高考专题讲座(第10讲)函数图象及图象性质的应用
第10讲-一次函数的图象与性质(课件)-2024年中考数学一轮复习讲练测(全国通用)全文编辑修改
)
C.一、三、四
D.二、三、四
【详解】解:∵正比例函数 = ( ≠ 0)的函数值随的增大而减小,
∴ < 0,∴− > 0,2 < 0,
∴一次函数 = − + 2的图象所经过第一,三,四象限,故选:C.
【对点训练1】(2022·河南南阳·统考三模)若一元二次方程x2−4x+4m=0有两个相等的实数根,则
y=kx+b(k≠0)探索并理解k>0和k<0时图象的变
化情况.
➢ 会运用待定系数法确定一次函数的表达式.
稿定PPT
命题预测
一次函数的图象与性质是中考数学中比较重要
的一个考点,也是知识点牵涉比较多的考点.各
地对一次函数的图象与性质的考察也主要集中在
一次函数表达式与平移、图象的性质、图象与方
程不等式的关系以及一次函数图象与几何图形面
y=kx+b中b=0时,y=kx,所以说正比例函数是一种特殊的一次函数.
一次函数的一般形式:y=kx+b(k,b是常数,k≠0).
考点一 一次函数的相关概念
1. 一次函数一般形式的特征:1)k≠0; 2)x的次数为1; 3)常数b可以取任意实数.
2. 正比例函数是一次函数,但是一次函数不一定是正比例函数.
y随x的增大而减少
y
y
y
y
y
图象
x
O
经过象限
与y轴交点位置
x
O
x
x
O
O
b>0
b=0
b<0
b>0
一、二、三
一、三
一、三、四
一、二、四
y
x
O
b=0
高中数学复习专题讲座(第10讲)函数图象及图象性质的应用
题目 高中数学复习专题讲座函数图象及图象性质的应用高考要求函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质 重难点归纳1 熟记基本函数的大致图象,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图象变换法 平移变换、对称变换、伸缩变换等2 高考中总是以几类基本初等函数的图象为基础来考查函数图象的题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视典型题例示范讲解例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ), (1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图 本题考查函数概念、图象对称问题以及求根问题 知识依托 把证明图象对称问题转化到点的对称问题错解分析 找不到问题的突破口,对条件不能进行等价转化技巧与方法 数形结合、等价转化(1)证明 设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0),∵2)2(00x x a +-=a , ∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称,又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0, ∴(2a -x 0,y 0)也在函数的图象上,故y =f (x )的图象关于直线x =a 对称(2)解 由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根, 若x 1是f (x )=0的根,则4-x 1也是f (x )=0的根, ∴x 0+(4-x 0)+ x 1+(4-x 1)=8 即f (x )=0的四根之和为8例2如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论命题意图 本题考查函数的解析式、函数图象、识图能力、图形的组合等知识依托 充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口错解分析 图形面积不会拆拼技巧与方法 数形结合、等价转化 解 (1)连结AA ′、BB ′、CC ′,则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ),g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B1(2)()()2f a g a -=12=--102=-<∴f (a )<g (a )例3已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围解法一 观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0,又f (x )的图象过(1,0),∴f (x )=a +b +c ① 又有f (-1)<0,即-a +b -c <0 ② ①+②得b <0,故b 的范围是(-∞,0)解法二 如图f (0)=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵当x>2时,f (x )>0,从而有a >0,∴b <0 学生巩固练习1 当a ≠0时,y =ax +b 和y =b ax的图象只可能是( )2某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则适合题意的图形是()3已知函数f(x)=log2(x+1),将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,则函数F(x)=f(x)-g(x)的最大值为_________三、解答题4如图,在函数y=lg x的图象上有A、B、C三点,它们的横坐标分别为m,m+2,m+4(m>1)(1)若△ABC面积为S,求S=f(m);(2)判断S=f(m)的增减性5如图,函数y=23|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m∈R且m>23)是△ABC的BC边的中点(1)写出用B点横坐标t表示△ABC面积S的函数解析式S=f(t);(2)求函数S=f(t)的最大值,并求出相应的C点坐标6已知函数f(x)是y=1102+x-1(x∈R)的反函数,函数g(x)的图象与函数y=-21-x的图象关于y轴对称,设F(x)=f(x)+g(x)(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A、B,使直线AB 恰好与y轴垂直?若存在,求出A、B的坐标;若不存在,说明理由7已知函数f1(x)=21x-,f2(x)=x+2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值8 设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x )(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标; (3)解不等式log a g (x )<log a 29 (0<a <1)参考答案1 解析 ∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数 仔细观察题目中的直线方程可知 在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a<1,D 中a <0,0<b <1,∴b a >1 故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合答案 A2 解析 由题意可知,当x =0时,y 最大,所以排除A 、C 又一开始跑步,所以直线随着x 的增大而急剧下降答案 D3 解析 g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log441log)2(122222+++=+++=++x x x x x x x x)1(21111log2->++++=x x x ∵x +1>0,∴F (x )≤41log211)1(21log 22=++⋅+x x =-2当且仅当x +1=11+x ,即x =0时取等号∴F (x )max =F (0)=-2答案 -24 解 (1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C(2)S =f (m )为减函数5 解 (1)依题意,设B (t ,23 t ),A (-t ,23t )(t >0),C (x 0,y 0)∵M 是BC 的中点 ∴2x t +=1,2230y t + =m∴x 0=2-t ,y 0=2m -23t在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t∴S =21|AB |·h AB =21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1)(2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m ,即23<m ≤3,当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m ,23m ),若3m >1,即m >3 S =f (t ) 在区间(0,1]上是增函数,∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3)6 解 (1)y =1102+x-1的反函数为f (x )=lg xx +-11(-1<x <1)由已知得g (x )=21+x ,∴F (x )=lgxx +-11+21+x ,定义域为(-1,1)(2)用定义可证明函数u =xx +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B7 解 (1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x 的图像如图所示y =f (x )的曲线绕x 轴旋转一周所得几何体是由一个半径为1的半球及底面半径和高均为1的圆锥体组成,其表面积为(2+2)π(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b8 (1)g (x )=x -(2)b =4时,交点为(5,4);b =0时,交点为(3,0)(3)不等式的解集为{x |4<x <29或x >6}课前后备注。
2021届高考数学一轮复习第二章函数、导数及其应用第10讲函数的图象课件
答案:D
(4)(2018年新课标Ⅲ)函数y=-x4+x2+2的图象大致为 ()
A
B
C
D
解析:当 x→+∞或 x→-∞时, y→-∞,排除 A, B;y=-x4+x2+2,y′=-4x3+2x=-2x(2x2-1)=
-4xx+
22x-
22,则
x1=0,x2=
22,x3=-
22三个极
值点.故选 D.
到 y=f(wx)(w>0,w≠1)的图象.
(3)对称变换:
1.函数 f(x)=ln(x2+1)的图象大致是( A )
A
B
C
D
2.(2017 年新课标Ⅲ)函数 y=1+x+sixn2 x的部分图象大致为 ( D)
A
B
C
D
解析: 当 x∈0,π2时,y=1+x+sixn2 x显然为正,排除 A, C;当 x→+∞时,sixn2 x→0,y=1+x+sixn2 x→+∞,排除 B.故 选 D.
答案:B
【规律方法】函数图象主要涉及三方面的问题,即作图、 识图、用图.作图主要应用描点法、图象变换法以及结合函数的 性质等方法;识图要能从图象的分布范围、变化趋势、对称性 等方面,来研究函数的定义域、值域、单调性、奇偶性及周期 性等性质;用图是函数图象的最高境界,利用函数图象的直观 性可以方便、快捷、准确地解决有关问题,如求值域、单调区 间、求参数范围、判断非常规方程解的个数等,这也是数形结 合思想的重要性在中学数学中的重要体现.
解析:函数 f(x)=2x2-e|x|在[-2,2]上是偶函数,其图象关
于y轴对称,∵f(2)=8-e2,0<8-e2<1,∴排除A,B选项;
当x∈[0,2]时,f′(x)=4x-ex有一零点,设为x0,易得x0∈(0,1), 当x∈(0,x0)时,f(x)为减函数,当x∈(x0,2)时,f(x)为增函数. 故选 D.
