第二章研究发育生物学的模式生物ppt课件
《发育生物学》ppt课件(2024)
![《发育生物学》ppt课件(2024)](https://img.taocdn.com/s3/m/620628a50875f46527d3240c844769eae009a38c.png)
基因编辑技术
类器官培养技术
运用CRISPR/Cas9等基因编辑工具,对生 物体的基因组进行精确修饰,研究基因功 能和调控机制。
2024/1/30
通过模拟体内微环境,培养具有类似器官结 构和功能的类器官,用于疾病模拟、药物筛 选和再生医学等领域。
29
未来发展趋势预测
跨学科交叉融合
发育生物学将与遗传学、细胞生物学、生 物医学工程等学科交叉融合,共同推动生
2024/1/30
6
02
细胞分裂、分化与胚胎发育
Chapter
2024/1/30
7
细胞周期与有丝分裂
细胞周期
指连续分裂的细胞从一次分裂完 成时开始,到下一次分裂完成时 为止所经历的全过程,包含DNA 合成前期、DNA合成期、DNA
合成后期和有丝分裂期。
有丝分裂
一种真核细胞分裂产生体细胞的 过程,特点是有纺锤体染色体出 现,子染色体被平均分配到子细
02
配子形成
在减数分裂过程中,染色体只复制一次,而细胞分裂两次。减数分裂的
结果是,成熟生殖细胞中的染色体数目比原始生殖细胞减少一半。
2024/1/30
03
配子的种类
根据染色体的组合不同,可以产生不同种类的配子,增加了后代的遗传
多样性。
9
胚胎发育过程及调控机制
胚胎发育过程
从受精卵开始,经过卵裂、桑葚胚、 囊胚、原肠胚与组织器官形成等阶段 ,最终发育成为完整的胎儿。
2024/1/30
3
课程目标与要求
01
掌握发育生物学的 基本概念、原理和 研究方法
02
了解发育生物学的 最新研究进展和前 沿动态
03
能够运用所学知识 分析和解决发育生 物学领域的实际问 题
2024版发育生物学全套完整教学课件
![2024版发育生物学全套完整教学课件](https://img.taocdn.com/s3/m/04665426b94ae45c3b3567ec102de2bd9605deea.png)
在胚胎发育过程中,各器官系统按照一定的顺序和时间表进行发育,如
神经系统、心血管系统等先行发育,随后是其他器官系统的逐渐形成。
03
脊椎动物器官系统的发育特点
不同种类的脊椎动物在器官系统发育上存在一定的差异,但总体上都遵
循一定的规律和模式。
神经系统发育比较解剖学
神经系统的基本构成
脊椎动物神经系统包括中枢神经系统和周围神经系统,其中中枢神经系统包括脑和脊髓,周 围神经系统包括神经节和神经。
信号转导途径是指细胞外信号通过细胞膜传递到 01 细胞内,进而引发一系列生化反应的过程。
在胚胎发育过程中,信号转导途径起着至关重要 02 的作用,它们调控着细胞的增殖、分化、迁移和
凋亡等生命活动。
常见的信号转导途径包括Wnt信号转导途径、 03 Notch信号转导途径、HGF/c-Met信号转导途径
组织器官相互作用
不同组织器官之间通过信号分子传递 信息,相互协调、相互作用,共同完
成生理功能。
细胞增殖与分化
器官原基中的细胞通过增殖和分化, 逐渐形成具有不同形态和功能的细胞 类型,构建成复杂的器官结构。
分子调控机制
包括基因表达调控、信号转导调控、 细胞周期调控等,共同调控器官发生 过程。
基因突变与疾病发生关系
Notch信号转导途径在胚胎发育中作用
Notch信号转导途径是一种细胞间的 信号传递机制,它在胚胎发育过程中
也发挥着重要的作用。
Notch信号的异常调控也会导致胚胎 发育的缺陷和疾病的发生,如免疫系
统疾病、神经系统疾病等。
Notch信号可以调控细胞的命运决定 和分化,对于胚胎中各种细胞类型的 产生和组织的形成具有重要的作用。
通过基因检测技术可以检测基因突变 类型和位点,为疾病的早期诊断、预 防和治疗提供重要依据。
《发育生物学》课件
![《发育生物学》课件](https://img.taocdn.com/s3/m/eeeacebebb0d4a7302768e9951e79b896802681f.png)
