2020最新中考数学专题训练真题及答案
2020年中考数学三角形专题练习(含答案)
2020年中考数学三角形专题练习【名师精选全国真题,值得下载练习】一.选择题(每题3分,共30分)1.如图,小明用铅笔可以支起一张质地均匀的三角形卡片,则他支起的这个点应是三角形的()A.三边中线的交点B.三条角平分线的交点C.三边高的交点D.三边垂直平分线的交点2.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A.2 B.2.5 C.3 D.43.如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AC,则∠BCD的度数等于()A.20°B.30°C.40°D.50°4.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°5.适合下列条件的△ABC中,直角三角形的个数为()(1)a=b,∠A=45°(2)∠A=32°,∠B=58°,(3)a=5,b=12,c=13,(4)a=52,b=122,c=132,A.1个B.2个C.3个D.4个6.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=40°,∠P=38°,则∠C的度数为()A.36°B.39°C.38°D.40°7.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a,最大等边三角形的边长为b,则a与b的关系为()A.b=3a B.b=5a C.b=a D.b=a8.如图,在△ABC中,BA=BC,∠ABC=120°,AB的垂直平分线交AC于点M,交AB于点E,BC的垂直平分线交AC于点N,交BC于点F,连接BM,BN,若AC=24,则△BMN的周长是()A.36 B.24 C.18 D.169.如图,在Rt△ABC中,AC=BC,∠ACB=90°,D为AB的中点,E为线段AD上一点,过E点的线段FG交CD的延长线于G点,交AC于F点,且EG=AE.分别延长CE,BG交于点H,若EH平分∠AEG,HD平分∠CHG则下列说法:①∠GDH =45°;②GD=ED;③EF=2DM;④CG=2DE+AE,正确的是()A.①②③B.①②④C.②③④D.①②③④10.如图,在Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P 作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②PF=P A;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(每题3分,共30分)11.如图,△ABC为等边三角形,D、E分別是AC、BC上的点,且AD=CE,AE与BD 相交于点P,BF⊥AE于点F.若PF=4,PD=1,则AE的长为.12.已知等腰△ABC中,顶角∠A为36°,BD平分∠ABC交AC于D,那么AD:AC =.13.如图,等边△ABC外一点P,连接AP、BP、CP,AH垂直平分PC于点H,∠BAP 的平分线交PC于点D,连接BD,有以下结论:①DP=DB;②DA+DB=DC;③DA ⊥BP;④若连接BH,当△BDH为等边三角形时,则CP=3DP,其中正确的有.(只需要填写序号)14.已知点O是三角形ABC的重心,DE经过点O且平行于BC,则△ADE与四边形DBCE的面积比为.15.如图,在△ABC中,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =5cm,AC=3cm,BC=4cm,则△DEB的周长为.16.如图,将△ABC沿BC方向平移得到△DEF,△ABC与△DEF重叠部分(图中阴影部分)的面积是△ABC的面积的一半,已知BC=2,△ABC平移的距离为.17.在△ABC中,边BC、AC上的中线AD、BE相交于点G,AD=6,那么AG=.18.如图,在△ABC中,中线BD,CE相交于点O,若S△ABC=4,则S△DOE=.19.在△ABC中,AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,则AC=,AB=.20.如图,∠MAN是一个钢架结构,已知∠MAN=15°,在角内部构造钢条BC,CD,DE,……且满足AB=BC=CD=DE=……则这样的钢条最多可以构造根.三.解答题(每题8分,共40分)21.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.22.如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=25°,求∠A的度数.23.已知如图1,在△ABC中,∠ACB=90°,BC=AC,点D在AB上,DE⊥AB交BC 于E,点F是AE的中点.(1)线段FD与线段FC的数量关系,位置关系;(2)如图2,将△BDE绕点B逆时针旋转a(0°<a<90°),其它条件不变,线段FD 与线段FC的关系是否变化,写出你的结论并证明;(3)将△BDE绕点B逆时针旋转一周,如果BC=4,BE=2,直接写出线段BF的范围.24.已知,如图,∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC.求证:E是CD的中点.25.△ABC是等边三角形,BD是角平分线,过点D作DE⊥AB于E,交BC边的延长线于点F,AE=2.(1)求证:△DCF是等腰三角形;(2)求BF的长.参考答案一.选择题1.解:∵支撑点应是三角形的重心,∴三角形的重心是三角形三边中线的交点,故选:A.2.解:作DE⊥AB于E,如图,在Rt△ABC中,BC==8,∵AD是△ABC的一条角平分线,DC⊥AC,DE⊥AB,∴DE=DC,设DE=DC=x,S△ABD=DE•AB=AC•BD,即10x=6(8﹣x),解得x=3,即点D到AB边的距离为3.故选:C.3.解:∵AB=AC,∠A=40°,∴∠ABC=∠ACB=70°.∵DE垂直平分AC,∴AD=CD,∴∠A=∠ACD=40°∴∠BCD=∠ACB﹣∠ACD=30°.故选:B.4.解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.5.解:(1)∵a=b,∠A=45°,∴∠A=∠B=45°,∴∠C=90°,∴△ABC是直角三角形;(2)∵∠A=32°,∠B=58°,∴∠C=90°,∴△ABC是直角三角形;(3)a=5,b=12,c=13,∴a2+b2=c2,∴∠C=90°,△ABC是直角三角形;(4)a=52,b=122,c=132,∴a2+b2≠c2,∴△ABC不是直角三角形.∴是直角三角形的有(1)(2)(3).故选:C.6.解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠P=38°,∴∠C=2×38°﹣40°=36°,故选:A.7.解:设第二个小的等边三角形的边长为x,则第三个小的等边三角形的边长为:x+a,第四个小的等边三角形的边长为:x+2a,最大的个小的等边三角形的边长b=x+3a,又∵b=3x,∴3x=x+3a,∴x=a,∴b=3x=a,故选:D.8.解:∵直线ME为线段AB的垂直平分线,∴MA=MB(线段垂直平分线上的点到线段两端点的距离相等),又直线NF为线段BC的垂直平分线,∴NB=NC(线段垂直平分线上的点到线段两端点的距离相等),∴△BMN的周长=BM+MN+BN=AM+MN+NC=AC=24(等量代换),故选:B.9.解:∵AC=BC,∠ACB=90°,AD=DB,∴CD⊥AB,CD=AD=DB,∠A=∠CBD=45°,∵EH平分∠AEG,∴∠AEH=∠GEH∵∠AEH+∠AEC=180°,∠GEH+∠CEG=180°,∴∠AEC=∠CEG,∵AE=GE,EC=EC,∴△AEC≌△GEC(SAS),∴CA=CG,∠A=∠CGE=45°,∵∠EDG=90°,∴∠DEG=∠DGE=45°,∴DE=DG,∠AEF=∠DEG=∠A=45°,故②正确,∴∠AFE=∠CFG=90°,∴∠FCG=∠FGC=45°,∴CF=FG,∵∠ADC=∠GFC=90°,∠ACD=∠GCF,AC=GC,∴△ADC≌△GFC(AAS),∴AD=CF=FG,∵AE=EG,∴EF=DE,∵DE=DG,∠CDE=∠BDG=90°,DC=DB,∴△EDC≌△GDB(SAS),∴∠ECD=∠DBG,EC=GB,∵∠DHC=∠DHB,∠HCD=∠HBD,HD=HD,∴△HDC≌△HDB(AAS),∴HC=HB,∴HE=EG,∵∠DHE=∠DHG,DH=DH,∴△HDE≌△HDG(SAS),∴∠HDG=∠HDE=45°,故①正确,∴DE=DM,EF=DE≠2DM,故③错误,作ET∥AC交CD于T.∵∠DET=∠A=45°,∠DTE=∠ACD=45°,∴DE=DT=DG,∵DA=DC,∴AE=CT,∴CG=CT+TG=AE+2DG,故④正确,故选:B.10.解:在△ABC中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD、BE分别平分∠BAC、∠ABC,∴∠BAD+∠ABE=(∠BAC+∠ABC)=45°,∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF⊥AD,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB,在△ABP和△FBP中,,∴△ABP≌△FBP(ASA),∴∠BAP=∠BFP,AB=FB,P A=PF,故②正确.在△APH和△FPD中,∴△APH≌△FPD(ASA),∴PH=PD,故③正确.∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确.故选:D.二.填空题(共10小题)11.解:∵△ABC是等边三角形,∴AB=AC.∴∠BAC=∠C.在△ABD和△CAE中,,∴△ABD≌△CAE(SAS).∴∠ABD=∠CAE,BD=AE,∴∠APD=∠ABP+∠P AB=∠BAC=60°.∴∠BPF=∠APD=60°.∵∠BFP=90°,∠BPF=60°,∴∠PBF=30°.∴BP=2PF=8,∵PD=1,∴BD=BP+PD=9,∴AE=BD=9.故答案为9.12.解:假设AB=AC=1,那么在△ACB和△BCD中,∠C=∠C,∠A=∠CBD=36°,∴△ACB∽△BCD,∴AC:BC=BC:DC,∴AC:BC=BC:DC,而BC=BD=DA(等腰的性质)所以设AD=x,那么CD=1﹣x,1:x=x:(1﹣x),所以舍负根,得到:x=,∴AD:AC=.13.解:①∵AH是PC的垂直平分线,∴P A=AC=AB,∵AD平分∠P AB,∴∠P AD=∠BAD,在△P AD和△BAD中,,∴△P AD≌△BAD(SAS),∴DP=DB;故①符合题意;②在CP上截取CQ=PD,连接AQ,如图所示:∵AP=AC,∴∠APD=∠ACQ,在△APD和△ACQ中,,∴△APD≌△ACQ(SAS),∴AD=AQ,∠CAQ=∠P AD,∴∠BAC=∠CAQ+∠BAQ=∠P AD+∠BAQ=∠BAD+∠BAQ=∠DAQ=60°,∴△ADQ为等边三角形,∴DA=DQ,∴DC=DQ+CQ=DA+DB,即DA+DB=DC.故②符合题意;③∵AB=AP,AD平分∠P AB,∴AD⊥PB,故③符合题意;④∵AH垂直平分PC,∴PH=CH,∵△BDH为等边三角形,∴DB=DH,∵PD=DB,∴PD=DH,∴PH=2PD,∴CP=4PD,故④不合题意,故答案为:①②③.14.解:连接AO并延长交BC于F,如图,∵点O是三角形ABC的重心,∴OA=2OF,∴AO:AF=2:3,∵DE∥BC,∴△ADE∽△ABC,∴=()2=,∴△ADE与四边形DBCE的面积比为4:5.故答案为4:5.15.解:∵AD平分∠CAB交BC于D,DE⊥AB,DC⊥AC,∴DC=DE,在Rt△ADC和△ADE中,∴Rt△ADC≌△ADE(HL),∴AE=AC=3,∴BE=AB=5﹣3=2,∴△DEB的周长=BE+BD+DE=BE+BD+CD=BE+BC=2+4=6(cm).故答案为6cm.16.解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥EG,∴△ABC∽△GEC,∴=()2=,∴BC:EC=:1,∵BC=2,∴EC=,∴△ABC平移的距离为:BE=2﹣,故答案为2﹣.17.解:∵AD、BE为△ABC的中线,且AD与BE相交于点G,∴G点是三角形ABC的重心,∴AG===4,故答案为4.18.解:∵BD,CE分别是边AC,AB上的中线,∴DE是△ABC的中位线,∴DE∥BC,DE=,∴△DOE∽△BOC,,∴S△DOE=S△BDE=S△ABD=S△ABC==,故答案为.19.解:∵AD是BC边上的中线,AC=2BC,∴BD=CD,设BD=CD=x,AB=y,则AC=4x,分为两种情况:①AC+CD=60,AB+BD=40,则4x+x=60,x+y=40,解得:x=12,y=28,即AC=4x=48,AB=28;②AC+CD=40,AB+BD=60,则4x+x=40,x+y=60,解得:x=8,y=52,即AC=4x=32,AB=52,BC=2x=16,此时不符合三角形三边关系定理;综合上述:AC=48,AB=28.故答案为:48;28.20.解:∵BC=AB,∴∠BCA=∠A=15°,∴∠DBC=∠BCA+∠A=30°.同理,∠CDB=∠DBC=30°,∴∠DCE=∠CDB+∠A=45°,∠DEC=∠DCE=45°,∴∠FDE=∠DEC+∠A=60°,∠DFE=∠FDE=60°,∴∠FEM=∠DFE+∠A=90°.再作与AB相等的线段时,90°的角不能是底角,则最多能作出的线段是:BC、CD、DE、EF共有5条.故答案是:5.三.解答题(共5小题)21.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.22.(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD,∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=25°,∴∠ACB=2∠ECD=50°,∵AB=AC,∴∠ABC=∠ACB=50°,∴∠A=180°﹣50°﹣50°=80°.23.解:(1)如图1中,∵∠ADE=∠ACE=90°,AF=FE,∴DF=AF=EF=CF,∴∠F AD=∠FDA,∠F AC=∠FCA,∴∠DFE=∠FDA+∠F AD=2∠F AD,∠EFC=∠F AC+∠FCA=2∠F AC,∵CA=CB,∠ACB=90°,∴∠BAC=45°,∴∠DFC=∠EFD+∠EFC=2(∠F AD+∠F AC)=90°,∴DF=FC,DF⊥FC,故答案为:DF=FC,DF⊥FC.(2)结论不变.理由:如图2中,延长AC到M使得CM=CA,延长ED到N,使得DN=DE,连接BN、BM.EM、AN,延长ME交AN于H,交AB于O.∵BC⊥AM,AC=CM,∴BA=BM,同法BE=BN,∵∠ABM=∠EBN=90°,∴∠NBA=∠EBM,∴△ABN≌△MBE,∴AN=EM,∴∠BAN=∠BME,∵AF=FE,AC=CM,∴CF=EM,FC∥EM,同法FD=AN,FD∥AN,∴FD=FC,∵∠BME+∠BOM=90°,∠BOM=∠AOH,∴∠BAN+∠AOH=90°,∴∠AHO=90°,∴AN⊥MH,FD⊥FC.(3)如图3中,当点E落在AB上时,BF的长最大,最大值=3如图4中,当点E落在AB的延长线上时,BF的值最小,最小值=.综上所述,≤BF≤3.24.证明:作EF⊥AB于点F,∵∠C=∠D=90°,E是CD上一点,AE、BE分别平分∠DAB、∠ABC,∴EF=ED,EF=EC,∴ED=EC,∴点E为CD的中点.25.证明:(1)∵△ABC是等边三角形,BD是中线,∴∠A=∠ACB=60°,AC=BC,AD=CD=AC,∵DE⊥AB于E,∴∠ADE=90°﹣∠A=30°,∴CD=AD=2AE=4,∴∠CDF=∠ADE=30°,∴∠F=∠ACB﹣∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴△DCF是等腰三角形,(2)∵DC=CF,∴BF=BC+CF=2AD+AD=12。
2020年中考数学专题训练-疫情专题03(有答案解析)
实际应用:如图3,若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB=66°,∠POB=30°,OP=4km,试求△MON的面积.(结果精确到0.1km2)(参考数据:sin66°≈0.91,tan66°≈2.25, ≈1.73)
(1)该药店第一周口罩的销售袋数比医用酒精的销售瓶数多100,且第一周这两种防护用品的总销售额为9000元,求该药店第一周销售口罩多少袋?
(2)由于疫情紧张,该药店为了帮助大家共渡难关,第二周口罩售价降低了 ,销量比第一周增加了 ,医用酒精的售价保持不变,销量比第一周增加了 ,结果口罩和医用酒精第二周的总销售额比第一周增加了 ,求 的值.
10.今年年初,我国爆发新冠肺炎疫情,某省邻近县市C、D获知A、B两市分别急需救援物资200吨和300吨的消息后,决定调运物资支援.已知C市有救援物资240吨,D市有救援物资260吨,现将这些救援物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从C市运往A市的救援物资为x吨.
参考答案
1.A
【解析】
【分析】
将三个小区分别记为A、B、C,列举出所有等情况数和他们恰好抽到同一个小区的情况数,然后根据概率公式即可得出答案.
【详解】
将三个小区分别记为A、B、C,根据题意列表如下:
A
B
C
A
(A,A)
(B,A)
(C,A)
B
(A,B)
(B,B)
(C,B)
2020中考数学专题-几何模型之隐圆问题-含答案
2020中考专题4——几何模型之隐圆问题班级姓名.【模型讲解】常见的隐圆模型有:(1)动点到定点的距离为定长;(2)四点共圆;(3)定边对定角(专题3)等.AD=AC=AB∠ADB=∠ACB2∠ADB=∠ACB∠BAC+∠BDC=180°【例题分析】例1.如图,已知AB=AC=AD,∠CBD=2∠BDC,∠BAC=44°,则∠CAD的度数为.例1图例2图例3图例2.在矩形ABCD中,已知2=,现有一根长为2cm的木棒EF紧贴着矩形的边BC cm=,3AB cm(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程cm.中所围成的图形的面积为2例3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若AB=8,则PM的最大值是。
例4.如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否存在最大值?若存在,求点P的坐标;若不存在,请说明理由.【巩固训练】1.如图1,矩形ABCD 中,2AB =,3AD =,点E 、F 分别AD 、DC 边上的点,且2EF =,点G 为EF 的中点,点P 为BC 上一动点,则PA PG +的最小值为.图1图22.如图2,在矩形ABCD 中,4AB =,6AD =,E 是AB 边的中点,F 是线段BC 边上的动点,将EBF ∆沿EF 所在直线折叠得到△EB F ',连接B D ',则B D '的最小值是.3.在平面直角坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且2AC =.设tan BOC m ∠=,则m 的取值范围是.4.如图3,在Rt ABC ∆中,90C ∠=︒,6AC =,8BC =,点F 在边AC 上,并且2CF =,点E 为边BC 上的动点,将CEF ∆沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是.图3图4图55.如图4,四边形ABCD 中,//DC AB ,1BC =,2AB AC AD ===.则BD 的长为.6.如图5,在四边形ABCD 中,AB =AC =AD ,若∠BAC =25°,∠CAD =75°,则∠BDC =,∠DBC =.7.足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图6的正方形网格中,点A ,B ,C ,D ,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在()A .点CB .点D 或点EC .线段DE (异于端点)上一点D .线段CD (异于端点)上一点图6图7图88.如图7,已知AB 是⊙O 的直径,PQ 是⊙O 的弦,PQ 与AB 不平行,R 是PQ 的中点,作PS ⊥AB ,QT ⊥AB ,垂足分别为S 、T (S ≠T ),并且∠SRT =60°,则PQAB的值等于.9.如图8,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC =.10.在平面直角坐标系中,已知点A (4,0)、B (-6,0),点C 是y 轴上的一个动点,当∠BCA =45°时,点C 的坐标为.11.如图9,Rt △ABC 中,∠C =90°,AC =3,BC =4,点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA =DE ,则AD 的取值范围是.图9图1012.如图10,在平面直角坐标系的第一象限内有一点B ,坐标为(2,m ).过点B 作AB ⊥y 轴,BC ⊥x 轴,垂足分别为A 、C ,若点P 在线段AB 上滑动(点P 可以与点A 、B 重合),发现使得∠OPC =45°的位置有两个,则m 的取值范围为.13.在锐角△ABC 中,AB =4,BC =5,∠ACB =45°,将△ABC 绕点B 按逆时针方向旋转得到△A ′B ′C ′。
2020年中考数学专题训练-疫情专题01(有答案解析)
A. B. C. D.
11.据环球报报道:中央应对新冠肺炎疫情工作领导小组3月23日明确,当前以武汉为主战场的全国本土疫情传播基本阻断.过去两个多月,中国为防控疫情做出的巨大努力有目共睹,受到了世卫组织和国际权威公共卫生专家的称赞.其他一些国家也在寻求借鉴中国的经验和防控措施.截止报道前,海外累计确诊病例约295000人次.将295000用科学记数法表示应为()
C.从图2在2月6日新增病例出现下降,可以估计2月6日后全国新型冠状病毒肺炎累计确诊病例的单日增长率会低于10%.
D.从表1可看出确诊病例较多的省市大部分都是在湖北周围,很大原因是由于携带病毒的流动人口造成的,所以控制疫情的有效手段是在家隔离,同时也可以推断在新疆和甘肃等西北地区疫情相对缓和.
8.2020年我国爆发“新冠肺炎”疫情,在党中央的坚强领导下,全国上下,众志成城,抗击疫情,截止2020年2月20号,累计确诊70637例,把数70637用科学记数法表示为( )
金额/元
5
10
20
50
100
人数
6
17
14
8
5
则他们捐款金额的平均数和中位数分别是()
A. B. C. D.
7.全国人民每天都很关心新型冠状病毒感染肺炎的全国疫情和湖北疫情,下面是2020年2月7日小明在网上看到的2020年2月6日有关全国和武汉的疫情统计图表:
图1全国疫情趋势图
图2新增确诊病例趋势图
故选:D.
【点睛】
本题考查的知识点是用科学记数法表示较大的数,需要注意的是当原数的绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.
2020初中数学中考专题复习——四边形中的线段最值问题专项训练3(附答案详解)
(1)如图①,当点 落在 边上时,求点 的坐标;
(2)如图②,当点 落在线段 上时, 与 交于点 .求点 的坐标;
(3)记 为矩形 对角线的交点, 为 的面积,求 的取值范围(直接写出结果即可).
A. B. C. D.
3.线段AB上有一动点C(不与A,B重合),分别以AC,BC为边向上作等边△ACM和等边△BCN,点D是MN的中点,连结AD,BD,在点C的运动过程中,有下列结论:①△ABD可能为直角三角形;②△ABD可能为等腰三角形;③△CMN可能为等边三角形;④若AB=6,则AD+BD的最小值为 .其中正确的是( )
【详解】
解:如图所示,作以BD为对称轴作N的对称点N',连接PN',MN',
根据轴对称性质可知,PN=PN',
∴PM-PN=PM-PN'≤MN',
当P,M,N'三点共线时,PM-PN'= MN',
∵正方形边长为4,
∴AC= AB=4 ,
∵O为AC中点,
∴AO=OC=2 ,
∵N为OA中点,
∴ON= ,
7.A
【解析】
【分析】
连接BD、BF,延长AC交GE于H,连接BH,证明四边形BNHM是矩形,得出MN=BH,由直角三角形的性质得出GH,AH的长,当BH⊥AG时,BH最小,由直角三角形的性质得出BH的长,即可得出答案.
【详解】
连接BD、BF,延长AC交GE于H,连接BH,如图所示:
∵四边形ABCD和四边形BEFG是菱形,∠DAB=60°,∴AD∥BC∥GF,AC⊥BD,BF⊥GE,BE=BG,AM=CM,EN=GN,∴∠GAH=30°,∠EBG=∠DAB=60°,∴△BEG是等边三角形,∴∠BGE=60°,∴∠AHG=90°,∴四边形BNHM是矩形,GH AG=4,AH GH=4 ,∴MN=BH,当BH⊥AG时,BH最小.