高三函数性质与图像专题讲座
函数的性质与图像(2013 3 3)一 复习目标分析:(略) 二 自主练习1(复习大本P 16变式训练)已知函数124)(-+=x x f 的定义域是〔a,b 〕(a,b 为整数),值域是[]1,0,则满足条件的整数数对),(b a 有______对.2(复习大本P 31互动探究)若方程0342=--+-a x x x 至少有三个不相等的实数根,试求实数a 的取值范围.3(复习大本P 20典例)设a 为实数,函数a x a x x x f --+=)(2)(2 (1)若f(0)≥0,求a 的取值范围;(2)求f(x)的最小值;(3)设函数()+∞∈=,),()(a x x f x h ,直接写出(不需给出演算步骤)不等式1)(≥x h 的解集.4(复习大本P 33典例)已知a 是实数,函数a x ax x f --+=322)(2在区间﹝-1,1﹞上有零点,求a 的取值范围.5(教材《数学1》P 110B 组1(3))设y 1=40.9,y 2=80.48,y 3=(1/2)-1.5,试比较y 1,y 2,y 3的大小.6(教材《数学1》P 134B 组3)证明方程x 4-4x-2=0在区间〔-1,2〕内至少有两个实根.7(教材《选修2-1》P 88B 例题4)若直线l:y=(a+1)x-1与曲线C:y 2=ax 恰有一个公共点,试求实数a 的取值范围.三 合作探究 例 1 函数x x xx ee e e y ---+=的图像大致是________.例2 函数f(x)=log a (x+b)的图像如图1,其中a,b 为常数,则函数g(x)=a x +b 的大致图像是例1、2变式:1函数x y y x 161log )161(==与函数图像的交点个数是______.2设函数f(x)=t x x --233,[]4,0∈x 时f(x)的最大值是g(t),求g(t)的最小值.例3若)cos (sin 7sin cos 3355x x x x -<-,[)π2,0∈x ,那么实数x 的取值范围是__.例4 求下列函数的值域:(1)x x y 21--= (2)31++-=x x y例3、4变式:1求函数8422)(22++++-=x x x x x f 的最小值.2求函数8422)(22++-+-=x x x x x f 的最小值.3满足条件AB=2,AC =2BC 的△ABC 的面积的最大值是____.例5 方程0122=-+x x 的解可以视为函数2+=x y 的图像与函数y=1/x 的图像交点的横坐标。
高中数学第10讲 函数图像及其变换(教案)新人教版必修1
函数图像与变换教学目标:掌握常见函数图像及其性质〔高考要求B 〕,熟悉常见的函数图像〔平移、对称、翻折〕变换〔高考要求B 〕.教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折〞等手段进行函数图像变换。
教学过程:一.知识要点:1.常见函数图像及其性质: 〔1〕平移变换:①y =f (x ) →y =f (x ±a )(a >0)图象横向 平移a 个单位,〔左+右—〕. ②y =f (x ) →y =f (x )±b (b >0)图象纵向 平移b 个单位,(上+下—)③假设将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④假设将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.〔2〕对称变换:①y =f (x ) →y =f (-x )图象关于y 轴对称; 假设f (-x )=f (x ),那么函数自身的图象关于y 轴对称.②y =f (x ) →y =-f (x )图象关于x 轴对称.③y =f (x ) →y =-f (-x )图象关于原点对称; 假设f (-x )=-f (x ),那么函数自身的图象关于原点对称.④y =f (x ) →y =f -1(x )图象关于直线y =x 对称.⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b )对称.假设f (x )=f (2a -x )(或f (a +x )=f (a -x ))那么函数自身的图象关于直线x =a 对称.假设函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=〔3〕翻折变换主要有①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称.②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习:1.假设把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 那么函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A )A.y =f (x -1)-1B.y =f (x +1)-1C.y =f (x -1)+1D.y =f (x +1)+12.函数y =f (x )的图象如图2—3,那么以下函数所对应的图象中,不正确的选项是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x )D.y =-f (x )解:y =f (|x |)是偶函数,图象关于y 轴对称.3.设函数y =2x 的图象为C ,某函数的图象C ′与C 关于直线x =2对称,那么这个函数是y =24-x 解∵y =f (x )的图象与y =f (4-x )的图象关于直线x =2对称,设f (x )=2x ,那么f (4-x )=24-x y =f (x )的定义域是R ,且f (x -1)=f (1-x ),那么f (x )的图象有对称轴 直线x =0 解: 设x -1=t ,那么f (t )=f (-t ),函数为偶函数,关于y 轴对称.5.函数y =12--x x的图象关于点(1,-1)_对称.解:y =12--x x =-1+11-x ,y =12--x x 的图象是由y =x 1的图象先右移1个单位,再下移1个单位而得到,故对称点为(1,-1). 三.例题精讲:例1.(1)函数y=||x xa x(0<a <1)的图象的大致形状是 〔 D 〕(2).〔2009·某某模拟〕定义运算,)()(⎩⎨⎧>≤=⊗b a bb a a b a 那么函数f(x)=x21⊗的图象是 ( A )(3).函数y=f(x)的图象如图①所示,y=g(x)的图象如图②所示,那么函数y=f(x)·g(x)的图象可能是图中的〔 C 〕例2. 作出以下函数的图象.〔1〕.f (x )=x 2-2|x |+1 〔2〕f (x )=x 2-2|x |+1〔3〕f (x )=|x 2-1|〔4〕f (x )=x 2+2x +1 〔5〕y=112--x x ;〔6〕y=)21(|x|.〔7〕〔2〕y=|log 21〔1-x 〕|; (8)y=21(lgx+|lgx|);例3.〔1〕定义在R 上的函数y =f (x )、y =f (-x )、y =-f (x )、y =-f (-x )的图象重合,它们的值域为__{0}.[解析] 函数y =f (x )与y =f (-x )的图象重合,说明函数y =f (x )的图象关于y 轴对称;y =f (x )与y =-f (x )图象重合,说明y =f (x )的图象关于x 轴对称;y =f (x )与y =-f (-x )的图象重合,说明y =f (xy =f (x )上任一点(x ,y ),那么也有点(-x ,y )、(x ,-y )、(-x ,-y );根据函数的定图2—3义,对于任一x ∈R,只能有惟一的y 与之对应,从而y =-y ,即y =0,故函数的值域为{0}. 〔2〕函数f (x )定义域为R ,那么以下命题中①y =f (x )为偶函数,那么y =f (x +2)的图象关于y 轴对称. ②y =f (x +2)为偶函数,那么y =f (x )关于直线x =2对称.③假设f (x -2)=f (2-x ),那么y =f (x )关于直线x =2对称. ④y =f (x —2)和y =f (2-x )的图象关于x =2对称.其中正确命题序号有_②④_(填上所有正确命题序号).[解析] ①y =f (x )是偶函数,而f (x +2)是将f (x )的图象向左平移2个单位得到的,那么对称轴左移2个单位为x =-2,所以f (x +2)图象关于直线x =-2对称.②y =f (x +2)为偶函数,那么f (x +2)=f (2-x ),所以y =f (x )图象关于直线x =2对称. ③令x -2=t ,那么2-x =-t ,得f (t )=f (-t ),y =f (x )的图象关于y 轴对称.④f (x )与f (-x )的图象关于y 轴对称,将f (x )与f (-x )的图象分别向右平移2个单位, 分别得到f (x -2)与f (2-x )的图象,对称轴右移2个单位为直线x =2. 例4.设f (x )是定义在R 上的奇函数,且f (x +2)=-f (x ),又当-1≤x ≤1时,f(x)=x 3. (1)证明直线x =1是函数f (x )的图象的一条对称轴;(2)当x ∈[1,5]时,求f (x )的解析式. [解] (1)设(x 0,y 0)是f (x )的图象上任意一点,它关于x =1对称的点为(x 1,y 1),那么y 0=y 1,x 0=2-x 1,∴y 1=f (2-x 1)=-f (-x 1)=f (x 1)∴(x 1,y 1)也在y =f (x )的图象上,命题成立.(2)∵f (x )的图象关于x =1对称,故当1≤x ≤3时,f (x )=(2-x )3又当3<x ≤5时,-1<x -4≤1,此时f (x )=(x -4)3∴f (x )=⎪⎩⎪⎨⎧≤<-≤≤-)53(,)4()31(,)2(33x x x x 例5.设函数f(x)=x 2-2|x|-1 (-3≤x ≤3).〔1〕证明:f(x)是偶函数;〔2〕画出函数的图象; 〔3〕指出函数f(x)的单调区间;〔4〕求函数的值域.〔1〕证明f(-x)=(-x)2-2|-x|-1=x 2-2|x|-1=f(x),即f(-x)=f(x),∴f(x)是偶函数.〔2〕解 当x ≥0时,f(x)=x 2-2x-1=(x-1)2-2,当x <0时,f(x)=x 2+2x-1=(x+1)2-2,即f(x)=,)03(2)1()30(2)1(22⎩⎨⎧<≤--+≤≤--x x x x根据二次函数的作图方法,可得函数图象如下图. 