目录
Contents
• 发育生物学简介 • 发育过程 • 基因与发育 • 发育中的细胞与分子机制 • 发育生物学应用 • 未来展望与挑战
01 发育生物学简介
定义与重要性
定义
发育生物学是一门研究生物体从受精 卵到成体的生长、发育、分化的过程 及其机制的科学。
重要性
发育生物学对于理解生物体的生长、 发育过程以及疾病的发生、发展机制 具有重要意义,为疾病诊断、治疗和 预防提供了理论基础。
05 发育生物学应用
疾病研究
肿瘤发生机制
研究肿瘤细胞发育过程 中的异常变化,为肿瘤 的诊断和治疗提供理论 基础。
神经退行性疾病
探讨神经细胞发育和退 化的机制,为阿尔茨海 默病、帕金森病等神经 退行性疾病的防治提供 思路。
代谢性疾病
研究代谢相关细胞的发 育和功能,为肥胖、糖 尿病等代谢性疾病的防 治提供依据。
器官形成
器官发生
在胚胎发育过程中,不同 组织通过复杂的分子调控 机制形成各种器官,如心 脏、肺、肾等。
形态发生
器官形成过程中涉及复杂 的形态发生过程,如细胞 增殖、迁移、排列和凋亡 等。
组织结构与功能
形成的器官具有特定的组 织结构和功能,满足生物 体生长发育的需要。
生长与成熟
生长与发育
生物体的生长与发育是一个连续 的过程,受到多种激素和生长因
转录调控
转录调控主要涉及转录因子的作 用,通过与DNA的结合来调控基
因的表达。
表观遗传学
表观遗传学研究基因表达的表观 遗传修饰,如DNA甲基化、组蛋 白乙酰化等,对发育过程的影响
。
表观遗传学
表观遗传学概述
表观遗传学研究基因表达的表观遗传修饰,如DNA甲基化、组蛋 白乙酰化等,对发育过程的影响。
发育生物学---模式动物
![发育生物学---模式动物](https://img.taocdn.com/s3/m/4e7dd937ee06eff9aef807be.png)
Chapter 2 模式生物体系一、模式生物• 早在20世纪初,人们就发现,如果把关注的焦点集中在相对简单的生物上则发育的现象难题可以得到部分解答。
因为这些生物的细胞数量更少,分布相对单一,变化也较好观察。
• 由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共通规律是可能的。
¾ 尤其是当在有不同发育特点的生物中发现共同形态形成和变化特征时,发育的普遍原理也就得以建立。
¾ 因为对这些生物的研究具有帮助我们理解生命世界一般规律的意义,所以它们被称为“模式生物”。
一种模式生物应具备以下特点:1)其生理特征能够代表生物界的某一大类群;2)容易获得并易于在实验室内饲养、繁殖;3)容易进行实验操作,特别是遗传学分析。
• 理想的研究系统是科学发展的关键,在发育生物学研究中,模式生物显得尤为重要,许多划时代的突破往往都与模式动物相关。
最常见的模式生物有:逆转录病毒 (retrovirus),大肠杆菌(Escherichiacoli),酵母(budding yeast (Saccharomyces cerevisiae), fission yeast (Schizo saccharomyces pombe)),秀丽线虫(Caenorhab ditiselegans),果蝇(Drosophilamelanogaster),斑马鱼(zebrafish),小鼠(mouse),拟南芥(Arabidopsis),水稻(Rice(OryzasativaL.))等。
模式生物的应用•生物是从共同祖先演化而来的,所以对生命活动有重要功能的基因在进化上是保守的,也就是说,这些基因的结构和功能,在低等生物和高等生物中是相似的。
因此,可以用比较容易研究的生物作为模型来研究其基因的结构和生物学功能,由此获得的信息可以使用于其他比较难以研究的生物,特别是推测相似的人体基因的功能•各模式动物各具优点,其研究成果不仅揭示特定物种的特点,还有助于探索动物发育的普遍规律和机制。
发育生物学课件PPT课件
![发育生物学课件PPT课件](https://img.taocdn.com/s3/m/c7b6678c5ebfc77da26925c52cc58bd6318693f5.png)