2020年中考数学复习 实际问题和二次函数 专题练习题及答案
实际问题与二次函数1.如图,桥拱是抛物线形,其函数的解析式为y=-14x2,当水位线在AB位置时,水面的宽为12米,这时水面离拱顶的高度h为( )A.8米B. 9米C. 10米D. 11米2. 如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,若水面下降2m,则水面宽度增加( )A.3mB. 2mC. 42-4D. 42-23. 向空中发射一枚炮弹,经x秒后的高度为y米,且时间与高度的关系为y=ax2+bx+c(a≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A.第10秒 B.第12秒 C.第14秒 D.第15秒6. 若抛物线y=-x2+8x-12的顶点是P,与x轴的两个交点是C,D两点,则△PCD的面积是( )A.11B. 10C. 9D. 87. 将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是( )A.11.5cm2B. 12cm2C. 12.5cm2D. 13cm28. 如图,线段AB=6,点C是AB上一点,点D是AC的中点,分别以AD,DC,CB为边作正方形,若三个正方形的面积之和最小,则AC为( )A.4B. 5C. 6D. 89. 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资与收益的关系为:每投入x万元,可获得利润P=-1100(x-60)2+41.每年最多可投入100万元的销售投资,则5年所获利润的最大值是( )A.200万元B.203万元C.204万元D.205万元10. 在某次比赛中,羽毛球的运动路线可以看作是抛物线的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式为( )12. 某菜农搭建一个横截面为抛物线的大棚,有关尺寸如图所示,若菜农身高为1.6米,则他在不弯腰的情况下在大棚里活动的范围是____米.13. 如图,在Rt△ABC中,∠C=90°,∠B=30°点P是AB边上的一个动点,过点P作PE⊥B C 于点E, 作PF⊥AC于点F,当PB=____时,四边形PECF的面积最大,最大值为____ cm214. 如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是____cm215. 如图,某大桥有一段抛物线形的拱梁,抛物线的解析式为y=ax2+bx.小强骑自行车从拱梁一端O沿直线匀速穿过拱梁部分的桥面OC,当小强骑自行车行驶10秒时和26秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面OC共需____s.16. 如图,在Rt△ABC中,∠B=90°,AB=8cm,BC=6cm, 点P从点A沿AB向B点以2cm/s 的速度移动,点Q从点B沿BC向C点以1cm/s的速度移动,如果P,Q分别从A,B同时出发,当△PBQ的面积最大时,运动时间t为____s.17. 如图所示,已知正方形ABCD的边长为1,E,F,G,H分别为各边上的点,且AE=BF=CG =DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数解析式为____,当x=____时,S的值最小。
2020 中考数学复习---概率, 统计专项练习题含答案
2020概率专题训练一、填空题:(每题3分,共36分)1、数 102030 中的 0 出现的频数为_____。
2、在一个装有 2 个红球,2 个白球的袋子里任意摸出一个球,摸出红球的可能性为__。
3、不可能发生是指事件发生的机会为_____。
4、“明天会下雨”,这个事件是_____事件。
(填“确定”或“不确定”)5、写出一个必然事件:_______________。
6、10把钥匙中有 3 把能打开门,今任取出一把,能打开门的概率为_____。
7、抛掷两枚骰子,则P(出现 2 个 6)=_____。
8、小射手为练习射击,共射击60次,其中36依次击中靶子的概率为_____。
9、小红随意在如图所示的地板上踢键子,则键子恰落在黑色方砖上的概率为_____。
10、足球场上,往往用抛硬币的方式来决定哪方先发球,吗?_____11、小明有两件上衣,三条长裤,则他有几种不同的穿法_____。
12、小红、小张,在一起做游戏,需要确定的游戏的先后顺序,他们约定用“剪子,包袱,锤子”的方式确定,小红取胜的概率是_____。
二、选择题:(每题 4 分,共 24 分)1、下列事件是必然发生的是()A、明天是星期一B、十五的月亮象细钩C、早上太阳从东方升起D、上街遇上朋友2、有五只灯泡,其中两只是次品,从中任取一只恰为合格品的概率为()A、20%B、40%C、50%D、60%3、抛掷一枚普遍的硬币三次,则下列等式成立的是()A、P(正正正)=P(反反反)B、P(正正正)=20%C、P(两正一反)=P(正正反)D、P(两反一正)=50%4、一个口袋里有1个红球,2个白球,3个黑球,从中取出一个球,该球是黑色的。
这个事件是()A、不确定事件B、必然事件C、不可能事件D、以上都不对5、在“石头、剪子、布”的游戏中,当你出“石头”时,对手与你打平的概率为()A、12B、13C、23D、146、从A、B、C、D四人中用抽筌的方式,选取二人打扫卫生,那么能选中A、B的概率为()A、14B、112C、12D、16三、解答题:(每题 9 分,共 54 分)1、一布袋中放有红、黄、白三种颜色的球各一,它们除颜色处其他都一个样,小明从中摸出一个球后放回摇匀,再摸出一个球,请你利用树状图分析可能出现的情况。
2020中考数学-动点问题专题训练(含答案)
中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥Q ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC =Q ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<<g g , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD Q ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD Q ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD Q ,∴EM BM AD BD=,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD Q ,∴FN CN AD CD=,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,CB →方向运动,当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒Q ,4AB BC cm ==,AC ∴== 90ADC ∠=︒Q ,30CAD ∠=︒,12DC AC ∴==AD ∴==故答案为:,(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒Q ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sin FC FNC NC∠=Q ,NC x =,4FC x ∴=,4NE DF x ∴==+ ∴点N 到ADx +; (3)sin FN NCF NC∠=Q ,FN x ∴=, P Q 为DC 的中点,PD CP ∴==4PF x ∴=+ PMN ∴∆的面积y =梯形MDFN 的面积PMD -∆的面积PNF -∆的面积111))222x x x =++-2784x x =++ 即y 是x 的二次函数,Q 08<, y ∴有最大值,当7x ==时,y=例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =剟,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:Q 四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥Q ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯g ,即211(1)44y x =+-, 又02x Q 剟, ∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯g ,即211(1)44y x =--+, 又02x Q 剟, ∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C 0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB = ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1)Q 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA =Q ,OC =tan AO ACO OC ∠==Q 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =, 30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒Q ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A Q 和C 0),∴直线AC 的解析式为23y x =-+,设(,2)3D a a -+,2DN ∴=+,BM a =90BDE ∠=︒Q ,90BDM NDE∴∠+∠=︒,90BDM DBM∠+∠=︒,DBM EDN∴∠=∠,90BMD DNE∠=∠=︒Q,BMD DNE∴∆∆∽,∴23DE DNBD BM+===.②如图 2 中,作DH AB⊥于H.在Rt ADH∆中,AD x=Q,30DAH ACO∠=∠=︒,1122DH AD x∴==,AH x==,2BH x∴=,在Rt BDH∆中,BD==,DE∴==∴矩形BDEF的面积为22612)y x x==-+,即2y=-+23)3y x∴=-+Q03>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB =Q ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=g gBOC ∆Q 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==27AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒=g ,11 1.522OMN S OM NE x x ∆∴==⨯g g ,28y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <„时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60(8 1.5)2MH BM x =︒=-g,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <„时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,122y MN OG x ∴==g g ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。
2020年九年级中考数学复习专题训练:《四边形综合 》(含答案)
中考数学复习专题训练:《四边形综合》1.问题发现:(1)如图①,在△ABC中,∠ACB=90°,AC=b,BC=a,点E是AC的中点,点F在BC 边上,将△ECF沿着EF折叠后得到△EPF,连接BP并使得BP最小,请画出符合题意的点P;问题探究:(2)如图②,已知在△ABC和△EBD中,∠ACB=∠BDE=90°,AC=BC=4,BD=DE =2,连接CE,点F是CE的中点,连接AF,求AF的最大值.问题解决:(3)西安大明宫遗址公园是世界文化遗产,全国重点文物保护单位,为了丰富同学们的课外学习生活,培养同学们的探究实践能力,周末光明中学的张老师在家委会的协助下,带领全班同学去大明宫开展研学活动.在公园开设的一处沙地考古模拟场地上,同学们参加了一次模拟考古游戏.张老师为同学们现场设计了一个四边形ABCD的活动区域,如图③所示,其中BD为一条工作人员通道,同学们的入口设在点A处,AD⊥BD,AD∥BC,∠DCB=60°,AB=2米.在上述条件下,小明想把宝物藏在距入口A尽可能远的C 处让小鹏去找,请问小明的想法是否可以实现?如果可以,请求出AC的最大值及此时△BCD区域的面积,如果不能,请说明理由.2.已知:如图,在菱形ABCD中,AC=2,∠B=60°.点E为边BC上的一个动点(与点B、C不重合),∠EAF=60°,AF与边CD相交于点F,联结EF交对角线AC于点G.设CE =x,EG=y.(1)求证:△AEF是等边三角形;(2)求y关于x的函数解析式,并写出x的取值范围;(3)点O是线段AC的中点,联结EO,当EG=EO时,求x的值.3.已知在正方形ABCD和正方形CEFG中,直线BG,DE交于点H.(1)如图1,当B,C,E共线时,求证:BH⊥DE.(2)如图2,把正方形CEFG绕C点顺时针旋转α度(0<α<90),M,N分别为BG,DE的中点,探究HM,HN,CM之间的数量关系,并证明你的结论.(3)如图3,∠PDG=45°,DH⊥PG于H,PH=2,HG=4.直接写出DH的长.4.[问题引入](1)如图1,在正方形ABCD中,E、F分别是BC、CD两边上的点,且AE⊥BF,垂足为点P.求证:AE=BF;[类比探究](2)如图2,把(1)中正方形ABCD改为矩形ABCD,且AD=2AB,其余条件不变,请你推断AE、BF满足怎样的数量关系,并说明你的理由;[实践应用](3)如图3,Rt△ABC中,∠BAC=30°,把△ABC沿斜边AC对折得到Rt△ADC,E、F分别为CD、AD边上的点,连接AE、BF,恰好使得AE⊥BF,垂足为点P.请求出的值.5.如图,已知正方形ABCD中,BC=4,AC、BD相交于点O,过点A作射线AM⊥AC,点E是射线AM上一点,联结OE交AB边于点F.以OE为一边,作正方形OEGH,且点A在正方形OEGH的内部,联结DH.(1)求证:△HDO≌△EAO;(2)设BF=x,正方形OEGH的边长为y,求y关于x的函数关系式,并写出定义域;(3)联结AG,当△AEG是等腰三角形时,求BF的长.6.阅读材料:等腰三角形具有性质“等边对等角”.事实上,不等边三角形也具有类似性质“大边对大角”,如图1,在△ABC中,如果AB>AC,那么∠ACB>∠ABC.证明如下:将AB沿△ABC的角平分线AD翻折(如图2),因为AB>AC,所以点B落在AC的延长线上的点B′处.于是,由∠ACB>∠B′,∠ABC=∠B′,可得∠ACB>∠ABC.(1)灵活运用:从上面的证法可以看出,折纸常常能为证明一个命题提供思路和方法.由此小明想到可用类似方法证明“大角对大边”,如图3,在△ABC中,如果∠ACB>∠ABC,那么AB>AC.小明的思路是:沿BC的垂直平分线翻折……请你帮助小明完成后面的证明过程.(2)拓展延伸:请运用上述方法或结论解决如下问题:如图4,已知M为正方形ABCD的边CD上一点(不含端点),连接AM并延长,交BC的延长线于点N.求证:AM+AN>2BD.7.探究:如图1和图2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,直接写出线段BE、DF和EF之间的数量关系;②如图2,若∠B、∠D都不是直角,但满足∠B+∠D=180°,线段BE、DF和EF之间的结论是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由.(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2.点D、E均在边BC边上,且∠DAE=45°,若BD=1,求DE的长.8.如图1,在矩形ABCD中,AB=4,AD=3,沿对角线AC剪开,再把△ADC沿AB方向平移,得到图2,其中A'D交AC于E,A'C'交BC于F.(1)在图2中,除△ABC与△C'DA'外,指出还有哪几对全等三角形(不能添加辅助线和字母),并选择一对加以证明;(2)设AA'=x.①当x为何值时,四边形A'ECF是菱形?②设四边形A'ECF的面积为y,求y的最大值.9.在正方形ABCD中,BD为对角线,点E在BD上,过点E作EF⊥CE,交AB于点F,连接CF.(1)如图①,求证:∠ECF=45°;(2)如图②,作FG⊥AB,交BD于点G,求证:DE=GE;(3)在(2)的条件下,如图③,延长FG交CE于点K,延长CE交AD于点M,连接MG、BK,若MG=2EK,GK=2,求线段BK的长.10.如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.11.如图,菱形ABCD中,AB=10,连接BD,点P是射线BC上一点(不与点B重合),AP 与对角线BD交于点E,连接EC.(1)求证:AE=CE;(2)若sin∠ABD=,当点P在线段BC上时,若BP=4,求△PEC的面积;(3)若∠ABC=45°,当点P在线段BC的延长线上时,请直接写出△PEC是等腰三角形时BP的长.12.如图,在正方形ABCD 中,P 是边BC 上的一动点(不与点B ,C 重合),点B 关于 直线AP 的对称点为E ,连接AE .连接DE 并延长交射线AP 于点F ,连接BF . (1)若∠BAP =α,直接写出∠ADF 的大小(用含α的式子表示); (2)求证:BF ⊥DF ;(3)连接CF ,用等式表示线段AF ,BF ,CF 之间的数量关系,并证明.13.已知正方形OABC 在平面直角坐标系中,点A ,C 分别在x 轴,y 轴的正半轴上,等腰直角三角形OEF 的直角顶点O 在原点,E ,F 分别在OA ,OC 上,且OA =4,OE =2.将△OEF 绕点O 逆时针旋转,得△OE 1F 1,点E ,F 旋转后的对应点为E 1,F 1. (Ⅰ)①如图①,求E 1F 1的长;②如图②,连接CF 1,AE 1,求证△OAE 1≌△OCF 1;(Ⅱ)将△OEF 绕点O 逆时针旋转一周,当OE 1∥CF 1时,求点E 1的坐标(直接写出结果即可).14.菱形ABCD中,E,F为边AB,AD上的点,CF,DE相交于点G.(1)如图1,若∠A=90°,DE=CF,求证:DE⊥CF;(2)如图2,若∠EGC+∠B=180°.求证:DE=CF;(3)如图3,在(1)的条件下,平移线段DE到MN,使G为CF的中点,连接BD交MN 于点H,若∠FCD=15°,BN=,请直接写出FG的长度.15.我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长.16.(1)观察猜想如图①,点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则△ADB 和△EAC是否全等?(填是或否),线段AB、AC、BD、CE之间的数量关系为.(2)问题解决如图②,在Rt△ABC中,∠ABC=90°,AC=6,AB=6,以AC为直角边向外作等腰Rt △DAC,连接BD,求BD的长.(3)拓展延伸如图③,在四边形ABCD中,∠ABC=∠ADC=90°,AB=5,AD=,DC=DA,CG⊥BD于点G,求CG的长,17.已知,在▱ABCD中,AB⊥BD,AB=BD,E为射线BC上一点,连接AE交BD于点F.(1)如图1,若点E与点C重合,且AF=2,求AD的长;(2)如图2,当点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N 在BC边上且BN=1,已知AB=4,请直接写出MN的最小值.18.如图,在矩形ABCD中,E是AB边上的一个动点,把△BCE沿CE折叠,使点B落在点F 处,过点F作GH∥CE,分别交AB、CD于点G、H.(1)求证:△EFG是等腰三角形;(2)如图①,若F是GH中点,求∠FGE的度数;(3)如图②,若点G与点A重合,AB=30,BC=20,求FH的长.19.在平面直角坐标系中,已知A(﹣4,0),B(4,0),点C,D在x轴上方,且四边形ABCD的面积为32,(1)若四边形ABCD是菱形,求点D的坐标.(2)若四边形ABCD是平行四边形,如图1,点E,F分别为CD,BC的中点,且AE⊥EF,求AE+2EF的值.(3)若四边形ABCD是矩形,如图2,点M为对角线AC上的动点,N为边AB上的动点,求BM+MN的最小值.20.在平面直角坐标系中,点O为坐标原点,正方形OABC与长方形DEFG的位置如图所示,点A在x轴的正半轴上,点C在y轴的正半轴上,点B的横坐标为a,点D,E在x轴的负半轴上(点E在点D的右侧),点G的坐标为(b,﹣b),DE=OA,实数a,b的值满足.(1)求点F的坐标;(2)长方形DEFG以每秒1个单位长度的速度向右平移t(t>0)秒得到矩形D'E'F'G',点D',E',F',G'分别为点D,E,F,G平移后的对应点,设矩形D'E'F'G'与正方形OABC 重合部分的面积为S,用含t的式子表示S,并直接写出相应的t的范围;(3)在(2)的条件下,在长方形DEFG出发运动的同时,点P从点O出发,沿正方形的边以每秒2个单位长度的速度顺时针方向运动(即O→C→B→A→O→C),连接PD',PG',当三角形PD'G'的面积为15时,求S>0时相应的t值,并直接写出此时刻S值及点P 的坐标.参考答案1.解:(1)如图①中,点P即为所求.当E,P,B共线时,BP的值最小.(2)如图②中,取BC的中点P,连接PA,PF.∵∠BDE=90°,BD=DE=2,∴BE=BD=4,∴CF=EF,CP=PB=2,∴PF=BE=2,∵∠ACP=90°,AC=4,CP=2,∴PA===2,∵AF≤PA+PF,∴AF≤2+2,∴AF的最大值为2+2.(3)如图③中,作△ABD的外接圆⊙O交CD于E,连接OE,EB,AC.∵∠DBC=90°,∠DCB=60°,∴∠CDB=30°,∴∠EOB=60°,∵EO=EB,∴△EOB是等边三角形,BE=OB=,∵∠ECB=60°,∴点C的运动轨迹是圆弧,不妨设圆心为P,连接PC,PE,PB,则∠EPB=2∠ECB=120°,作PT⊥BE于T,在Rt△PET中,∠PET=30°,ET=BT=BE=,∴PE=PB=PC==,∵∠EBO=60°,∠EBP=30°,∴∠ABP=90°,在Rt△ABP中,AP===13,∵AC≤PA+PC,∴AC≤13+,∴AC的最大值为13+,此时A,P,C共线,如图③﹣1中,作CW⊥AB于W.∵PB∥CW,∴==,∴==,∴CW=+1,BW=2,∴BC===,∴S=•BC•BD=•BC•BC=×(26+2)=13+.△BCD2.(1)证明:∵四边形ABCD为菱形,∴AB=BC,∵∠B=60°,∴△ABC为等边三角形,∴∠BAC=60°,AC=AB,∴∠BAE+∠EAC=60°,∵AB∥CD,∴∠BAC=∠ACF=60°,∵∠EAF=60°,即∠EAC+∠CAF=60°,∴∠BAE=∠CAF,在△AEB和△AFC中,,∴△AEB≌△AFC(ASA),∴AE=AF,∴△AEF为等边三角形;(2)解:过点A作AH⊥BC于点H,∵△AEF为等边三角形,∴AE=EF=,∠AEF=60°,∵∠ABH=60°,∴,BH=HC=1,∴EH=|x﹣HC|=|x﹣1|,∴EF==,∵∠AEF=∠B=60°,∴∠CEG+∠AEB=∠AEB+∠BAE=120°,∴∠CEG=∠BAE,∵∠B=∠ACE=60°,∴△BAE∽△CEG,∴,∴,∴y=EG=(0<x<2),(3)解:∵AB=2,△ABC是等边三角形,∴AC=2,∴OA=OC=1,∵EG=EO,∴∠EOG=∠EGO,∵∠EGO=∠ECG+∠CEG=60°+∠CEG,∠CEA=∠CEG+∠AEF=60°+∠CEG,∴∠EGO=∠CEA,∴∠EOG=∠CEA,∵∠ECA=∠OCE,∴△COE∽△CEA,∴,∴CE2=CO•CA,∴x2=1×2,∴x=(x=﹣舍去),即x=.3.(1)证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∵∠CDE+∠DEC=90°,∴∠HBE+∠BEH=90°,∴∠BHE=90°,∴BH⊥DE;(2)解:MH2+HN2=2CM2,理由:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,BG=DE,∵∠DPH=∠CPM,∴∠DHP=∠BCP=90°,∴∠MHN=90°,∵M,N分别为BG,DE的中点,∴BM=BG,DN=DE,∴BM=DN,∵BC=CD,∴△BCM≌△DCN(SAS),∴CM=CN,∠BCM=∠DCN,∴∠MCN=∠BCP=90°,∴MH2+HN2=CM2+CN2=2CM2;(3)解:∵DH⊥PG,∴∠DHP=∠DHG=90°,把△PDH沿着PD翻折得到△APD,把△GDH沿着DG翻折得到△DGC,∴AD=DH=CD,∠A=∠C=∠DHP=90°,∠ADP=∠HDP,∠GDH=∠GDC,AP=PH=2,CG=HG=4,∵∠PDG=45°,∴∠ADC=90°,延长AP,CG交于B,则四边形ABCD是正方形,∴∠B=90°,设DH=AD=AB=BC=x,∴PB=x﹣2,BG=x﹣4,∵PG2=PB2+BG2,∴62=(x﹣2)2+(x﹣4)2,解得:x=3+(负值舍去),∴DH=3+.4.证明:[问题引入](1)∵正方形ABCD,∴∠ABC=∠C,AB=BC,∵AE⊥BF,∴∠APB=∠BAP+∠ABP=90°,∵∠ABP+∠CBF=90°,∴∠BAP=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)BF=2AE,理由如下:∵矩形ABCD,∴∠ABC=∠C,AD=BC=2AB,∵AE⊥BF,∴∠APB=∠BAP+∠ABP=90°,∵∠ABP+∠CBF=90°,∴∠BAP=∠CBF,且∠ABE=∠BCF=90°,∴△ABE∽△BCF,∴=2,∴BF=2AE;(3)如图3,过点B作BH⊥AD于H,连接BD,∵把△ABC沿斜边AC对折得到Rt△ADC,∴AD=AB,∠ABC=∠ADC=90°,∠DAC=∠BAC=30°,∴∠DAB=60°,∴△ABD是等边三角形,且BH⊥AD,∴AD=AB=2AH,BH=AH,∴,∵∠ADC+∠EPF+∠DEA+∠DFB=360°,∴∠DEA+∠DFB=180°,且∠DFB+∠BFA=180°,∴∠DEA=∠BFH,∵∠BHF=∠ADE=90°,∴△ADE∽△BHF,∴==5.解:(1)∵在正方形ABCD中,AC⊥BD,∴∠AOD=90°,AO=OD,∵四边形OEGH是正方形,∴∠EOH=90°,OE=OH,∴∠AOE=∠DOH,∴△HDO≌△EAO(SAS);(2)如图1,过O作ON⊥AB于N,则AN=BN=ON=AB=2,∵BF=x,∴AF=4﹣x,∴FN=2﹣x,∴OF===,∴EF=y﹣,∵AM⊥AC,∴AE∥OB,∴,∴=,∴;(3)①当AE=EG时,△AEG是等腰三角形,则AE=OE,∵∠EAO=90°,∴这种情况不存在;②当AE=AG时,△AEG是等腰三角形,如图2,过A作AP⊥EG于P,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴=,∵AE=AG,∴PE=y=,AE==,∴=,解得:x=2,②当GE=AG时,△AEG是等腰三角形,如图3,过G作GQ⊥AE于Q,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS),∴EQ=AO=2,∴AE=2EQ=4=,∴x=,∴BF=2或.6.解:(1)将∠B沿BC的中垂线DE翻折(如图3),使点B落在点C处.∵∠ACB>∠ABC,∴CD在△ABC的内部,D落在AB上.连接DC,∵DE为BC的中垂线,∴DB=DC,在△ADC中,AD+DC>AC,∴AD+DB>AC,即AB>AC;(2)如图4,延长DC到点E,使得CE=CN,连接AE交BC于点F,连接AC,∵四边形ABCD是正方形,∴∠ACD=∠ACB=45°,∴∠ACE=∠ACN=135°,∵AC=AC,∴△ACE≌△ACN(SAS),∴AE=AN,过点C作PQ⊥AC,分别交AN、AE于点P、Q,由∠ACP=∠ACQ=90°可知AP>AC、AQ>AC,∴AP+AQ>2AC,∵∠ACD>∠E,∠ACD=45°,∠QCE=45°,∴∠QCE>∠E,∴QE>CQ,同理可得PC>PM,由全等或对称性可得PC=CQ,∴QE>PM.∴AM+AN=AM+AE=AM+AQ+QE>AM+AQ+PM=AP+AQ,又∵AP+AQ>2AC,∴AM+AN>2AC,∵正方形ABCD中,AC=BD.∴AM+AN>2BD.7.解:(1)①如图1,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∠B=∠ADG=90°,∵∠ADC=90°,∴∠ADC+∠ADG=90°∴F、D、G共线,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=DF+DG=BE+DF,故答案为:EF=BE+DF;②成立,理由:如图2,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,与①同理得,∠EAF=∠GAF=45°,在△EAF和△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC==4,如图3,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中,∴△FAD≌△EAD(SAS),∴DF=DE,设DE=x,则DF=x,∵BC=4,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.8.解:(1)△AA′E≌△C′CF,△A′BF≌△CDE,由题意得,四边形A′DCB是矩形,∴A′B=DC,∴AA′=CC′,∵AB∥CD,∴∠BA′F=∠C′,由题意得,∠BA′F=∠A,∴∠A=∠C′,在△AA′E和△C′CF中,,∴△AA′E≌△C′CF(ASA);(2)①设A′E=a,A′F=b,∵A′F∥AC,∴=,即=,解得,b=,同理=,解得,a=x,当A′E=A′F时,四边形A′ECF是菱形,∴=x,解得,x=,∴当x=时,四边形A′ECF是菱形;②由①得,四边形A′ECF的面积为y=3×(4﹣x)﹣×(3﹣x)×(4﹣x)×2=﹣x2+3x=﹣(x﹣2)2+3,∴当x=2时,y的最大值为3.9.