〔3〕解 函数f(x)的单调区间为[-3,-1〕,[-1,0〕,[0,1〕,[1,3]. f 〔x 〕在区间[-3,-1〕和[0,1〕上为减函数,在[-1,0〕,[1,3]上为增函数.〔4〕解 当x ≥0时,函数f(x)=(x-1)2-2的最小值为-2,最大值为f(3)=2; 当x <0时,函数f(x)=(x+1)2-2的最小值为-2,最大值为f(-3)=2; 故函数f(x)的值域为[-2,2].例6.作函数y =x + 1x 的图象.扩展:y =a x + bx〔a >0,b >0〕的图像.例7.〔1〕函数y=f(x)的定义域为R ,且当x ∈R 时f(m+x)=f(m-x)恒成立. 求证:y=f(x)的图象关于直线x=m 对称;〔2〕假设函数y=log 2|ax-1|的图象的对称轴是x=2,求非零实数a 的值. 〔1〕证明 设P 〔x 0,y 0〕是y=f(x)图象上任意一点,那么y 0=f(x 0).又设P 点关于x=m 的对称点为P ′,那么P ′的坐标为〔2m-x 0,y 0〕.由f(m+x)=f(m-x),得f(2m-x 0)=f [m+(m-x 0)]=f [m-(m-x 0)]=f(x 0)=y 0.即),-(200y x m P '在y=f(x)图象上,∴y=f 〔x 〕的图象关于直线x=m 对称.〔2〕解 ∵对定义域内的任意x,有f(2-x)=f(2+x)恒成立.∴|a 〔2-x 〕-1|=|a 〔2+x 〕-1|恒成立,即|-ax+(2a-1)|=|ax+(2a-1)|恒成立.又a ≠0,∴2a-1=0,得a=21.自我检测1.〔2008·全国Ⅱ理,3〕函数f(x)=x1-x 的图象关于 坐标原点对称2.作出以下函数的图象.〔1〕y=2-2x;〔2〕y=112+-x x .〔3〕y =⎩⎪⎨⎪⎧x +1 x ≤112 〔5-x 〕 1<x ≤34-x x >33.f(x)=[][],1,0,10,1,12⎩⎨⎧∈+-∈+x x x x 那么f(x-1)的图象是 4.假设函数f(x)=3+log 2x 的图象与g(x)的图象关于 y=x 对称,那么函数g(x)= 2x-35. 函数y=f(x)与函数y=g(x)的图象如图,那么函数y=f(x)·g(x)的图象可能是 〔 A 〕6.设a >1,实数x,y 满足|x|-log a y1=0,那么y 关于x 的函数的图象形状大致是 ( B )2(-x)<x+1成立的x 的取值X 围是.答案 〔-1,0〕8.设f(x)是定义在R 上奇函数,在〔0,21〕上单调递减,且f(x)=f(-x-1).给出以下四个结论:①函数f(x)的图象关于直线x=21对称;②f(x)在(21,1)上单调递增;③对任意的x ∈Z ,都有f(x)=0;④函数y=f )2(x -π的图象是中心对称图形,且对称中心为()0,2π.其中正确命题的序号是.答案 ①②③④9.当x ∈(1,2)时,不等式(x-1)2<log a x 恒成立,那么a 的取值X 围为.答案 (1,2]10.要得到)3lg(x y -=的图像,只需作x y lg =关于_y __轴对称的图像,再向__右__平移3个单位而得到11.函数()lg(2)1f x x x=⋅+-的图象与x轴的交点个数有__2__个12.如假设函数(21)y f x=-是偶函数,那么函数(2)y f x=的对称轴方程是_12x=-__。
高中数学复习专题讲座灵活运用三角函数的图象和性质解
题目高中数学复习专题讲座灵活运用三角函数的图象和性质解题高考要求三角函数的图象和性质是高考的热点,在复习时要充分运用数形结合的思想,把图象和性质结合起来本节主要帮助考生掌握图象和性质并会灵活运用重难点归纳1考查三角函数的图象和性质的基础题目,此类题目要求考生在熟练掌握三角函数图象的基础上要对三角函数的性质灵活运用2三角函数与其他知识相结合的综合题目,此类题目要求考生具有较强的分析能力和逻辑思维能力在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强3三角函数与实际问题的综合应用此类题目要求考生具有较强的知识迁移能力和数学建模能力,要注意数形结合思想在解题中的应用典型题例示范讲解例1设z1=m+(2-m2)i, z2=cosθ+(λ+sinθ)i, 其中m,λ,θ∈R,已知z1=2z2,求λ的取值范围命题意图本题主要考查三角函数的性质,考查考生的综合分析问题的能力和等价转化思想的运用知识依托主要依据等价转化的思想和二次函数在给定区间上的最值问题来解决错解分析考生不易运用等价转化的思想方法来解决问题技巧与方法对于解法一,主要运用消参和分离变量的方法把所求的问题转化为二次函数在给定区间上的最值问题;对于解法二,主要运用三角函数的平方关系把所求的问题转化为二次函数在给定区间上的最值问题解法一∵z1=2z2,∴m+(2-m2)i=2cosθ+(2λ+2sinθ)i,∴∴λ=1-2cos2θ-sinθ=2sin2θ-sinθ-1=2(sinθ-)2-当sinθ=时λ取最小值-,当sinθ=-1时,λ取最大值2解法二∵z1=2z2∴∴,∴=1∴m4-(3-4λ)m2+4λ2-8λ=0, 设t=m2,则0≤t≤4,令f(t)=t2-(3-4λ)t+4λ2-8λ,则或f(0)·f(4)≤0 ∴∴-≤λ≤0或0≤λ≤2∴λ的取值范围是[-,2]例2如右图,一滑雪运动员自h =50m 高处A 点滑至O 点,由于运动员的技巧(不计阻力),在O 点保持速率v 0不为,并以倾角θ起跳,落至B 点,令OB =L ,试问,α=30°时,L 的最大值为多少?当L 取最大值时,θ为多大? 命题意图 本题是一道综合性题目,主要考查考生运用数学知识来解决物理问题的能力知识依托 主要依据三角函数知识来解决实际问题错解分析 考生不易运用所学的数学知识来解决物理问题,知识的迁移能力不够灵活技巧与方法 首先运用物理学知识得出目标函数,其次运用三角函数的有关知识来解决实际问题解 由已知条件列出从O 点飞出后的运动方程由①②整理得 v 0cos θ=∴v 02+gL sin α=g 2t 2+≥=gL运动员从A 点滑至O 点,机械守恒有:mgh =mv 02,∴v 02=2gh ,∴L ≤=200(m)即L max =200(m),又g 2t 2=∴得cos θ=cos α,∴θ=α=30°∴L 最大值为200米,当L 最大时,起跳仰角为30° 例3如下图,某地一天从6时到14时的温度变化曲线近似满足函数y =A sin(ωx +φ)+b (1)求这段时间的最大温差 (2)写出这段曲线的函数解析式 命题意图 本题以应用题的形式考查备考中的热点题型,要求考生把所学的三角函数知识与实际问题结合起来分析、思考,充分体现了“以能力立意”的命题原则知识依托 依据图象正确写出解析式错解分析 不易准确判断所给图象所属的三角函数式的各个特定系数和字母技巧与方法 数形结合的思想,以及运用待定系数法确定函数的解析式 解 (1)由图示,这段时间的最大温差是30-10=20(℃);(2)图中从6时到14时的图象是函数y =A sin(ωx +φ)+b 的半个周期的图象∴=14-6,解得ω=,由图示A=(30-10)=10,b=(30+10)=20,这时y=10sin(x+φ)+20,将1x=6,y=10代入上式可取φ=π2综上所求的解析式为y=10sin(x+π)+20,x∈[6,14]例4 已知α、β为锐角,且x(α+β-)>0,试证不等式f(x)=x<2对一切非零实数都成立证明若x>0,则α+β>∵α、β为锐角,∴0<-α<β<;0<-β<,∴0<sin(-α)<sinβ0<sin(-β)<sinα,∴0<cosα<sinβ,0<cosβ<sinα,∴0<<1,0<<1,∴f(x)在(0,+∞)上单调递减,∴f(x)<f(0)=2若x<0,α+β<,∵α、β为锐角,0<β<-α<,0<α<-β<,0<sinβ<sin(-α),∴sinβ<cosα,0<sinα<sin(-β),∴sinα<cosβ,∴>1,>1,∵f(x)在(-∞,0)上单调递增,∴f(x)<f(0)=2,∴结论成立学生巩固练习1函数y=-x·cos x的部分图象是( )2函数f(x)=cos2x+sin(+x)是( )A非奇非偶函数B仅有最小值的奇函数C仅有最大值的偶函数D既有最大值又有最小值的偶函数3函数f(x)=()|cos x|在[-π,π]上的单调减区间为_________4设ω>0,若函数f(x)=2sinωx在[-,]上单调递增,则ω的取值范围是_________5设二次函数f(x)=x2+bx+c(b,c∈R),已知不论α、β为何实数恒有f(sin α)≥0和f(2+cosβ)≤0(1)求证b+c=-1;(2)求证c≥3;(3)若函数f(sinα)的最大值为8,求b,c的值6用一块长为a,宽为b(a>b)的矩形木板,在二面角为α的墙角处围出一个直三棱柱的谷仓,试问应怎样围才能使谷仓的容积最大?并求出谷仓容积的最大值7 有一块半径为R ,中心角为45°的扇形铁皮材料,为了获取面积最大的矩形铁皮,工人师傅常让矩形的一边在扇形的半径上,然后作其最大内接矩形,试问 工人师傅是怎样选择矩形的四点的?