随着基因组学、蛋白质组学和生物信息学等技术的发展,发育生物学的研究更加深入和全面。
02
发育生物学基础知识
细胞分化
细胞分化是发育生物学中的基本过程,指同一来源的细胞逐渐产生形态、结构和功能上的差异。细胞分化是胚胎发育和器官形成的基础。
实验数据是研究的基础,数据分析的目的是从数据中提取有意义的信息,包括描述性统计、推论性统计和可视化分析等。
实验设计与数据分析
数据分析
实验设计
分子生物学技术
基因表达分析
利用分子生物学技术检测基因在不同发育阶段的表达情况,包括基因转录和蛋白质翻译水平。
蛋白质组学技术
通过蛋白质组学技术分析发育过程中蛋白质的表达、修饰和功能,揭示蛋白质与发育过程的关系。
内分泌调节
营养与环境因素
遗传因素
生长与成熟的调节
母体的营养状况、环境因素等也会影响胎儿的生长和发育。
基因等遗传因素对胎儿的生长和发育也有重要影响。
激素等内分泌因素对胎儿的生长和发育起着重要的调节作用。
04
发育异常与疾病
遗传性疾病的发育起源
总结词:遗传性疾病的发育起源是指某些遗传性疾病在胚胎发育过程中出现异常,导致器官或系统的功能缺陷。
生物信息学方法
06
未来展望与研究方向
CRISPR-Cas9等基因编辑技术为治疗遗传性疾病和癌症等疾病提供了新的可能,未来有望通过编辑人类基因来治疗各种疾病。
基因编辑技术
利用基因编辑技术,可以纠正导致疾病的基因突变,或者增强人体对疾病的抵抗力,提高治疗效果和生存率。
疾病治疗
基因编辑与人类疾病治疗
VS
利用遗传工程技术对特定基因进行敲除或敲入,研究其在发育过程中的作用。
发育生物学-绪论 PPT课件
![发育生物学-绪论 PPT课件](https://img.taocdn.com/s3/m/bf2a65124028915f804dc2e4.png)
►《发育生物学》(2002年)桂建芳 易梅 生,科学出版社
►《发育生物学》(2006年)R.M.Twyman/ 王英典,科学出版社
动物胚胎发育概论
1. 发育生物学的研究对象、任务; 2. 发育生物学的发展简史; 3. 动物发育的主要特征和基本规律。
什么是发育?
发育是指多细胞生物最初由一个单 细胞成长起来的过程。
发育生物学广泛的应用前景
1、有关生殖细胞发生、受精等过程的研究是动、植物人工繁 殖、遗传育种、动物胚胎与生殖工程等生产应用技术发展的理 论基础 ; 2、有关细胞分化机理、基因表达调控与形态模式形成及生物 功能的关系研究,是解决人类面临的许多医学难题(如癌症的 防治)以及器官与组织培养等新兴的医学产业工程发展的基础, 也是基因工程发展为成熟的实用技术的基础。
发育生物学的发展简史
先成论和后成论之争
希腊哲学家亚历十多德在公元前4世纪在对鸡胚和一些无脊椎动物胚 胎观察后提出两种假设:
先成论: 胚胎中的每件东西从一开始就预先形成好了,发育期间只 是简单的放大。 后成论: 在胚胎的发育过程中,新的结构是在发育期间逐渐产生的。
先成论
后成论的确立
► 十七世纪,意大利胚胎学家 Marcello Malpighi观察到的鸡胚,并对 其进行了精确的描绘
发育生物学研究技术和方法
1. 发育基因的启动子分析 (重点) 2. 原位杂交技术 3. 免疫组织化学技术 4.显微注射技术 5. 基因表达的核糖核酸酶保护分析 6. 抑制性减差杂交技术
发育基因的启动子分析
1859年出版 —— 物种不是一成不变的,而是随着客 观条件的不同而相应变异 ——物竞天择,适者生存
是增强启动子转录活性的DNA序列,并决定组织特 异性表达。 (3)沉默子
模式生物发育研究
![模式生物发育研究](https://img.taocdn.com/s3/m/f29a135c5a8102d277a22f69.png)
什么是模式生物? 为什么要用模式生物研究? 模式生物的种类及特点 模式生物的应用 模式生物发育的研究意义
模式生物
生物学家通过对选定的生物物种进行科学 研究,用于揭示某种具有普遍规律的生命 现象,此时,这种被选定的生物物种就是 模式生物。
为什么要用模式生物研究?