解:(1)如图①,连接AE,∵四边形ABCD是正方形,∴AB=BC=AD=CD,∠ABD=∠CBD=45°,且BE=BE,∴△ABE≌△CBE(SAS)∴AE=CE,∠BAE=∠BCE,∵∠ABC+∠FEC+∠BCE+∠EFB=360°,∴∠BCE+∠BFE=180°,∠BFE+∠AFE=180°,∴∠AFE=∠BCE,∴∠BAE=∠AFE,∴EF=AE=EC,且∠FEC=90°,∴△EFC是等腰直角三角形,∴∠ECF=45°;(2)如图②,延长FG交CD于H,∵GF⊥AB,∠ABC=∠BCD=90°,∴四边形BCHF是矩形,∴FH=BC=CD,∠FHC=90°,∵∠AFE=∠BCE,∴∠EFH=∠ECH,且EF=EC,FH=CD,∴△EFH≌△ECD(SAS)∴∠FHE=∠CDE=45°,且∠FHD=90°,∴∠FHE=∠CDE=∠DGH=∠DHE=45°,∴EG=EH,EH=DE,∴EG=DE;(3)如图③,延长FK交CD于H,连接FM,过点M作MP⊥FH于P,∵AD∥BC∥FH,∴∠MDE=∠KGE,且DE=EG,∠MED=∠GEK,∴△MED≌△KEG(ASA)∴ME=EK=MK,MD=GK=2,∵MG=2EK,∴MK=MG,且MP⊥FH,∴GP=PK=1,∵∠ADH=∠DHF=∠MPH=90°,∴四边形MDHP是矩形,∴MD=PH=2,∴GH=3,∴FH=BC=AB=AD=3+FG,∴AM=1+FG,∵FG⊥AB,∠ABD=45°,∴△BFG是等腰直角三角形,∴BF=FG,∴AF=3,∵ME=EK,EF⊥MK,∴FM=FK=FG+2,∵FM2=AM2+AF2,∴(FG+2)2=(FG+1)2+9,∴FG=3,∴BK==.10.解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.11.(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=BC,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE;(2)解:连接AC,交BD于O,如图1所示:∵四边形ABCD是菱形,∴AD∥BC,AD=AB=4,∠AOB=90°,OB=OD,OA=OC,∴△BEP∽△DEA,∴==,∴=()2=,∵sin∠ABD===,∴OA=2,OB===4,∴BD=2OB=8,∴=,解得:DE=,∴BE=BD﹣DE=8﹣=,∴S△DEA=OA•DE=×2×=,S△ABE =OA•BE=×2×==S△BEC,∴S△BEP =S△DEA=×=,∴S△PEC =S△BEC﹣S△BEP=﹣=;(3)解:①由(1)得:△ABE≌△CBE,∴∠BAE=∠BCE,当∠BAE=90°时,则∠BCE=90°,∴∠ECP=90°,∵∠ABC=45°,∴∠EBC=22.5°,∠CPE=45°,∴△PEC是等腰直角三角形,∴CE=CP,∠BEC=90°﹣22.5°=67.5°,过点E作∠FEC=45°交BC于F,如图2所示:则CE=CP=CF,EF=CF,∠BEF=∠BEC﹣∠FEC=67.5°﹣45°=22.5°,∴∠BEF=∠EBC,∴EF=BF,∴CF+CF=BC=10,∴CF==10(﹣1),∴BP=BC+CP=BC+CF=10+10(﹣1)=10;②由(1)得:△ABE≌△CBE,∴∠AEB=∠CEB,当∠BAE=105°时,∠AEB=180°﹣105°﹣22.5°=52.5°,∴∠AEC=2∠AEB=105°,∴∠CEP=75°,∵∠APB=180°﹣105°﹣45°=30°,∴∠ECP=180°﹣75°﹣30°=75°,∴∠ECP=∠CEP,∴△PEC是等腰三角形,过点A作AN⊥BP于N,如图3所示:则△ABN是等腰直角三角形,∴AN=BN=AB=5,∵∠APB=30°,∴tan30°=,即=,∴PN=5,∴BP=BN+PN=5+5,综上所述,△PEC是等腰三角形时BP的长为10或5+5.12.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.13.(Ⅰ)①解:∵等腰直角三角形OEF的直角顶点O在原点,OE=2,∴∠EOF=90°,OF=OE=2,∴EF===2,∵将△OEF绕点O逆时针旋转,得△OE1F1,∴E1F1=EF=2;②证明:∵四边形OABC为正方形,∴OC=OA.∵将△OEF绕点O逆时针旋转,得△OE1F1,∴∠AOE 1=∠COF 1,∵△OEF 是等腰直角三角形,∴△OE 1F 1是等腰直角三角形,∴OE 1=OF 1.在△OAE 1和△OCF 1中,∴△OAE 1≌△OCF 1(SAS );(Ⅱ)解:∵OE ⊥OF ,∴过点F 与OE 平行的直线有且只有一条,并与OF 垂直,当三角板OEF 绕O 点逆时针旋转一周时,则点F 在以O 为圆心,以OF 为半径的圆上.∴过点F 与OF 垂直的直线必是圆O 的切线,又点C 是圆O 外一点,过点C 与圆O 相切的直线有且只有2条,不妨设为CF 1和CF 2, 此时,E 点分别在E 1点和E 2点,满足CF 1∥OE 1,CF 2∥OE 2.当切点F 1在第二象限时,点E 1在第一象限.在直角三角形CF 1O 中,OC =4,OF 1=2,cos ∠COF 1===,∴∠COF 1=60°,∴∠AOE 1=60°.∴点E 1的横坐标=2cos60°=1,点E 1的纵坐标=2sin60°=,∴点E 1的坐标为(1,); 当切点F 2在第一象限时,点E 2在第四象限.同理可求:点E 2的坐标为(1,﹣).综上所述,当OE 1∥CF 1时,点E 1的坐标为(1,)或(1,﹣).14.解:(1)证明:∵菱形ABCD中,∠A=90°∴菱形ABCD是正方形∴AD=DC,∠A=∠CDF=90°在Rt△ADE与Rt△DCF中∴Rt△ADE≌Rt△DCF(HL)∴∠ADE=∠DCF∴∠DCF+∠CDE=∠ADE+∠CDE=∠ADC=90°∴∠CGD=90°∴DE⊥CF(2)证明:∵四边形ABCD是菱形∴AD=CD,∠B=∠ADC,AD∥BC∴∠A+∠B=180°∵∠EGC+∠B=180°,∠EGC+∠CGD=180°∴∠A=∠EGC=∠DGF,∠CGD=∠B=∠ADC∵∠A=∠DGF,∠ADE=∠GDF∴△ADE∽△GDF∴∴∵∠CGD=∠CDF,∠DCG=∠FCD∴△DCG∽△FCD∴∴∵AD=DC∴DE=CF(3)如图,过点N作NP⊥CD于点P,连接FM ∴∠CPN=∠MPN=90°∵四边形ABCD是正方形∴∠ABC=∠BCD=∠ADC=90°,BC=CD∴四边形BCPN是矩形∴NP=BC=CD,PC=BN=在Rt△NPM与Rt△CDF中∴Rt△NPM≌Rt△CDF(HL)∴PM=DF设PM=DF=x,则CM=PC+PM=+x∵由(1)得MN⊥CF,G为CF中点∴MN垂直平分CF∴MF=MC∴∠MFC=∠FCD=15°∴∠DMF=∠MFC+∠FCD=30°∴Rt△DMF中,MF=2DF=2x,DM=DF=x ∴2x=+x∴x=∴DF=,CM=2,CD=CM+DM=2+∵∠GCM=∠MCF,∠CGM=∠CDF=90°∴△CGM∽△CDF∴=∴2CG2=CD•CM=(2+)=8+4∴CG2=4+2=12+2+()2=(1+)2∴FG=CG=1+15.(1)证明:∵垂美四边形ABCD的对角线AC,BD交于O,∴AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得:AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;(2)①证明:连接BG、CE相交于点N,CE交AB于点M,如图2所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,∵∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,∴∠ABG+∠BMN=90°,即CE⊥BG,∴四边形BCGE是垂美四边形;②解:∵四边形BCGE是垂美四边形,∴由(1)得:CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC===3,∵正方形ACFG和正方形ABDE,∴CG=AC=4,BE=AB=5,∴GE2=CG2+BE2﹣CB2=(4)2+(5)2﹣32=73,∴GE=.16.解:(1)观察猜想结论:AB+AC=BD+CE,理由如下:如图①,∵DB⊥BC,EC⊥BC,∴∠B=∠C=90°,∠DAE=90°,∴∠D+∠DAB=∠DAB+∠EAC=90°,∴∠D=∠EAC,在△ADB和△EAC中,,∴△ADB≌△EAC(AAS),∴BD=AC,EC=AB,∴BC=AB+AC=BD+CE,故答案为:是,AB+AC=BD+CE;(2)问题解决如图②,过D作DE⊥AB,交BA的延长线于E,由(1)得:△ABC≌△DEA(AAS),∴DE=AB=6,AE=BC===12,Rt△BDE中,BE=AB+AE=18,由勾股定理得:BD===6;(3)拓展延伸如图③,过D作DE⊥BC于E,作DF⊥AB于F,则四边形DEBF是矩形,同(1)得:△CED≌△AFD(AAS),∴CE=AF,DE=DF,∴四边形DEBF是正方形,设AF=x,则BF=DE=DF=x+5,在Rt△ADF中,由勾股定理得:x2+(x+5)2=()2,解得:x=,或x=﹣(舍去),∴AF=,DF=,∴BD=DF=,四边形ABCD的面积=正方形DEBF的面积=()2=,△ABD的面积=AB×DF=×5×=,∴△BCD的面积=四边形ABCD的面积﹣△ABD的面积=BD×CG=﹣=51,∴CG==6.17.(1)解:如图1中,∵AB=BD,∠BAD=45°,∴∠BDA=∠BAD=45°,∴∠ABD=90°,∵四边形ABCD是平行四边形,∴E、C重合时BF=BD=AB,在Rt△ABF中,∵AF2=AB2+BF2,∴(2)2=(2BF)2+BF2,∴BF=2,AB=4,在Rt△ABD中,AD==4;(2)证明:如图2中,在AF上截取AK=HD,连接BK,∵∠AFD=∠ABF+∠2=∠FGD+∠3,∠ABF=∠FGD=90°,∴∠2=∠3,在ABK和△DBH中,,∴△ABK≌△DBH,∴BK=BH,∠6=∠1,AK=DH,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠4=∠1=∠6=45°,∴∠5=∠ABD﹣∠6=45°,∴∠5=∠1,在△FBK和△FBH中,,∴△FBK≌△FBH,∴KF=FH,∵AF=AK+KF,∴AF=DH+FH;(3)解:连接AN并延长到Q,使NQ=AN,连接GQ,取AD的中点O,连接OG,∵∠AGD=90°,∴点G的轨迹是以O为圆心,以OG为半径的弧,且OG=4,当O,G,Q在同一条直线上时,QG的值最小,∴OQ=10,OG=4,∴GQ最小值为6,∵MN是△AGQ的中位线,∴MN的最小值为3.18.解:(1)∵把△BCE沿CE折叠,使点B落在点F处,∴∠BEC=∠FEC,∵GH∥CE,∴∠FGE=∠CEB,∠GFE=∠FEC,∴∠EGF=∠EFG,∴EG=EF,∴△EFG是等腰三角形;(2)如图①,取CE的中点M,连接FM,∵把△BCE沿CE折叠,使点B落在点F处,∴∠EFC=∠B=90°,∴EM=FM,∵AB∥CD,GH∥CE,∴四边形GECH是平行四边形,∴GH=CE,∵F是GH中点,∴FG=EM,∴四边形GEMF是平行四边形,∴GE=FM,由(1)知,GE=EF,∴EG=GF=EF,∴△EFG是等边三角形,∴∠FGE=60°;(3)由(2)知,BE=EF,AE=EF,∴AE=BE=AB=15,∴CH=AE=15,∴DH=30﹣15=15,∴AH===25,如图②,过E作EN⊥AF于N,∴∠ANE=∠B=90°,∵CE∥AH,∴∠EAN=∠BEC,∴△AEN∽△ECB,∴=,∴=,∴AN=9,∴AF=18,∴FH=25﹣18=7.19.解:(1)如图1,过D作DH⊥AB于H,∵A(﹣4,0),B(4,0),∴OA=OB=4,∴AB=8,∵四边形ABCD的面积为32∴8DH=32,∴DH=4,∵四边形ABCD是菱形,∴AD=AB=8,∴AH===4,∴OH=AH﹣OA=4﹣4,∴D(4﹣4,4);(2)如图1,延长EF交x轴于G,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠C=∠FBG,∠CEF=∠FGB,∵CF=BF,∴△CEF≌△BGF(AAS),∴EF=FG,CE=BG,∴EG=2EF,过E作EP⊥x轴于P,∴EP=DH=4,∵CD=AB=8,∴设D(a,4)则C(8+a,4),∵点E为CD的中点,∴E(4+a,4),∴AP=8+a,PG=4﹣a,∴PE2=AP•PG,∴(8+a)•(4﹣a)=16,∴a=2﹣2(负值舍去),∴AP=6+2,PG=6﹣2,∴AE==4,EG==4,∴AE+2EF=AE+EG=4+8;(3)∵四边形ABCD是矩形,∴AB=CD=8,AD=BC=4,∴AC==4,作B关于AC的对称点M′,连接BM′交AC于E,则BM′=2BE=2×=2×=,过M′作M′N⊥AB于N交AC于M,则此时,BM+MN的值最小,且BM+MN的最小值=M′N,∵∠M′EM=∠CEB=90°,BE=,BC=4,∴CE=,∴CM=2CE=,∴AM=,∴AM2﹣AN2=BM2﹣BN2,∴()2﹣AN2=42﹣(8﹣AN)2,∴AN=,∴MN==,∴M′N=,∴BM+MN的最小值为.20.解:(1)∵,∴a﹣4=0,b+6=0,∴a=4,b=﹣6,∵四边形OABC是正方形,点B的横坐标为a,∴OA=4,∵四边形DEFG为长方形,点G的坐标为(b,﹣b),∴F的纵坐标为:﹣b=6,OD=6,∵DE=OA,∴OE=OD﹣DE=OD﹣OA=6﹣4=2,∴F(﹣2,6)(2)∵OE=2,AD=2OA+OE=2×4+2=10,AE=OA+OE=4+2=6,长方形DEFG以每秒1个单位长度的速度向右平移,∴当0<t≤2,t≥10时,S=0;当2<t≤6时,点E'在OA上,如图1所示:S=OC•OE′=4(t﹣2)=4t﹣8;当6<t<10时,点D'在OA上,如图2所示:S=AB•AD'=4(10﹣t)=40﹣4t;∴S=;(3)∵D′G′=DG=6,当三角形PD'G'的面积为15时,∴点P到D′G′的距离为5,∵长方形DEFG以每秒1个单位长度的速度向右平移,点P从点O出发,沿正方形的边以每秒2个单位长度的速度顺时针方向运动(即O→C→B→A→O→C),∵当点P再次运动到AO、OC时,△PD'G'的面积<15,∴分两种情况:①当t=3s时,点P在BC的中点处,如图3所示:即PC=2,DG向右平移了3个单位长度,OD′=OD﹣3=6﹣3=3,此时,PC+OD′=2+3=5,即点P到D′G′的距离为5,P的坐标为:(2,4),OE′=D′E′﹣OD′=4﹣3=1,∴S=OC•OE′=4×1=4;②当t=5s时,点P在AB的中点处,如图4所示:即AP=2,DG向右平移了5个单位长度,OD′=OD﹣5=6﹣5=1,此时,OA+OD′=4+1=5,即点P到D′G′的距离为5,P的坐标为:(4,2),OE′=D′E′﹣OD′=4﹣1=3,∴S=OC•OE′=4×3=12.。
中考数学 相似三角形专题训练(含答案)
2020中考数学相似三角形专题训练(含答案)一、选择题:1. 如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是( )A.B.C.D.﹣答案:D.2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,点F为BC边上一点,连接AF交DE于点G,则下列结论中一定正确的是( )A.=B.=C.=D.=答案:C3. 如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )A.①②③④ B.①④ C.②③④D.①②③答案D.4.如图,矩形ABCD中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点F,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD;②∠DBC=30°;③AE=;④AF=2,其中正确结论的个数有( )A.1个B.2个C.3个D.4个答案C.二、填空题:5.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO= .答案:4.6. 在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE= 时,以A、D、E为顶点的三角形与△ABC相似.答案:或.7.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.故答案为113°或92°.8.如图,四边形ABCD中,AD∥BC,CM是∠BCD的平分线,且CM⊥AB,M为垂足,AM= AB.若四边形ABCD的面积为,则四边形AMCD的面积是.答案:1.9. (2017内江)如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=,则CE= .答案:.10.如图,在▱ABCD中,∠B=30°,AB=AC,O是两条对角线的交点,过点O作AC的垂线分别交边AD,BC于点E,F,点M是边AB的一个三等分点,则△AOE与△BMF的面积比为.故答案为3:4.三、解答题:11.如图,在△ABC中,AB=AC,点E在边BC上移动(点E不与点B,C重合),满足∠DEF=∠B,且点D、F分别在边AB、AC上.(1)求证:△BDE∽△CEF;(2)当点E移动到BC的中点时,求证:FE平分∠DFC.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵∠BDE=180°﹣∠B﹣∠DEB,∠CEF=180°﹣∠DEF﹣∠DEB,∵∠DEF=∠B,∴∠BDE=∠CEF,∴△BDE∽△CEF;(2)∵△BDE∽△CEF,∴,∵点E是BC的中点,∴BE=CE,∴,∵∠DEF=∠B=∠C,∴△DEF∽△CEF,∴∠DFE=∠CFE,∴FE平分∠DFC.12.如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.【解答】证明:①∵正方形ABCD,等腰直角三角形EDF,∴∠ADC=∠EDF=90°,AD=CD,DE=DF,∴∠ADE+∠ADF=∠ADF+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,,∴△ADE≌△CDF;②延长BA到M,交ED于点M,∵△ADE≌△CDF,∴∠EAD=∠FCD,即∠EAM+∠MAD=∠BCD+∠BCF,∵∠MAD=∠BCD=90°,∴∠EAM=∠BCF,∵∠EAM=∠BAG,∴∠BAG=∠BCF,∵∠AGB=∠CGF,∴△ABG∽△CFG.13. 如图,在▱ABCD中过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.(1)求证:△ABF∽△BEC;(2)若AD=5,AB=8,sinD=,求AF的长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∴∠C=∠AFB,∴△ABF∽△BEC;(2)解:∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:BE===4,在Rt△ADE中,AE=AD•sinD=5×=4,∵BC=AD=5,由(1)得:△ABF∽△BEC,∴,即,解得:AF=2.∵△ADF∽△DEC,14. 在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.【解答】解:(1)如图1,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠ECB=45°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=,∴MD=ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∵∠ACB=90°,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=,在Rt△MDE中,=tan∠MDE=tan.15. (1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE 是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为 AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E 是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE 上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,,∴△AEB≌△FEC,∴AB=FC,∵AE是∠BAD的平分线,∴∠DAF=∠BAF,∴∠DAF=∠F,∴DF=AD,∴AD=DC+CF=DC+AB,故答案为:AD=AB+DC;(2)AB=AF+CF,证明:如图②,延长AE交DF的延长线于点G,∵E是BC的中点,∴CE=BE,∵AB∥DC,∴∠BAE=∠G,在△AEB和△GEC中,,∴△AEB≌△GEC,∴AB=GC,∵AE是∠BAF的平分线,∴∠BAG=∠FAG,∵AB∥CD,∴∠BAG=∠G,∴∠FAG=∠G,∴FA=FG,∴AB=CG=AF+CF;(3)AB=(CF+DF),证明:如图③,延长AE交CF的延长线于点G,∵AB∥CF,∴△AEB∽△GEC,∴==,即AB=CG,∵AB∥CF,∴∠A=∠G,∵∠EDF=∠BAE,∴∠FDG=∠G,∴FD=FG,∴AB=CG=(CF+DF).。
2020中考数学专题8——最值问题之将军饮马 -含答案
【模型解析】2020 中考专题 8——最值问题之将军饮马班级姓名.总结:以上四图为常见的轴对称类最短路程问题,最后都转化到:“两点之间,线段最短”解决。
特点:①动点在直线上;②起点,终点固定;方法:作定点关于动点所在直线的对称点。
【例题分析】例1.如图,在平面直角坐标系中,Rt△OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3 ),点C 的坐标为(1,0),点2P 为斜边OB 上的一动点,则PA+PC 的最小值为.例 2.如图,在五边形ABCDE 中,∠BAE=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE 上分别找一点M、N.(1)当△AMN 的周长最小时,∠AMN+∠ANM=;(2)求△AMN 的周长最小值.例3.如图,正方形ABCD 的边长为 4,点E 在边BC 上且CE=1,长为 2 的线段MN 在AC 上运动.(1)求四边形BMNE 周长最小值;(2)当四边形BMNE 的周长最小时,则tan∠MBC 的值为.例4.在平面直角坐标系中,已知点A(一 2,0),点B(0,4),点E 在OB 上,且∠OAE=∠OB A.如图,将△AEO 沿x 轴向右平移得到△AE′O′,连接A'B、BE'.当AB+BE'取得最小值时,求点E'的坐标.例5.如图,已知正比例函数y=kx(k>0)的图像与x轴相交所成的锐角为70°,定点A的坐标为(0,4),P 为y 轴上的一个动点,M、N 为函数y=kx(k>0)的图像上的两个动点,则AM+MP+PN 的最小值为.【巩固训练】1.如图1 所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为.图1 图2 图3 图42.如图2,在菱形ABCD 中,对角线AC=6,BD=8,点E、F、P 分别是边AB、BC、AC 上的动点,PE+PF 的最小值是.3.如图3,在边长为2 的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为.4.如图 4,钝角三角形ABC 的面积为 9,最长边AB=6,BD 平分∠ABC,点M、N 分别是BD、BC 上的动点,则CM+MN 的最小值为.5.如图5,在△ABC 中,AM 平分∠BAC,点D、E 分别为AM、AB 上的动点,=6,则BD+DE的最小值为(1)若AC=4,S△ABC(2)若∠BAC=30°,AB=8,则BD+DE 的最小值为.(3)若AB=17,BC=10,CA=21,则BD+DE 的最小值为.6.如图6,在△ABC中,AB=BC=4,S△ABC=4一点,则PK+QK 的最小值为.,点P、Q、K 分别为线段AB、BC、AC 上任意图6 图7 图8 图97.如图7,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点,则PM+PN 的最小值为.8.如图 8,在锐角△ABC 中,AB=4,∠BAC=45°,∠BAC 的平分线交BC 于点D,M、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是.9.如图 9,圆柱形玻璃杯高为 12cm、底面周长为 18cm,在杯内离杯底 4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿 4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为cm.10.如图 10,菱形OABC 中,点A 在x 轴上,顶点C 的坐标为(1,OC、OB 上,则CE+DE+DB 的最小值是.),动点D、E 分别在射线图10 图11 图12 图1311.如图 11,点A(a,1)、B(-1,b)都在双曲线y=-3(x<0)上,点P、Q 分别是x 轴、y 轴上x的动点,当四边形PABQ 的周长取最小值时,PQ 所在直线的解析式是.12.如图12,点P 是∠AOB 内任意一点,OP=5cm,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm,则∠AOB 的度数是.13.如图13,∠AOB=30°,点M、N 分别在边OA、OB 上,且OM=1,ON=3,点P、Q 分别在边OB、OA 上,则MP+PQ+QN 的最小值是.14.如图 14,在Rt△ABC 中,∠ACB=90°,点D 是AB 边的中点,过D 作DE⊥BC 于点E. (1)点P 是边BC 上的一个动点,在线段BC 上找一点P,使得AP+PD 最小,在下图中画出点P; (2)在(1)的条件下,连接CD 交AP 于点Q,求AQ 与PQ 的数量关系;图 143315. 在矩形 ABCD 中,AB =6,BC =8,G 为边 AD 的中点.(1) 如图 1,若 E 为 AB 上的一个动点,当△CGE 的周长最小时,求 AE 的长.(2) 如图 2,若 E 、F 为边 AB 上的两个动点,且 EF =4,当四边形 CGEF 的周长最小时,求 AF的长.16. 如图,抛物线 y = - 1x 2+ 2x + 4 交y 轴于点B ,点A 为x 轴上的一点,OA =2,过点A 作直线MN ⊥ AB2 交抛物线与 M 、N 两点. (1) 求直线 AB 的解析式;(2) 将线段 AB 沿 y 轴负方向平移 t 个单位长度,得到线段 A 1B 1 ,求 MA 1 + MB 1 取最小值时实数 t 的值.33172020 中考专题 8——最值问题之将军饮马参考答案例1.解:作A 关于OB 的对称点D,连接CD 交OB 于P,连接AP,过D 作DN⊥OA 于N,则此时PA+PC 的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∵tan∠AOB=AB=3,∴∠AOB=30°,∴OB=2AB=2 ,OA 31 1 3 3由三角形面积公式得:×OA×AB=2×OB×AM,∴AM=2,∴AD=2×2=3,2∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=1AD=23,由勾股定理得:2DN=33 ,2∵C(1,0),∴CN=3﹣1﹣2 23=1,在Rt△DNC 中,由勾股定理得:DC=,2 2即PA+PC 的最小值是31.2例2.解:作A 关于BC 和ED 的对称点A′,A″,连接A′A″,交BC 于M,交ED 于N,则A′A″即为△AMN 的周长最小值.⑴作EA 延长线的垂线,垂足为H,∠BAE=120°,∴∠AA′A″+∠AA″A′=60°,∠AA′A″=∠A′AM,∠AA″A′=∠EAN,∴∠CAN=120°-∠AA′A″-∠AA″A′=60°,也就是说∠AMN+∠ANM=180°-60°=120°.⑵过点A′作EA 延长线的垂线,垂足为H,∵AB=BC=1,AE=DE=2,∴AA′=2BA=2,AA″=2AE=4,则Rt△A′HA 中,∵∠EAB=120°,∴∠HAA′=60°,∵A′H⊥HA,∴∠AA″H=30°,∴AH=1AA′=1,∴A′H=2,A″H=1+4=5,∴A′A″=2 ,例3.解:作EF∥AC 且EF=于P,,连结DF 交AC 于M,在AC 上截取MN=,延长DF 交BC 作FQ⊥BC 于Q,作出点E 关于AC 的对称点E′,则CE′=CE=1,将MN 平移至E′F′处,3332242 - 22 3 3 则四边形 MNE ′F ′为平行四边形,当 BM +EN =BM +FM =BF ′时,四边形 BMNE 的周长最小, 由∠FEQ =∠ACB =45°,可求得 FQ =EQ =1,∵∠DPC =∠FPQ ,∠DCP =∠FQP ,∴△PFQ ∽△PDC , ∴PQ PQ + QE + EC = PQ ,∴ CD PQ PQ + 2 1 = ,解得:PQ = 4 2 ,∴PC = 8 ,3 3由对称性可求得 tan ∠MBC =tan ∠PDC = 2 .3例 4.【提示】将△AEO 向右平移转化为△AEO 不动,点 B 向左平移,则点 B 移动的轨迹为一平行于 x 轴的直线,所以作点 E 关于该直线的对称点 E 1,连接 AE 1,与该直线交点 F 即为最小时点 B 的位置,求出 BF 长度即可求出点 E 向右平移的距离.例 5.解:如图所示,直线 OC 、y 轴关于直线 y =kx 对称,直线 OD 、直线 y =kx 关于 y 轴对称,点A ′是点 A 关于直线 y =kx 的对称点.作 A ′E ⊥OD 垂足为 E ,交 y 轴于点 P ,交直线 y =kx 于 M ,作 PN ⊥直线 y =kx 垂足为 N , ∵PN =PE ,AM =A ′M ,∴AM +PM +PN =A ′M +PM +PE =A ′E 最小(垂线段最短), 在 RT △A ′EO 中,∵∠A ′EO =90°,OA ′=4,∠A ′OE =3∠AOM =60°, ∴OE =1OA ′=2,A ′E = =2 .2 ∴AM +MP +PN 的最小值为 2 .333337【巩固训练】答案1.解:连接BD,∵点B 与D 关于AC 对称,∴PD=PB,∴PD+PE=PB+PE=BE 最小.∵正方形ABCD 的面积为 12,∴AB=2又∵△ABE 是等边三角形,∴BE=AB=2,,故所求最小值为2 .2.解:∵四边形ABCD 是菱形,对角线AC=6,BD=8,∴AB=5,作E 关于AC 的对称点E′,作E′F⊥BC 于F 交AC 于P,连接PE,则E′F 即为PE+PF 的最小值,∵1⋅AC⋅BD=AD⋅E′F,∴E′F=24,∴PE+PF 的最小值为24.2 5 53.解:作B 关于AC 的对称点B′,连接BB′、B′D,交AC 于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D 就是BE+ED 的最小值,∵B、B′关于AC 的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC 是边长为2,D 为BC 的中点,∴AD⊥BC,AD=,BD=CD=1,BB′=2AD=2 ,作B′G⊥BC 的延长线于G,∴B′G=AD=,在Rt△B′BG 中,BG=3,∴DG=BG﹣BD=3﹣1=2,在Rt△B′DG 中,B′D=.故BE+ED 的最小值为7 .4.解:过点C 作CE⊥AB 于点E,交BD 于点M,过点M 作MN⊥BC 于N,∵BD 平分∠ABC,ME⊥AB 于点E,MN⊥BC 于N,∴MN=ME,∴CE=CM+ME=CM+MN 是最小值.