展开图找.
如右图所示的是一个正方体的展 开图,如果正方体相对的面上标注 的值相同,那么x= 4 , y= 10 .
〔解析〕“2x”与“8”中间隔一个正方 形,是相对的面,“y”与“10”是相对的 面.所以x=4,y=10. 〔答案〕 4 10
如下图所示的是一个正方体的三种不同的放置 方式,该正方体的表面分别标上数字1,2,3,4,5,6, 则下底面标有的数字依次是 2,5,1 .
的.
2.比较是否有重复的,有些展开图通过旋转后
是一样的.
3.把正方体中任意两个相对面作为 上下底面,其余四面作为侧面,将上、 下底面与侧面相连的四条棱各任意 剪开三条,再将四条侧棱任意剪开一
条,就可以得到正方体的平面展开图.
小丽制作了一个如下图所示的正方体礼品盒, 其对面图案都相同,那么这个正方体的平面展 开图可能是 ( A )
A
B
C
D
〔解析〕基本方法是先定上下,后定左右,可 知A正确.故选A.
检测反馈
1.下列各图形中,经过折叠能围成一个正 方体的是 ( )
1.下列各图形中,经过折叠能围成一个正方体的
是
A
()
解析:由平面图形的折叠及正方体的
2021/3/2
8
正方体展开图分类
第一类,1,4, 1型,共六种。
2021/3/2
9
第二类,2,3,1型,共三种。
2021/3/2
10
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
2021/3/2
11
总结规律
一四一, 二三一, 一在图层可任意, 三个二, 成阶梯,两个三,
目状连.
二、找正方体相邻或相对的面 1.从展开图找.
如右图所示的是一个正方体的展 开图,如果正方体相对的面上标注 的值相同,那么x= 4 , y= 10 .
〔解析〕“2x”与“8”中间隔一个正方 形,是相对的面,“y”与“10”是相对的 面.所以x=4,y=10. 〔答案〕 4 10
如下图所示的是一个正方体的三种不同的放置 方式,该正方体的表面分别标上数字1,2,3,4,5,6, 则下底面标有的数字依次是 2,5,1 .
北师大版七年级上册展开与折叠(一)正方体展开图课件
பைடு நூலகம்
“二三一” 型
二,三,一, 一在同侧左右移
“二二二”型二,二,二下楼梯
“三三” 二个三,日相连 型
自学检测(一)
1、下面的图形都是正方体的展开图吗?
2、下面图形都是正方体的 展开图吗?
不是
不是
是
不是
不是
不是
3、在图形种增加一个正方形,使其能围成一 个正方体。
解:
“一四一”型
4、既然都是正方体,为什么剪出的平 面图形会不一样呢?
1、如图是一个正方体纸盒的展开图,想一想, 面A,面B,面C的对面各是哪个面?
自学检测(二)
1、如图是一个正方体纸盒的展开图,想一想, 面A,面B,面C的对面各是哪个面?
A
B C DE F
2、左边的图形可以折成一个正方体形的盒子,折好后, 与1相邻的数是什么?相对的数是什么?
4
5123
6
了!
3、如果“你”在前面,那么谁
在后面?
太棒
你们
4、如下图把平面展开图折叠成正方体后, 相对面上的两个数和为6,则x=__.
y=____.
1 23
xy
总结规律:
• 正方体的表面展开图找相对面 口诀:
先找相间 Z 字两端
课堂小结:
• 通过本节课的学习,谈谈你的收获。
1.2 正方体展开图
学习目标:
• 1 掌握正方体11种展开图 • 2 在正方体及展开图中正确找到对面与邻
面
自学指点( 一)
1、自学内容:课本第8页“议一议”前全部内 容 2、自学时间:5分钟 3、自学要求: <1> 尝试画出正方体展开后的11种情况。 <2> 尝试分类记忆。
“二三一” 型
二,三,一, 一在同侧左右移
“二二二”型二,二,二下楼梯
“三三” 二个三,日相连 型
自学检测(一)
1、下面的图形都是正方体的展开图吗?