多细胞生物包括人类,在胚胎期复杂的发育 变化和调控一直是困扰生命科学的未解之迷。
荧光显微镜下的秀丽线虫(图片来自)
秀丽线虫的主要优点
①能在实验室用培养皿培养。 ②生命周期短。 ③存在雌雄同体和雄性两类不同生物型。 ④体细胞数量少且恒定。 ⑤易于观察生殖细胞的发生及生殖系颗粒的传递过程。 ⑥基因组相对较小,组成相对简单。
2、果蝇
果蝇广泛地存在于全球温带及热带气候区。 目前至少有1000个以上的果蝇物种被发现,大部分的物 种以腐烂的水果或植物体为食,少部分则只取用真菌,树 液或花粉为其食物。 体型较小,身长3~4mm。大约可存活9d左右。主要特征 是具有硕大的红色复眼。
为什么要用模式生物研究?
由于进化的原因,许多生命活动的基本方式在 地球上的各种生物物种中是保守的,这是模式 生物研究能够成功的基本基础。
选择什么样的生物作为模式生物,首先依赖于 研究者要解决什么科学问题,然后寻找能最有 利于解决这个问题的物种。
为什么要用模式生物研究?
随着人类基因组计划的完成和后基因组研究时 代的到来,模式生物研究策略得到了更加的重 视。人体基因的结构和功能可以在其它合适的 生物中去研究,同样人类的生理和病理过程也 可以选择合适的生物来模拟。
发育过程从本质上讲是一部生命发展的细胞历史。成 体中每个细胞都有一段自己独特的历史,综合起来就 构成了个体生命。
发育生物学:2 模式生物
![发育生物学:2 模式生物](https://img.taocdn.com/s3/m/39075f41f705cc1754270991.png)
小鼠 Mus musculus
小鼠隶属脊索动物门,哺乳纲,其胚胎发育 过程与人类比较接近,备受重视。
小鼠的优点: 1. 世代周期短,2个月。 2. 遗传背景较为清楚,基因组测序完成。 3. 实验手段较为完善,唯一可进行基因敲除
的脊椎动物。
目前全世界每天约有2500万只小鼠被用于 生物医学研究,以小鼠为对象的研究已经 获得了17项诺贝尔奖。
3. 个体小得多,更好养殖。 4. 排卵量也大,1000~3000枚,0.7~0.8 mm。 5. 亲缘关系近,种间基因高度保守。
线虫和果蝇之所以成为模式生物,主要原因 在于它们能将胚胎学和遗传学有效地结合起 来,研究者不仅能看见发育过程中的胚胎, 而且能诱导突变,并观察突变如何扰乱发育。
20世纪90年代,脊椎动物中还未找到这样的 模式生物?!
2. 生命周期短,3.5 d,胚胎发育快,16℃, 18 h,25℃,12 h,到成虫2 d。
3. 大多雌雄同体,体内受精,产生后代多, 自体受精产生纯合的基因型。
4. 体细胞数量少,1000个,透明可见, 易于追踪细胞分裂谱系。
5. 能观察生殖细胞发生及种质颗粒传递 过程。
秀丽隐杆线虫基因组: 第一个完成全基因组测序的多细胞生物。 97 Mb个碱基,19099个编码蛋白的基因。 人类的4979个蛋白有74%可在线虫中找到。 线虫有36%的蛋白可在人类中找到。
Brenner(英)早在20世纪60年代初期就正确 地选择线虫作为研究对象。
Horvitz(美)发现了线虫中控制细胞死亡的 关键基因,描绘出了这些基因的特征。他 揭示了这些基因怎样在细胞死亡过程中相 互作用,并且证实了相应的基因也存在于 人体中。
Sulston(英)则描述了线虫组织发展过程中 每一个(959)细胞分裂和分化的具体情况。 他还确认了在细胞死亡过程中发挥控制作 用基因的最初变化情况(20年)。
发育生物学课件PPT大纲
![发育生物学课件PPT大纲](https://img.taocdn.com/s3/m/30e6d705f6ec4afe04a1b0717fd5360cba1a8d3d.png)
分子生物学技术在发育生物学中应用
分子生物学技术概述
以DNA或RNA为研究对象,通过分子克隆、PCR、基因测序等技术手段,对生物大分子的结构和功能进行研究 的技术。
分子生物学技术在发育生物学中的应用