∵三角形ABC 的面积为 9,AB即CM+MN 的最小值为 3.=6,∴12×6⋅CE=9,∴CE=3.333335.提示:作点E 关于AM 的对称点E′,BH⊥AC 于H,易知BD+DE 的最小值即为BH 的长. 答案:(1)3;(2)4;(3)8.6.解:如图,过A 作AH⊥BC 交CB 的延长线于H,∵AB=CB=4,S△ABC=4,∴AH=2,∴cos∠HAB=AH=2 3=3,∴∠HAB=30°,∴∠ABH=60°,∴∠ABC=120°,AB 4 2∵∠BAC=∠C=30°,作点P 关于直线AC 的对称点P′,过P′作P′Q⊥BC 于Q 交AC 于K,则P′Q 的长度=PK+QK 的最小值,∴∠P′AK=∠BAC=30°,∴∠HAP′=90°,∴∠H=∠HAP′=∠P′QH=90°,∴四边形AP′QH 是矩形,∴P′Q=AH=2 ,即PK+QK 的最小值为2 .7.解:作点N 关于AB 的对称点N′,连接OM、ON、ON′、MN′,则MN′与AB 的交点即为PM+PN 的最小时的点,PM+PN 的最小值=MN′,∵∠MAB=20°,∴∠MOB=2∠MAB=2×20°=40°,∵N 是弧MB 的中点,∴∠BON=12∠MOB=1×40°=20°,2由对称性,∠N′OB=∠BON=20°,∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,∴△MON′是等边三角形,∴MN′=OM=OB=1AB=18 =4,2 2∴PM+PN 的最小值为 4,22338.解:如图,作BH⊥AC,垂足为H,交AD 于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AD 是∠BAC 的平分线,∴M′H=M′N′,∴BH 是点 B 到直线AC 的最短距离,∵AB=4,∠BAC=45°,∴BH=AB sin45°=4×2=2 .2∵BM+MN 的最小值是BM′+M′N′=BM′+M′H=BH=2 .9.解:沿过A 的圆柱的高剪开,得出矩形EFGH,过C 作CQ⊥EF 于Q,作A 关于EH 的对称点A′,连接A′C 交EH 于P,连接AP,则AP+PC 就是蚂蚁到达蜂蜜的最短距离,∵AE=A′E,A′P=AP,∴AP+PC=A′P+PC=A′C,∵CQ=1×182cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,在Rt△A′QC 中,由勾股定理得:A′C=15cm,故答案为:15.10.解:连接AC,作B 关于直线OC 的对称点E′,连接AE′,交OC 于D,交OB 于E,此时CE+DE+BD 的值最小,∵四边形OCBA 是菱形,∴AC⊥OB,AO=OC,即A 和C 关于OB 对称,∴CE=AE,∴DE+CE=DE+AE=AD,∵B 和E′关于OC 对称,∴DE′=DB,∴CE+DE+DB=AD+DE′=AE′,过C 作CN⊥OA 于N,∵C(1,),∴ON=1,CN=,由勾股定理得:O C=2,即AB=BC=OA=OC=2,∴∠CON=60°,∴∠CBA=∠COA=60°,∵四边形COAB 是菱形,∴BC∥OA,∴∠DCB=∠COA=60°,∵B 和E′关于OC 对称,∴∠BFC=90°,∴∠E′BC=90°﹣60°=30°,∴∠E′BA=60°+30°=90°,CF=1BC=1,由勾股定理得:BF=2=E′F,在Rt△EBA 中,由勾股定理得:AE′=4,即CE+DE+DB 的最小值是 4.310 ⎩⎩11.解:把点 A (a ,1)、B (﹣1,b )代入 y =﹣ 3(x <0)得 a =﹣3,b =3,则 A (﹣3,1)、B (﹣1,x3),作 A 点关于 x 轴的对称点 C ,B 点关于 y 轴的对称点 D ,所以 C 点为(﹣3,﹣1),D 点为(1, 3),连结 CD 分别交 x 轴、y 轴于 P 点、Q 点,此时四边形 PABQ 的周长最小,设直线 CD 的解析式为 y =kx +b ,则⎧-3k + b = -1 ,解得⎧k = 1,所以直线 CD 的解析式为 y =x +2.⎨k + b = 3 ⎨b = 212.解:分别作点 P 关于 OA 、OB 的对称点 C 、D ,连接 CD ,分别交 OA 、OB 于点 M 、N ,连接 OC 、OD 、PM 、PN 、MN ,如图所示:∵点 P 关于 OA 的对称点为 D ,关于 OB 的对称点为 C ,∴PM =DM ,OP =OD ,∠DOA =∠ POA ;∵点 P 关于 OB 的对称点为 C ,∴PN =CN ,OP =OC ,∠COB =∠POB , ∴OC =OP =OD ,∠AOB =1∠COD ,2∵△PMN 周长的最小值是 5cm ,∴PM +PN +MN =5,∴DM +CN +MN =5,即 CD =5=OP , ∴OC =OD =CD ,即△OCD 是等边三角形,∴∠COD =60°,∴∠AOB =30°;13 解:作 M 关于 OB 的对称点 M ′,作 N 关于 OA 的对称点 N ′,连接 M ′N ′,即为 MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°, ∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°, ∴在 Rt △M′ON′中,M ′N ′= .故答案为 .10314.解:(1)作点 A 关于BC 的对称点 A′,连 DA′交BC 于点P.(2)由(1)可证得PA 垂直平分CD,∴AQ=CQ=3PQ15.解:(1)∵E 为AB 上的一个动点,∴作G 关于AB 的对称点M,连接CM 交AB 于E,那么E 满足使△CGE 的周长最小;∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而AE∥CD,∴△AEM∽△DCM,∴AE:CD=MA:MD,∴AE=CD ⨯MA=2;MD(2)∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=6,BC=8,G 为边AD 的中点,∴AG=AM=4,MD=12,而CH=4,∴DH=2,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE=HD ⨯MAMD=2,3∴AF =4+2=14.3 316.解:(1)依题意,易得B(0,4),A(2,0),则AB解析式:y=-2x+4(2)∵AB⊥MN∴直线MN:y =1x - 12⎧y =-1x2+ 2x + 4⎪与抛物线联立可得:⎨⎪y =⎩21x - 1 2解得:M(-2,-2)将AB向负方向平移t个单位后,A1(2,-t),B1(0,4-t)则A1 关于直线x=-2 的对称点A2 为(-6,-t)当A2、M、B1 三点共线时,MA1 +MB1取最小值∴t =143。
2020年九年级中考数学复习专题训练:《圆的综合 》(包含答案)
2020年九年级中考数学复习专题训练:《圆的综合》1.如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O,交AB于点D.(1)若AB=8,∠ABC=30°,求⊙O的半径;(2)若点E是边BC的中点,连结DE,求证:直线DE是⊙O的切线;(3)在(1)的条件下,保持Rt△ACB不动,将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,当⊙O′与直线AB相切时,m=.2.如图,矩形ABCD中,AB=13,AD=6.点E是CD上的动点,以AE为直径的⊙O与AB交于点F,过点F作FG⊥BE于点G.(1)当E是CD的中点时:tan∠EAB的值为;(2)在(1)的条件下,证明:FG是⊙O的切线;(3)试探究:BE能否与⊙O相切?若能,求出此时BE的长;若不能,请说明理由.3.如图,已知正方形ABCD 的边长为1,正方形BEFG 中,点E 在AB 的延长线上,点G 在BC 上,点O 在线段AB 上,且AO ≥BO .以OF 为半径的⊙O 与直线AB 交于点M ,N . (1)如图1,若点O 为AB 中点,且点D ,点C 都在⊙O 上,求正方形BEFG 的边长. (2)如图2,若点C 在⊙O 上,求证:以线段OE 和EF 为邻边的矩形的面积为定值,并求出这个定值.(3)如图3,若点D 在⊙O 上,求证:DO ⊥FO .4.如图,四边形ABCD 内接于⊙O ,AC 为直径,AC 和BD 交于点E ,AB =BC . (1)求∠ADB 的度数;(2)过B 作AD 的平行线,交AC 于F ,试判断线段EA ,CF ,EF 之间满足的等量关系,并说明理由;(3)在(2)条件下过E ,F 分别作AB ,BC 的垂线,垂足分别为G ,H ,连接GH ,交BO 于M ,若AG =3,S 四边形AGMO :S 四边形CHMO =8:9,求⊙O 的半径.5.定义:当点P在射线OA上时,把的的值叫做点P在射线OA上的射影值;当点P不在射线OA上时,把射线OA上与点P最近点的射影值,叫做点P在射线OA上的射影值.例如:如图1,△OAB三个顶点均在格点上,BP是OA边上的高,则点P和点B在射线OA 上的射影值均为=.(1)在△OAB中,①点B在射线OA上的射影值小于1时,则△OAB是锐角三角形;②点B在射线OA上的射影值等于1时,则△OAB是直角三角形;③点B在射线OA上的射影值大于1时,则△OAB是钝角三角形.其中真命题有.A.①②B.①③C.②③D.①②③(2)已知:点C是射线OA上一点,CA=OA=1,以〇为圆心,OA为半径画圆,点B是⊙O 上任意点.①如图2,若点B在射线OA上的射影值为.求证:直线BC是⊙O的切线;②如图3,已知D为线段BC的中点,设点D在射线OA上的射影值为x,点D在射线OB上的射影值为y,直接写出y与x之间的函数关系式为.6.问题发现:(1)如图1,△ABC内接于半径为4的⊙O,若∠C=60°,则AB=;问题探究:(2)如图2,四边形ABCD内接于半径为6的⊙O,若∠B=120°,求四边形ABCD的面积最大值;解决问题:(3)如图3,一块空地由三条直路(线段AD、AB、BC)和一条弧形道路围成,点M 是AB道路上的一个地铁站口,已知AD=BM=1千米,AM=BC=2千米,∠A=∠B=60°,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点M处,另外三个入口分别在点C、D、P处,其中点P在上,并在公园中修四条慢跑道,即图中的线段DM、MC、CP、PD,是否存在一种规划方案,使得四条慢跑道总长度(即四边形DMCP 的周长)最大?若存在,求其最大值;若不存在,说明理由.7.如图,AB是⊙O的直径,BM切⊙O于点B,点P是⊙O上的一个动点(点P不与A,B两点重合),连接AP,过点O作OQ∥AP交BM于点Q,过点P作PE⊥AB于点C,交QO的延长线于点E,连接PQ,OP,AE.(1)求证:直线PQ为⊙O的切线;(2)若直径AB的长为4.①当PE=时,四边形BOPQ为正方形;②当PE=时,四边形AEOP为菱形.8.已知AB是⊙O的直径,DA为⊙O的切线,切点为A,过⊙O上的点C作CD∥AB交AD于点D,连接BC、AC.(1)如图①,若DC为⊙O的切线,切点为C,求∠ACD和∠DAC的大小.(2)如图②,当CD为⊙O的割线且与⊙O交于点E时,连接AE,若∠EAD=30°,求∠ACD和∠DAC的大小.9.已知AB为⊙O的直径,点C为⊙O上一点,点D为AB延长线一点,连接AC.(Ⅰ)如图①,OB=BD,若DC与⊙O相切,求∠D和∠A的大小;(Ⅱ)如图②,CD与⊙O交于点E,AF⊥CD于点F连接AE,若∠EAB=18°,求∠FAC的大小.10.如图,AB为⊙O的直径,点P为AB延长线上的一点,过点P作⊙O的切线PE,切点为M,过A、B两点分别作PE的垂线AC,BD,垂足分别为C,D,连接AM.(1)求证:AM平分∠CAB;(2)若AB=4,∠APE=30°,求的长.11.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于E,过点A作AF⊥AC于F,交⊙O于D,连接DE,BE,BD(1)求证:∠C=∠BED;(2)若AB=12,tan∠BED=,求CF的长.12.已知,点A为⊙O外一点,过A作⊙O的切线与⊙O相切于点P,连接PO并延长至圆上一点B连接AB交⊙O于点C,连接OA交⊙O于点D连接DP且∠OAP=∠DPA.(1)求证:PO=PD;(2)若AC=,求⊙O的半径.13.如图,AB是⊙O的直径,C为⊙O上一点,P是半径OB上一动点(不与O,B重合),过点P作射线l⊥AB,分别交弦BC,于D,E两点,过点C的切线交射线1于点F.(1)求证:FC=FD.(2)当E是的中点时,①若∠BAC=60°,判断以O,B,E,C为顶点的四边形是什么特殊四边形,并说明理由;②若=,且AB=30,则OP=.14.如图,在∠DAM内部做Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点N 为BC的中点,动点E由A点出发,沿AB运动,速度为每秒5个单位,动点F由A点出发,沿AM运动,速度为每秒8个单位,当点E到达点B时,两点同时停止运动,过A、E、F作⊙O.(1)判断△AEF的形状为,并判断AD与⊙O的位置关系为;(2)求t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为;(注:当A、E、F重合时,内心就是A点)(4)直接写出线段EN与⊙O有两个公共点时,t的取值范围为.(参考数据:sin37°=,tan37°=,tan74°≈,sin74°≈,cos74°≈)15.如图1,CD是⊙O的直径,且CD过弦AB的中点H,连接BC,过弧AD上一点E作EF∥BC,交BA的延长线于点F,连接CE,其中CE交AB于点G,且FE=FG.(1)求证:EF是⊙O的切线;(2)如图2,连接BE,求证:BE2=BG•BF;(3)如图3,若CD的延长线与FE的延长线交于点M,tan F=,BC=5,求DM的值.16.如图,在Rt△ABC中,AB⊥BC,以AB为直径的圆交AC于点D,E是BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)设⊙O的半径为r,证明r2=AD•OE;(3)若DE=4,sin C=,求AD之长.17.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到该边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC 边上一点,连结AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×3网格图的格点,请仅用直尺画出AB边上的一个“好点”.(2)△ABC中,BC=9,tan B=,tan C=,点D是BC边上的“好点”,求线段BD的长.(3)如图3,△ABC是⊙O的内接三角形,OH⊥AB于点H,连结CH并延长交⊙O于点D.①求证:点H是△BCD中CD边上的“好点”.②若⊙O的半径为9,∠ABD=90°,OH=6,请直接写出的值.18.如图,在等腰三角形ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,过点C作⊙O的切线交AB的延长线于点P.(1)求证:∠CAB=2∠BCP;(2)若⊙O的直径为5,sin∠BCP=,求△ABC内切圆的半径;(3)在(2)的条件下,求△ACP的周长.19.已知四边形ABCD为⊙O的内接四边形,直径AC与对角线BD相交于点E,作CH⊥BD于H,CH与过A点的直线相交于点F,∠FAD=∠ABD.(1)求证:AF为⊙O的切线;(2)若BD平分∠ABC,求证:DA=DC;(3)在(2)的条件下,N为AF的中点,连接EN,若∠AED+∠AEN=135°,⊙O的半径为2,求EN的长.20.如图,在Rt△ABC中,∠ACB=90°,O是线段BC上一点,以O为圆心,OC为半径作⊙O,AB与⊙O相切于点F,直线AO交⊙O于点E,D.(1)求证:AO是△CAB的角平分线;(2)若tan∠D=,求的值;(3)如图2,在(2)条件下,连接CF交AD于点G,⊙O的半径为3,求CF的长.参考答案1.解:(1)在Rt△ABC中,∵AB=8,∠ABC=30°,∴AC=AB sin∠ABC=8sin30°=4,∴⊙O的半径为2;(2)证明:连接OD,CD,∵AC为⊙O的直径,∴CD⊥AB,∴∠CDB=90°,∵点E是边BC的中点,∴DE=CE=CB,∴∠DCE=∠CDE,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ACD+∠DCE=90°,∴∠ODE=∠ODC+∠CDE=90°,∴OD⊥DE,∴直线DE是⊙O的切线;(3)连接OO′交AB于F,设⊙O′与AB相切于G,连接O′G,则∠O′GF=90°,∵将⊙O沿直线BC向右平移m个单位长度后得到⊙O′,∴OO′∥BC,AO=O′G,∴∠AOF=∠ACB=90°,∵∠AFO=∠O′FG,∴△AOF≌△O′GF(AAS),∴O′F=AF,∵在Rt△AOF中,∵∠A=60°,AO=2,∴AF=4,OF=2,∴O′F=AF=4,∴OO′=4+2,∴m=4+2.故答案为:4+2.2.(1)解:∵四边形ABCD是矩形,∴∠D=90°,CD∥AB,CD=AB=13,∴∠EAB=∠DEA,∵E是CD的中点,∴DE=CD=,∴tan∠DEA===.故答案为:.(2)证明:连接OF,在矩形ABCD中,AD=BC,∠ADE=∠BCE=90°,又CE=DE,∴△ADE≌△BCE(SAS),∴AE=BE,∴∠EAB=∠EBA.∵OF=OA,∴∠OAF=∠OFA,∴∠OFA=∠EBA.∴OF∥EB.∵FG⊥BE,∴FG⊥OF,∴FG是⊙O的切线.(3)解:若BE能与⊙O相切,由AE是⊙O的直径,则AE⊥BE,∠AEB=90°.设DE=x,则EC=13﹣x.由勾股定理得:AE2+EB2=AB2,即(36+x2)+[(13﹣x)2+36]=132,整理得x2﹣13x+36=0,解得:x1=4,x2=9,∴DE=4或9,当DE=4时,CE=9,BE===3,当DE=9时,CE=4,BE===2,∴BE能与⊙O相切,此时BE=2或3.3.解:(1)如图1,连接OC,∵四边形ABCD和四边形BEFG为正方形,∴AB=BC=1,BE=EF,∠OEF=∠ABC=90°,∵点O为AB中点,∴OB=AB=,设BE=EF=x,则OE=x+,在Rt△OEF中,∵OE2+EF2=OF2,∴,在Rt△OBC中,∵OB2+BC2=OC2,∴=OC2,∵OC,OF为⊙O的半径,∴OC=OF,∴,解得:x=,∴正方形BEFG的边长为;(2)证明:如图2,连接OC,设OB=y,BE=EF=x,同(1)可得,OE2+EF2=OF2,OB2+BC2=OC2,∴OF2=x2+(x+y)2,OC2=y2+12∵OC,OF为⊙O的半径,∴OC=OF,∴x2+(x+y)2=y2+12,∴2x2+2xy=1,∴x2+xy=,即x(x+y)=,∴EF×OE=,∴以线段OE和EF为邻边的矩形的面积为定值,这个定值为.(3)证明:连接OD,设OA=a,BE=EF=b,则OB=1﹣a,则OE=1﹣a+b,∵∠DAO=∠OEF=90°,∴DA2+OA2=OD2,OE2+EF2=OF2,∴12+a2=OD2,(1﹣a+b)2+b2=OF2,∵OD=OF,∴12+a2=(1﹣a+b)2+b2,∴(b+1)(a﹣b)=0,∵b+1≠0,∴a﹣b=0,∴a=b,∴OA=EF,在Rt△AOD和Rt△EFO中,,∴Rt△AOD≌Rt△EFO(HL),∴∠FOE=∠ODA,∵∠DAO=90°,∴∠ODA+∠AOD=90°,∴∠FOE+∠AOD=90°,∴∠DOF=90°,∴DO⊥FO.4.解:(1)如图1,∵AC为直径,∴∠ABC=90°,∴∠ACB+∠BAC=90°,∵AB=BC,∴∠ACB=∠BAC=45°,∴∠ADB=∠ACB=45°;(2)线段EA,CF,EF之间满足的等量关系为:EA2+CF2=EF2.理由如下:如图2,设∠ABE=α,∠CBF=β,∵AD∥BF,∴∠EBF=∠ADB=45°,又∠ABC=90°,∴α+β=45°,过B作BN⊥BE,使BN=BE,连接NC,∵AB=CB,∠ABE=∠CBN,BE=BN,∴△AEB≌△CNB(SAS),∴AE=CN,∠BCN=∠BAE=45°,∴∠FCN=90°.∵∠FBN=α+β=∠FBE,BE=BN,BF=BF,∴△BFE≌△BFN(SAS),∴EF=FN,∵在Rt△NFC中,CF2+CN2=NF2,∴EA2+CF2=EF2;(3)如图3,延长GE,HF交于K,由(2)知EA 2+CF 2=EF 2, ∴EA 2+CF 2=EF 2,∴S △AGE +S △CFH =S △EFK ,∴S △AGE +S △CFH +S 五边形BGEFH =S △EFK +S 五边形BGEFH ,即S △ABC =S 矩形BGKH , ∴S △ABC =S 矩形BGKH ,∴S △GBH =S △ABO =S △CBO ,∴S △BGM =S 四边形COMH ,S △BMH =S 四边形AGMO ,∵S 四边形AGMO :S 四边形CHMO =8:9,∴S △BMH :S △BGM =8:9,∵BM 平分∠GBH ,∴BG :BH =9:8,设BG =9k ,BH =8k ,∴CH =3+k ,∵AG =3,∴AE =3, ∴CF =(k +3),EF =(8k ﹣3),∵EA 2+CF 2=EF 2, ∴+=,整理得:7k 2﹣6k ﹣1=0,解得:k 1=﹣(舍去),k 2=1.∴AB =12,∴AO =AB =6,∴⊙O的半径为6.5.解:(1)①错误.点B在射线OA上的射影值小于1时,∠OBA可以是钝角,故△OAB 不一定是锐角三角形;②正确.点B在射线OA上的射影值等于1时,AB⊥OA,∠OAB=90°,△OAB是直角三角形;③正确.点B在射线OA上的射影值大于1时,∠OAB是钝角,故△OAB是钝角三角形;故答案为:B.(2)①如图2,作BH⊥OC于点H,∵点B在射线OA上的射影值为,∴=,=,CA=OA=OB=1,∴=,又∵∠BOH=∠COB,∴△BOH∽△COB,∴∠BHO=∠CBO=90°,∴BC⊥OB,∴直线BC是⊙O的切线;②图形是上下对称的,只考虑B在直线OC上及OC上方部分的情形.过点D作DM⊥OC,作DN⊥OB,当∠DOB<90°时,设DM=h,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DN=OC×DM,∴DN=2h,∵在Rt△DON和Rt△DOM中,OD2=DN2+ON2=DM2+OM2,∴4h2+y2=h2+x2,∴3h2=x2﹣y2①,∵BD2=CD2,∴4h2+(1﹣y)2=h2+(2﹣x)2②,①②消去h得:y=2x﹣.如图,当∠BOD=90°时,过点D作DM⊥OC于点M,∵D为线段BC的中点,∴S△OBD =S△ODC,∴OB×DO=OC×DM,∵CA=OA=OB=1,∴OD=2DM,∴sin∠DOM=,∴∠DOM=30°,设DM=h,则OD=2h,OM=h,∴h2+=1+4h2,∴h=,∴OM=,当点B在OC上时,OD=,综上所述,当≤x≤时,y=0;当<x≤时,y=2x﹣.故答案为:y=0(≤x≤)或y=2x﹣(<x≤).6.解:(1)如图1,连接OA、OB,过点O作OH⊥AB于点H,∵∠C=60°,∴∠AOB=120°,∵OA=OB,∴△OAB为等腰三角形,∵OH⊥AB,∴∠AOH=∠BOH=60°,∴AH=OA sin∠AOH=4×=2,则AB=2AH=4;故答案为4;(2)如图2,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F,∵四边形ABCD的面积S=AC×DE AC×BF=AC×(DE+BF),∴当D、E、F、B四点共线且为直径时,四边形ABCD的面积S最大;∵∠ABC=120°,∴∠ADC=60°,∴∠AOC=120°,在△AOC中,由(1)知,AC=2×OA sin60°=2×6×=6,∴四边形ABCD的面积S的最大值为:×AC×BD=6×12=36,故四边形ABCD的面积的最大值为36;(3)如图3,过点D作DK⊥AB于点K,连接CD,在△ADM中,DK=AD•sin A=1×=,同理AK=,则KM=AM﹣AK=2﹣=,则tan∠DMK==∴∠DMK=30°,故△ADM为直角三角形,同理△CMB为直角三角形,在Rt△ADM中,DM===,∴∠DMC=180°﹣∠DMA﹣∠CMB=60°∵AD=BM,AM=BC,∠A=∠B=60°,∴Rt△ADM≌Rt△BMC(SAS),∴DM=CM,∴△CDM为等边三角形;设所在的圆的圆心为R,连接DR、CR、MR,∵DM=CM,RM=RM,DR=CR,∴△DRM≌△CRM(SSS),∴∠DMR=∠CMR=∠DMC=30°,在△DMR中,DR=1,∠DMR=30°,DM==CM,过点R作RH⊥DM于点H,则RM===1=RD,故D、P、C、M四点共圆,∴∠DPC=120°,如图4,连接MP,在PM上取PP′=PC,∵△CDM为等边三角形,∴∠CDM=60°=∠CPM,∴△P′PC为等边三角形,则PP′=P′C=PC,∵∠PMC=∠PDC,∠CP′M=180°﹣∠PP′C=120°=∠DPC,CD=CM,∴△PDC≌△P′MC(AAS),∴PD=P′M,∴PD+PC=PP′+PD=PP′+P′M=PM,故当PM是直径时,PD+PC最大值为2;∵四边形DMCP的周长=DM+CM+PC+PD=2+PD+PC,而PD+PC最大值为2;故四边形DMCP的周长的最大值为:2+2,即四条慢跑道总长度(即四边形DMCP的周长)最大为2+2.7.(1)证明:∵OQ∥AP,∴∠EOC=∠OAP,∠POQ=∠APO,又∵OP=OA,∴∠APO=∠OAP,又∵∠BOQ=∠EOA=∠OAP,∴∠POQ=∠BOQ,在△BOQ与△POQ中,,∴△POQ≌△BOQ(SAS),∴∠OPQ=∠OBQ=90°,∵点P在⊙O上,∴PQ是⊙O的切线;(2)解:①∵△POQ≌△BOQ,∴∠OBQ=∠OPQ=90°,当∠BOP=90°,四边形OPQB为矩形,而OB=OP,则四边形OPQB为正方形,此时点C、点E与点O重合,PE=PO=AB=2;②∵PE⊥AB,∴当OC=AC,PC=EC,四边形AEOP为菱形,∵OC=OA=1,∴PC===,∴PE=2PC=2.故答案为:2;2.8.解:(1)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∵DC为⊙O的切线,切点为C,∴DC=DA,∵CD∥AB,∴∠D+∠DAB=180°,∴∠D=90°,∴∠ACD=∠DAC=45°;(2)∵AB是⊙O的直径,DA为⊙O的切线,切点为A,∴DA⊥AB,∴∠DAB=90°,∠DEA=∠EAB,∴∠ADC=90°,∵∠EAD=30°,∴∠DEA=60°,∴∠EAB=60°,∴∠BCE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠ACD=30°,∴∠DAC=60°.9.解:(Ⅰ)如图①,连接OC,BC,∵AB为⊙O的直径,∴∠ACB=90°,∵DC与⊙O相切,∴∠OCD=90°,∵OB=BD,∴BC=OD=OB=BD,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=∠OCB=∠COB=60°,∴∠BCD=∠OCA=30°,∴∠D=∠A=30°;(Ⅱ)如图②,连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵AF⊥CD,∴∠AFC=90°,∵∠ACF是圆内接四边形ACEB的外角,∴∠ACF=∠ABE,∴∠FAC=∠EAB=18°,答:∠FAC的大小为18°.10.解:(1)连接OM,∵PE为⊙O的切线,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的长为=.11.(1)证明:∵AB是⊙O的直径,CA切⊙O于A,∴∠C+∠AOC=90°;又∵OC⊥AD,∴∠OFA=90°,∴∠AOC+∠BAD=90°,∴∠C=∠BAD.又∵∠BED=∠BAD,∴∠C=∠BED.(2)解:由(1)知∠C=∠BAD,tan∠BED=,∴tan∠C=,∴tan∠C==,且OA=AB=6,∴,解得AC=8,∴=10,∵OC•AF=OA•AC,∴.∴==.12.(1)证明:∵PA与⊙O相切于点P,∴BP⊥AP∴∠OPD+∠DPA=90°,∠OAP+∠AOP=90°∵∠OAP=∠DPA.∴∠OPD=∠AOP∴OD=PD∵PO=OD∴PO=PD.(2)连接PC,∵PB为⊙O的直径∴∠BCP=90°∵PO=PD=OD∴∠AOP=60°设⊙O的半径为x,则PB=2x,=tan60°∴PA=x∴AB==x∵∠BPA=∠BCP=90°,∠B=∠B∴△BAP∽△BPC∴=∵AC=∴=∴7x﹣=4x∴x=∴⊙O的半径为.13.证明:(1)连接OC,(1)证明:连接OC∵CF是⊙O的切线,∴OC⊥CF,∴∠OCF=90°,∴∠OCB+∠DCF=90°,∵OC=OB,∴∠OCB=∠OBC,∵PD⊥AB,∴∠BPD=90°,∴∠OBC+∠BDP=90°,∴∠BDP=∠DCF,∵∠BDP=∠CDF,∴∠DCF=∠CDF,∴FC=FD;(2)如图2,连接OC,OE,BE,CE,①以O,B,E,C为顶点的四边形是菱形.理由如下:∵AB是直径,∴∠ACB=90°,∵∠BAC=60°,∴∠BOC=120°,∵点E是的中点,∴∠BOE=∠COE=60°,∵OB=OE=OC,∴△BOE,△OCE均为等边三角形,∴OB=BE=CE=OC∴四边形BOCE是菱形;②∵,∴设AC=3k,BC=4k(k>0),由勾股定理得AC2+BC2=AB2,即(3k)2+(4k)2=302,解得k=6,∴AC=18,BC=24,∵点E是的中点,∴OE⊥BC,BH=CH=12,=OE×BH=OB×PE,即15×12=15PE,解得:PE=12,∴S△OBE由勾股定理得OP===9.故答案为:9.14.解:(1)过点E作EH⊥AF于H,连接OA、OE、OH,如图1所示:∵∠ACB=90°,AB=10,AC=8,∴BC===6,设运动时间为t,则AE=5t,AF=8t,∵∠AHE=∠ACB=90°,∠EAH=∠BAC,∴△EAH∽△BAC,∴=,即:=,∴AH=4t,∴FH=AF﹣AH=8t﹣4t=4t,∴AH=FH,∵EH⊥AF,∴△AEF是等腰三角形,∴E为的中点,∠EAF=∠EFA,∵AH=FH,∴OH⊥AC,∴E、H、O三点共线,∴∠OAF+∠AOE=90°,∵AB平分∠DAM,∴∠DAE=∠EAF=∠EFA,∵∠AOE=2∠EFA,∴∠AOE=∠DAE+∠EAF=∠DAF,∴∠DAF+∠OAF=90°=∠DAO,即OA⊥AD,∵OA为⊙O的半径,∴AD与⊙O相切;故答案为:等腰三角形,相切;(2)连接OA、OF、OE,OE于AC交于H,如图2所示:由(1)知:EH⊥AC,∵EN与⊙O相切,∴∠OEN=90°,∵∠ACB=90°,∴四边形EHCN为矩形,∴EH=NC,在Rt△AHE中,EH===3t,∴NC=3t,∵点N为BC的中点,∴BC=2NC=6t,∵BC=6,∴6t=6,∴t=1,∴AH=4,EH=3,设⊙O的半径为x,则OH=x﹣3,在Rt△AOH中,由勾股定理得:OA2=OH2+AH2,即x2=(x﹣3)2+42,解得:x=,∴⊙O的半径为,∴OH=,∴tan∠AOH==,∴∠AOH=74°,∵∠AOH=60°时,△AOE是等边三角形,AE=OA,74°>60°,∴AE>OA,∴劣弧长度的大于半径;(3)当点E运动到B点时,t=10÷5=2,∴AF=2×8=16,AE=EF=AB=10,此时△AEF的内心记为G,当A、E、F重合时,内心为A点,∴△AEF的内心运动的路径长为AG,作GP⊥AE于P,GQ⊥EF于Q,连接AG、GF,则CG=PG=NQ,如图3所示:S△AEF=AF•BC=×16×6=48,设CG=PG=NQ=a,则S△AEF =S△AGF+S△AEB+S△FEG=AF•CG+AE•PG+EF•NQ=×(16+10+10)a=48,解得:a=,在Rt△AGC中,AC2+CG2=AG2,即82+()2=AG,∴AG=,故答案为:;(4)分别讨论两种极限位置,①当EN与⊙O相切时,由(2)知,t=1;②当N在⊙O上,即ON为⊙O的半径,连接OA、ON、OE,OE交AC于H,过点O作OK⊥BC于K,如图4所示:则四边形OKCH为矩形,OA=OE=ON,∴OH=CK,AH=4t,EH=3t,设⊙O的半径为x,则在Rt△AOH中,AH2+OH2=OA2,即(4t)2+(x﹣3t)2=x2,解得:x=t,∴OH=CK=t﹣3t=t,在Rt△OKN中,OK2+KN2=ON2,即(8﹣4t)2+(3+t)2=(t)2,解得:t=,∴线段EN与⊙O有两个公共点时,t的取值范围为:1<t≤,故答案为:1<t≤.15.