2、下面图形都是正方体的 展开图吗?
不是
不是
是
不是
不是
不是
3、在图形种增加一个正方形,使其能围成一 个正方体。
解:
“一四一”型
4、既然都是正方体,为什么剪出的平 面图形会不一样呢?
1、如图是一个正方体纸盒的展开图,想一想, 面A,面B,面C的对面各是哪个面?
自学检测(二)
1、如图是一个正方体纸盒的展开图,想一想, 面A,面B,面C的对面各是哪个面?
A
B C DE F
2、左边的图形可以折成一个正方体形的盒子,折好后, 与1相邻的数是什么?相对的数是什么?
4
5123
6
了!
3、如果“你”在前面,那么谁
在后面?
太棒
你们
4、如下图把平面展开图折叠成正方体后, 相对面上的两个数和为6,则x=__.
y=____.
1 23
xy
总结规律:
• 正方体的表面展开图找相对面 口诀:
先找相间 Z 字两端
课堂小结:
• 通过本节课的学习,谈谈你的收获。
1.2 正方体展开图
学习目标:
• 1 掌握正方体11种展开图 • 2 在正方体及展开图中正确找到对面与邻
面
自学指点( 一)
1、自学内容:课本第8页“议一议”前全部内 容 2、自学时间:5分钟 3、自学要求: <1> 尝试画出正方体展开后的11种情况。 <2> 尝试分类记忆。
新人教版七年级数学上册 展开与折叠课件(共39张PPT)
C
三、展开与折叠
小壁虎的难题: 如图:一只圆桶的下方有一只壁虎,上方 有一只蚊子,壁虎要想尽快吃到蚊子,应该走 哪条路径?
●
1、问题
蚊子
你有何高招 ?
壁虎
●
●
蚊子
问题解决
壁虎
●
蚊子
●
把圆柱 沿侧面展开
●
壁虎
课堂思维活动
活动一
把下面的立体图形展开, 看它的平面展开图是什么。
课堂思维活动
圆 柱
展开
七、作业
名师学案
第三类,中间二连方,两侧各 有二个,只有一种(222)。
第四类,两排各三个,只有一种(33)。
试一试
下面六个正方形连在一起的图形,经折 叠后能围成正方体的图形有哪几个?(动手试 试)
A
B
C
D
E
F
G
五、课堂练习
1、下图是一个正方体的展开图,标注了字母A的 面是正方体的正面,如果正方体的左面与右面所 标注代数式的值相等,求 x 的值.
一、复习回顾
常见图形的归类
圆柱 柱体 棱柱 三棱柱 四棱柱 五棱柱 六棱柱 …… 三棱锥 四棱锥 五棱锥 六棱锥 ……
球体
立体图形 锥体 几何图形 平面图形 台体 棱锥 圆台 棱台 圆锥
二、看图形(三视图)
从左面看
主视图 从上面看 主视图 左视图 高
正面
长
宽 宽
俯视图
主视图
正面
主视 图 高
左视图
课堂思维活动
长方体
展开
课堂思维活动
棱柱
展开
课堂思维活动
圆锥
展开
课堂思维活动
冰淇淋筒
展开
2024年秋季学期新北师大版数学7年级上册课件1.2.1 展开与折叠(第2课时 )
课堂检测
5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,则它的所有侧面的面积之和为______.
120cm2
课堂检测
把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如下表:
颜色
红
黄
蓝
白
紫
绿
花的朵数
1
2
3
4
5
6
现将上述大小相同、颜色、花朵分布完全一样的四个正方体拼成一个水平旋转的长方体,如图所示,那么长方体的下底面共有 朵花.
三棱锥的平面展开图
探究新知
四棱锥的平面展开图
探究新知
五棱锥的平面展开图
探究新知
五棱柱
问题2 下图折叠后的立体图形是什么?
探究新知
练一练 以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
探究新知
圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
巩固练习
(2)这个五棱柱共有多少条棱?它们的长度是多少?
答:将其侧面沿一条棱剪开,展开图是一个长方形,长为4×5=20(cm),宽为6 cm,因而面积是20×6=120(cm2).