用于研究胚胎发育过程中的基因表达调控、信号转导通路等,如通过基因敲除或基因敲入技术,研究特定基因在 胚胎发育中的功能和作用机制。
05
器官发生与形态建成
Chapter
器官原基起源和诱导信号
01
器官原基的概念
在胚胎发育过程中,器官原基是指将来发育成特定器官或组织的一部分
细胞群。
02
诱导信号的种类
包括内源性信号和外源性信号,内源性信号如基因表达和细胞自主发育
程序,外源性信号如生长因子、激素和细胞间相互作用等。
03
诱导信号的作用机制
胚胎发育的调控
胚胎发育过程中,各种基因和信号通路在特定的时间和空 间表达,精确调控着胚胎的形态建成和器官原基形成。
胚胎生长、分化和凋亡调控
胚胎生长
在胚胎发育过程中,细胞不断增殖和生长,使得 胚胎体积逐渐增大。同时,各种组织和器官也逐 渐发育成熟。
细胞凋亡
在胚胎发育过程中,部分细胞会发生程序性死亡 ,即细胞凋亡。细胞凋亡对于胚胎的正常发育和 器官形成具有重要意义,能够清除多余的、受损 的或危险的细胞。
受精作用及早期胚胎发育
受精作用的概念
受精作用是指精子和卵子结合形成受精卵的过程,标志着新生命的 开始。
受精作用的过程
受精作用包括精子穿过卵子透明带、精子和卵子质膜的融合、精子 细胞核和卵子细胞核的融合等步骤。
早期胚胎发育
受精卵在受精后会经历一系列的细胞分裂和分化过程,形成囊胚、原 肠胚等早期胚胎结构,最终发育成为成熟的个体。
发育生物学基本原理ppt课件
![发育生物学基本原理ppt课件](https://img.taocdn.com/s3/m/5eb2228e9fc3d5bbfd0a79563c1ec5da51e2d651.png)
转录因子的活性受到多种因素 的调节,包括其他转录因子、 信号分子和表观遗传修饰等。
表观遗传学在发育过程中的作用
表观遗传学是研究基因表达调控中不涉及DNA序列改变的遗传现象的科 学。
表观遗传学在发育过程中起着重要作用,包括X染色体失活、基因组印记 、转座子沉默等。
表观遗传学机制通过影响基因的表达模式,从而调控细胞的分化和发育 过程。例如,DNA甲基化和组蛋白修饰可以影响染色质的结构和转录因 子的结合,进而调控基因的表达。
生长因子的定义:一类能够 促进细胞生长、分化和迁移
的多肽类物质。
01
02
03
促进细胞增殖和分化,参与 组织器官的形成和发育。
调节细胞迁移和黏附,影响 细胞的空间排列和组织结构
。
04
05
参与细胞凋亡和自噬等过程 ,维持组织内环境的稳定。
细胞信号传导与胚胎发育的关系
胚胎发育过程中的信 号传导:在胚胎发育 过程中,细胞信号传 导起着至关重要的作 用,涉及多个信号通 路和复杂的调控网络 。
细胞分化的分子机制
基因选择性表达
不同细胞类型表达不同的基因,
从而合成不同的蛋白质,实现细
胞功能的多样性。
01
转录因子调控
02 转录因子通过与DNA结合,调控
特定基因的转录,从而影响细胞
的分化方向。
表观遗传学修饰
表观遗传学修饰如DNA甲基化、
组蛋白修饰等,可以影响基因的
03
表达和细胞的分化状态。
细胞信号传导
发育生物学基本原理ppt课件
CONTENTS
• 绪论 • 细胞分化与发育 • 基因表达调控与发育 • 细胞信号传导与发育 • 生殖细胞发育与受精 • 胚胎发育与模式生物研究
发育生物学 本科考试 课件整理
![发育生物学 本科考试 课件整理](https://img.taocdn.com/s3/m/f4a157116edb6f1aff001f93.png)
(1)鉴定发育相关新基因的主要方法 • 从自然或人工突变体中分离鉴定控制发育 的基因; • 分离时空特异性表达基因的方法; • 利用基因序列同源性的克隆法; • 利用生物大分子间的相互作用克隆新的基 因。
(2)基因表达的检测
• mRNA的检测 • 蛋白质的检测 • 启动子活性检测 电泳法
• 卵子、精子
• 胚胎发育
• 受精:精子与卵结合
• 卵裂(方式)
• 完全卵裂 • 不完全卵裂 • 胚后发育
• • • • •