解:(1)连接OE,则∠OCE=∠OEC=α,∵FE=FG,∴∠FGE=∠FEG=β,∵H是AB的中点,∴CH⊥AB,∴∠GCH+∠CGH=α+β=90°,∴∠FEO=∠FEG+∠CEO=α+β=90°,∴EF是⊙O的切线;(2)∵CH⊥AB,∴=∴∠CBA=∠CEB,∵EF∥BC,∴∠CBA=∠F,故∠F=∠CEB,∴∠FBE=∠GBE,∴△FEB∽△EGB,∴BE2=BG•BF;(3)如图2,过点F作FR⊥CE于点R,设∠CBA=∠CEB=∠GFE=γ,则tanγ=,∵EF∥BC,∴∠FEC=∠BCG=β,故△BCG为等腰三角形,则BG=BC=5,在Rt△BCH中,BC=5,tan∠CBH=tanγ=,则sinγ=,cosγ=,CH=BC sinγ=5×=3,同理HB=4;设圆的半径为r,则OB2=OH2+BH2,即r2=(r﹣3)2+(4)2,解得:r=;GH=BG﹣BH=5﹣4=,tan∠GCH===,则cos∠GCH=,则tan∠CGH=3=tanβ,则cosβ=,连接DE,则∠CED=90°,在Rt△CDE中cos∠GCH===,解得:CE=,在△FEG中,cosβ===,解得:FG=;∵FH=FG+GH=,∴HM=FH tan∠F=×=;∵CM=HM+CH=,∴MD=CM﹣CD=CM﹣2r=.16.(1)证明:连接OD、BD,∵AB为圆O的直径,∴∠BDA=90°,∴∠BDC=180°﹣90°=90°,∵E为BC的中点,∴DE=BC=BE,∴∠EBD=∠EDB,∵OD=OB,∴∠OBD=∠ODB,∵∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°,∴∠ODE=90°,∴DE是圆O的切线.(2)证明:如图,连接BD.由(1)知,∠ODE=∠ADB=90°,BD⊥AC.∵E是BC的中点,O是AB的中点,∴OE是△ABC的中位线,∴OE∥AC,∴OE⊥BD.∴OE∥AC,∴∠1=∠2.又∵∠1=∠A,∴∠A=∠2.即在△ADB与△ODE中,∠ADB=∠ODE,∠A=∠2,∴△ADB∽△ODE.∴=,即=.∴r2=AD•OE;(3)∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,∵点E为BC的中点,∴BC=2DE=8,∵sin C=,∴设AB=3x,AC=5x,根据勾股定理得:(3x)2+82=(5x)2,解得x=2.则AC=10.由切割线定理可知:82=(10﹣AD)×10,解得,AD=3.6.17.解:(1)如答图1,当CD⊥AB或点D是AB的中点是,CD2=AD•BD;(2)作AE⊥BC于点E,由,可设AE=4x,则BE=3x,CE=6x,∴BC=9x=9,∴x=1,∴BE=3,CE=6,AE=4,设DE=a,①如答图2,若点D在点E左侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3﹣a)(6+a),即2a2+3a﹣2=0,解得,a=﹣2(舍去),2∴.②如答图3,若点D在点E右侧,由点D是BC边上的“好点”知,AD2=BD•CD,∴a2+42=(3+a)(6﹣a),即2a2﹣3a﹣2=0,=2,(舍去)解得a1∴BD=3+a=3+2=5.∴或5.(5)①∵∠CHA=∠BHD,∠ACH=∠DBH∴△AHC∽△DHB,∴,即AH•BH=CH•DH,∵OH⊥AB,∴AH=BH,∴BH2=CH•DH∴点H是△BCD中CD边上的“好点”.②.理由如下:如答图4,连接AD,BD,∵∠ABD=90°,∴AD是直径,∴AD=18.又∵OH⊥AB,∴OH∥BD.∵点O是线段AD的中点,∴OH是△ABD的中位线,∴BD=2OH=12.在直角△ABD中,由勾股定理知:AB===6.∴由垂径定理得到:BH=AB=3.在直角△BDH中,由勾股定理知:DH===3.又由①知,BH2=CH•DH,即45=3CH,则CH=.∴==,即.18.解:(1)如图,连接AN,∵AC为直径,∴AN⊥BC,∵AB=AC,∴AN平分∠BAC,∵PC是圆的切线,∴∠ACP=90°,∵∠NAC+∠ACB=∠PCB+∠ACB=90°,∴∠NAC=∠BCP,即∠BAC=2∠BCP;(2)由(1)知,AN平分∠BAC,则∠NAC=∠BCP,故sin∠NAC=sin∠BCP=,则tan∠NAC=,在Rt△NAC中,AC=5,NC=AC•sin∠NAC=5×=,同理AN=2,则BC=2NC=2;S=×BC•AN=2×2=10,△ABC设△ABC内切圆的半径为r,则S=(AB+AC+BC)•r=×(5+5+2)=10,△ABC解得:r=;故△ABC内切圆的半径为;(3)在△ABC中,设AC边长的高为h,则S=AC•h=×5×h=10,解得:h=4,△ABCsin∠BAC==,在Rt△ACP中,∵sin∠BAC==,设PC=4m,则AP=5m,则AC=3m=5,解得m=,△ACP的周长=3m+4m+5m=12m=20.19.(1)证明:如图1,∵AC为⊙O的直径,∴∠ADC=90°,∴∠DAC+∠DCA=90°.∵=,∴∠ABD=∠DCA,∵∠FAD=∠ABD,∴∠FAD=∠DCA,∴∠FAD+∠DCA=90°,∴CA⊥AF,∴AF为⊙O的切线.(2)证明:如图2,连接OD,∵=,∴∠ABD=∠AOD,∵=,∴∠DBC=∠DOC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠DOA=∠DOC,∴DA=DC.(3)如图3,连接OD交CF于M,作EP⊥AD于P,∵AC为⊙O的直径,∴∠ADC=90°.∵DA=DC,∴DO⊥AC,∴∠FAC=∠DOC=90°,∴AF∥OM,∵AO=OC,∴OM=AF.∵∠ODE+∠DEO=90°,∠OCM+∠DEO=90°.∴∠ODE=∠OCM.∵∠DOE=∠COM,OD=OC,∴∴△ODE≌△OCM,∴OE=OM,设OM=m,∴AE=2﹣m,AP=PE=2﹣m,DP=2+m,∵∠AED+∠AEN=135°,∠AED+∠ADE=135°,∴∠AEN=∠ADE,∵∠EAN=∠DPE,∴△EAN∽△DPE,∴=,∴=,∴m=,∴AN=,AE=,∴勾股定理得NE=.20.(1)证明:连接OF,∵AB与⊙O相切于点F,∴OF⊥AB,∵∠ACB=90°,OC=OF,∴∠OAF=∠OAC,即AO是△ABC的角平分线;(2)如图2,连接CE,∵ED是⊙O的直径,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴,∴;(3)由(2)可知:=,∴设AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE•AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合题意,舍去),∴AE=2,AC=4,∴AO=AE+OE=2+3=5,如图3,连接CF交AD于点G,∵AC,AF是⊙O的切线,∴AC=AF,∠CAO=∠OAF,∴CF⊥AO,∴∠ACO=∠CGO=90°,∵∠COG=∠AOC,∴△CGO∽△ACO,∴,∴OC2=OG•OA,∴OG=,∴CG===,∴CF=2CG=.。
2020年中考数学-《方案设计问题》专题练习(含答案)
《方案设计问题》专题【命题趋势】方案设计问题是也是中考数学中一个热门题型,一般题量为1题,多为解答题,分值约8-10分.方案设计型问题是通过一个实际问题情景,给出若干信息,提出解决问题的要求,要求学生运用学过的知识技能和方法,通过设计或操作,寻求恰当的解决方案.有时也给出几个不同的解决方案,要求半断哪个方案最优.它包括经济类方案设计、作图类方案设计、测量类方案设计等类型.方案设计问题特点是题中给出几种方案让考生通过计算选取最佳方案,或给出设计要求,让考生自己设计方案,这种方案有时不止一种,因而又其有开放型题的特点,此种题型考查考生的数学应用意识,命题的背景广泛,考生自由施展才华的空间大,因此倍受命题者的青睐。
【满分技巧】一.方案设计型问题一般解决步骤﹕一般包括“审题——建立相应模型——应用相关知识解决问题”三个步骤.其中根据具体问题建立相应的数学模型是解决这类问题的关键.二.初中数学主要数学模型﹕1.方程(组)模型.2.函数模型(一次函数、二次函数、反比例函数)3.不等式模型根据具体问题建立相应的数学模型,其实质就是利用相关知识解决生活实际问题,所谓建立数学模型,主要是因为实际问题中可能没有使用数学化的语言表示一些具体的量或数值,需要我们自己去建立或设出相应的符号,把生活实际问题数学化.以方便我们去利用相关数学知识解决这类问题.三.熟练掌握和运用数学的常用思想方法我们在解决任何问题时,往往都是利用现有的知识结合一些重要的数学思想方法去解决问题,我们一定要把实际问题转化成数学问题,利用现有的知识和方法,结合模型、转化、类比等数学思想解决问题.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.【限时检测】一、选择题1. (2019 黑龙江省鸡西市)某学校计划用34件同样的奖品全部用于奖励在“经典诵读”活动中表现突出的班级,一等奖奖励6件,二等奖奖励4件,则分配一、二等奖个数的方案有( )A.4种B.3种C.2种D.1种【答案】B【解析】设一等奖个数x个,二等奖个数y个,根据题意,得6x+4y=34,使方程成立的解有17xy=⎧⎨=⎩,34xy=⎧⎨=⎩,51xy=⎧⎨=⎩,∴方案一共有3种;故选:B.2. (2019 黑龙江省绥化市)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种【答案】C【解析】设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,1≤x<3,∵x为整数,∴x=1或2或3,∴有3种购买方案.故选:C.3. (2019 湖北省仙桃潜江天门江汉油田)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【答案】B【解析】设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.4. (2019 江西省)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有()A.3种B.4种C.5种D.6种【答案】D【解析】共有6种拼接法,如图所示.故选:D.5. (2019 四川省绵阳市)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A. 3种B. 4种C. 5种D. 6种【答案】C【解析】设该店购进甲种商品x件,则购进乙种商品(50-x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.二、作图题6. (2019 四川省广安市)在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,剪掉其中两个方格,使之成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个3×3的正方形方格画一种,例图除外)【解析】如图所示7. (2019 浙江省宁波市)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解析】(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.三、解答题8. (2019 贵州省遵义市)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B 型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?【解析】(1)设租用A ,B 两型客车,每辆费用分别是x 元、y 元,43107003410300x y x y +=⎧⎨+=⎩, 解得,17001300x y =⎧⎨=⎩, 答:租用A ,B 两型客车,每辆费用分别是1700元、1300元;(2)设租用A 型客车a 辆,租用B 型客车b 辆,45302401700130010000a b a b +⎧⎨+⎩…„, 解得,25a b =⎧⎨=⎩,42a b =⎧⎨=⎩,51a b =⎧⎨=⎩, ∴共有三种租车方案,方案一:租用A 型客车2辆,B 型客车5辆,费用为9900元,方案二:租用A 型客车4辆,B 型客车2辆,费用为9400元,方案三:租用A 型客车5辆,B 型客车1辆,费用为9800元,由上可得,方案二:租用A 型客车4辆,B 型客车2辆最省钱.9. (2019 黑龙江省鸡西市)为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x 个,求有多少种购买方案?(3)设学校投入资金W 元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?【解析】(1)设购买一个甲种文具a 元,一个乙种文具b 元,由题意得:235330a b a b +=⎧⎨+=⎩,解得155a b =⎧⎨=⎩, 答:购买一个甲种文具15元,一个乙种文具5元;(2)根据题意得:955155(120)1000x x +-剟,解得35.540x 剟,x Q 是整数,36x ∴=,37,38,39,40.∴有5种购买方案;(3)155(120)10600W x x x =+-=+,100>Q ,W ∴随x 的增大而增大,当36x =时,1036600960W =⨯+=最小(元),1203684∴-=.答:购买甲种文具36个,乙种文具84个时需要的资金最少,最少资金是960元.10. (2019 湖北省荆州市)为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示: 甲型客车 乙型客车 载客量(人/辆)35 30 租金(元/辆) 400 320学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为 辆;(3)学校共有几种租车方案?最少租车费用是多少?【解析】(1)设参加此次研学活动的老师有x 人,学生有y 人,依题意,得:,解得:.答:参加此次研学活动的老师有16人,学生有234人.(2)∵(234+16)÷35=7(辆)……5(人),16÷2=8(辆),∴租车总辆数为8辆.故答案为:8.(3)设租35座客车m辆,则需租30座的客车(8﹣m)辆,依题意,得:,解得:2≤m≤5.∵m为正整数,∴m=2,3,4,5,∴共有4种租车方案.设租车总费用为w元,则w=400m+320(8﹣m)=80m+2560,∵80>0,∴w的值随m值的增大而增大,∴当m=2时,w取得最小值,最小值为2720.∴学校共有4种租车方案,最少租车费用是2720元.11. (2019 湖南省郴州市)某小微企业为加快产业转型升级步伐,引进一批A,B两种型号的机器.已知一台A型机器比一台B型机器每小时多加工2个零件,且一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等.(1)每台A,B两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A,B两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A,B两种型号的机器可以各安排多少台?【解析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:=,解得:x=6,经检验,x=6是原方程的解,且符合题意,∴x+2=8.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件.(2)设A型机器安排m台,则B型机器安排(10﹣m)台,依题意,得:,解得:6≤m≤8.∵m为正整数,∴m=6,7,8.答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.12. (2019 湖南省衡阳市)某商店购进A、B两种商品,购买1个A商品比购买1个B商品多花10元,并且花费300元购买A商品和花费100元购买B商品的数量相等.(1)求购买一个A商品和一个B商品各需要多少元;(2)商店准备购买A、B两种商品共80个,若A商品的数量不少于B商品数量的4倍,并且购买A、B商品的总费用不低于1000元且不高于1050元,那么商店有哪几种购买方案?【解析】(1)设购买一个B商品需要x元,则购买一个A商品需要(x+10)元,依题意,得:=,解得:x=5,经检验,x=5是原方程的解,且符合题意,∴x+10=15.答:购买一个A商品需要15元,购买一个B商品需要5元.(2)设购买B商品m个,则购买A商品(80﹣m)个,依题意,得:,解得:15≤m≤16.∵m为整数,∴m=15或16.∴商店有2种购买方案,方案①:购进A商品65个、B商品15个;方案②:购进A商品64个、B商品16个.13. (2019 湖南省张家界市)某社区购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且乙种树苗棵数比甲种树苗棵数的2倍少40棵,购买两种树苗的总金额为9000元.(1)求购买甲、乙两种树苗各多少棵?(2)为保证绿化效果,社区决定再购买甲、乙两种树苗共10棵,总费用不超过230元,求可能的购买方案?【解析】(1)设购买甲种树苗x棵,购买乙种树苗(2x﹣40)棵,由题意可得,30x+20(2x﹣40)=9000,50x=9800,x=196,∴购买甲种树苗196棵,乙种树苗352棵;(2)设购买甲树苗y棵,乙树苗(10﹣y)棵,根据题意可得,30y+20(10﹣y)≤230,10y≤30,∴y≤3;购买方案1:购买甲树苗3棵,乙树苗7棵;购买方案2:购买甲树苗2棵,乙树苗8棵;购买方案3:购买甲树苗1棵,乙树苗9棵;购买方案4:购买甲树苗0棵,乙树苗10棵;14. (2019 山东省滨州市)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解析】(1)设辆甲种客车与1辆乙种客车的载客量分别为x人,y人,,解得:,答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人;(2)设租用甲种客车x 辆,依题意有:,解得:6>x ≥4,因为x 取整数,所以x =4或5,当x =4时,租车费用最低,为4×400+2×280=2160.15. (2019 四川省巴中市)在“扶贫攻坚”活动中,某单位计划选购甲、乙两种物品慰问贫困户.已知甲物品的单价比乙物品的单价高10元,若用500元单独购买甲物品与450元单独购买乙物品的数量相同.①请问甲、乙两种物品的单价各为多少?②如果该单位计划购买甲、乙两种物品共55件,总费用不少于5000元且不超过5050元,通过计算得出共有几种选购方案?【解析】①设乙种物品单价为x 元,则甲种物品单价为(x +10)元,由题意得: 500x+10=450x解得x =90经检验,x =90符合题意∴甲种物品的单价为100元,乙种物品的单价为90元.②设购买甲种物品y 件,则乙种物品购进(55﹣y )件由题意得:5000≤100y +90(55﹣y )≤5050解得5≤y ≤10∴共有6种选购方案.16. (2019 四川省广安市)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【解析】(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.17. (2019 浙江省温州市)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解析】(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a =10,则费用为100×10+100×b ×0.8≤1200,得b ≤2.5,∴b 的最大值是2,此时a +b =12,费用为1160元;若a =11,则费用为100×11+100×b ×0.8≤1200,得b ≤54∴b 的最大值是1,此时a +b =12,费用为1180元;若a ≥12,100a ≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a <10时,若a =9,则费用为100×9+100b ×0.8+100×1×0.6≤1200,得b ≤3,∴b 的最大值是3,a +b =12,费用为1200元;若a =8,则费用为100×8+100b ×0.8+100×2×0.6≤1200,得b ≤3.5,∴b 的最大值是3,a +b =11<12,不合题意,舍去;同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.18. (2019 河南省)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A 奖品和2个B 奖品共需120元;购买5个A 奖品和4个B 奖品共需210元.(1)求A ,B 两种奖品的单价;(2)学校准备购买A ,B 两种奖品共30个,且A 奖品的数量不少于B 奖品数量的13,请设计出最省钱的购买方案,并说明理由.【解析】(1)设A 的单价为x 元,B 的单价为y 元,根据题意,得,∴,∴A 的单价30元,B 的单价15元;(2)设购买A 奖品z 个,则购买B 奖品为(30﹣z )个,购买奖品的花费为W 元,由题意可知,z ≥13(30﹣z ),∴z ≥152W =30z +15(30﹣z )=450+15z ,当z =8时,W 有最小值为570元,即购买A 奖品8个,购买B 奖品22个,花费最少.。
2020年中考数学复习《特殊的平行四边形》专题训练及答案解析
2020年中考数学复习《特殊的平⾏四边形》专题训练及答案解析2020年中考数学专题练习特殊的平⾏四边形⼀、选择题1. (2019·上海)已知ABCD Y ,下列条件中,不能判定这个平⾏四边形为矩形的是( )A.A B ∠=∠ B. A C ∠=∠C. AC BD =D. AB BC ⊥ 2. (2019.杭州)如图,P 是矩形ABCD 内⼀点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=.若80APB ∠=?,50CPD ∠=?,则( )A.1423()()30θθθθ+-+=? B. 2413()()40θθθθ+-+=? C. 1234()()70θθθθ+-+=? D. 1234()()180θθθθ+++=?3. (2019·遵义)如图,P 是矩形ABCD 的对⾓线AC 上⼀点,过点P 作//EF BC ,分别交,AB CD 于点,E F ,连接,PB PD .若2,8AE PF ==,则图中涂⾊部分的⾯积为( )A. 10B. 12C. 16D. 184. (2019·威海)矩形ABCD 与矩形CEFG 如图放置,点,,B C E 共线,点,,C D G 共线,连接AF,取AF的中点H,连接GH.若2,1====,则BC EF CD CE GH的长为( )C. D.A. 1B. 235. (2019·⼗堰)菱形不具备的性质是( )A.四条边都相等B.对⾓线⼀定相等C.是轴对称图形D.是中⼼对称图形6. (2019·淮安)如图,菱形ABCD的对⾓线,AC BD的长分别为6和8,则这个菱形的周长是( )A. 20B. 24C. 40D. 487. (2019·⼤连)如图,在菱形ABCD中,对⾓线,AC BD相交于点O.若5,6==,则BD的长是( )AB ACA. 8B. 7C. 4D. 38. (2019·⾈⼭)⽤尺规在⼀个平⾏四边形内作菱形ABCD,下列作法中错误的是( )9. (2019·宿迁)如图,菱形ABCD的对⾓线,AC BD相交于点O,E 为边CD 的中点.若菱形ABCD 的周长为16,60BAD ∠=?,则OCE ?的⾯积是( )10.(2019·湘西州)下列说法:①对顶⾓相等;②两直线平⾏,同旁内⾓相等;③对⾓线互相垂直的四边形为菱形;④对⾓线互相垂直平分且相等的四边形为正⽅形.其中正确的有( )A. 1个B. 2个C. 3个D. 4个11.(2019·宜昌)如图,正⽅形ABCD 的边长为1,,E F 分别是对⾓线AC 上的两点,EG AB ⊥,EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂⾜分别为,,,G I H J ,则图中涂⾊部分的⾯积为( )A. 1B. 12C. 13D. 1412.(2019·河南)如图①,点F 从菱形ABCD 的顶点A 出发,沿B →→以1 cm/s 的速度匀速运动到点B ,图②是点F 运动时,FBC ?的⾯积y (cm 2)随时间x (s)变化的图象,则a 的值为( ) A.B. 2C. 52D.⼆、填空题13. (2019·株洲)如图,矩形ABCD的对⾓线AC与BD相交点O,AO AD的中点,则PQ的长度=分别为,10,,AC P Q为.14.(2019·成都)如图,在矩形ABCD中,按以下步骤作图:①分别以点A和C为圆⼼,以⼤于1AC的长为半径作弧,两弧相交于点M和N;②作直线MN交CD于点E.若==,则矩形的对⾓线AC的长为. 2,3DE CE15. (2019·徐州)若菱形两条对⾓线的长分别是6 cm和8 cm,则其⾯积为cm 2.16. (2019·⼴州)如图,若菱形ABCD的顶点,A B的坐标分别为-,点D在y轴上,则点C的坐标是.(3,0),(2,0)17. (2019·葫芦岛)如图,在菱形OABC 中,点B 在x 轴上,点A的坐标为(2,3),则点C 的坐标为 .18.(2019·黔西南州)已知⼀个菱形的边长为2,较长的对⾓线长为,则这个菱形的⾯积是 .19.( 2019·双鸭⼭)如图,在ABCD Y 中,添加⼀个条件,使ABCD Y 是菱形.20.(2019·南通)如图,在ABC ?中,,AD CD 分别平分BAC ∠和ACB ∠,//AE CD ,//CE AD .若从三个条件:①AB AC =;②AB BC =;③AC BC =中选择⼀个作为已知条件,则能使四边形ADCE 为菱形的是 . (填序号)21. (2019·随州)如图,在平⾯直⾓坐标系xOy 中,菱形OABC 的边长为2,点A 在第⼀象限,点C 在x 轴正半轴上,60AOC ∠=?.若将菱形OABC 绕点O 顺时针旋转75o,得到四边形'''OA B C ,则点B 的对应点'B 的坐标为 .22. (2019·荆门)如图,在平⾯直⾓坐标系xOy 中,函数(0,0)k y k x x=>>的图象经过菱形OACD 的顶点D 和边AC 的中点E .若菱形OACD 的边长为1,则k 的值为 .23. (2019·镇江)如图,点,,E F G 分别在菱形ABCD 的边,,AB BC AD 上,13AE AB =,13CF CB =,13AG AD =.已知EFG ?的⾯积等于6,则菱形ABCD 的⾯积等于 .24. (2019·乐⼭)如图,四边形ABCD 是正⽅形,延长AB 到点E ,使AE AC =,连接CE ,则BCE ∠的度数是 .25. (2019·咸宁)如图,将正⽅形OEFG 放在平⾯直⾓坐标系中,O 是坐标原点,点E 的坐标为(2,3),则点F 的坐标为 .26. (2019·上海)对于⼀个位置确定的图形,如果它的所有点都在⼀个⽔平放置的矩形内部或边上,且该图形与矩形的每条边都⾄少有⼀个公共点(如图①),那么这个矩形⽔平⽅向的边长称为该图形的宽,铅垂⽅向的边长称为该矩形的⾼.如图②,菱形ABCD 的边长为1,边AB ⽔平放置.如果该菱形的⾼是宽的23,那么它的宽的值是 .27.(2019·武汉)以正⽅形ABCD 的边AD 作等边三⾓形ADE ,则BEC ∠的度数是 .28. (2019·青岛)如图,正⽅形ABCD 的边长为5,点,E F 分别在,AD DC 上,AE DF = 2=,BE 与AF 相交于点,G H 为BF 的中点,连接GH ,则GH 的长为 .29. (2019·呼和浩特)如图,在正⽅形ABCD 中,M 是边BA 延长线上的动点(不与点A 重合),且AM AB <,CBE ?由DAM ?平移得到.若过点E 作EH AC ⊥,H 为垂⾜,则有以下结论:①点M 位置变化,使得60DHC ∠=?时,2BE DM =;②⽆论点M 运动到何处,都有DM =;③⽆论点M 运动到何处,CHM ∠⼀定⼤于135o.其中正确的结论为 . (填序号)30. (2019·江西)在正⽅形ABCD 中,6AB =,连接,,AC BD P 是正⽅形边上或对⾓线上⼀点.若2PD AP =,则AP 的长为 .三、解答题31. (2019·湘西州)如图,在矩形ABCD 中,E 是AB 的中点,连接,DE CE .(1)求证: ADE BCE ;(2)若6,4AB AD ==,求CDE ?的周长.32. (2019连云港)如图,在矩形ABCD 中,E 是AD 的中点,延长,CE BA 交于点F ,连接,AC DF .(1)求证:四边形ACDF 是平⾏四边形;(2)当CF 平分BCD ∠时,写出BC 与CD 的数量关系,并说明理由.33. ( 2019·河南)如图,反⽐例函数(0)k y x x =>的图象过格点(⽹格线的交点)P .(1)反⽐例函数的解析式为 .(2)在图中⽤直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满⾜下⾯两个条件:①四个顶点均在格点上.且其中两个顶点分别是,O P ;③矩形的⾯积等于k的值.34. (2019·青岛)如图,四边形ABCD是平⾏四边形,对⾓线AC 与BD相交于点,E G为AD的中点,连接,CG CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB AF=;(2)若AG AB∠=?,判断四边形ACDF的形状,并证BCD=,120明你的结论.35. (2019·⼴东)如图,BD是菱形ABCD的对⾓线,75∠=?.CBD(1)请⽤尺规作图法,作AB的垂直平分线EF,垂是为E,交AD于点F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求DBF∠的度数.36.(2019·娄底)如图,在四边形ABCD中,对⾓线, AC BD相交于点O,且AD BC于点,E F.==,过点O作EF BD,OA OC OB OD⊥,分别交,(1)求证: AOE COF;(2)判断四边形BEDF的形状,并说明理由.37. (2019·南京)如图,在四边形ABCD中,BC CDC BAD∠=∠.=,2==.