并求出最大面积值8 设-≤x ≤,求函数y =log 2(1+sin x )+log 2(1-sin x )的最大值和最小值 9 是否存在实数a ,使得函数y =sin 2x +a ·cos x +a -在闭区间[0,]上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由 参考答案1 解析 函数y =-x cos x 是奇函数,图象不可能是A 和C ,又当x ∈(0, )时,y <0答案 D2 解析 f (x )=cos2x +sin(+x )=2cos 2x -1+cos x =2[(cos x +]-1答案 D3 解 在[-π,π]上,y =|cos x |的单调递增区间是[-,0]及[,π] 而f (x )依|cos x |取值的递增而递减,故[-,0]及[,π]为f (x )的递减区间4 解 由-≤ωx ≤,得f (x )的递增区间为[-,],由题设得5 解 (1)∵-1≤sin α≤1且f (sin α)≥0恒成立,∴f (1)≥0∵1≤2+cos β≤3,且f (2+cos β)≤0恒成立 ∴f (1)≤0从而知f (1)=0∴b +c +1=0(2)由f (2+cos β)≤0,知f (3)≤0,∴9+3b +c ≤0 又因为b +c =-1,∴c ≥3(3)∵f (sin α)=sin 2α+(-1-c )sin α+c =(sin α-)2+c -()2,当sin α=-1时,[f (sin α)]max =8,由解得b =-4,c =36 解 如图,设矩形木板的长边AB 着地,并设OA =x ,OB =y ,则a 2=x 2+y 2-2xy cos α≥2xy -2xy cos α=2xy (1-cos α)∵0<α<π,∴1-cos α>0,∴xy ≤ (当且仅当x =y 时取“=”号),故此时谷仓的容积的最大值V 1=(xy sin α)b = 同理,若木板短边着地时,谷仓的容积V 的最大值V 2=ab 2cos, ∵a >b ,∴V 1>V 2从而当木板的长边着地,并且谷仓的底面是以a 为底边的等腰三角形时,谷仓的容积最大,其最大值为a 2b cos7 解 如下图,扇形AOB 的内接矩形是MNPQ ,连OP ,则OP =R ,设∠AOP =θ,则∠QOP =45°-θ,NP =R sin θ,在△PQO 中,,∴PQ =R sin(45°-θ)S 矩形MNPQ =QP ·NP =R 2sin θsin(45°-θ) =R 2·[cos(2θ-45°)-]≤R 2,B当且仅当cos(2θ-45°)=1,即θ=225°时,S矩形MNPQ的值最大且最大值为R2工人师傅是这样选点的,记扇形为AOB,以扇形一半径OA为一边,在扇形上作角AOP且使∠AOP=225°,P为边与扇形弧的交点,自P作PN⊥OA于N,PQ∥OA交OB于Q,并作OM⊥OA于M,则矩形MNPQ为面积最大的矩形,面积最大值为R28解∵在[-]上,1+sin x>0和1-sin x>0恒成立,∴原函数可化为y=log2(1-sin2x)=log2cos2x,又cos x>0在[-]上恒成立,∴原函数即是y=2log2cos x,在x∈[-]上,≤cos x≤1∴log2≤log2cos x≤log21,即-1≤y≤0,也就是在x∈[-]上,y max=0,y mi n=-1综合上述知,存在符合题设课前后备注。
《函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用》
备战高考数学“棘手”问题培优专题讲座---函数的基本性质(函数的奇偶性、对称性、周期性)灵活应用一.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)函数周期性的判定与应用(1)判定:判断函数的周期性只需证明f(x+T)=f(x)(T≠0)即可.(2)应用:根据函数的周期性,可以由函数的局部性质得到函数的整体性质,在解决具体问题时,要注意结论:若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期.函数y=f(x)满足:(1)若f(x+a)=f(x-a),则函数的周期为2a;(2)若f(x+a)=-f(x),则函数的周期为2a;(3)若f(x+a)=-1f(x),则函数的周期为2a;(4)若f(x+a)=1f(x),则函数的周期为2a;(5)若函数f(x)关于直线x=a与x=b对称,那么函数f(x)的周期为2|b-a|;(6)若函数f(x)关于点(a,0)对称,又关于点(b,0)对称,则函数f(x)的周期是2|b-a|;(7)若函数f(x)关于直线x=a对称,又关于点(b,0)对称,则函数f(x)的周期是4|b-a|;(8)若函数f(x)是偶函数,其图象关于直线x=a对称,则其周期为2a;(9)若函数f(x)是奇函数,其图象关于直线x=a对称,则其周期为4a.【方法点拨】1.函数奇偶性、对称性间关系:(1)若函数y=f(x+a)是偶函数,即f(a-x)=f(a+x),则函数y=f(x)的图象关于直线x=a对称;一般的,若对于R上的任意x都有f(a-x)=f(a+x),则y=f(x)的图象关于直线x=a+b2对称.(2)若函数y=f(x+a)是奇函数,即f(-x+a)+f(x+a)=0,则函数y =f (x )关于点(a ,0)中心对称;一般的,若对于R 上的任意x 都有f (-x +a )+f (x +a )=2b , 则y =f (x )的图象关于点(a ,b )中心对称.2. 函数对称性、周期性间关系:若函数有多重对称性,则该函数具有周期性且最小正周期为相邻对称轴距离的2倍, 为相邻对称中心距离的2倍,为对称轴与其相邻对称中心距离的4倍. (注:如果遇到抽象函数给出类似性质,可以联想y =sin x ,y =cos x 的对称轴、对称中心和周期之间的关系)3. 善于发现函数的对称性(中心对称、轴对称),有时需将对称性与函数的奇偶性相互转化. 【典型题示例】例1.已知函数f (x )对任意的x ∈R ,都有f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x ,函数f (x +1)是奇函数,当-12≤x ≤12时,f (x )=2x ,则方程f (x )=-12在区间[-3,5]内的所有根之和为________.【分析】由f ⎝ ⎛⎭⎪⎫12+x =f ⎝ ⎛⎭⎪⎫12-x 对任意的x ∈R 恒成立,得f (x )关于直线x =12对称,由函数f (x +1)是奇函数,f (x )关于点(1,0)中心对称,根据函数对称性、周期性间关系,知函数f (x )的周期为2,作出函数f (x )的图象即可.【解析】因为函数f (x +1)是奇函数,所以f (-x +1)=-f (x +1),又因为f ⎝ ⎛⎭⎪⎫12+x = f ⎝ ⎛⎭⎪⎫12-x ,所以f (1-x )=f (x ),所以f (x +1)=-f (x ),即f (x +2)=-f (x +1)=f (x ), 所以 函数f (x )的周期为2,且图象关于直线x =12对称.作出函数f (x )的图象如图所示,由图象可得f (x )=-12在区间[-3,5]内有8个零点,且所有根之和为12×2×4=4.【答案】4 二、典型例题1.奇偶性与周期性的综合问题1.已知偶函数y =f (x )(x ∈R)在区间[-1,0]上单调递增,且满足f (1-x )+f (1+x )=0,给出下列判断:①f (5)=0; ②f (x )在[1,2]上是减函数; ③函数f (x )没有最小值; ④函数f (x )在x =0处取得最大值; ⑤f (x )的图象关于直线x =1对称. 其中正确的序号是________.解:因为f (1-x )+f (1+x )=0,所以f (1+x )=-f (1-x )=-f (x -1),所以f (2+x )=-f (x ),所以f (x +4)=f (x ),即函数f (x )是周期为4的周期函数.由题意知,函数y =f (x )(x ∈R)关于点(1,0)对称,画出满足条件的图象如图所示,结合图象可知①②④正确.答案:①②④2. 已知定义在R 上的偶函数()f x 满足:当(]1,0x ∈-时,()2x f x =,且()1f x +的图像关于原点对称,则20192f ⎛⎫= ⎪⎝⎭( )A .2B C .2-D .【解题思路】根据偶函数及()1f x +的图像关于原点对称可知,函数的周期;根据周期性及()1f x +为奇函数,可得20192f ⎛⎫⎪⎝⎭的值.解:由题可知函数()f x 的图像关于直线0x =和点()1,0对称,所以函数()f x 的周期为4,则12201933114252222222f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==-=--=-= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 答案:C3.已知定义在R 上的函数f (x )满足f (x -1)=f (x +1),且当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1,则( )A .f (-3)<f (2)<f ⎝⎛⎭⎫52B .f ⎝⎛⎭⎫52<f (-3)<f (2)C .f (2)<f (-3)<f ⎝⎛⎭⎫52D .f (2)<f ⎝⎛⎭⎫52<f (-3) 解: ∵f (x -1)=f (x +1),则函数f (x )的周期T =2.当x ∈[-1,1]时,f (x )=x ⎝⎛⎭⎫1-2e x +1=x ·e x-1e x +1,则f (-x )=-x ·e -x -1e -x +1=-x ·1-e x 1+e x =x ·e x -1e x +1=f (x ),则函数f (x )为偶函数,因此f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12,f (-3)=f (-1)=f (1),f (2)=f (0). 当0 ≤x ≤1时,函数y =x 与y =1-2e x +1均为增函数且都不小于0, 所以f (x )=x ⎝⎛⎭⎫1-2e x +1在区间[0,1]上是增函数,∴f (1)>f ⎝⎛⎭⎫12>f (0),即f (-3)>f ⎝⎛⎭⎫52>f (2). 答案:D4.(2018年全国2卷)已知是定义域为的奇函数,满足.若,则A.B. 0C. 2D. 50分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果. 解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.【答案】C点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.5. 已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x -1,则f ⎝⎛⎭⎫2 0192=( )A.3+1B.3-1 C .-3-1D .-3+1解:由题可知f (x +2)=f (x )=-f (-x ),所以f ⎝⎛⎭⎫2 0192=f ⎝⎛⎭⎫1 008+32=f ⎝⎛⎭⎫32=-f ⎝⎛⎭⎫-32=-f ⎝⎛⎭⎫12. 又当x ∈(0,1)时,f (x )=3x -1,所以f ⎝⎛⎭⎫12=3-1,则f ⎝⎛⎭⎫2 0192=-f ⎝⎛⎭⎫12=-3+1. 答案:D奇偶性与周期性综合问题的解题策略函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.6. 已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为______ 解:∵f (x )是定义在R 上的周期为3的偶函数,∴f (5)=f (5-6)=f (-1)=f (1),∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0,解得-1<a <4. 答案:(-1,4)7. 