受精 卵裂 囊胚形成 原肠作用 胚层分化与器官形成
• 原肠作用
胚胎发育
个体发育的主要阶段
受精(精卵融合)→卵裂→原肠胚 形成→神经胚形成→器官的形成→ 幼体生长(发育和变态)→成体→ 细胞衰老死亡→个体发育终止即死 亡。
• 1、线虫 P4细胞质内含有所有P颗粒,P颗粒对于生殖细胞的分化起重要 作用。 P1细胞经三次卵裂:每次分裂产生1个体细胞前体和依次产生P1 P2 P3 P4生殖干细胞。 P4是所有生殖细胞的始祖,由其最终形成两个原生殖细胞Z2 Z3. • 2、果蝇 • 果蝇原生殖细胞最早发现于受精后大约90min,这些原生殖细 胞位于果蝇胚胎后端称极细胞,含有特殊的极质颗粒,称极粒 用移植生殖质的方法,可使受体细胞分化成原生殖细胞。
一、生殖质与生殖细胞的起源
• 随着胚胎发育的进行,生殖质被逐渐分 配到一定的细胞中,这些细胞将分化成 为原生殖细胞。 有性繁殖的动物个体由体细
•生殖质是一种具有一 定形态结构的特殊细 胞质,主要由蛋白质 和RNA构成,可以被嗜 碱性染料着色,它决 定着生殖细胞的分化。
胞和生殖细胞两大部分组成, 二者均由受精卵发育分化而 来。 原生殖细胞的起源可追溯到 亲代动物的卵细胞。 有些动物的卵子中有一类可 决定生殖细胞分化的特殊物 质--生殖质(germ plasm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理想模型。 • (8)基因组序列已全
部测出 (Science, Mar. 24, 2000)。(120Mb encodes 13,601 proteins)
Developmental Biology
• 由于果蝇具有以上优点,近年来仍然被广泛用做分子发育 生物学研究的模型。在其胚胎发育的梯度假说被证实后, 已鉴定出了几个在卵子中形成梯度、调节细胞定位和分化 并决定胚胎发育方式的成形因子;在位于卵子后极和种质 (germ plasm)中发现了为种系细胞导向的蛋白因子.
的优点。 • ①爪蟾生活在水中,成体约长7 cm,易于在实验室人工养殖。 • ②易于进行人工繁育,特别是通过注射促性腺激素,可以诱导
其在任何时候产卵。 • ③爪蟾的卵子较大,直径约为1~2 mm,,且在体外受精、体
外发育,因而无需复杂昂贵的仪器,就可在实验室进行显微操 作等各种实验。 • ④发育早期通过辐射状完全卵裂产生囊胚。其透明的卵壳可以 采用手术或化学方法脱去,从胚胎上切下来的细胞团可以依靠 细胞中的卵黄提供营养,在无菌的生理盐水中继续发育。因而, 许多早期有关发育生物学的重大突破,如以胚胎学大师Hans Spemann为首的一批发育生物学开创者在20世纪20~30年代所 进行的胚胎分割实验和胚胎诱导实验,以及20世纪50~60年代 Robert Brigg Thomas King和John Gurdon等关于细胞核的多 能性(pluripotency)与体细胞克隆等著名实验,都是以爪蟾等两 栖动物为研究材料完成的。我国的胚胎学及发育生物学研究也 主要是以朱冼教授为首的一批学者以两栖动物中华大蟾蜍为实 验材料开创起来的。
• 有趣的是,在1 997和1 998连续两年被《科学》杂志称为 当年十大重要突破成就之一。关于调控生物昼夜节律生物 钟基因的研究也多半是在果蝇中完成的(Bloom 1 998)。
• 果蝇的基因组大约为1 80 Mb,其常染色质部分约为120 Mb。到2000年3月,常染色质部分的全部碱基序列已基本 确定,其基因组大约编码1 3 600个基因,在数量上比线虫 还要少,但这些基因具有明显的功能多样性(Adams et a1.2000)。
• (3)易于遗传操作具有几十个易于诱变分析的遗传特征,并保持有
大量的突变体。 • (4)有比较简单的染色体组成,只有4对染色体,且唾腺细胞中含有巨
大的多线染色(p01ytenic chromosome)o , • (5)卵子发生过程中已为早期胚胎发育积累了充分的养料,且产出的