求证: O是四边形ABCD内⼀点,且OA OB OD (1) BOD C∠=∠;(2)四边形ABCD是菱形.38. (2019·乌鲁⽊齐)如图,在四边形ABCD中,90∠=?,EBAC 是BC的中点,//⊥于点F.AE DC,EF CDAD BC,//(1)求证:四边形AECD是菱形;(2)若6,10==,求EF的长.AB BC39. (2019·⼴安)如图,四边形ABCD是正⽅形,M为BC上⼀点,连接AM,延长AD⾄点E,使得AE AM=,过点E作=.⊥,垂⾜为F,求证:AB EFEF AM40. (2019·盐城)如图,在正⽅形ABCD中,对⾓线BD所在的直线上有两点,E F满⾜BE DFAE AF CE CF.=,连接,,,(1)求证: ABE ADF;(2)试判断四边形AECF的形状,并说明理由.41. (2019·长春)在正⽅形ABCD中,E是边CD上⼀点(点E不与点,C D重合),连接BE. [感知]如图①,过点A作AF BE⊥交BC于点F.易证.(不需要证明)ABF BCE[探究]如图②,取BE的中点M,过点M作FG BE⊥交BC于点F,交AD于点G.(1)求证:BE FG=.(2)连接CM,若1CM=,则FG的长为.[应⽤]如图③,取BE的中点M,连接CM.过点C作CG BE⊥交AD于点G,连接,EG MG.若3CM=,则四边形GMCE的⾯积为.42. (2019·潍坊)如图,M是正⽅形ABCD边CD上⼀点,连接⊥于点E,BF AM⊥于点F,连接BE.AM,作DE AM(1)求证:AE BF=;(2)已知2∠的正弦AF=,四边形ABED的⾯积为24,求EBF值.43. (2019·吉林)如图①,在ABC=,过AB上⼀点D中,AB AC作//DE AC交BC于点E,以E为顶点,ED为⼀边,作∠=∠,另⼀边EF交AC于点F. DEF A(1)求证:四边形ADEF为平⾏四边形;(2)当D为AB的中点时,ADEFY的形状为;(3)延长图①中的DE 到点G ,使EG DE =,连接,,AE AG FG ,得到图②,若AD AG =,判断四边形AEGF 的形状,并说明理由.44. (2019·绍兴)⼩敏思考解决如下问题:原题:如图①,点,P Q 分别在菱形ABCD 的边,BC CD 上,PAQ B ∠=∠,求证: AP AQ =.(1)⼩敏进⾏探索,将点,P Q 的位置特殊化:把PAQ ∠绕点A旋转得到EAF ∠,使AE BC ⊥,点,E F 分别在边,BC CD 上,如图②.此时她证明了AE AF =.请你证明.(2)受以上(1)的启发,在原题中,添加辅助线:如图③,作AE BC ⊥,AF CD ⊥,垂⾜分别为,E F .请你继续完成原题的证明.(3)如果在原题中添加条件:4AB =,60B ∠=?,如图①,请你编制⼀个计算题(不标注新的字母),并直接给出答案.(根据编出的问题层次,给不同的得分)参考答案⼀、1. B 2. A 3. C 4. C 5. B 6. A 7. A 8. C 9. A 10. B 11. B 12. C⼆、15.13. 2.5 14.2416.-17. (2,3)-18.19. 答案不唯⼀,如:AB BC=20. ②21.22. 23. 27 24.22.5o 25. (1,5)- 26.1813 27. 30o或150o28. 29. ①②③30. 2或三、解答题31. (1)点拨:由AD BCA B AE BE =??∠=∠??=?,可得()ADE BCE SAS .(2) CDE ?的周长是16.32. (1) 点拨:由()FAE CDE ASA ,可得FA CD =. ⼜∵//CD AF ,∴四边形ACDF 是平⾏四边形.(2)2BC CD =33. (1)反⽐例函数的解析式为4y x= (2) 答案不唯⼀,如图,矩形OAPB ,矩形OCDP 即为所求作的图形34. (1) 点拨:由AGF DGC=.,可得AF DC∵四边形ABCD是平⾏四边形,∴AB CD=,∴AB AF=.(2) 四边形ACDF是矩形点拨:由(1)可知四边形ACDF是平⾏四边形.由AGF DGCCF FG=,2=.,可得2AD AG由AG AB是∠=?,AB AF=,120BCD=,可得AFG等边三⾓形,∴AG FG=,∴AD CF=.∴四边形ACDF是矩形35. (1) 如图所⽰,直线EF即为所求(2) 45∠=?DBF36. (1)点拨:由题意得到四边形ABCD 是平⾏四边形,∴EAO FCO ∠=∠,⼜∵OA OC =,OEA COF ∠=∠,∴AOE COF(2) 四边形BEDF 是菱形37. (1)如图,延长线段AO 到点E .由题意可得,2BOD BAD ∠=∠.(2)如图,连接OC .证明OBC ODC .得到12BOC DOC BOD ∠=∠=∠,12 BCO DCO BCD ∠=∠=∠,∵BOD BCD ∠=∠,∴BOC BCO ∠=∠,∴OB CB =,∴OB CB CD OD ===,∴四边形ABCD 是菱形.38. (1)点拨:AE CE =(2)245EF=39. 点拨:EFA ABM40. (1) 点拨:AB ADABE ADF BE DF=∠=∠=(2)点拨:连接AC,交BD于点O.可知OC OA=,OE OF=,AC EF⊥,∴四边形AECF是菱形.41. [探究] (1)点拨如图,过点G作GP BC ⊥于点P.由PGF CBEPG CBFPG ECB∠=∠=∠=∠,得到PGF CBE(2) 2 [应⽤] 942. (1)点拨:由AFB DEAAB DAABF DAE∠=∠=∠=∠,可得ABF DAE(2)213sin EBF∠= 43. (1)点拨://AD EF(2)菱形。
2020年中考数学复习:几何 专项练习题(含答案)
2020年中考数学复习:几何 专项练习题一、选择题1.如图,直角三角板ABC 的斜边AB=12cm ,∠A=30°,将三角板ABC 绕C 顺时针旋转90°至三角板A ′B ′C ′的位置后,再沿CB 方向向左平移,使点B ′落在原三角板ABC 的斜边AB 上,则三角板A ′B ′C ′平移的距离为( )A.6cmB.4cmC.cmD.cm2.如图,△ABC 和△DEF 是等腰直角三角形,∠C=∠F=90°,AB=2,DE=4.点B 与点D 重合,点A ,B (D ),E 在同一条直线上,将△ABC 沿DE 方向平移,至点A 与点E 重合时停止.设点B ,D 之间的距离为x ,△ABC 与△DEF 重叠部分的面积为y ,则准确反映y 与x 之间对应关系的图象是( )A B C D 二、填空题3.如图,将两块直角三角板的斜边重合,E 是两直角三角形公共斜边AC 的中点.D 、B 分别为直角顶点,连接DE 、BE 、DB ,∠DAC=60°,∠BAC=45°.则∠EDB 的度数为_______.(6-()64.如图,一块直角三角形木板△ABC,将其在水平面上沿斜边AB所在直线按顺时针方向翻滚,使它滚动cm.三、解答题5.如图,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.(1)EF+AC =AB;(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与点A1运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图,AF1平分∠B A1C1,交BD于F1,过F1作F1E1⊥A1C1,垂足为E1,试猜想F1E1,A1C1与AB之间的数量关系,并证明你的猜想.(3)在(2)的条件下,当A1 E1=3,C1 E1=2时,求BD的长.21216.如图,等腰Rt△ABC 中,∠C=90°,AC=6,动点P 、Q 分别从A 、B 两点同时以每秒1个单位长的速度按顺时针方向沿△ABC 的边运动,当Q 运动到A 点时,P 、Q 停止运动.设Q 点运动时间为t 秒,点P 运动的轨迹与PQ 、AQ 围成图形的面积为S.求S 关于t 的函数解析式.7.正方形ABCD中,点F为正方形ABCD 内的点,△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合. (1)如图1,若正方形ABCD 的边长为2,BE=1,FC=,求证:AE ∥BF ;(2)如图2,若点F 为正方形ABCD 对角线AC 上的点,且AF :FC=3:1,BC=2,求BF 的长.8.将正方形ABCD 和正方形BEFG 如图1摆放,连DF .∠DMC=_____;∠DMC 的值,并证明你的结论;3∠DMC=_________.请画出图形,并直接写出你的结论(不用证明).9.已知△ABC≌△ADE,∠BAC=∠DAE=90°.(1)如图(1)当C、A、D在同一直线上时,连CE、BD,判断CE和BD位置关系,填空:CE_____BD.(2)如图(2)把△ADE绕点A旋转到如图所示的位置,试问(1)中的结论是否仍然成立,写出你的结论,并说明理由.(3)如图(3)在图2的基础上,将△ACE绕点A旋转一个角度到如图所示的△AC′E′的位置,连接BE′、DC′,过点A作AN⊥BE′于点N,反向延长AN交DC′于点M.求的值.10.将正方形ABCD和正方形CGEF如图1摆放,使D点在CF边上,M为AE中点,(1)连接MD、MF,则容易发现MD、MF间的关系是______________(2)操作:把正方形CGEF绕C点旋转,使对角线CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M,探究线段MD、MF的关系,并加以说明;(3)将正方形CGEF绕点C旋转任意角度后(如图3),其他条件不变,(2)中的结论是否仍成立?直接写出猜想,不需要证明.DMDC交射线ON 于点B ,且使∠APB+∠MON=180°. (1)利用图1,求证:PA=PB ;(2)如图2,若点C 是AB 与OP 的交点,当S △POB =3S △PCB 时,求PB 与PC 的比值;(3)若∠MON=60°,OB=2,射线AP 交ON 于点D ,且满足且∠PBD=∠ABO ,请借助图3补全图形,并求OP 的长.12、在中,过点C 作CE ⊥CD 交AD 于点E,将线段EC 绕点E 逆时针旋转得到线段EF(如图1)(1)在图1中画图探究:①当P 为射线CD 上任意一点(P 1不与C 重合)时,连结EP 1绕点E 逆时针旋转 得到线段EC 1.判断直线FC 1与直线CD 的位置关系,并加以证明;②当P 2为线段DC 的延长线上任意一点时,连结EP 2,将线段EP 2绕点E 逆时针旋转得到线段EC 2.判断直线C 1C 2与直线CD 的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=,AE=1,在①的条件下,设CP 1=,S =,求与之间的函数关系式,并写出自变量的取值范围.图1 备用图13、已知:如图,N 、M 是以O 为圆心,1为半径的圆上的两点,B 是上一动点(B 不与点M 、N 重合),ABCD Y 90o90o 90o43x 11P FC V y y xx ¼MN∠MON=90°,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)四边形EPGQ (填“是”或者“不是”)平行四边形; (2)若四边形EPGQ 是矩形,求OA 的值.14、已知如图,在梯形中,点是的中点,是等边三角形.(1)求证:梯形是等腰梯形;(2)动点、分别在线段和上运动,且保持不变.设 求与的函数关系式;(3)在(2)中,当取最小值时,判断的形状,并说明理由.15、已知正方形ABCD 的边长为6cm ,点E 是射线BC 上的一个动点,连接AE 交射线DC 于点F ,将△ABE 沿直线AE 翻折,点B 落在点B′ 处. (1)当=1 时,CF=______cm , (2)当=2 时,求sin∠DAB′ 的值; (3)当= x 时(点C 与点E 不重合),请写出△ABE 翻折后与正方形ABCD 公共部分的面积y 与x 的关系式,(只要写出结论,不要解题过程).ABCD 24AD BC AD BC ==∥,,,M AD MBC △ABCD P Q BC MC 60MPQ =︒∠PC x MQ y ==,,y x y PQC△CEBECEBECEBE16、在△ABC 中,∠ACB=45º.点D (与点B 、C 不重合)为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .(1)如果AB=AC .如图①,且点D 在线段BC 上运动.试判断线段CF 与BD 之间的位置关系,并证明你的结论.(2)如果AB ≠AC ,如图②,且点D 在线段BC 上运动.(1)中结论是否成立,为什么?(3)若正方形ADEF 的边DE 所在直线与线段CF 所在直线相交于点P ,设AC =,,CD=,求线段CP 的长.(用含的式子表示)17、已知:如图(1),射线射线,是它们的公垂线,点、分别在、 上运动(点与点不重合、点与点不重合),是边上的动点(点与、不重合), 在运动过程中始终保持,且. (1)求证:∽;(2)如图(2),当点为边的中点时,求证:;(3)设,请探究:的周长是否与值有关?若有关,请用含有的代数式表示的周长;若无关,请说明理由.3=BC xx //AM BN AB D C AM BN D A C B E AB E A B EC DE ⊥a AB DE AD ==+ADE ∆BEC ∆E AB CD BC AD =+m AE =BEC ∆m m BEC∆18、已知正方形中,为对角线上一点,过点作交于,连接,为中点,连接. (1)直接写出线段与的数量关系;(2)将图1中绕点逆时针旋转,如图2所示,取中点,连接,你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中绕点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)参考答案 一、选择题 1.【答案】C. 2.【答案】B. 二、填空题 3.【答案】15°.4.三、解答题5.【答案与解析】(1)证明:如图1,过点F 作FM ⊥AB 于点M ,在正方形ABCD 中,AC ⊥BD 于点E . ∵AF 平分∠BAC , ∴EF=MF , 又∵AF=AF ,ABCD E BD E EF BD ⊥BC F DF G DF EG CG ,EG CG BEF ∆B 45︒DF G EG CG ,BEF ∆B 图3图2图1FEABCDABC DEFGGFED C BA∴Rt △AMF ≌Rt △AEF , ∴AE=AM ,∵∠MFB=∠ABF=45°, ∴MF=MB,MB=EF , ∴EF+AC=MB+AE=MB+AM=AB .(2)E 1F 1,A 1C 1与AB 三者之间的数量关系:E 1F 1+A 1C 1=AB 证明:如图2,连接F 1C 1,过点F 1作F 1P ⊥A 1B 于点P ,F 1Q ⊥BC 于点Q , ∵A 1F 1平分∠BA 1C 1,∴E 1F 1=PF 1;同理QF 1=PF 1,∴E 1F 1=PF 1=QF 1, 又∵A 1F 1=A 1F 1,∴Rt △A 1E 1F 1≌Rt △A 1PF 1, ∴A 1E 1=A 1P ,同理Rt △QF 1C 1≌Rt △E 1F 1C 1, ∴C 1Q=C 1E 1, 由题意:A 1A=C 1C ,∴A 1B+BC 1=AB+A 1A+BC -C 1C=AB+BC=2AB , ∵PB=PF 1=QF 1=QB ,∴A 1B+BC 1=A 1P+PB+QB+C 1Q=A 1P+C 1Q+2E 1F 1, 即2AB=A 1E 1+C 1E 1+2E 1F 1=A 1C 1+2E 1F 1, ∴E 1F 1+A 1C 1=AB . (3)解:设PB=x ,则QB=x , ∵A 1E 1=3,QC 1=C 1E 1=2,Rt △A 1BC 1中,A 1B 2+BC 12=A 1C 12, 即(3+x )2+(2+x )2=52, ∴x 1=1,x 2=-6(舍去), ∴PB=1, ∴E 1F 1=1, 又∵A 1C 1=5,121212126.【答案与解析】当P运动到C点时:t=6当Q运动到A点:t=∴分两种情况讨论(1)当0≤t≤6时,如图:作PH⊥AB于H,则△APH为等腰直角三角形此时AP=t,BQ=t,则AQ=-tPH=APsin45°=t∴S△AQP=AQ·PH=·(-t)·t=t2+3t(2)当6<t≤时,如图:过P过PH⊥AB于H,此时△PBH为等腰直角三角形AC+CP=t,BQ=t∴BP=AC+CB-(AC+CP)=12-t∴PH=BPsin45°=(12-t)∴S四边形AQPC=S△ABC-S△BPQ=AC·BC-BQ·PH=·6·6-·t·(12-t)=18-t+t2=t2-t+18.综上,.7.【答案与解析】(1)证明:∵△BFC绕着点B按逆时针方向旋转90°后与△BEA重合∴BE=BF=1,∠EBF=∠ABC=90°,∠AEB=∠BFC在△BFC中,BC2=22=4∴BF2+FC2=BC2∴∠BFC=90°…(3分)∴∠AEB+∠EBF=180°∴AE ∥BF …(4分)(2)解:∵Rt △ABC 中,AB=BC=2,由勾股定理,得∵AF :FC=3:1,∵△BFC 绕着点B 按逆时针方向旋转90°后与△BEA 重合∵四边形ABCD 是正方形∴∠ABC=90°∴∠BAC+∠ACB=90° ∴∠EAB+∠BAC=90°即∠EAF=90° 在Rt △EBF 中,EF 2=BE 2+BF 2∵BE=BF8.【答案与解析】(1)如图2,连接BF ,∵四边形ABCD 、四边形BEFG 是正方形,∴∠FBC=∠CBD=45°,∴∠CBD=∠GBC=90°,而BF=BG ,BD=BC ,∴△BFD ∽△BGC ,22而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,(2)如图3,∵将图1中的正方形BEFG 绕B 点顺时针旋转45°,DF 的延长线交CG 于M ,∴B 、E 、D 三点在同一条直线上,而四边形ABCD 、四边形BEFG 是正方形,∴△BFD ∽△BGC ,而∠DMC=180°-∠BCG-∠BCD-∠CDF=180°-∠BDF-∠BCD-∠CDF=180-45°-90°=45°,即∠DMC=45°;9.【答案与解析】(1)CE ⊥BD .(2)延长CE 交BD 于M ,设AB 与EM 交于点F .∵∠BAC=∠DAE=90°, ∴∠CAE=∠BAD .又∵△ABC ≌△ADE ,∴AC=AE ,AB=AD , ∴∠ACE=,∠ABD=,∴∠ACE=∠ABD .又∵∠AFC=∠BFM ,∠AFC+∠ACE=90°,∴∠ABD+∠BFM=90°,∴∠BMC=90°,∴CE ⊥BD .(3)过C ′作C ′G ⊥AM 于G ,过D 作DH ⊥AM 交延长线于点H .∵∠∠E ′NA=∠AGC ′=90°,∴∠NE ′A+∠NAE ′=90°,∠NAE ′+∠C ′AG=90°,∴∠NE ′A=∠C ′AG ,∵AE ′=AC ′∴△ANE ′≌△C ′GA (AAS ),∴AN=C ′G .同理可证△BNA ≌△AHD ,AN=DH .∴C ′G=DH .在△C ′GM 与△DHM 中,∠C ′GM=∠DHM=90°,∠C ′MG=∠DMH ,C ′G=DH ,∴△C ′GM ≌△DHM ,∴C ′M=DM ,01802CAE -∠01802BAD -∠10.【答案与解析】如图1,延长DM交FE于N,图1∵正方形ABCD、CGEF,∴CF=EF,AD=DC,∠CFE=90°,AD∥FE,∴∠1=∠2,又∵MA=ME,∠3=∠4,∴△AMD≌△EMN,∴MD=MN,AD=EN.∵AD=DC,∴DC=NE.又∵FC=FE,∴FD=FN.又∵∠DFN=90°,∴FM⊥MD,MF=MD;(2)MD=MF,MD⊥MF.如图2,延长DM交CE于N,连接FD、FN.∵正方形ABCD,∴AD∥BE,AD=DC,∴∠1=∠2.又∵AM=EM,∠3=∠4,∴△ADM≌△ENM,∴AD=EN,MD=MN.∵AD=DC,∴DC=NE.又∵正方形CGEF,∴∠FCE=∠NEF=45°,FC=FE,∠CFE=90°.又∵正方形ABCD,∴∠BCD=90°,∴∠DCF=∠NEF=45°,∴△FDC≌△FNE,∴FD=FN,∠5=∠6,∠DFN=∠5+∠CFN=∠6+∠CFN=90°,∴△DFN为等腰直角三角形,且FM为斜边DN上的中线,∴MD=MF,MD⊥MF;(3)FM⊥MD,MF=MD.如图3,过点E作AD的平行线分别交DM、DC的延长线于N、H,连接DF、FN.∴∠ADC=∠H,AD∥EH,∴∠3=∠4.∵AM=ME,∠1=∠2,∴△AMD≌△EMN,∴DM=NM,AD=EN.∵正方形ABCD、CGEF,∴AD=DC,FC=FE,∠ADC=∠FCG=∠CFE=90°.∴∠H=90°,∠5=∠NEF,DC=NE.∴∠DCF+∠7=∠5+∠7=90°,∴∠DCF=∠5=∠NEF.∵FC=FE,∴△DCF≌△NEF.∴FD=FN,∠DFC=∠NFE.∵∠CFE=90°,∴∠DFN=90°.∴FM⊥MD,MF=MD.11、 【答案】(1)作PE ⊥OM ,PF ⊥ON ,垂足为E 、F ∵四边形OEPF 中,∠OEP=∠OFP=90°, ∴∠EPF+∠MON=180°,已知∠APB+∠MON=180°,∴∠EPF=∠APB ,即∠EPA+∠APF=∠APF+∠FPB ,∴∠EPA=∠FPB , 由角平分线的性质,得PE=PF ,∴△EPA ≌△FPB ,即PA=PB ;(2)∵S △POB =3S △PCB ,∴PO=3PC ,由(1)可知△PAB 为等腰三角形,则∠PBC=(180°-∠APB )=∠MON=∠BOP , 又∵∠BPC=∠OPB (公共角),∴△PBC ∽△POB ,∴, 即PB 2=PO •PC=3PC 2,∴ (3)作BH ⊥OT ,垂足为H ,当∠MON=60°时,∠APB=120°,由PA=PB ,得∠PBA=∠PAB=(180°-∠APB )=30°, 又∵∠PBD=∠ABO ,∠PBD+∠PBA+∠ABO=180°,∴∠ABO=(180°-30°)=75°,则∠OBP=∠ABO+∠ABP=105°, 在△OBP 中,∵∠BOP=30°,∴∠BPO=45°,在Rt △OBH 中,BH=OB=1,OH=, 1212PB PC PO PB=3PB PC=1212123在Rt △PBH 中,PH=BH=1,∴OP=OH+PH=+1.12、【答案与解析】(1)①直线与直线的位置关系为互相垂直.证明:如图1,设直线与直线的交点为.∵线段分别绕点逆时针旋转90°依次得到线段,∴.∵,, ∴. ∴. ∴. ∵,∴, ∴.31FG CD 1FG CD H 1EC EP 、E 1EF EG 、111190PEG CEF EG EP EF EC ∠=∠===°,,1190G EF PEF ∠=-∠°1190PEC PEF ∠=-∠°11G EF PEC ∠=∠11G EF PEC △≌△11G FE PCE ∠=∠EC CD ⊥190PCE ∠=°190G FE ∠=°FDC BAE 图1 G 2 G 1P 1 H P 2∴.∴.∴.②按题目要求所画图形见图1,直线与直线的位置关系为互相垂直.(2)∵四边形是平行四边形,∴.∵, ∴. 可得. 由(1)可得四边形为正方形.∴. ①如图2,当点在线段的延长线上时,∵, ∴. 90EFH ∠=°90FHC ∠=°1FG CD ⊥12G G CD ABCD B ADC ∠=∠461tan 3AD AE B ===,,45tan tan 3DE EBC B =∠==,4CE =EFCH 4CH CE ==1P CH 1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯⨯=△D G 1P 1 H C BAE F∴. ②如图3,当点在线段上(不与两点重合)时, ∵, ∴. ∴. ③当点与点重合时,即时,不存在.综上所述,与之间的函数关系式及自变量的取值范围是或. 13、【答案】(1)是.证明:连接OB ,如图①,212(4)2y x x x =->1P CH C H 、1114FG CP x PH x ===-,11111(4)22P FG x x S FG PH -=⨯=△212(04)2y x x x =-+<<1P H 4x =11PFG △y x x 212(4)2y x x x =->212(04)2y x x x =-+<<FG 1 P 1 CAB E D H∵BA ⊥OM ,BC ⊥ON , ∴∠BAO=∠BCO=90°, ∵∠AOC=90°, ∴四边形OABC 是矩形.∴AB ∥OC ,AB=OC ,∵E 、G 分别是AB 、CO 的中点,∴AE ∥GC ,AE=GC ,∴四边形AECG 为平行四边形.∴CE ∥AG ,∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,∴GF ∥OB ,DE ∥OB ,∴PG ∥EQ ,∴四边形EPGQ 是平行四边形;(2)解:如图②,∵口EPGQ 是矩形.∴∠AED+∠CEB=90°.又∵∠DAE=∠EBC=90°,∴∠AED=∠BCE .∴△AED ∽△BCE ,∴, AD AE BE BC得y 2=2x 2,又∵OA 2+AB2=OB 2, 即x 2+y 2=12.∴x 2+2x 2=1,14、【答案与解析】(1)证明:∵是等边三角形∴∵是中点∴∵∴∴∴∴梯形是等腰梯形.(2)解:在等边中, ∴ ∴ ∴∴ MBC △60MB MC MBC MCB ===︒,∠∠M AD AM MD =AD BC ∥60AMB MBC ==︒∠∠,60DMC MCB ==︒∠∠AMB DMC △≌△AB DC =ABCD MBC △4MB MC BC ===,60MBC MCB ==︒∠∠,60MPQ =︒∠120BMP BPM BPM QPC +=+=︒∠∠∠∠BMP QPC =∠∠BMP CQP △∽△PC CQ BM BP=∵∴∴∴(3)解:为直角三角形,∵∴当取最小值时,∴是的中点,而∴∴∴为直角三角形.15、【答案与解析】(1)CF=6cm;(2)①如图1,当点E在BC上时,延长AB′交DC于点M,PC x MQ y==,44BP x QC y=-=-,444x yx-=-2144y x x=-+PQC△()21234y x=-+y2x PC==P BC MP BC⊥,60MPQ=︒∠,30CPQ=︒∠,90PQC=︒∠PQC△图1∵ AB ∥CF ,∴ △ABE ∽△FCE ,∴ . ∵ =2, ∴ CF=3. ∵ AB ∥CF,∴∠BAE=∠F .又∠BAE=∠B ′ AE , ∴ ∠B ′ AE=∠F .∴ MA=MF .设MA=MF=k ,则MC=k -3,DM=9-k .在Rt △ADM 中,由勾股定理得:k 2=(9-k)2+62, 解得 k=MA=. ∴ DM=. ∴ sin ∠DAB ′=; ②如图2,当点E 在BC 延长线上时,延长AD 交B ′ E 于点N ,同①可得NA=NE .设NA=NE=m ,则B ′ N=12-m .在Rt △AB ′ N 中,由勾股定理,得m 2=(12-m)2+62, 解得 m=AN=. ∴ B ′N=. ∴ sin ∠DAB ′=. (3)①当点E 在BC 上时,y=; FCAB CE BE =CEBE 13252135=AM DM 1529253='AN N B 18x x 1+图2②当点E 在BC 延长线上时,y=. 16、【答案与解析】(1)结论:CF ⊥BD ; 证明如下:AB=AC ,∠ACB =45º,∴∠ABC=45º.由正方形ADEF 得 AD=AF ,∵∠DAF=∠BAC =90º,∴∠DAB=∠FAC ,∴△DAB ≌△FAC , ∴∠ACF=∠ABD .∴∠BCF=∠ACB+∠ACF= 90º.即 CF ⊥BD .(2)CF ⊥BD .(1)中结论仍成立.理由是:过点A 作AG ⊥AC 交BC 于点G ,∴AC=AG可证:△GAD ≌△CAF ∴∠ACF=∠AGD=45º∠BCF=∠ACB+∠ACF= 90º. 即CF ⊥BD(3)过点A 作AQ ⊥BC 交CB 的延长线于点Q ,①点D 在线段BC 上运动时,∵∠BCA=45º,可求出AQ= CQ=4.∴DQ=4-x ,易证△AQD ∽△DCP ,∴ ,∴, .18x 18x-ΘCP CD DQ AQ =44CP x x =-24x CP x ∴=-+②点D 在线段BC 延长线上运动时,∵∠BCA=45°,∴AQ=CQ=4,∴DQ=4+x .过A 作AQ ⊥BC , ∴∠Q=∠FQC=90°,∠ADQ=∠AFC ,则△AQD ∽△ACF .∴CF ⊥BD ,∴△AQD ∽△DCP ,∴, ∴, . 17、【答案】(1)证明:∵,∴.∴.又∵,∴.∴.∴∽.(2)证明:如图,过点作,交于点,∵是的中点,容易证明. CD DQ AQ 4+4x x =24x CP x ∴=+EC DE ⊥︒=∠90DEC ︒=∠+∠90BEC AED ︒=∠=∠90B A ︒=∠+∠90EDA AED EDA BEC ∠=∠ADE ∆BEC ∆E EF BC //CD F E AB )(21BC AD EF +=在中,∵ ,∴ . ∴ . ∴ .(3)解:的周长,. 设,则.∵ ,∴ .即.∴ . 由(1)知∽,∴ . ∴ 的周长的周长. ∴ 的周长与值无关.18、【答案与解析】(1)(2)(1)中结论没有发生变化,即.证明:连接,过点作于,与的延长线交于点. 在与中,∵,∴.∴.DEC Rt ∆CF DF =CD EF 21=)(21BC AD +CD 21=CD BC AD =+AED ∆DE AD AE ++=m a +=m a BE -=x AD =x a DE -=︒=∠90A 222AD AE DE +=22222x m x ax a +=+-am a x 222-=ADE ∆BEC ∆的周长的周长BEC ∆∆ADE BEAD =m a a m a --=222a m a 2+=BEC ∆⋅+=m a a 2ADE ∆a 2=BEC ∆m CG EG =CG EG =AG G MN AD ⊥M EF N DAG ∆DCG ∆AD CD ADG CDG DG DG =∠=∠=,,DAG DCG ∆∆≌AG CG =在与中,∵, ∴.∴在矩形中,在与中,∵,∴.∴.∴(3)(1)中的结论仍然成立.DMG ∆FNG ∆DGM FGN FG DG MDG NFG ∠=∠=∠=∠,,DMG FNG ∆∆≌MG NG =AENM AM EN =Rt AMG ∆Rt ENG ∆AM EN MG NG ==,AMG ENG ∆∆≌AG EG =EG CG =M N图2A B CDE F GG图3FE A B CD。
最新 2020年中考数学试卷(含答案和解析)