设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x ,0≤x <1,则f ⎝⎛⎭⎫32=________. 解:∵f (x )的周期为2,∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12, 又∵当-1≤x <0时,f (x )=-4x 2+2, ∴f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-122+2=1. 答案:18. 若函数f (x )(x ∈R)是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 解:由于函数f (x )是周期为4的奇函数,所以f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫2×4-34+f ⎝⎛⎭⎫2×4-76=f ⎝⎛⎭⎫-34+f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫34-f ⎝⎛⎭⎫76 =-316+sin π6=516.答案:5169.已知f (x )是定义在R 上的偶函数,且f (x +2)=-f (x ),当2≤x ≤3时,f (x )=x ,则f (105.5)=________.解:由f (x +2)=-f (x ),得f (x +4)=f [(x +2)+2]=-f (x +2)=-[-f (x )]=f (x ),所以函数f (x )的周期为4,∴f (105.5)=f (4×27-2.5)=f (-2.5)=f (2.5)=2.5. 答案:2.510.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=________. 解:由f (x )是R 上周期为5的奇函数知f (3)=f (-2)=-f (2)=-2,f (4)=f (-1)=-f (1)=-1, ∴f (3)-f (4)=-1.答案:-111.已知定义在R 上的函数f (x )满足f (2)=15,且对任意的x 都有f (x +3)=-1f (x ),则f (8)=________;f (2 015)=________. 解:由f (x +3)=-1f (x ),得f (x +6)=-1f (x +3)=f (x ), 故函数f (x )是周期为6的周期函数.故f (8)=f (2)=15,f (2 015)=f (6×335+5)=f (5)=-1f (2)=-115=-5.答案:15;-513.奇函数f (x )的周期为4,且x ∈[0,2],f (x )=2x -x 2,则f (2 018)+f (2 019)+f (2 020)的值为________.解:函数f (x )是奇函数,则f (0)=0,由f (x )=2x -x 2,x ∈[0,2]知f (1)=1,f (2)=0,又f (x )的周期为4,所以f (2 018)+f (2 019)+f (2 020)=f (2)+f (3)+f (0)=f (3)=f (-1)=-f (1)=-1. 答案:-114.已知函数f (x )是周期为2的奇函数,当x ∈[0,1)时,f (x )=lg(x +1),则f ⎝⎛⎭⎫2 0165+lg 18=________.解:由函数f (x )是周期为2的奇函数得f ⎝⎛⎭⎫2 0165=f ⎝⎛⎭⎫65=f ⎝⎛⎭⎫-45=-f ⎝⎛⎭⎫45, 又当x ∈[0,1)时,f (x )=lg(x +1), 所以f ⎝⎛⎭⎫2 0165=-f ⎝⎛⎭⎫45=-lg 95=lg 59, 故f ⎝⎛⎭⎫2 0165+lg 18=lg 59+lg 18=lg 10=1. 答案:115.设定义在R 上的函数f (x )同时满足以下条件:①f (x )+f (-x )=0;②f (x )=f (x +2);③当0≤x ≤1时,f (x )=2x -1.则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=________. 解析:依题意知:函数f (x )为奇函数且周期为2,则f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫32+f (2)+f ⎝⎛⎭⎫52=f ⎝⎛⎭⎫12+f (1)+f ⎝⎛⎭⎫-12+f (0)+f ⎝⎛⎭⎫12 =f ⎝⎛⎭⎫12+f (1)+f (0)=212-1+21-1+20-1= 2. 答案: 216.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R.若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.解:因为f (x )是定义在R 上且周期为2的函数,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12,且f (-1)=f (1),故f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12,从而12b +212+1=-12a +1, 即3a +2b =-2.① 由f (-1)=f (1),得-a +1=b +22, 即b =-2a .② 由①②得a =2,b =-4,从而a +3b =-10. 答案:-1017.已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为________.解:因为当0≤x <2时,f (x )=x 3-x ,又f (x )是R 上最小正周期为2的周期函数,且f (0)=0,所以f (6)=f (4)=f (2)=f (0)=0.又f (1)=0,所以f (3)=f (5)=0.故函数y =f (x )的图像在区间[0,6]上与x 轴的交点个数为7. 答案:718.设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=2x ,则有 ①2是函数f (x )的周期;②函数f (x )在(1,2)上是减函数,在(2,3)上是增函数; ③函数f (x )的最大值是1,最小值是0.其中所有正确命题的序号是________.解:在f (x +1)=f (x -1)中,令x -1=t ,则有f (t +2)=f (t ),因此2是函数f (x )的周期,故①正确;当x ∈[0,1]时,f (x )=2x 是增函数,根据函数的奇偶性知,f (x )在[-1,0]上是减函数,根据函数的周期性知, 函数f (x )在(1,2)上是减函数,在(2,3)上是增函数,故②正确;由②知f (x )在[0,2]上的最大值f (x )max =f (1)=2,f (x )的最小值f (x )min =f (0)=f (2)=20=1, 且f (x )是周期为2的周期函数.∴f (x )的最大值是2,最小值是1,故③错误. 答案:①②1. 已知定义在R 上的奇函数f (x )满足f (x +1)=-f (x ),且在[0,1)上单调递增,记a =f ⎝⎛⎭⎫12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ) A.a >b =c B.b >a =c C.b >c >a D.a >c >b解:依题意得,f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数,f (2)=f (0)=0,又f (3)=-f (2)=0,且f (x )在[0,1)上是增函数, 于是有f ⎝⎛⎭⎫12>f (0)=f (2)=f (3),即a >b =c . 答案:A2.奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为( )A .2B .1C .-1D .-2解:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1),∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1), 即f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ), 则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A.3. 已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f (x ),若f (x )在[-1,0]上是减函数, 那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数 解:由题意知f (x +2)=1f (x +1)=f (x ),所以f (x )的周期为2, 又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数, 则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.选A7.设函数f (x )(x ∈R)满足f (x +π)=f (x )+sin x .当0≤x <π时,f (x )=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解:∵f (x +2π)=f (x +π)+sin(x +π)=f (x )+sin x -sin x =f (x ),∴f (x )的周期T =2π,又∵当0≤x <π时,f (x )=0, ∴f ⎝⎛⎭⎫5π6=0,∴f ⎝⎛⎭⎫-π6+π=f ⎝⎛⎭⎫-π6+sin ⎝⎛⎭⎫-π6=0, ∴f ⎝⎛⎭⎫-π6=12,∴f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫4π-π6=f ⎝⎛⎭⎫-π6=12. 故选A. 8.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2 014)=( )A .0B .-4C .-8D .-16解:由题可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f(x+12)=f[(x+6)+6]=-f(x+6)=f(x),∴函数f(x)的周期T=12.把y=f(x-1)的图象向左平移1个单位得y=f(x-1+1)=f(x)的图象,关于点(0,0)对称,因此函数f(x)为奇函数,∴f(2 014)=f(167×12+10)=f(10)=f(10-12)=f(-2)=-f(2)=-4,故选B.9.已知f(x)是定义在R上的偶函数,且对任意x∈R,都有f(x+4)=f(x)+f(2),则f(2 014)等于( )A.0B.3C.4D.6解:依题意,得f(-2+4)=f(-2)+f(2)=f(2),即2f(2)=f(2),f(2)=0,f(x+4)=f(x),f(x)是以4为周期的周期函数,又2014=4×503+2,所以f(2014)=f(2)=0.故选A.答案:A11.奇函数f(x)的定义域为R. 若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.-2 B.-1 C.0 D.1解:因为f(x)为R上的奇函数,所以f(-x)=-f(x),f(0)=0.因为f(x+2)为偶函数,所以f(x+2)=f(-x+2),所以f(x+4)=f(-x)=-f(x),所以f(x+8)=f(x),即函数f(x)的周期为8,故f(8)+f(9)=f(0)+f(1)=1. 故选D12.f(x)是R上的偶函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x2,则函数y=f(x)-|log5x|的零点个数为( )A.4 B.5 C.8 D.10解:由零点的定义可得f(x)=|log5x|,两个函数图象如图,总共有5个交点,所以共有5个零点。