卵子大,易于又见察。 • (6)胚胎发育速度快,前13次卵裂每次只间隔9min,细胞核成倍增加
经给人类带来的危害和痛苦,有谁会不为之惧怕呢?其
实这些病原寄生虫都属于线虫一类。不同的是,华美广
杆线虫不是寄生线虫,而是生活于土壤中、以细菌为食
的一种自由线虫。
Developmental Biology
二.作为模式生物的优点
• 近30年来的研究表明,华美广杆线虫的确 是分子发育生物学及细胞生物学、分子生 物学和神经生物学研究的极好模型。
Developmental Biology
Developmental Biology
Drosophila melanogaster
Developmental Biology
三.果蝇作为模式生物的优点
• (1)果蝇的生命周期短,在实验室条件下,一般12 d就可完成一次世代 交替。
• (2)个体小(成虫的长度仅为2 mm),给予很少一点适宜食物在实验室 就能饲养一大群。
Developmental Biology
Developmental Biology
第二节 果 蝇
• 一.果蝇的两个重大贡献 • 谈起年遗传学泰斗Thomas Hunt Morgan发现其第 一个突变体白眼果蝇以来,其作为模式生物的历 史已有90多年。正是以它为模式生物,Morgan和 他的一批弟子们才从有关性连锁、性染色体、多 线染色体和伴性遗传等遗传规律的发现中提出了 基因论,奠定了现代遗传学的基础,并由此使 Morgan获得了1 933年的诺贝尔生理和医学奖。 也就是从那时开始,生物学家才普遍认识到模式 生物在生命科学研究中的重要作用。
Developmental Biology
Developmental Biology
1. Xenopus laevis: Amphibian model
主要优点 1. 性成熟短; 2. 卵体大,易于操
作; 3. 抗感染力强,易
于组织移植;
Developmental Biology
• 二、爪蟾及两栖动物作为模式生物的优点 • 爪蟾作为模式动物除了其显著的科学意义外,同时也具有明显
• ③存在雌雄同体(1lermaphrodite)和雄性两类不同生物型,主 要是雌雄同体生物型,见图4—1(A)。在雌雄同体生物型中,每 尾线虫既含有卵子又含有精子,精卵在体内受精,胚胎在生殖腺 管内发育,幼虫由阴门(vulva)产出。雌雄同体个体自体受精的结 果可产生非常纯合的基因型。雌雄同体个体性别决定的染色体机 制为X.X型。在偶然情况下,可产生大约O.2%的XO雄性个 体。XO雄性个体可与雌雄同体个体交配产生后代,从而增加了 基因重组和新等位基因引入的机会。
(Caenorhabditis)。就其与人类的关系来说,华美广杆
线虫在现已记录的大约2万种(估计可能有4万~1 000万
种)线虫中,并不是最重要的线虫,所以在我国,即使
是从事生命科学研究的学者对其还相当陌生。然而,线
虫的确与人类生活密切相关。一提起寄生于人类肠道中
的蛔虫、钩虫和蛲虫及寄生于人的淋巴系统内的丝虫曾
• ④体细胞数量少,由于透明可见,易于追踪细胞分裂谱系。产 出的幼虫含有556个体细胞和2个原始生殖细胞,见图4—1(B), 幼虫经4次蜕皮后变为成虫。若成虫为雌雄同体个体,则含有959 个体细胞和大约2000个生殖细胞;若成虫为雄性个体,则含有 103 1.个体细胞和大约1 000个生殖细胞。
Developmental Biology
Developmental Biology
二、果蝇的分类地位及其生命周期
• 果蝇的分类地位归属于节肢动物门、昆虫纲、双翅目、果 蝇科、果蝇属,其学名全称为黑腹果蝇,现一般简称果蝇。 在自然界,果蝇一般以腐烂的果实为食。
• 果蝇的生命周期在室温下一般为2周左右。成虫产出的受 精卵只经l d的胚胎发育就孵化出幼虫;幼虫经历两次蜕皮, 由第一期幼虫经第二期幼虫约3 d时间发育成第三期幼虫, 第三期幼虫再经2~3 d.的化蛹过程形成蛹;在蛹中约经 过历时5 d的变态,然后孵出成虫。成虫孵出后在12~14 h 内开始交配产卵,产出的受精卵又开始进入下一个生命周 期(图4—3)。果蝇成虫的长度为2 mm,大约可存活9 d左右。