答:这个五棱柱共有15条棱,其中5条侧棱的长度都是6 cm,其他棱长都是4 cm.
(3)沿一条侧棱剪开将其侧面展成一个平面图形,这个图形 是什么形状?面积是多少?
三棱柱
探究新知
解: (2)因为AB=5,AD=3,BE=4,DF=6,
方法:此题是将动手操作和计算相结合,了解立体图形表面展开图与立体图形间的关系,掌握图形面积的计算(公式)是解本题的关键.由表面展开图可知立体图形的表面积等于表面展开图各部分图形面积之和.
5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm,侧棱长4cm,则它的所有侧面的面积之和为______.
120cm2
课堂检测
把正方体的六个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如下表:
颜色
红
黄
蓝
白
紫
绿
花的朵数
1
2
3
4
5
6
现将上述大小相同、颜色、花朵分布完全一样的四个正方体拼成一个水平旋转的长方体,如图所示,那么长方体的下底面共有 朵花.
三棱锥的平面展开图
探究新知
四棱锥的平面展开图
探究新知
五棱锥的平面展开图
探究新知
五棱柱
问题2 下图折叠后的立体图形是什么?
探究新知
练一练 以下哪些图形经过折叠可以围成一个棱柱?
⑴
⑵
⑶
⑷
探究新知
圆柱、圆锥的展开图
圆柱展开后的平面图形是什么样的?
思考1 圆柱侧面展开后,得到的平面图形是什么样的?
巩固练习
(2)这个五棱柱共有多少条棱?它们的长度是多少?
答:将其侧面沿一条棱剪开,展开图是一个长方形,长为4×5=20(cm),宽为6 cm,因而面积是20×6=120(cm2).
答:这个五棱柱共有15条棱,其中5条侧棱的长度都是6 cm,其他棱长都是4 cm.
(3)沿一条侧棱剪开将其侧面展成一个平面图形,这个图形 是什么形状?面积是多少?
三棱柱
探究新知
解: (2)因为AB=5,AD=3,BE=4,DF=6,
方法:此题是将动手操作和计算相结合,了解立体图形表面展开图与立体图形间的关系,掌握图形面积的计算(公式)是解本题的关键.由表面展开图可知立体图形的表面积等于表面展开图各部分图形面积之和.
苏科版七年级数学上册5.3《展开与折叠》 课件 (共31张PPT)
展开与折叠(1)
指前实验学校 倪霞
Hale Waihona Puke 思考:(1)如果将它的侧面展开,会变成什么样的图形? (2)如果将它的表面展开,会变成什么样的图形?
圆锥
扇形
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
一个无盖的正方体纸盒,下底面 标有字母A,沿图中的红线将该纸 盒剪开,请画出它的示意图。
A
B
C
D
2.如图是一多面体的展开图形,每个面都标有字母,请根据 要求回答提问: (1)如果面A在多面体的底部,那么面 在上面; (2)如果面F在前面,从左面看是面B,则面 在上面; (3)从右面看面C,面D在后面,面 在上面。
A
B CD EF
考考你
1、如果“你”在前面,那么谁在后面?
了! 太棒 你们
棒
小壁虎的难题:
如图:一只无盖的圆桶下方有一只壁虎,
上方有一只蚊子,壁虎要想尽快吃到蚊子,
从侧面应该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
壁虎 ●
● 蚊子
蚊子
●
●
壁虎
点击思维
有一只虫子在正方体的顶点A,要爬
到距它最远的另一个顶点B去,哪条路
径最短? B
B
●
B
展开
A
●
A
B
这样的路径有几条?
A
总结规律: 中间四个面 中间三个面 中间两个面 中间没有面
上、下各一面 一、二隔河见 楼梯天天见 三、三 连一线
牛刀小试 下面的图形都是正方体的展开图吗?
下面的图形都是正方体的展开图吗?