高中数学《函数的图像》高考一轮复习
高考数学一轮复习第10讲:函数的图像学习目标:1.会运用函数图像理解和研究函数的性质.2.熟记基本初等函数的图像,掌握函数作图的基本方法及函数图像的基本变换,能结合图像研究函数的性质学习方法:观察归纳;类比,转化教学重点:会运用函数图像理解和研究函数的性质.教学难点:应用函数图像求参数范围课前准备:1.教师准备:三角板、多媒体课件2.学生自备:笔、三角板考情分析:函数的图像作为函数性质的研究工具,频频在高考题中出现.主要考点及考查方向如下表:教学过程知识聚焦:(自主学习以下知识点)1.作图方法:描点法和利用基本函数图象变换作图;作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质即单调性、奇偶性、周期性、最值(甚至变化趋势);④描点连线,画出函数的图象2.三种图象变换:平移变换、对称变换和伸缩变换等等3.识图:分布范围、变化趋势、对称性、周期性等等方面.4.平移变换:(1)水平平移:函数的图像可以把函数的图像沿轴方向向左或向右平移个单位即可得到;(2)竖直平移:函数的图像可以把函数的图像沿轴方向向上或向下平移个单位即可得到.① y=f(x)y=f(x+h); ② y=f(x) y=f(x -h);③y=f(x) y=f(x)+h; ④y=f(x) y=f(x)-h.5.对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到; 6.翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到.7.伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;()y f x a =+()y f x =x (0)a >(0)a <||a ()y f x a =+()y f x =x (0)a >(0)a <||a h 左移→h 右移→h 上移→h 下移→()y f x =-()y f x =y ()y f x =-()y f x =x ()y f x =--()y f x =|()|y f x =()y f x =x x x x ()y f x =x (||)y f x =()y f x =y y y ()y f x =y ()y af x =(0)a >()y f x =(1)a >01a <<a(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到. ①y=f(x)y=f();②y=f(x)y=ωf(x). 链接教材:(学生自主回答)例题教学:考点一 函数图象的辨识【例1】函数y =x cos x +sin x 的图象大致为( ).规律方法 函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.【练习1】 (1)函数y =x sin x 在[-π,π]上的图象是( ).(2)函数y =x +cos x 的大致图象是( ).考点二 函数图象的变换【例2】函数f (x )=⎩⎪⎨⎪⎧3x (x ≤1),log 13x (x >1),则y =f (1-x )的图象是( ). ()y f ax =(0)a >()y f x =(1)a >01a <<1a ω⨯→x ωxω⨯→y规律方法 作图象平移时,要注意不要弄错平移的方向,必要时,取特殊点进行验证;平移变换只改变图象的位置,不改变图象的形状.【练习2】设函数f(x)的定义域为R ,则函数y=f(x-1)与y=f(1-x)的图像关系为( )A .直线y=0对称B .直线x=0对称C .直线y=1对称D .直线x=1对称 考点三 函数图象的应用【例3】已知函数y =f (x )的周期为2,当x ∈[-1,1]时,f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ).A .10个B .9个C .8个D .1个练习3:设f(x)是定义在R 上的偶函数,对任意的x ∈R ,f (2-x )=f (x+2)且当x ∈[-2,0]时,f(x)=x )21(-1,若关于x 的方程f(x)-log a (x+2)=0(a>1)在区间(-2,6]内恰有三个不同的实根,则实数a 的取值范围是【例4】已知不等式x 2-log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 练习4:设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________ . 规律方法 (1)利用函数的图象可解决方程和不等式的求解问题,如判断方程是否有解,有多少个解.数形结合是常用的思想方法.(2)利用图象,可观察函数的对称性、单调性、定义域、值域、最值等性质.课堂小结1.掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,来帮助我们简化作图过程.2.识图的要点:重点根据图象看函数的定义域、值域、奇偶性、单调性、特殊点(与x 、y 轴的交点,最高、最低点等).3.识图的方法(1)定性分析法:对函数进行定性分析,从而得出图象的上升(或下降)的趋势,利用这一特征分析解决;(2)定量计算法:通过定量的计算来分析解决;(3)排除法:利用本身的性能或特殊点进行排除验证.4.研究函数性质时一般要借助于函数图象,体现了数形结合思想;5.方程解的问题常转化为两熟悉的函数图象的交点个数问题来解决.。
高考培优课程数学讲义:函数图像及图像性质的应用【学生版】
高考培优 数学“函数图象及图象性质的应用””讲义编号:函数的图像与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用 因此,考生要掌握绘制函数图像的一般方法,掌握函数图像变化的一般规律,能利用函数的图像研究函数的性质1.(2013年高考数学四川卷理科第7题)函数331x x y =-的图象大致是( )。
A BC D作为问题变式,尝试绘制函数331x x y =-和函数33log 1x y x =-的大致图象。
2. 已知函数2()2,()2f x x x g x mx =-=+对任意的[]11,2x ∈-,存在[]01,2x ∈-,使得10()()g x f x =,求✧ 熟记基本函数的大致图像,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图像变换法 平移变换、对称变换、伸缩变换等✧ 高考中总是以几类基本初等函数的图像为基础来考查函数图像的 题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视✧ 问题1:函数()y f ax b =+的图象可以由函数()(0)y f ax ab =≠的图象经过怎样的变换而得到(其特征是自变量的系数相同)?✧ 问题2:函数()(0)y f a x a =+>的图象与函数()(0)y f a x a =->的图象之间存在怎样的关系(其特征是自变量系数互为相反数)?✧ 问题3:突破难点:“若函数()y f x =对任意的x R ∈,都有()()f x a f a x -=-,则函数的图象关于y 轴对称”和“函数()(0)y f x a a =->的图象与函数()(0)y f a x a =->的图象关于直线x a =对称”。
✧ 问题4:由函数()y f x =的图象怎样得到函数()y f x =和()y f x =的图象?例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ), (1)求证y =f (x )的图像关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和 (★☆☆☆☆)例2如图,点A 、B 、C 都在函数y =x 的图像上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC ′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论(★★☆☆☆)例3已知函数f (x )=ax 3+bx 2+cx +d 的图像如图,求b 的范围 (★★☆☆☆)例4(2000年高考数学全国卷理科第5题)函数cos y x x =-的部分图象是( )。
高考数学复习专题讲座 函数的连续及其应用