中考数学试卷一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°3.(3分)下列运算正确的是()A.x2•x 3=x6B.x6÷x 5=x C.(﹣x2)4=x6D.x2+x3=x54.(3分)如图所示的几何体的主视图是()A.B.C.D.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠06.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.407.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π8.(3分)已知:在△ABC中,BC=10,BC 边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=_________.10.(3分)分解因式:(2a+1)2﹣a2=_________.11.(3分)计算:﹣=_________.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=_________度.13.(3分)当x=﹣1时,代数式÷+x的值是_________.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=_________.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为_________ cm2.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有_________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(_________,_________),B(_________, _________),D(_________,_________).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=_________(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.中考数学试卷参考答案与试题解析一、选择题(下列个题四个选项中,有且仅有一个是正确的.每小题3分,共24分)1.(3分)﹣8的立方根是()A.﹣2 B.±2 C.2D.﹣考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵﹣2的立方等于﹣8,∴﹣8的立方根等于﹣2.故选A.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)如果α与β互为余角,则()A.α+β=180°B.α﹣β=180°C.α﹣β=90°D.α+β=90°考点:余角和补角.分析:根据互为余角的定义,可以得到答案.解答:解:如果α与β互为余角,则α+β=900.故选:D.点评:此题主要考查了互为余角的性质,正确记忆互为余角的定义是解决问题的关键.3.(3分)下列运算正确的是()A.x2•x3=x6B.x6÷x5=x C.(﹣x2)4=x6D.x2+x3=x5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的乘法和除法法则可以解答本题.解答:解:A.x2•x3=x5,答案错误;B.x6÷x5=x,答案正确;C.(﹣x2)4=x8,答案错误;D.x2+x3不能合并,答案错误.故选:B.点评:主要考查同底数幂相除底数不变指数相减,同底数幂相乘底数不变指数相加,熟记定义是解题的关键.4.(3分)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.5.(3分)函数y=中,自变量x的取值范围是()A.x≠0 B.x≥2 C.x>2且x≠0 D.x≥2且x≠0考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:由题意得,x﹣2≥0且x≠0,∴x≥2.故选B.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.(3分)若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2=()A.﹣8 B.32 C.16 D.40考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=(α+β)2﹣2αβ,然后利用整体代入的方法计算.解答:解:根据题意得α+β=﹣2,αβ=﹣6,所以α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=16.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=﹣,x1•x2=.7.(3分)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选C.点评:本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.8.(3分)已知:在△ABC中,BC=10,BC边上的高h=5,点E在边AB上,过点E作EF∥BC,交AC边于点F.点D 为BC上一点,连接DE、DF.设点E到BC的距离为x,则△DEF的面积S关于x的函数图象大致为()A.B.C.D.考点:动点问题的函数图象.分析:判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S 与x的关系式,然后得到大致图象选择即可.解答:解:∵EF∥BC,∴△AEF∽△ABC,∴=,∴EF=•10=10﹣2x,∴S=(10﹣2x)•x=﹣x2+5x=﹣(x ﹣)2+,∴S与x的关系式为S=﹣(x ﹣)2+(0<x<10),纵观各选项,只有D选项图象符合.故选D.点评:本题考查了动点问题函数图象,主要利用了相似三角形的性质,求出S与x的函数关系式是解题的关键,也是本题的难点.二、填空题(共7小题,每小题3分,共21分)9.(3分)计算:|﹣|=.考点:绝对值.分析:根据负数的绝对值等于它的相反数,可得答案案.解答:解:|﹣|=,故答案为:.点评:本题考查了绝对值,负数的绝对值是它的相反数.10.(3分)分解因式:(2a+1)2﹣a2=(3a+1)(a+1).考点:因式分解-运用公式法.分析:直接利用平方差公式进行分解即可.解答:解:原式=(2a+1+a)(2a+1﹣a)=(3a+1)(a+1),故答案为:(3a+1)(a+1).点评:此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).11.(3分)计算:﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并同类二次根式求解.解答:解:原式=2﹣=.故答案为:.点评:本题考查了二次根式的加减法,关键是掌握二次根式的化简以及同类二次根式的合并.12.(3分)如图,若AD∥BE,且∠ACB=90°,∠CBE=30°,则∠CAD=60度.考点:平行线的性质.分析:延长AC交BE于F,根据直角三角形两锐角互余求出∠1,再根据两直线平行,内错角相等可得∠CAD=∠1.解答:解:如图,延长AC交BE于F,∵∠ACB=90°,∠CBE=30°,∴∠1=90°﹣30°=60°,∵AD∥BE,∴∠CAD=∠1=60°.故答案为:60.点评:本题考查了平行线的性质,直角三角形两锐角互余的性质,熟记性质是解题的关键.13.(3分)当x=﹣1时,代数式÷+x的值是3﹣2.考点:分式的化简求值.分析:将除法转化为乘法,因式分解后约分,然后通分相加即可.解答:解:原式=•+x=x(x﹣1)+x=x2﹣x+x=x2,当x=﹣1时,原式=(﹣1)2=2+1﹣2=3﹣2.故答案为3﹣2.点评:本题考查了分式的化简求值,熟悉除法法则和因式分解是解题的关键.14.(3分)如图,在⊙O中,弦CD垂直于直径AB于点E,若∠BAD=30°,且BE=2,则CD=4.考点:垂径定理;解直角三角形.专题:计算题.分析:连结OD,设⊙O的半径为R,先根据圆周角定理得到∠BOD=2∠BAD=60°,再根据垂径定理由CD⊥AB得到DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,利用余弦的定义得cos∠EOD=cos60°=,即=,解得R=4,则OE=2,DE=OE=2,所以CD=2DE=4.解答:解:连结OD,如图,设⊙O的半径为R,∵∠BAD=30°,∴∠BOD=2∠BAD=60°,∵CD⊥AB,∴DE=CE,在Rt△ODE中,OE=OB﹣BE=R﹣2,OD=R,∵cos∠EOD=cos60°=,∴=,解得R=4,∴OE=4﹣2=2,∴DE=OE=2,∴CD=2DE=4.故答案为4.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理和解直角三角形.15.(3分)如图,在一张长为8cm,宽为6cm的矩形纸片上,现要剪下一个腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为,5,10cm2.考点:作图—应用与设计作图.分析:因为等腰三角形腰的位置不明确,所以分(1)腰长在矩形相邻的两边上,(2)一腰在矩形的宽上,(3)一腰在矩形的长上,三种情况讨论.(1)△AEF为等腰直角三角形,直接利用面积公式求解即可;(2)先利用勾股定理求出AE边上的高BF,再代入面积公式求解;(3)先求出AE边上的高DF,再代入面积公式求解.解答:解:分三种情况计算:(1)当AE=AF=5厘米时,∴S△AEF AE•AF=×5×5=厘米2,(2)当AE=EF=5厘米时,如图BF===2厘米,∴S△AEF=•AE•BF=×5×2=5厘米2,(3)当AE=EF=5厘米时,如图DF===4厘米,∴S△AEF=AE•DF=×5×4=10厘米2.故答案为:,5,10.点评:本题主要考查矩形的角是直角的性质和勾股定理的运用,要根据三角形的腰长的不确定分情况讨论.三、解答题(本大题共10小题,满分共75分)16.(5分)解不等式组:,并在数轴上表示出不等式组的解集.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:解①得:x>3,解②得:x≥1.,则不等式组的解集是:x>3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?考点:二元一次方程组的应用.分析:设购买1块电子白板需要x元,一台投影机需要y元,根据①买2块电子白板的钱﹣买3台投影机的钱=4000元,②购买4块电子白板的费用+3台投影机的费用=44000元,列出方程组,求解即可.解答:解:设购买1块电子白板需要x元,一台投影机需要y元,由题意得:,解得:.答:购买一块电子白板需要8000元,一台投影机需要4000元.点评:此题主要考查了二元一次方程组的应用,解题关键是弄清题意,找出合适的等量关系,列出方程组.18.(6分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AD,利用SSS得到三角形ABD与三角形ACD全等,利用全等三角形对应角相等得到∠EAD=∠FAD,即AD为角平分线,再由DE⊥AB,DF⊥AC,利用角平分线定理即可得证.解答:证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.点评:此题考查了全等三角形的判定与性质,以及角平分线定理,熟练掌握全等三角形的判定与性质是解本题的关键.19.(6分)红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(7分)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.考点:切线的性质;正方形的性质.分析:(1)连接BD,根据直径所对的圆周角是直角,得到直角三角形ABD和BCD,根据切线的判定定理知BC是圆的切线,结合切线长定理得到BE=DE,再根据等边对等角以及等角的余角相等证明DE=CE;(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.解答:(1)证明:连接CD,∵AC是直径,∠ACD=90°,∴BC是⊙O的切线,∠BDA=90°.∵DE是⊙O的切线,∴DE=BE(切线长定理).∴∠EBD=∠EDB.又∵∠DCE+∠EBD=∠CDE+∠EDB=90°,∴∠DCE=∠CDE,∴DE=CE,又∵DE=BE,∴DE=BE.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵DE=BE,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.点评:本题考查了切线的性质以及切线长定理、圆周角定理,解题的关键是连接CD构造直角三角形.21.(7分)某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?考点:条形统计图;扇形统计图.分析:(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.解答:解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.点评:本题考查的是条形统计图和扇形统计图的综合运用;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(9分)如图,已知双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点.(1)当点C的坐标为(﹣1,1)时,A、B、D三点坐标分别是A(﹣2,),B(2,﹣),D(1,﹣1).(2)证明:以点A、D、B、C为顶点的四边形是平行四边形.(3)当k为何值时,▱ADBC是矩形.考点:反比例函数综合题.专题:综合题.分析:(1)由C坐标,利用反比例函数的中心对称性确定出D坐标,联立双曲线y=﹣与直线y=﹣x,求出A与B 坐标即可;(2)由反比例函数为中心对称图形,利用中心对称性质得到OA=OB,OC=OD,利用对角线互相平分的四边形为平行四边形即可得证;(3)由A与B坐标,利用两点间的距离公式求出AB的长,联立双曲线y=﹣与直线y=﹣kx,表示出CD的长,根据对角线相等的平行四边形为矩形,得到AB=CD,即可求出此时k的值.解答:解:(1)∵C(﹣1,1),C,D为双曲线y=﹣与直线y=﹣kx的两个交点,且双曲线y=﹣为中心对称图形, ∴D(1,﹣1),联立得:,消去y得:﹣x=﹣,即x2=4,解得:x=2或x=﹣2,当x=2时,y=﹣;当x=﹣2时,y=,∴A(﹣2,),B(2,﹣);故答案为:﹣2,,2,﹣,1,﹣1;(2)∵双曲线y=﹣为中心对称图形,且双曲线y=﹣与两直线y=﹣x,y=﹣kx(k>0,且k≠)分别相交于A、B、C、D四点,∴OA=OB,OC=OD,则以点A、D、B、C为顶点的四边形是平行四边形;(3)若▱ADBC是矩形,可得AB=CD,联立得:,消去y得:﹣=﹣kx,即x2=,解得:x=或x=﹣,当x=时,y=﹣;当x=﹣时,y=,∴C(﹣,),D(,﹣),∴CD==AB==,整理得:(4k﹣1)(k﹣4)=0,解得:k=(不合题意,舍去)或k=4,则当k=4时,▱ADBC是矩形.点评:此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,一次函数与反比例函数的交点,平行四边形,矩形的判定,两点间的距离公式,以及中心图形性质,熟练掌握性质是解本题的关键.23.(7分)如图,在南北方向的海岸线MN上,有A、B两艘巡逻船,现均收到故障船C的求救信号.已知A、B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C 正好在观测点D的南偏东75°方向上.(1)分别求出A与C,A与D之间的距离AC和AD(如果运算结果有根号,请保留根号).(2)已知距观测点D处100海里范围内有暗礁.若巡逻船A沿直线AC去营救船C,在去营救的途中有无触暗礁危险?(参考数据:≈1.41,≈1.73)考点:解直角三角形的应用-方向角问题.分析:(1)作CE⊥AB,设AE=x海里,则BE=CE=x海里.根据AB=AE+BE=x+x=100(+1),求得x的值后即可求得AC的长;过点D作DF⊥AC于点F,同理求出AD的长;(2)作DF⊥AC于点F,根据AD的长和∠DAF的度数求线段DF的长后与100比较即可得到答案.解答:解:(1)如图,作CE⊥AB,由题意得:∠ABC=45°,∠BAC=60°,设AE=x海里,在Rt△AEC中,CE=AE•tan60°=x;在Rt△BCE中,BE=CE=x.∴AE+BE=x+x=100(+1),解得:x=100.AC=2x=200.在△ACD中,∠DAC=60°,∠ADC=75°,则∠ACD=45°.过点D作DF⊥AC于点F,设AF=y,则DF=CF=y,∴AC=y+y=200,解得:y=100(﹣1),∴AD=2y=200(﹣1).答:A与C之间的距离AC为200海里,A与D之间的距离AD为200(﹣1)海里.(2)由(1)可知,DF=AF=×100(﹣1)≈127∵127>100,所以巡逻船A沿直线AC航线,在去营救的途中没有触暗礁危险.点评:本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系解答.24.(9分)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:居民个人当年治病所花费的医疗费医疗费的报销方法不超过n元的部分全部由医保基金承担(即全部报销)超过n元但不超过6000元的部分个人承担k%,其余部分由医保基金承担超过6000元的部分个人承担20%,其余部分由医保基金承担如果设一位居民当年治病花费的医疗费为x元,他个人实际承担的医疗费用(包括医疗费中个人承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.表二:居民 A B C某次治病所花费的治疗费用x(元)400 800 1500个人实际承担的医疗费用y(元)70 190 470(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?考点:一次函数的应用;列代数式;二元一次方程组的应用.分析:(1)根据医疗报销的比例,可得答案;(2)根据医疗费用的报销费用,可得方程组,再解方程组,可得答案;(3)根据个人承担部分的费用,可得代数式,可得答案.解答:解:(1)由题意得y=;(2)由A、B、C三人的花销得,解得;(3)由题意得70+(6000﹣500)×40%+(32000﹣6000)×20%=70+2200+5200=7470(元).答:这一年他个人实际承担的医疗费用是7470元.点评:本题考查了一次函数的应用,根据题意列函数解析式是解题关键.25.(13分)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.考点:二次函数综合题.专题:压轴题.分析:(1)设抛物线解析式为y=ax2+bx(a≠0),然后把点A、B的坐标代入求出a、b的值,即可得解,再把函数解析式整理成顶点式形式,然后写出顶点M的坐标;(2)根据点P的速度求出OP,即可得到点P的坐标,再根据点A的坐标求出∠AOC=45°,然后判断出△POQ 是等腰直角三角形,根据等腰直角三角形的性质求出点Q的坐标即可;(3)根据旋转的性质求出点O、Q的坐标,然后分别代入抛物线解析式,求解即可;(4)求出点Q与点A重合时的t=1,点P与点C重合时的t=1.5,t=2时PQ经过点B,然后分①0<t≤1时,重叠部分的面积等于△POQ的面积,②1<t≤1.5时,重叠部分的面积等于两个等腰直角三角形的面积的差,③1.5<t<2时,重叠部分的面积等于梯形的面积减去一个等腰直角三角形的面积分别列式整理即可得解.解答:解:(1)设抛物线解析式为y=ax2+bx(a≠0),把点A(1,﹣1),B(3,﹣1)代入得,,解得,∴抛物线解析式为y=x2﹣x,∵y=x2﹣x=(x﹣2)2﹣,∴顶点M的坐标为(2,﹣);(2)∵点P从点O出发速度是每秒2个单位长度,∴OP=2t,∴点P的坐标为(2t,0),∵A(1,﹣1),∴∠AOC=45°,∴点Q到x轴、y轴的距离都是OP=×2t=t,∴点Q的坐标为(t,﹣t);(3)∵△OPQ绕着点P按逆时针方向旋转90°,∴旋转后点O、Q的对应点的坐标分别为(2t,﹣2t),(3t,﹣t),若顶点O在抛物线上,则×(2t)2﹣×(2t)=﹣2t,解得t=,若顶点Q在抛物线上,则×(3t)2﹣×(3t)=﹣t,解得t=1,综上所述,存在t=或1,使得△OPQ的顶点O或顶点Q在抛物线上;(4)点Q与点A重合时,OP=1×2=2,t=2÷2=1,点P与点C重合时,OP=3,t=3÷2=1.5,t=2时,OP=2×2=4,PC=4﹣3=1,此时PQ经过点B,所以,分三种情况讨论:。
2020中考数学 基础专题:有理数(含答案)
2020中考数学 基础专题:有理数(含答案)一、单选题(共有10道小题)1.随着时间的变迁,三溪的气候变得与过去大不一样,今年夏天的最高气温是39℃,而冬天的最低气温是﹣5℃,那么三溪今年气候的最大温差是( )℃. A .44 B .34 C .﹣44 D .﹣342.如果温泉河的水位升高0.8m 时水位变化记作+0.8m ,那么水位下降0.5m 时水位变化记作( )A .0m B.0.5m C.-0.8m D.-0.5m3.如果将“收入100元”记作“+100元”,那么“支出50元”应记作( ) A.+50元 B.-50元 C.+150元 D.-150元4.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作( )A .7 ℃ B.-7 ℃ C .2 ℃ D.-12 ℃5.如果向东走2m 记为+2m ,则向西走3m 可记为( )A .+3mB .+2mC .-3mD .-2m6.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是( ) A.-2 B.-3 C.3 D.57.一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作( )A .-10mB .-12mC .+10mD .+12m8.某地连续四天每天的平均气温分别是:1℃,﹣1℃,0℃,2℃,则平均气温中最低的是( ) A.﹣1℃ B.0℃ C.1℃ D.2℃9.检验4个工件,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的工件是( )A. -2B. -3C. 3D. 510.向东行驶3km,记作+3km ,向西行驶2km 记作 ( )A. +2kmB. -2kmC. +3kmD. -3km 二、填空题(共有8道小题)11.若上升15米记作+15米,则下降8米记作 米 12.有限小数和无限循环小数统称________数. 13.在有理数23、﹣5、3.14中,属于有理数的共有________ 个. 14.若超出标准质量0.05克记作+0.05克,则低于标准质量 0.03克记作_____克.15.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是________和________. 16.一天早晨的气温为-3℃,中午上升了5℃,半夜又下降了7℃,则半夜的气温为________. 17.如果水位升高3m 时水位变化记作+3m ,那么水位下降2m 时水位变化记作:________ m . 18.如图,在数轴上点A 表示1,现将点A 沿x 轴做如下移动:第一次点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,则线段1314A A 的长度是________ .三、解答题(共有6道小题)19.教师节当天,出租车司机小王在东西向的街道上免费接送教师,若规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,﹣4,﹣8,+10,+3,﹣6,+7,﹣11. (1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?20.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?21.(1)完成表中空白的部分;(2)他们的最高身高与最矮身高相差多少? (3)他们6人的平均身高是多少?22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)23.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?24.一辆汽车沿着南北向的公路往返行驶,某天早上从A地出发,晚上最后到达B地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.(1)B地在A地何方?相距多少千米?(2)如果汽车行驶每千米耗油0.335升,那么这一天共耗油多少升?参考答案1.A2.D3.B4.B5.C.6.C7.A8.A 9.A 10.B二、填空题(共有8道小题) 11.-8 12.有理数 13.3 14.-0.03 15.±4 16.-5℃ 17.-2 18.42三、解答题(共有6道小题) 19.解:(1)+5﹣4﹣8+10+3﹣6+7﹣11=﹣4,则距出发地西边4千米; (2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米, 则耗油是54×0.2=10.8升,花费10.8×6.20=66.96元,答:小王距出发地西边4千米;耗油10.8升,花费66.96元.20.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元), 所以他卖完这8套儿童服装后是盈利,盈利37元. 21.(2)根据表格知道最高为171cm ,最矮为163cm ,所以他们的最高与最矮相差171-163=8(cm).(3)166+-1+2+0-3+3+56=166+1=167.所以他们6人的平均身高是167cm. 22.解:(1)3-(-3)=6(千克).(2)-3×1+(-2)×4+(-1)×2+0×3+1.5×2+3×8=14(千克). 答:总计超过14千克.(3)2.6×(25×20+14)≈1 336(元). 答:出售这20筐白菜可卖1 336元.23.解:(1)如图所示.(2)2-(-1)=3(km).答:小彬家与学校之间的距离是3km(3)2+1.5+|-4.5|+1=9(km),9km =9000m ,9000÷250=36(min). 答:小明跑步一共用了36min.24.解:(1)18.3-9.5+7.1-14-6.2+13-6.8-8.5=-6.6(千米).因此B 地在A 地南边,相距6.6千米.(2)18.3+9.5+7.1+14+6.2+13+6.8+8.5=83.4(千米). 83.4×0.335=27.939(升).答:这一天共耗油27.939升.。
2020年中考数学复习专题练:《四边形综合 》(含答案)
2020年中考数学复习专题练:《四边形综合 》1.如图①所示,已知正方形ABCD 和正方形AEFG ,连接DG ,BE .(1)发现:当正方形AEFG 绕点A 旋转,如图②所示.①线段DG 与BE 之间的数量关系是 ;②直线DG 与直线BE 之间的位置关系是 ;(2)探究:如图③所示,若四边形ABCD 与四边形AEFG 都为矩形,且AD =2AB ,AG =2AE 时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG 、DE ,若AE =1,AB =2,求BG 2+DE 2的值(直接写出结果).2.如图1,在正方形ABCD 中,点E 是CD 上一点(不与C ,D 两点重合),连接BE ,过点C 作CH ⊥BE 于点F ,交对角线BD 于点G ,交AD 边于点H ,连接GE ,(1)求证:△DHC ≌△CEB ;(2)如图2,若点E 是CD 的中点,当BE =8时,求线段GH 的长;(3)设正方形ABCD 的面积为S 1,四边形DEGH 的面积为S 2,当的值为时,的值为 .3.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(6,0),点B(0,8).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F,记旋转角为α(0°<α<90°).(I)如图①,当α=30°时,求点D的坐标;(Ⅱ)如图②,当点E落在AC的延长线上时,求点D的坐标;(Ⅲ)当点D落在线段OC上时,求点E的坐标(直接写出结果即可).4.如图,BD是平行四边形ABCD的对角线,DE⊥AB于点E,过点E的直线交BC于点G,且BG=CG.(1)求证:GD=EG.(2)若BD⊥EG垂足为O,BO=2,DO=4,画出图形并求出四边形ABCD的面积.(3)在(2)的条件下,以O为旋转中心顺时针旋转△GDO,得到△G′D'O,点G′落在BC上时,请直接写出G′E的长.5.(1)【探索发现】如图1,在正方形ABCD中,点M,N分别是边BC,CD上的点,∠MAN=45°,若将△DAN 绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为8,则正方形ABCD的边长为.(2)【类比延伸】如图2,在四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M,N分别在边BC,CD上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,在四边形ABCD中,AB=AD=2,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,AN,△ABM是等边三角形,AM⊥AD于点A,∠DAN=15°,请直接写出△CMN 的周长.6.(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE 和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.7.如图1,长方形ABCD中,∠DAB=∠B=∠DCB=∠D=90°,AD=BC=6,AB=CD=10.点E为射线DC上的一个动点,把△ADE沿直线AE翻折得△AD′E.(1)当D′点落在AB边上时,∠DAE=°;(2)如图2,当E点与C点重合时,D′C与AB交点F,①求证:AF=FC;②求AF长.(3)连接D′B,当∠AD′B=90°时,求DE的长.8.在平面直角坐标系中,点O是坐标原点,A(0,m),B(n,O),AC∥OB,且AC=OB,连接BC交x轴于点F,其中m、n满足方程+n2+8n+16=0.(1)求A、B两点坐标;(2)过A做AE⊥BC于E,延长AE交x轴于点D,动点P从点B出发以每秒2个单位的速度向x轴正半轴方向运动,设△PFD的面积为S,请用含t的式子表示S,并直接写出t的取值范围;(3)在(2)的条件下,连接PE,将△PED沿PE翻折到△PEG的位置(点D与点G对应),当四边形PDEG为菱形时,求点P和点G的坐标.9.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE.(1)如图1,连接BG、DE.求证:BG=DE;(2)如图2,如果正方形CEFG绕点C旋转到某一位置恰好使得CG∥BD,BG=BD.①求∠BDE的度数;②若正方形ABCD的边长是,请求出△BCG的面积.10.【综合与实践】如图①,在正方形ABCD中,点E、F分别在射线CD、BC上,且BF=CE,将线段FA绕点F顺时针旋转90°得到线段FG,连接EG,试探究线段EG和BF的数量关系和位置关系.【观察与猜想】任务一:“智慧小组”首先考虑点E、F的特殊位置如图②,当点E与点D重合,点F与点C重合时,易知:EG与BF的数量关系是,EG与BF的位置关系是.【探究与证明】任务二:“博学小组”同学认为E、F不一定必须在特殊位置,他们分两种情况,一种是点E、F分别在CD、BC边上任意位置时(如图③);一种是点E、F在CD、BC边的延长线上的任意位置时(如图④),线段EG与BF的数量关系与位置关系仍然成立.请你选择其中一种情况给出证明.【拓展与延伸】“创新小组”同学认为,若将“正方形ABCD”改为“矩形ABCD,且=k(k≠1)”,点E、F分别在射线CD、BC上任意位置时,仍将线段FA绕点F顺时针旋转90°,并适当延长得到线段FG,连接EG(如图⑤),则当线段BF、CE、AF、FG满足一个条件时,线段EG与BF的数量关系与位置关系仍然成立.