Developmental Biology
第三节爪 蟾
• 一、爪蟾的分类地位及其作为模式生物的意义 • 爪蟾的全称为光滑爪蟾(.Xenopus laevis),它属于脊椎动
物两栖纲(Amphibia)、无尾目(Anura)、负子蟾科 (Pipidae)、爪蟾属(Xenopus)。因产于非洲,又名非洲爪 蟾,现一般简称为爪蟾。由于爪蟾是脊椎动物,与人类及 其他经济动物具有更为密切的关系,其发育模型及调控机 制与人类及其他高等动物更相似,且与其他两栖动物一样, 具有较大的、易于观察分析的卵子,因而有关脊椎动物的 卵子发生、体轴决定、受精激活、卵裂与中囊胚转换 (midblastula transition)、原肠形成、神经胚形成、器官发 生、核移植及体细胞克隆等有关发育生物学原理和知识基 本上都是来自于爪蟾这一模式动物和其他相关两栖动物的 研究成果。正是在这些研究成果基础上的演绎、推断和扩 展;构成了脊椎动物发育生物学的基本原型。因而,爪蟾 是脊椎动物发育生物学研究中一个最重要而又最典型的代 表,是脊椎动物胚胎学和发育生物学的奠基者。图4—4是 光滑爪蟾的生命周期示意图。
的生物学特性及其被用做研究模型的原由。
Developmental Biology
第一节 华美广杆线虫
( Caenorhabditis elegans)
• 一.华美广杆线虫的分类地位
•
华美广杆线虫是一种长为1 mm,自由生活于土壤
中的小线虫,隶属于线形动物门(Nemathelminthes)线
虫纲(Nematoda)小杆线虫目(Rhab—ditida)广杆线虫属
Developmental Biology
Developmental Biology
Developmental Biology
Developmental Biology
• 蛋白及目前可利用的人类的4979个蛋白进行比较 分析后发现,人的4979个蛋白中有74%可在线虫 中找到对应蛋白,线虫有36%的蛋白可在现知的 人类蛋白中找到相关蛋白。总的比较结果表明, 较小的基因组有较多的组分与较大的基因组相匹 配,且较大的基因组含有更多可与之对应的蛋白 (图4—2)。有趣的是,线虫中没有发现在酿酒酵 母和大肠杆菌中都能与之匹配的蛋白。当然,尽 管线虫的基因组已全部测序,但已做过遗传分析 的蛋白基因还只占其基因总数的10%~25%。-因 此,有关线虫基因的真正研究可以说是刚刚开始, 前面还有很长的路要走。
Developmental Biology
• 1978年长期在美国加州理工学院从事果蝇遗传和发育研究 的Edward B.I.ewis发表了他几十年来关于基因复合体如 何控制体节发育这一划时代的论文时,才又重新激起了欧 洲分子生物学实验室两位年轻发育生物学家的研究热情, 他们也选用这一给众多遗传学家带来好运的果蝇,作为他 们开创科学研究生涯的模式生物,并试图搞清楚受精卵是 如何发育成分节的胚胎的。他们采用饱和诱变的方法随机 破坏近一半的果蝇基因,然后通过显微观察来研究和分析 影响体轴形成和分节模式的基因,并由此鉴定出1 5种不同 的由于突变引起体节缺陷的基因。当他们的研究结果在1 980年秋季发表后,立即受到_批发育生物学家的关注。由 于他们选用了好的模式生物,并采用了新颖有效的实验手 段,使得其他学者,特别是当时的年轻学者有勇气0有信 心去鉴定和寻找其他物种内控制发育的基因。很快,人们 在其他高等生物和人类细胞中发现了同样的或类似的基因, 并证明这些基因在发育过程中执行了相似的功能。这两位 用果蝇作为模式生物开创分子发育生物学研究的学者就是 1 995年与LewiS一起分享诺贝尔生理和医学奖的 Christiane Nusslein—V01.hard和EricWieschaus.