高考数学复习专题讲座 函数的连续及其应用 高考要求 函数的连续性是新增加的内容之一 它把高中的极限知识与大学知识紧密联在一起 在高考中,必将这一块内容溶入到函数内容中去,因而一定成为高考的又一个热点 本节内容重点阐述这一块知识的知识结构体系重难点归纳1 深刻理解函数f (x )在x 0处连续的概念等式lim 0x x →f (x )=f (x 0)的涵义是(1)f (x 0)在x =x 0处有定义,即f (x 0)存在;(2)lim 0x x →f (x )存在,这里隐含着f (x )在点x =x 0附近有定义;(3)f (x )在点x 0处的极限值等于这一点的函数值,即lim 0x x →f (x )=f (x 0) 函数f (x )在x 0处连续,反映在图像上是f (x )的图像在点x =x 0处是不间断的2 函数f (x )在点x 0不连续,就是f (x )的图像在点x =x 0处是间断的其情形(1)lim 0x x →f (x )存在;f (x 0)存在,但lim 0x x →f (x )≠f (x 0);(2)lim 0x x →f (x )存在,但f (x 0)不存在 (3) lim 0x x →f (x )不存在3 由连续函数的定义,可以得到计算函数极限的一种方法 如果函数f (x )在其定义区间内是连续的,点x 0是定义区间内的一点,那么求x →x 0时函数f (x )的极限,只要求出f (x )在点x 0处的函数值f (x 0)就可以了,即lim 0x x →f (x )=f (x 0)典型题例示范讲解例1已知函数f (x )=242+-x x , (1)求f (x )的定义域,并作出函数的图像;(2)求f (x )的不连续点x 0;(3)对f (x )补充定义,使其是R 上的连续函数命题意图 函数的连续性,尤其是在某定点处的连续性在函数图像上有最直观的反映 因而画函数图像去直观反映题目中的连续性问题也就成为一种最重要的方法知识依托 本题是分式函数,所以解答本题的闪光点是能准确画出它的图像错解分析 第(3)问是本题的难点,考生通过自己对所学连续函数定义的了解 应明确知道第(3)问是求的分数函数解析式技巧与方法 对分式化简变形,注意等价性,观察图像进行解答 解 (1)当x +2≠0时,有x ≠-2因此,函数的定义域是(-∞,-2)∪(-2,+∞)当x ≠-2时,f (x )=242+-x x =x -2, 其图像如上图(2)由定义域知,函数f (x )的不连续点是x 0=-2(3)因为当x ≠-2时,f (x )=x -2,所以)2(lim )(lim 22-=-→-→x x f x x =-4因此,将f (x )的表达式改写为f (x )=⎪⎩⎪⎨⎧-=--≠+-2)( 4)2( 242x x x x则函数f (x )在R 上是连续函数例2求证 方程x =a sin x +b (a >0,b >0)至少有一个正根,且它不大于a +b 命题意图 要判定方程f (x )=0是否有实根 即判定对应的连续函数y =f (x )的图像是否与x 轴有交点,因此根据连续函数的性质,只要找到图像上的两点,满足一点在x 轴上方,另一点在x 轴下方即可 本题主要考查这种解题方法 知识依托 解答本题的闪光点要找到合适的两点,使函数值其一为负,另一为正 错解分析 因为本题为超越方程,因而考生最易想到画图像观察,而忽视连续性的性质在解这类题目中的简便作用 证明 设f (x )=a sin x +b -x ,则f (0)=b >0,f (a +b )=a ·sin(a +b )+b -(a +b )=a [sin(a +b )-1]≤0,又f (x )在(0,a +b ]内是连续函数,所以存在一个x 0∈(0,a +b ],使f (x 0)=0,即x 0是方程f (x )=0的根,也就是方程x =a ·sin x +b 的根因此,方程x =a sin x +b 至少存在一个正根,且它不大于a +b例3已知函数f (x )=⎪⎩⎪⎨⎧≤<-≤≤-+-<)51( )1(log )11( )1()1( 32x x x x x x(1)讨论f (x )在点x =-1,0,1处的连续性;(2)求f (x )的连续区间 解 (1)lim 1--→x f (x )=3, lim 1+-→x f (x )=-1,所以lim 1-→x f (x )不存在, 所以f (x )在x =-1处不连续,但lim 1-→x f (x )=f (-1)=-1, lim 1--→x f (x )≠f (-1), 所以f (x )在x =-1处右连续,左不连续lim 1-→x f (x )=3=f (1), lim 1+→x f (x )不存在,所以lim 1→x f (x )不存在, 所以f (x )在x =1不连续,但左连续,右不连续又lim 0→x f (x )=f (0)=0,所以f (x )在x =0处连续(2)f (x )中,区间(-∞,-1),[-1,1],(1,5]上的三个函数都是初等函数,因此f (x )除不连续点x =±1外,再也无不连续点,所以f (x )的连续区间是(-∞,-1),[-1,1]和(1,5] 学生巩固练习 1 若f (x )=11113-+-+x x 在点x =0处连续,则f (0)等于( )A 23B 32 C 1 D 0 2 设f (x )=⎪⎪⎩⎪⎪⎨⎧<<=<<21 11 2110 x x x x 则f (x )的连续区间为( ) A (0,2) B (0,1) C (0,1)∪(1,2) D (1,2)3 x x x x arctan 4)2ln(lim 21--→ =_________4 若f (x )=⎪⎩⎪⎨⎧≥+<--0 0 11x bx a x x x 处处连续,则a 的值为_________ 5 已知函数f (x )=⎪⎪⎩⎪⎪⎨⎧=≠+-)0( 1)0( 121211x x x x (1)f (x )在x =0处是否连续?说明理由;(2)讨论f (x )在闭区间[-1,0]和[0,1]上的连续性 6 已知f (x )=⎪⎩⎪⎨⎧≥+<--)0()0(11x bx a x x x (1)求f (-x );(2)求常数a 的值,使f (x )在区间(-∞,+∞)内处处连续 7 求证任何一个实系数一元三次方程a 0x 3+a 1x 2+a 2x +a 3=0(a 0,a 1,a 2,a 3∈R ,a 0≠0)至少有一个实数根 8 求函数f (x )=⎪⎩⎪⎨⎧>-≤)1( )21(log )1( 2x x x x 的不连续点和连续区间 参考答案 1 解析 ]11][11)1()[11(]11)1()[11)(11()(3332332-+++++++++++-+++=x x x x x x x x x f2311111)0(1111)1(323=+++=++++++=f x x x 答案 A 2 解析 11lim )(lim 11==++→→x x x f 21)1(1)(lim ,1lim )(lim 111=≠===→→→--f x f x x f x x x即f (x )在x =1点不连续,显知f (x )在(0,1)和(1,2)连续 答案 C 3 解析 利用函数的连续性,即)()(lim 00x f x f x x =→, π=--=--∴→11arctan 4)12sin(11arctan 4)2sin(lim 221x x x答案 π1 21,0)(lim )(lim 21111lim 11lim )(lim :.400000=∴=+==-+=--=++---→→→→→a bx a x f x x x x f x x x x x 解析 答案 21 5 解 f (x )=⎪⎩⎪⎨⎧=≠+-)0( 1)0(12111x x x (1) lim 10-→x f (x )=-1, lim 0+→x f (x )=1,所以lim 0→x f (x )不存在, 故f (x )在x =0处不连续(2)f (x )在(-∞,+∞)上除x =0外,再无间断点,由(1)知f (x )在x =0处右连续,所以f (x )在[-1,0]上是不连续函数,在[0,1]上是连续函数6 解 (1)f (-x )=⎪⎩⎪⎨⎧≥-<-+)0( )0( 11x bx a x x x (2)要使f (x )在(-∞,+∞)内处处连续,只要f (x )在x =0连续, lim 0-→x f (x )= lim 0-→x x x --11=21111lim )11(lim 00=-+=-+--→→xx x x x x lim 0+→x f (x )=lim 0+→x (a +bx )=a , 因为要f (x )在x =0处连续,只要lim 0+→x f (x )= lim 0+→x f (x )= lim 0+→x f (x )=f (0),所以a =21 7 证明 设f (x )=a 0x 3+a 1x 2+a 2x +a 3,函数f (x )在(-∞,+∞)连续, 且x →+∞时,f (x )→+∞;x →-∞时,f (x )→-∞,所以必存在a ∈(-∞,+∞),b ∈(-∞,+∞),使f (a )·f (b )<0,所以f (x )的图像至少在(a ,b )上穿过x 轴一次,即f (x )=0至少有一实根 8 解 不连续点是x =1,连续区间是(-∞,1),(1,+∞)课前后备注。
届高考数学一轮复习讲义专题一函数图象与性质的综合应用PPT课件
对于②,m=1,n=2 时,
f(x)=ax(1-x)2=a(x3-2x2+x),
f′(x)=a(3x2-4x+1)=a(x-1)(3x-1), 令 f′(x)≥0,得 x≥1 或 x≤13, ∴f(x)在0,13上单调递增,符合题意. 对于③,m=2,n=1 时,f(x)=ax2(1-x)=a(x2-x3),
变式训练 3
函数 f(x)=axm(1-x)n 在区间[0,1]上的图象
如图所示,则 m,n 的值可能是________.
①m=1,n=1;
②m=1,n=2;
③m=2,n=1;
④m=3,n=1.
观察图象易知,a>0,f(x)在[0,1]上先增后减,但在 0,12上有增有减且不对称. 对于①,m=1,n=1 时,f(x)=ax(1-x)是二次函数,图象应 关于直线 x=12对称,不符合题意.
要点梳理
忆一忆知识要点
函数求值问题
例 1 设 f(x)=l2o×g3((tx+2+1)tx),,xx≥<00, 的值为________.
且 f(1)=6,则 f(f(-2))
首先根据 f(1)=6 求出 t 的取值,从而确定函数解析式,然后 由里到外逐层求解 f(f(-2))的值,并利用指数与对数的运算 规律求解函数值.
探究提高
解决抽象函数问题的关键是灵活利用抽象函数的性质,利用 函数的单调性去掉函数符号是解决问题的关键,由函数为奇 函数可知,不等式的解集关于原点对称,所以只需求解 x>0 时的解集即可.
变式训练 2
设函数 f(x)=log12x,x>0, log2(-x),x<0,
的取值范围是____________.
∵1>0,∴f(1)=2×(t+1)=6, 即 t+1=3,解得 t=2. 故 f(x)=l2o×g33(xx,2+2)x,≥x0<,0, 所以 f(-2)=log3[(-2)2+2]=log36>0. f(f(-2))=f(log36)=2×3log36=2×6=12.