将相对的两个面涂上相同的颜色,正 方体的平面展开图共有以下11种:
指前实验学校 倪霞
Hale Waihona Puke 思考:(1)如果将它的侧面展开,会变成什么样的图形? (2)如果将它的表面展开,会变成什么样的图形?
圆锥
扇形
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
一个无盖的正方体纸盒,下底面 标有字母A,沿图中的红线将该纸 盒剪开,请画出它的示意图。
A
B
C
D
2.如图是一多面体的展开图形,每个面都标有字母,请根据 要求回答提问: (1)如果面A在多面体的底部,那么面 在上面; (2)如果面F在前面,从左面看是面B,则面 在上面; (3)从右面看面C,面D在后面,面 在上面。
A
B CD EF
考考你
1、如果“你”在前面,那么谁在后面?
了! 太棒 你们
棒
小壁虎的难题:
如图:一只无盖的圆桶下方有一只壁虎,
上方有一只蚊子,壁虎要想尽快吃到蚊子,
从侧面应该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
壁虎 ●
● 蚊子
蚊子
●
●
壁虎
点击思维
有一只虫子在正方体的顶点A,要爬
到距它最远的另一个顶点B去,哪条路
径最短? B
B
●
B
展开
A
●
A
B
这样的路径有几条?
A
总结规律: 中间四个面 中间三个面 中间两个面 中间没有面
上、下各一面 一、二隔河见 楼梯天天见 三、三 连一线
牛刀小试 下面的图形都是正方体的展开图吗?
下面的图形都是正方体的展开图吗?
将相对的两个面涂上相同的颜色,正 方体的平面展开图共有以下11种:
苏科版七年级数学上册5.3《展开与折叠》 课件 (共30张PPT)
么哪一面会在上面? C
A
(3)从右面看是面C,面
D在后面,那么哪一面会在
上面? A
E
BC D F
8、(1)填表: 名称 顶点数 面数f 棱数e f+v-e
v 三棱柱 四棱柱 五棱柱 六棱柱 七棱柱
8、(1)填表:
名称 顶点数 面数f 棱数e f+v-e
v
三棱柱 6
5
9
2
四棱柱 8
6 12
2
五棱柱 10 7 15
(1)先想一想,再动手折一折,验证你的想法。
1、如图,哪些图形沿虚线折叠可以围成(面 与面之间不重叠)一个棱柱形的包装盒?
(1)先想一想,再动手折一折,验证你的想法。
(2)折叠成的棱柱共有多少条棱?哪些棱的长 度相等?
(3)这个棱柱共有多少个面?它们分别是什么 形状?哪些面的形状、大小完全相同?
先想一想,再动手折一折,并与同学交流。
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。
先想一想,再动手折一折,并与同学交流。
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。
X=5 1
Y=3
23
XY
6、下列平面图形各是哪些几何体的展开图?请 在空格处填上几何体的名称。
圆柱
圆锥
三棱锥
三棱柱
四棱锥
五棱锥
7、如图是一个多面体的表面展开图,每个图面 上都标注了字母,请根据要求回答问题:
(1)如果面A在多面体的底部,那么哪一面 会在上面? F
(2)如果面F在前面,从左面看是面B,那
1、如图所示的纸板上有10个无阴影的正方形。 从中选出1个,与图中5个有阴影的正方形一起 折成一个正方体包装盒。 先想一想,再动手折一折,并与同学交流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二课时
1
如图1—6的图形都是正方体的展开图吗?
图1
图2
图3
是
是
是
图4
图5
图6
是
不是
不是
2
下面图形都是正方体的展开图吗?
图(1)
不是
图(2)
不是
图(3)
是
图(4)
不是
图(5)
不是
图(6)
不是 3
先猜想再实践,发展几何直觉
想一想,做一做
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
(1) 长方体
(2) 五棱锥
(3) 三棱柱
22
思考题
(1)A与B两点沿着侧面的最短路线是什么?
B B
A
A
23
(2)A与B两点沿着表面的最短路线是什么?
B A
B A
24
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
25
● 蚊子 壁虎 ●
蚊子
●
●
壁虎
26
10
想一想、折一折 以下哪些图形经过折叠可以围成一个棱柱?