第11讲 函数的图像
第10讲 函数的图像【考点解读】1. 掌握基本函数图象的作法——描点法和图象变换法; 2. 会运用函数图象,理解研究函数的性质;3. 会看图得到相关信息,即学会作图、识图、用图.【知识扫描】1.基本函数的图象要熟记:一次函数、二次函数、反比例函数、幂函数、指数函数、对数函数、三角函数以及常用函数:y= ,y=x+ .(图象略)2.函数图象的基本作法有两种:描点法 和 图象变换法. (1)描点法作图的基本步骤是:列表、描点、连线画函数图象时有时也可利用函数的性质如单调性、奇偶性、对称性、周期性等 以及图象上的特殊点、线(如对称轴、渐近线等)(2)图象的变换是指一个函数的图象经过适当的变换,得到另一个与之有关的函数图象 在高考中要求学生掌握的三种变换是:平移变换、对称变换和伸缩变换 3.常用函数图象变换的规律.(1)平移变换:y=f(x)的图象向左(+)或向右(-)平移a(a>0)个单位长度得到函数y=f(x ±a)的图象;y=f(x)的图象向上(+)或向下(-)平移k(k>0)个单位长度得到函数y=f(x)±k.(2)对称变换:y=f(x)与y=f(-x)的图象关于y 轴 对称:y=f(x)与y= -f(x)的图象关于x 轴对称;y=f(x)与y= -f(-x)的图象关于原点对称;y=|f(x)|的图象可将函数y=f(x)的图象在x 轴下方的部分以x 轴为对称轴翻折到x 轴上方,其余部分不变; y=f(|x|)的图象可将函数y=f(x)的图象在x ≥0的部分作出,再用偶函数的图象关于y 轴对称,作出x<0的图象.(3)伸缩变换: y=kf(x)(k>0) 的图象可将函数y=f(x)的图象上所有点纵坐标变为原来的k 倍,横坐标不变而得到.y=f(ωx)(ω>0)的图象可将函数y=f(x)的图象上所有点的横坐标变为原来的1ω,纵坐标不变得到;(4)函数y=f(a+x)与y=f(a-x)的图象关于x =0对称,y=f(a+x)与y=(b-x)的图象关于2b ax -= 对称.【考计点拨】牛刀小试1.(2011高考陕西卷)设函数()()f x x R ∈满足()(),(2)(),f x f x f x f x -=+=,则()y f x =的图像可能是( )a xbc xd ++ax答案:B2.函数()y f x =与()y g x =的图像如下图:则函数()()y f x g x =⋅的图像可能是( )A B C D【答案】A【解析】∵函数()()y f x g x =⋅的定义域是函数()y f x =与()y g x =的定义域的交集(,0)(0,)-∞+∞ ,图像不经过坐标原点,故可以排除C 、D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目高中数学复习专题讲座函数图象及图象性质的应用高考要求函数的图象与性质是高考考查的重点内容之一,它是研究和记忆函数性质的直观工具,利用它的直观性解题,可以起到化繁为简、化难为易的作用 因此,考生要掌握绘制函数图象的一般方法,掌握函数图象变化的一般规律,能利用函数的图象研究函数的性质重难点归纳1 熟记基本函数的大致图象,掌握函数作图的基本方法 (1)描点法 列表、描点、连线;(2)图象变换法 平移变换、对称变换、伸缩变换等2 高考中总是以几类基本初等函数的图象为基础来考查函数图象的 题型多以选择与填空为主,属于必考内容之一,但近年来,在大题中也有出现,须引起重视典型题例示范讲解例1对函数y =f (x )定义域中任一个x 的值均有f (x +a )=f (a -x ),(1)求证y =f (x )的图象关于直线x =a 对称;(2)若函数f (x )对一切实数x 都有f (x +2)=f (2-x ),且方程f (x )=0恰好有四个不同实根,求这些实根之和命题意图 本题考查函数概念、图象对称问题以及求根问题知识依托 把证明图象对称问题转化到点的对称问题错解分析 找不到问题的突破口,对条件不能进行等价转化技巧与方法 数形结合、等价转化(1)证明 设(x 0,y 0)是函数y =f (x )图象上任一点,则y 0=f (x 0), ∵2)2(00x x a +-=a , ∴点(x 0,y 0)与(2a -x 0,y 0)关于直线x =a 对称, 又f (a +x )=f (a -x ),∴f (2a -x 0)=f [a +(a -x 0)]=f [a -(a -x 0)]=f (x 0)=y 0,∴(2a -x 0,y 0)也在函数的图象上,故y =f (x )的图象关于直线x =a 对称(2)解 由f (2+x )=f (2-x )得y =f (x )的图象关于直线x =2对称,若x 0是f (x )=0的根,则4-x 0也是f (x )=0的根,若x 1是f (x )=0的根,则4-x 1也是f (x )=0的根,∴x 0+(4-x 0)+ x 1+(4-x 1)=8即f (x )=0的四根之和为8 例2如图,点A 、B 、C 都在函数y =x 的图象上,它们的横坐标分别是a 、a +1、a +2 又A 、B 、C 在x 轴上的射影分别是A ′、B ′、C ′,记△AB ′C 的面积为f (a ),△A ′BC′的面积为g (a )(1)求函数f (a )和g (a )的表达式;(2)比较f (a )与g (a )的大小,并证明你的结论 命题意图 本题考查函数的解析式、函数图象、识图能力、图形的组合等 知识依托 充分借助图象信息,利用面积问题的拆拼以及等价变形找到问题的突破口 错解分析 图形面积不会拆拼 技巧与方法 数形结合、等价转化 解 (1)连结AA ′、BB ′、CC ′, 则f (a )=S △AB ′C =S 梯形AA ′C ′C -S △AA ′B ′-S △CC ′B =21(A ′A +C ′C )=21(2++a a ), g (a )=S △A ′BC ′=21A ′C ′·B ′B =B ′B1(2)()()2f ag a -=12=-102=< ∴f (a )<g (a )例3已知函数f (x )=ax 3+bx 2+cx +d 的图象如图,求b 的范围解法一 观察f (x )的图象,可知函数f (x )的图象过原点,即f (0)=0,得d =0, 又f (x )的图象过(1,0),∴f (x )=a +b +c ①又有f (-1)<0,即-a +b -c <0 ②①+②得b <0,故b 的范围是(-∞,0)解法二 如图f (0)=0有三根0,1,2,∴f (x )=ax 3+bx 2+cx +d =ax (x -1)(x -2)=ax 3-3ax 2+2ax ,∴b =-3a ,∵当x>2时,f (x )>0,从而有a >0,∴b <0学生巩固练习1 当a ≠0时,y =ax +b 和y =b ax 的图象只可能是( )2某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y轴表示离学校的距离,x轴表示出发后的时间,则适合题意的图形是()3已知函数f(x)=log2(x+1),将y=f(x)的图象向左平移1个单位,再将图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数y=g(x)的图象,则函数F(x)=f(x)-g(x)的最大值为_________三、解答题4如图,在函数y=lg x的图象上有A、B、C三点,它们的横坐标分别为m,m+2,m+4(m>1)(1)若△ABC面积为S,求S=f(m);(2)判断S=f(m)的增减性5如图,函数y=23|x|在x∈[-1,1]的图象上有两点A、B,AB∥Ox轴,点M(1,m)(m∈R且m>23)是△ABC的BC边的中点(1)写出用B点横坐标t表示△ABC面积S的函数解析式S=f(t);(2)求函数S=f(t)的最大值,并求出相应的C点坐标6已知函数f(x)是y=1102+x-1(x∈R)的反函数,函数g(x)的图象与函数y=-21-x的图象关于y轴对称,设F(x)=f(x)+g(x)(1)求函数F(x)的解析式及定义域;(2)试问在函数F(x)的图象上是否存在两个不同的点A、B,使直线AB 恰好与y轴垂直?若存在,求出A、B的坐标;若不存在,说明理由7已知函数f1(x)=21x-,f2(x)=x+2,(1)设y =f (x )=⎩⎨⎧∈--∈]1,0[ ),(3)0,1[ ),(21x x f x x f ,试画出y =f (x )的图象并求y =f (x )的曲线绕x 轴旋转一周所得几何体的表面积;(2)若方程f 1(x +a )=f 2(x )有两个不等的实根,求实数a 的范围(3)若f 1(x )>f 2(x -b )的解集为[-1,21],求b 的值 8 设函数f (x )=x +x1的图象为C 1,C 1关于点A (2,1)对称的图象为C 2,C 2对应的函数为g (x )(1)求g (x )的解析表达式;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点坐标;(3)解不等式log a g (x )<log a 29 (0<a <1) 参考答案 1 解析 ∵y =b ax =(b a )x ,∴这是以b a 为底的指数函数 仔细观察题目中的直线方程可知 在选择支B 中a >0,b >1,∴b a >1,C 中a <0,b >1,∴0<b a <1,D 中a <0,0<b <1,∴b a >1 故选择支B 、C 、D 均与指数函数y =(b a )x 的图象不符合 答案 A 2 解析 由题意可知,当x =0时,y 最大,所以排除A 、C 又一开始跑步,所以直线随着x 的增大而急剧下降 答案 D 3 解析 g (x )=2log 2(x +2)(x >-2)F (x )=f (x )-g (x )=log 2(x +1)-2log 2(x +2)=log 21441log 441log )2(122222+++=+++=++x x x x x x x x )1(21111log 2->++++=x x x ∵x +1>0,∴F (x )≤41log 211)1(21log 22=++⋅+x x =-2 当且仅当x +1= 11+x ,即x =0时取等号 ∴F (x )max =F (0)=-2答案 -2 4 解 (1)S △ABC =S 梯形AA ′B ′B +S 梯形BB ′C ′C -S 梯形AA ′C ′C(2)S =f (m )为减函数 5 解 (1)依题意,设B (t ,23 t ),A (-t , 23t )(t >0),C (x 0,y 0) ∵M 是BC 的中点 ∴20x t +=1,2230y t + =m ∴x 0=2-t ,y 0=2m -23t 在△ABC 中,|AB |=2t ,AB 边上的高h AB =y 0-23t =2m -3t ∴S =21|AB |·h AB = 21·2t ·(2m -3t ),即f (t )=-3t 2+2mt ,t ∈(0,1) (2)∵S =-3t 2+2mt =-3(t -3m )2+32m ,t ∈(0,1],若⎪⎪⎩⎪⎪⎨⎧>≤<23130m m , 即23<m ≤3, 当t =3m 时,S max =32m ,相应的C 点坐标是(2-3m , 23m ), 若3m >1,即m >3 S =f (t ) 在区间(0,1]上是增函数, ∴S max =f (1)=2m -3,相应的C 点坐标是(1,2m -3) 6 解 (1)y =1102+x -1的反函数为f (x )=lg xx +-11(-1<x <1) 由已知得g (x )=21+x ,∴F (x )=lg x x +-11+21+x ,定义域为(-1,1) (2)用定义可证明函数u =x x +-11=-1+12+x 是(-1,1)上的减函数,且y =lg u 是增函数∴f (x )是(-1,1)上的减函数,故不存在符合条件的点A 、B 7 解 (1)y =f (x )=⎪⎩⎪⎨⎧∈+--∈-]1,0[,1)0,1[,12x x x x 的图像如图所示y =f (x )的曲线绕x 轴旋转一周所得几何体是由一个半径为1的半球及底面半径和高均为1的圆锥体组成,其表面积为(2+2)π(2)当f 1(x +a )=f 2(x )有两个不等实根时,a 的取值范围为2-2<a ≤1(3)若f 1(x )>f 2(x -b )的解集为[-1,21],则可解得b 8 (1)g (x )=x -41-x (2)b =4时,交点为(5,4);b =0时,交点为(3,0)(3)不等式的解集为{x |4<x <29或x >6}课前后备注。