11
折一折:
以下展开图经过折叠可以围成什么几何体?
12
三棱柱
长方体
13
五棱柱 六棱柱
14
想一想、试一试
同学们猜一猜,这个图形能围成什么?
15
观察圆柱形纸筒展开的侧面是一个什 么图形
16
观察圆锥形圣诞帽的侧面是什么图形?
17
考考你 如图,上面的图形分别是下面哪个立体 图形展开的形状?把它们用线连起来。
A B CDE
F
4
总结规律:
正方体的表面展开图用“口诀”:
一线不过四, 田凹应弃之; 相间、“Z”端是对面, 间二、拐角邻面知。
5
一线不过四
×
×
6
田凹应弃之
×× × ×
7
相间、“Z”端是对面
AB
B A
A和B为相对的两个面
8
间二、拐角邻面知
CD
C D
C和D为相邻的两个面
9
如图是一个正方体纸盒的展开图,请在图中 的6个正方形中分别填入1、2、3、-1、-2、-3时, 展开图沿虚线折叠成正方体后相对面上的两个数 互为相反数。
18
请你想像,哪一个可以折叠成多面 体?这个多面体的名称是什么?
√ ×√
19
哪种几何体的表面能展成如图所示的平 面图形?
五棱柱
圆柱
圆锥
20
下列图形是某些多面体的平面展开图, 请说出这些多面体的名称。
()
(7)
三棱柱
四棱锥
21
练习: 下列图形中是哪些多面体的表面 展开图?
1
如图1—6的图形都是正方体的展开图吗?
图1
图2
图3
是
是
是
图4
图5
图6
是
不是
不是
2
下面图形都是正方体的展开图吗?
图(1)
不是
图(2)
不是
图(3)
是
图(4)
不是
图(5)
不是
图(6)
不是 3
先猜想再实践,发展几何直觉
想一想,做一做
如图是一个正方体纸盒的展开图,想一想,再 试一试面A,面B,面C的对面各是哪个面?
(1) 长方体
(2) 五棱锥
(3) 三棱柱
22
思考题
(1)A与B两点沿着侧面的最短路线是什么?
B B
A
A
23
(2)A与B两点沿着表面的最短路线是什么?
B A
B A
24
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到 蚊子,应该走哪条路径?
你有何高招 ?
● 蚊子
壁虎 ●
25
● 蚊子 壁虎 ●
蚊子
●
●
壁虎
26
10
想一想、折一折 以下哪些图形经过折叠可以围成一个棱柱?
11
折一折:
以下展开图经过折叠可以围成什么几何体?
12
三棱柱
长方体
13
五棱柱 六棱柱
14
想一想、试一试
同学们猜一猜,这个图形能围成什么?
15
观察圆柱形纸筒展开的侧面是一个什 么图形
16
观察圆锥形圣诞帽的侧面是什么图形?
17
考考你 如图,上面的图形分别是下面哪个立体 图形展开的形状?把它们用线连起来。
A B CDE
F
4
总结规律:
正方体的表面展开图用“口诀”:
一线不过四, 田凹应弃之; 相间、“Z”端是对面, 间二、拐角邻面知。
5
一线不过四
×
×
6
田凹应弃之
×× × ×
7
相间、“Z”端是对面
AB
B A
A和B为相对的两个面
8
间二、拐角邻面知
CD
C D
C和D为相邻的两个面
9
如图是一个正方体纸盒的展开图,请在图中 的6个正方形中分别填入1、2、3、-1、-2、-3时, 展开图沿虚线折叠成正方体后相对面上的两个数 互为相反数。
18
请你想像,哪一个可以折叠成多面 体?这个多面体的名称是什么?
√ ×√
19
哪种几何体的表面能展成如图所示的平 面图形?
五棱柱
圆柱
圆锥
20
下列图形是某些多面体的平面展开图, 请说出这些多面体的名称。
()
(7)
三棱柱
四棱锥
21
练习: 下列图形中是哪些多面体的表面 展开图?