(请你在横线上直接写出这个条件,无需证明)11.在平面直角坐标系xOy中,四边形OADC为正方形,点D的坐标为(4,4),动点E沿边AO从A向O以每秒1cm的速度运动,同时动点F沿边OC从O向C以同样的速度运动,连接AF、DE交于点G.(1)试探索线段AF、DE的关系,写出你的结论并说明理由;(2)连接EF、DF,分别取AE、EF、FD、DA的中点H、I、J、K,则四边形HIJK是什么特殊平行四边形?请在图①中补全图形,并说明理由.(3)如图②当点E运动到AO中点时,点M是直线EC上任意一点,点N是平面内任意一点,是否存在点N使以O,C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.12.综合与实践动手操作:第一步:在矩形纸片ABCD的边BC,AD上分别取两点E,F,使CE=AF;第二步:分别以DE,BF为对称轴将△CDE与△ABF翻折得到△C'DE与△A'BF,且边C'E 与A'B交于点G,边A'F与C'D交于一点H.问题解决:(1)求证:△BEG≌△DFH;(2)请判断四边形A'HC'G的形状,并证明你发现的结论;(3)已知tan∠EBG=,A'G=6,C'G=1,求矩形纸片ABCD的面积.13.如图1,矩形ABCD中,∠ACB=30°,将△ACD绕C点顺时针旋转α(0°<α<360°)至△A'CD'位置.(1)如图2,若AB=2,α=30°,求S△BCD′.(2)如图3,取AA′中点O,连OB、OD′、BD′.若△OBD′存在,试判定△OBD′的形状.(3)当α=α1时,OB=OD′,则α1=°;当α=α2时,△OBD′不存在,则α2=°.14.已知矩形ABCD 中,AB =2,BC =m ,点E 是边BC 上一点,BE =1,连接AE .(1)沿AE 翻折△ABE 使点B 落在点F 处,①连接CF ,若CF ∥AE ,求m 的值;②连接DF ,若≤DF ≤,求m 的取值范围.(2)△ABE 绕点A 顺时针旋转得△AB 1E 1,点E 1落在边AD 上时旋转停止.若点B 1落在矩形对角线AC 上,且点B 1到AD 的距离小于时,求m 的取值范围.15.如图1,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,连接BE 、DG .(1)BE 和DG 的数量关系是 ,BE 和DG 的位置关系是 ;(2)把正方形ECGF 绕点C 旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD 的边长为4,正方形ECGF 的边长为3,正方形ECGF 绕点C 旋转过程中,若A 、C 、E 三点共线,直接写出DG 的长.16.如图,正方形ABCD的边长为a,射线AM是∠BAD外角的平分线,点E在边AB上运动(不与点A、B重合),点F在射线AM上,且AF=BE,CF与AD相交于点G,连结EC、EF、EG.(1)求证:CE=EF;(2)求△AEG的周长(用含a的代数式表示);(3)试探索:点E在边AB上运动至什么位置时,△EAF的面积最大.17.问题情境:矩形ABCD中,∠ACB=30°,将一块直角三角板的直角顶点P放在两对角线的交点处,以点P为旋转中心转动三角板,并保证三角板的两直角边分别与边AB、BC所在的直线相交,交点为E、F.探究1:如图1,当PE⊥AB,PF⊥BC时,则=.探究2:如图2,在(1)的基础上,将三角板绕点P逆时针旋转,旋转角为α,(0°<α<60°),试求的值.探究3:在(2)的基础上继续旋转,当60°<α<90°时,将顶点P在AC上移动且使=时,如图3,试求的值.18.在Rt△ABC中,∠B=90°,AB=6,BC=8,点D从点B出发,以每秒3个单位的速度沿B→A→C运动,到点C停止.在点D运动的过程中,过点D作DE⊥BC,垂足为E,以DE为一边在右侧作矩形DEFG,点F在BC边上,且EF:DE=4:3,连结AG,CG,设运动时间为t(秒),矩形DEFG与△ABC重叠部分面积为S.(1)当AG=CG时,求t的值.(2)当点D在边AB上运动时,求S与t的函数关系式.(3)当△ACG的面积为6时,直接写出t的值.19.如图,在四边形ABCD中,AD∥BC,∠C=90°,BC=32,DC=24,AD=42,动点P从点D出发,沿射线DA的方向以每秒4个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒2个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).(1)设△BPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?(3)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.20.(1)【发现证明】如图1,在正方形ABCD中,点E,F分别是BC,CD边上的动点,且∠EAF=45°,求证:EF=DF+BE.小明发现,当把△ABE绕点A顺时针旋转90°至△ADG,使AB与AD重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD中,如果点E,F分别是CB,DC延长线上的动点,且∠EAF=45°,则(1)中的结论还成立吗?请写出证明过程.②如图3,如果点E,F分别是BC,CD延长线上的动点,且∠EAF=45°,则EF,BE,DF之间的数量关系是(不要求证明)(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=3,求AF的长.参考答案1.解:(1)①如图②中,∵四边形ABCD和四边形AEFG是正方形,∴AE=AG,AB=AD,∠BAD=∠EAG=90°,∴∠BAE=∠DAG,在△ABE和△DAG中,,∴△ABE≌△ADG(SAS),∴BE=DG;②如图2,延长BE交AD于T,交DG于H.由①知,△ABE≌△DAG,∴∠ABE=∠ADG,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG,故答案为:BE=DG,BE⊥DG;(2)数量关系不成立,DG=2BE,位置关系成立.如图③中,延长BE交AD于T,交DG于H.∵四边形ABCD与四边形AEFG都为矩形,∴∠BAD=∠EAG,∴∠BAE=∠DAG,∵AD=2AB,AG=2AE,∴==,∴△ABE∽△ADG,∴∠ABE=∠ADG,=,∴DG=2BE,∵∠ATB+∠ABE=90°,∴∠ATB+∠ADG=90°,∵∠ATB=∠DTH,∴∠DTH+∠ADG=90°,∴∠DHB=90°,∴BE⊥DG;(3)如图④中,作ET⊥AD于T,GH⊥BA交BA的延长线于H.设ET=x,AT=y.∵△AHG∽△ATE,∴===2,∴GH=2x,AH=2y,∴4x2+4y2=4,∴x2+y2=1,∴BG2+DE2=(2x)2+(2y+2)2+x2+(4﹣y)2=5x2+5y2+20=25.2.证明(1)∵四边形ABCD是正方形,∴CD=BC,∠HDC=∠BCE=90°,∴∠DHC+∠DCH=90°,∵CH⊥BE,∴∠EFC=90°,∴∠ECF+∠BEC=90°,∴∠CHD=∠BEC,∴△DHC≌△CEB(AAS).(2)解:∵△DHC≌△CEB,∴CH=BE,DH=CE,∵CE=DE=CD,CD=CB,∴DH=BC,∵DH∥BC,∴.∴GC=2GH,设GH=x,则,则CG=2x,∴3x=8,∴x=.即GH=.(3)解:∵,∴,∵DH=CE,DC=BC,∴,∵DH∥BC,∴,∴,,设S△DGH =9a,则S△BCG=49a,S△DCG=21a,∴S△BCD=49a+21a=70a,∴S1=2S△BCD=140a,∵S△DEG :S△CEG=4:3,∴S△DEG=12a,∴S2=12a+9a=21a.∴.故答案为:.3.解:(I)过点D作DG⊥x轴于G,如图①所示:∵点A(6,0),点B(0,8).∴OA=6,OB=8,∵以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,∴AD=AO=6,α=∠OAD=30°,DE=OB=8,在Rt△ADG中,DG=AD=3,AG=DG=3,∴OG=OA﹣AG=6﹣3,∴点D的坐标为(6﹣3,3);(Ⅱ)过点D作DG⊥x轴于G,DH⊥AE于H,如图②所示:则GA=DH,HA=DG,∵DE=OB=8,∠ADE=∠AOB=90°,∴AE===10,∵AE×DH=AD×DE,∴DH===,∴OG=OA﹣GA=OA﹣DH=6﹣=,DG===,∴点D的坐标为(,);(Ⅲ)连接AE,作EG⊥x轴于G,如图③所示:由旋转的性质得:∠DAE=∠AOC,AD=AO,∴∠OAC=∠ADO,∴∠DAE=∠ADO,∴AE∥OC,∴∠GAE=∠AOD,∴∠DAE=∠GAE,在△AEG和△AED中,,∴△AEG≌△AED(AAS),∴AG=AD=6,EG=ED=8,∴OG=OA+AG=12,∴点E的坐标为(12,8).4.证明:(1)如图1,延长EG交DC的延长线于点H,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB=CD,AB∥CD,∵AB∥CD,∴∠H=GEB,且BG=CG,∠BGE=∠CGH,∴△CGH≌△BGE(AAS)∴GE=GH,∵DE⊥AB,DC∥AB,∴DC⊥DE,且GE=GH,∴DG=EG=GH;(2)如图1:∵DB⊥EG,∴∠DOE=∠DEB=90°,且∠EDB=∠EDO,∴△DEO∽△DBO,∴∴DE×DE=4×(2+4)=24,∴DE=2,∴EO===2,∵AB∥CD,∴, ∴HO =2EO =4, ∴EH =6,且EG =GH , ∴EG =3,GO =EG ﹣EO =, ∴GB ===,∴BC =2=AD , ∴AD =DE ,∴点E 与点A 重合,如图2:∵S 四边形ABCD =2S △ABD ,∴S 四边形ABCD =2××BD ×AO =6×2=12;(3)如图3,过点O 作OF ⊥BC ,∵旋转△GDO ,得到△G ′D 'O ,∴OG =OG ',且OF ⊥BC ,∴GF =G 'F ,∵OF ∥AB ,∴==,∴GF=BG=,∴GG'=2GF=,∴BG'=BG﹣GG'=,∵AB2=AO2+BO2=12,∵EG'=AG'==,=.5.解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=8,∴BM+CM+CN+DN=8,∴BC+CD=8,∴BC=CD=4,故答案为4;(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE(SAS),∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)如图3,延长BA,CD交于G,∵∠BAM=60°,∠MAD=90°,∴∠BAD=150°,∴∠GAD=30°,∵AD=2,∴DG=1,AG=,∵∠DAN=15°,∴∠GAN=45°,∴AG=GN=,∴BG=2+,∴BC=2BG=4+2,CG=BG=2+3,∴CD=CG﹣DG=2+2,由(2)得,MN=BM+DN,∴△CMN的周长=CM+CN+MN=CN+DN+CM+BM=BC+CD=4+2+2+2=6+4.6.解:(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)在AB上截取AM=AD=3,过M作MN∥BC交AC于N,把△AMN绕A逆时针旋转得△ADE,连接CE,如图所示:则MN⊥AC,DE=MN,∠DAE=∠BAC,∴∠AED=∠ANM=90°,∵AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ==,∴BC:AC:AB=3:4:5,同(2)得:△ABD∽△ACE,∴==,∵MN∥BC,∴△AMN∽△ABC,∴=,∴MN=×AM=×3=,∵∠BAC=∠ADC=θ,∴∠DAE=∠ADC=θ,∴AE∥CD,∴∠CDE+∠AED=180°,∴∠CDE=90°,∴CE===,∴BD=CE=×=.7.解:(1)由题意知△ADE≌△AD′E,∴∠DAE=∠D′AE,∵D′点落在AB边上时,∠DAE+∠D′AE=90°,∴∠DAE=∠D′AE=45°,故答案为:45;(2)①如图2,由题意知∠ACD=∠ACD′,∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠BAC,∴∠ACD′=∠BAC,∴AF=FC;②设AF=FC=x,则BF=10﹣x,在Rt△BCF中,由BF2+BC2=CF2得(10﹣x)2+62=x2,解得x=6.8,即AF=6.8;(3)如图3,∵△AD′E≌△ADE,∴∠AD′E=∠D=90°,∵∠AD′B=90°,∴B、D′、E三点共线,又∵△ABD′∽△BEC,AD′=BC,∴△ABD′≌△BEC,∴BE=AB=10,∵BD′===8,∴DE=D′E=10﹣8=2;如图4,∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,在△ABD″和△BEC中,∵,∴△ABD″≌△BEC,∴BE=AB=10,∴DE=D″E=8+10=18.综上所知,DE=2或18.8.解:(1)∵,,(n+4)2≥0,∴m﹣4=0,n+4=0,∴m=4,n=﹣4,∴A(0,4),B(﹣4,0);(2)∵AC∥OB,∴∠C=∠CBO,∠CAF=∠BOF,∵AC=OB,∴△ACF≌△OBF(ASA),∴AF=OF=2,∵OA=OB,∠OAD=∠OBF,∠BOF=∠AOD,∴△BOF≌△AOD(ASA),∴OF=OD=2,∴BD=6,①当0≤t<3时,S=PD•OF=(6﹣2t)×2=6﹣2t;②当t>3时,S=PD•OF=(2t﹣6)×2=2t﹣6;(3)①当0≤t<3,如图2,∵AO=4,OD=2,∴AD=,∵BD×OA=AD×BE,∴BE=,∴DE=,∵四边形PDEG为菱形,∴DP=DE=EG=,∵D(2,0),∴P(2﹣,0),作EH⊥BD于H,∵BE×DE=BD×EH,∴EH=,∴HD=,∴OH=,∴E(,),∵EG∥OB,∴G与E的纵坐标相同,∴G(﹣,)②当t>3时,如图3,同理求得P(2+,0),G(+,).9.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°.∴∠BCD+∠DCG=∠GCE+∠DCG,∴∠BCG=∠DCE.在△BCG和△DCE中,,∴△BCG≌△DCE(SAS).∴BG=DE;(2)解:①连接BE,如图2所示:由(1)可知:BG=DE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°,∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE,在△BCG和△BCE中,,∴△BCG≌△BCE(SAS),∴BG=BE,∵BG=BD=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°;②延长EC交BD于点H,过点G作GN⊥BC于N,如图3所示:在△BCE和△DCE中,,∴△BCE≌△BCG(SSS),∴∠BEC=∠DEC,∴EH⊥BD,BH=BD,∵BC=CD=,∴BD=BC=2,∴BE=2,BH=1,∴CH=1,在Rt△BHE中,由勾股定理得:EH===,∴CE=﹣1,∵∠BCG=135°,∴∠GCN=45°,∴△GCN是等腰直角三角形,∴GN=CG=(﹣1),=BC•GN=××(﹣1)=.∴S△BCG10.【观察与猜想】解:∵四边形ABCD是正方形,∴∠B=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠ACB=∠ACD=45°,由旋转的性质得:GC=AC,∠ACG=90°,∴∠ACB=∠GCD=45°,在△ABC和△GDC中,,∴△ABC≌△GDC(SAS),∴AB=GD,∠GDC=∠B=90°,∴DG∥BC,△CDG是等腰直角三角形,∴DG=CD=BC,∵点E与点D重合,点F与点C重合,∴EG=BF,EG∥BF;故答案为:EG=BF,EG∥BF;【探究与证明】证明:点E、F分别在CD、BC边上任意位置时,如图③所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;点E、F在CD、BC边的延长线上的任意位置时,如图④所示:作GM⊥BC,交BC延长线于M,则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,由旋转的性质得:GF=AF,∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,在△ABF和△FMG中,,∴△ABF≌△FMG(AAS),∴AB=FM,BF=MG,∵AB=BC,∴BF=CM,∵BF=CE,∴MG=CE,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;【拓展与延伸】解:==k(k≠1)时,线段EG与BF的数量关系与位置关系仍然成立;理由如下:作GM⊥BC,交BC延长线于M,如图⑤所示:则∠GMF=90°,MG∥DC,∵四边形ABCD是正方形,∴AB=BC,∠BCD=∠B=90°,∴∠BAF+∠BFA=90°,∠B=∠GMF,由旋转的性质得:∠AFG=90°,∴∠BFA+∠MFG=90°,∴∠BAF=∠MFG,∴△ABF∽△FMG,∴==,∵==k,∴==k,==k,∴FM=BC,GM=CE,∴BF=CM,∵MG∥CE,∴四边形CEGM是平行四边形,又∵∠GMF=90°,∴四边形CEGM是矩形,∴EG=CM,EG∥CM,∴EG=BF,EG∥BF;故答案为:==k(k≠1).11.解:(1)AF=DE.理由如下:∵四边形OADC是正方形,∴OA=AD,∠DAE=∠AOF=90°,由题意得:AE=OF,在△AOF和△DAE中,,∴△AOF≌△DAE(SAS),∴AF=DE.(2)四边形HIJK是正方形.理由如下:如图①所示:∵H、I、J、K分别是AE、EF、FD、DA的中点,∴HI=KJ=AF,HK=IJ=ED,HI∥AF,HK∥ED,∵AF=DE,∴HI=KJ=HK=IJ,∴四边形HIJK是菱形,∵△AOF≌△DAE,∴∠ADE=∠OAF,∵∠ADE+∠AED=90°,∴∠OAF+∠AED=90°,∴∠AGE=90°,∴AF⊥ED,∵HI∥AF,HK∥ED,∴HI⊥HK,∴∠KHI=90°,∴四边形HIJK是正方形.(3)存在,理由如下:∵四边形OADC为正方形,点D的坐标为(4,4),∴OA=AD=OC=4,∴C(4,0),∵点E为AO的中点,∴OE=2,E(0,2);分情况讨论:如图②所示,①当OC是以O,C、M、N为顶点的菱形的对角线时,OC与MN互相垂直平分,则M为CE 的中点,∴点M的坐标为(2,1),∵点M和N关于OC对称,∴N(2,﹣1);②当OC是以O,C、M、N为顶点的菱形的边时,若M在y轴的左侧时,∵四边形OCM'N'是菱形,∴OM'=OC=4,M'N'∥OC,∴△M'FE∽△COE,∴==2,设EF=x,则M'F=2x,OF=x+2,在Rt△OM'F中,由勾股定理得:(2x)2+(x+2)2=42,解得:x=,或x=﹣2(舍去),∴M'F=,FN=4﹣M'F=,OF=2+=,∴N'(,);若M在y轴的右侧时,作N''P⊥OC于P,∵ON''∥CM'',∴∠PON''=∠OCE,∴tan∠PON''==tan∠OCE==,设PN''=y,则OP=2y,在Rt△OPN''中,由勾股定理得:y2+(2y)2=42,解得:y=,∴PN''=,OP=,∴N''(,﹣);综上所述,存在点N使以O,C、M、N为顶点的四边形是菱形,点N的坐标为(2,﹣1)或(,)或(,﹣).12.(1)证明:∵四边形ABCD为矩形,∴BC=AD,CD=AB,∠C=∠ABC=∠A=∠ADC=90°,∵CE=AF,∴BC﹣CE=AD﹣AF,即BE=DF,在△DCE和△BAF中,,∴△DCE≌△BAF(SAS),∴∠CDE=∠ABF,∠CED=∠AFB,由折叠的性质得:∠CDE=∠C′DE,∠ABF=∠A′BF,∠CED=∠C′ED,∠AFB=∠A′FB,∵∠CDE+∠C′DE+∠HDF=90°,∠ABF+∠A′BF+∠GBE=90°,∠CED+∠C′ED+∠GEB=180°,∠AFB+∠A′FB+∠HFD=180°,∴∠HDF=∠GBE,∠GEB=∠HFD,在△BEG和△DFH中,,∴△BEG≌△DFH(ASA);(2)解:四边形A'HC'G的形状是矩形;理由如下:由折叠的性质得:∠C=∠DC′E=∠A=∠BA′F=90°,由(1)得:△BEG≌△DFH,∴∠BGE=∠DHF,∵∠BGE=∠A′GC′,∠DHF=∠A′HC′,∴∠A′GC′=∠A′HC′,∵∠DC′E+∠BA′F+∠A′GC′+∠A′HC′=90°+90°+∠A′GC′+∠A′HC′=360°,∴∠A′GC′+∠A′HC′=180°,∴∠A′GC′=∠A′HC′=90°,∴∠DC′E=∠BA′F=∠A′GC′=∠A′HC′=90°,∴四边形A'HC'G是矩形;(3)解:由(2)知:∠BGE=∠A′GC′=90°,∵tan∠EBG=,∴设EG=3x,则BG=4x,BE==5x,由折叠的性质得:CE=C′E=EG+C′G=3x+1,CD=AB=A′B=BG+A′G=4x+6,∴BC=CE+BE=3x+1+5x=8x+1,S矩形ABCD=CD•BC=4×CD•CE+2×EG•BG﹣A'G•C'G,即(4x+6)(8x+1)=4×(3x+1)(4x+6)+2×3x•4x﹣6×1,整理得:x2﹣2x=0,解得:x1=2,x2=0(不合题意舍去),∴CD=4×2+6=14,CB=8×2+1=17,∴S矩形ABCD=CD•BC=14×17=238.13.解:(1)作D'E⊥BC交BC的延长线于E,如图2所示:则∠E=90°,∵四边形ABCD是矩形,∴∠ABC=90°,AB∥CD,AD∥BC,CD=AB=2,∴∠ACD=∠BAC,∠DAC=∠ACB=30°,∵∠ACB=30°,∴BC=AB=2,∠ACD=∠BAC=60°,由旋转的性质得:CD'=CD=2,∠ACA'=30°,∴∠D'CE=180°﹣30°﹣30°﹣60°=60°,∴∠CD'E=30°,∴CE=CD'=1,D'E=CE=,∴S=BC×D'E=×2×=3;△BCD′(2)△OBD′是直角三角形,理由如下:连接OC,如图3所示:由旋转的性质得:CA'=CA,∠AD'C=∠ADC=90°,∠D'A'C=∠DAC=30°,∵O是AA′的中点,∴OC⊥AA',∴∠AOC=∠AOC=90°=∠ABC=∠AD'C,∴∠ABC+∠AOC=180°,∴A、B、C、O四点共圆,∴∠BOC=∠BAC=60°,同理;A、D'、C、O四点共圆,∴∠D'OC=∠D'A'C=30°,∴∠BOD'=90°,∴△BOD'是直角三角形;(3)若B、C、D'三点不共线,如图3所示:由(2)得:∠OBC=∠OAC,∠OD'C=∠OA'C,∠OAC=∠OA'C,∴∠OBC=∠OD'C,∵OB=OD,∴∠OBD'=∠OD'B,∴∠CBD'=∠CD'B,∴CB=CD',∵CD'=CD,∴BC=CD,这与已知相矛盾,∴B、C、D'三点共线;分两种情况:当点D'在BC的延长线上时,如图4所示:=90°;α=α1当点D'在边BC上时,如图5所示:=360°﹣90°=270°;α=α1故答案为:90°或270;时,△OBD′不存在时,分两种情况:当α=α2当O与D'重合时,如图6所示:∵CA'=CA,∠CAD'=∠CA'D'=30°,∴∠ACA'=120°,=360°﹣120°=240°;∴α=α2当O与B重合时,如图7所示:则AA'=2AB=4,∵CA=CA'=2AB=4=AA',∴△ACA'是等边三角形,∴∠A'CA=60°,=360°﹣60°=300°;∴α=α2故答案为:240°或300.14.解:(1)①如图1,∵CF∥AE ∴∠FCE=∠AEB,∠CFE=∠AEF∵△ABE翻折得到△AFE∴EF=BE=1,∠AEF=∠AEB∴∠FCE=∠CFE∴CE=EF=1∴m=BC=BE+CE=2∴m的值是2.②如图2,过点F作GH⊥AD于点G,交BC于点H ∴GH⊥BC∴∠AGF=∠FHE=90°∵四边形ABCD是矩形∴∠BAD=∠B=90°∴四边形ABHG是矩形∴GH=AB=2,AG=BH∵△ABE翻折得到△AFE∴EF=BE=1,AF=AB=2,∠AFE=∠B=90°∴∠AFG+∠EFH=∠AFG+∠FAG=90°∴∠EFH=∠FAG∴△EFH∽△FAG∴设EH=x,则AG=BH=x+1∴FG=2EH=2x∴FH=GH﹣FG=2﹣2x∴解得:x=∴AG=,FG=∵AD=BC=m∴DG=|AD﹣AG|=|m﹣|∴DF 2=DG 2+FG 2=(m ﹣)2+2≥,即可把DF 2看作关于m 的二次函数,抛物线开口向上,最小值为∵∴∵(m ﹣)2+2= 解得:m 1=,m 2=1 ∴根据二次函数图象可知,1≤m(2)如图3,过点B 1作MN ⊥AD 于点M ,交BC 于点N ∴MN ∥AB ,MN =AB =2∵AC = ∴sin ∠ACB =∵AD ∥BC ,点B 1在AC 上∴∠MAB 1=∠ACB∴sin ∠MAB 1= ∴∵点B 1到AD 的距离小于∴MB 1= 解得:∵m>0 ∴m>如图4,当E1落在边AD上,且B1在AC上时,m最大,此时,∠ACB=∠B1AE1=∠BAE∴tan∠ACB=tan∠BAE∴∴m=BC=2AB=4∴m的取值范围是<m≤415.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE=CE+OC=2+3=5,在Rt△BOE中,由勾股定理得:DG=BE==;综上所述,若A、C、E三点共线,DG的长为或.16.(1)证明:过点F作FH⊥AB于H,如图1所示:则∠AHF=90°,∵AM平分∠DAH,∴∠FAH=45°,∴△AFH是等腰直角三角形,∴FH=AH,AF=AH=FH,∵AF=BE,∴FH=AH=BE,∴AH+AE=BE+AE,∴HE=AB=BC,在△FEH和△ECB中,,∴△FEH≌△ECB(SAS),∴CE=EF;(2)解:∵△FEH≌△ECB,∴∠FEH=∠ECB,∵在Rt△BCE中,∠ECB+∠CEB=90°,∴∠FEH+∠CEB=90°,∴∠CEF=90°,由(1)知,CE=EF,∴△CEF是等腰直角三角形,∠ECF=∠EFC=45°,把Rt△CDG绕点C逆时针旋转90°至Rt△CBN位置,如图2所示:则∠GCN=90°,CG=CN,DG=BN,∴∠NCE=∠GCN﹣∠GCE=45°,∴∠NCE=∠GCE,在△CEG和△CEN中,,∴△CEG≌△CEN(SAS),∴GE=NE=EB+BN=EB+DG,∴△AEG的周长=AE+GE+AG=AE+EB+DG+AG=AB+AD=2a;(3)解:设AE=x,由(1)得:FH=BE=a﹣x,则△EAF的面积=AE×FH=x(a﹣x)=﹣(x﹣)2+,∴当x=,即点E在AB边中点时,△EAF的面积最大,最大值为.17.解:(1)∵矩形ABCD,∴AB⊥BC,PA=PC;∵PE⊥AB,BC⊥AB,∴PE∥BC,∴∠APE=∠PCF;∵PF⊥BC,AB⊥BC,∴PF∥AB,∴∠PAE=∠CPF.∵在△APE与△PCF中,,∴△APE≌△PCF(ASA),∴PE=CF.在Rt△PCF中,=tan30°=,∴=,故答案为:.(2)如答图1,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN.0°~30°时∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴=,由(1)知,=,∴=.同理30°~60°时,=;(3)当60°<α<90°时,将顶点P在AC上移动且使=时,如答图2,过点P作PM⊥AB于点M,PN⊥BC于点N,则PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN,∴△APM∽△PCN,∴==,得CN=2PM.在Rt△PCN中,==tan30°=,∴=.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN,又∵∠PME=∠PNF=90°,∴△PME∽△PNF,∴==.18.解:(1)∵四边形DEFG是矩形,∴DG=BF,GF=BD,∠BDG=∠BFG=90°,∴∠ADG=∠CFG=90°,由题意得:BD=3t,则AD=6﹣3t,DG=4t,CF=8﹣4t,FG=BD=3t,当AG=CG时,由勾股定理得:AG2=AD2+DG2,CG2=FG2+FC2,∴AD2+DG2=FG2+FC2,即(6﹣3t)2+(4t)2=(3t)2+(8﹣4t)2,解得:t=1,即当AG=CG时,t=1秒;(2)分两种情况:①当0<t≤1时,如图1所示:S=矩形DEFG的面积=3t×4t=12t2;即S=12t2(0<t≤1);②当1<t≤2时,如图2所示:∵∠ADH=∠B=90°,∠A=∠A,∴△ADH∽△ABC,∴=,即=,解得:DH=8﹣4t,同理得:FM=6﹣3t,∴S=×6×8﹣×2×(6﹣3t)(8﹣4t)=﹣12t2+48t﹣24;即S=﹣12t2+48t﹣24(1<t≤2);(3)分三种情况:①如图1所示:由题意得:×6×8﹣12t2﹣×4t×(6﹣3t)﹣×3t×(8﹣4t)=6,解得:t=;②如图3所示:由题意得:×4t×(6﹣3t)+×3t×(8﹣4t)+3t×4t﹣×6×8=6,解得:t=;③如图4所示:由勾股定理得:AC===10,∴CD=6+10﹣3t=16﹣3t,同(2)得:△CDE∽△CAB,∴==,即==,解得:DE=(16﹣3t),CE=(16﹣3t),由题意得EF=(16﹣3t),∴C与F重合,∴×8×(16﹣3t)=6,解得:t=;综上所述,当△ACG的面积为6时,t的值为秒或秒或秒.19.解:(1)如图1,过点P作PM⊥BC,垂足为M,则四边形PDCM为矩形.∴PM=DC=24.∵QB=32﹣t,∴S=×24×(32﹣2t)=384﹣24t(0≤t<16);(2)由图可知:CM=PD=4t,CQ=2t.以B、P、Q三点为顶点的三角形是等腰三角形,可以分三种情况:①若PQ=BQ.在Rt△PMQ中,PQ2=4t2+242,由PQ2=BQ2得4t2+242=(32﹣2t)2,解得t=;②若BP=BQ.在Rt△PMB中,BP2=(32﹣4t)2+242.由BP2=BQ2得:(32﹣4t)2+242=(32﹣2t)2即3t2﹣32t+144=0.由于△=﹣704<0,∴3t2﹣32t+144=0无解,∴PB≠BQ.③若PB=PQ.由PB2=PQ2,得4t2+242=(32﹣4t)2+242整理,得3t 2﹣64t +256=0.解得t 1=,t 2=16(舍去)综合上面的讨论可知:当t =秒或t =秒时,以B 、P 、Q 三点为顶点的三角形是等腰三角形.(3)设存在时刻t ,使得PQ ⊥BD .如图2,过点Q 作QE ⊥AD 于E ,垂足为E .∵AD ∥BC∴∠BQF =∠EPQ ,又∵在△BFQ 和△BCD 中∠BFQ =∠C =90°,∴∠BQF =∠BDC ,∴∠BDC =∠EPQ ,又∵∠C =∠PEQ =90°,∴Rt △BDC ∽Rt △QPE , ∴=,即=,解得t =9.所以,当t =9秒时,PQ ⊥BD .20.(1)【发现证明】证明:把△ABE 绕点A 顺时针旋转90°至△ADG ,如图1,∴∠BAE=∠DAG,AE=AG,∵∠EAF=45°,∴∠BAE+∠FAD=45°,∴∠DAG+∠FAD=45°,∴∠EAF=∠FAG,∵AF=AF,∴△EAF≌△GAF(SAS),∴EF=FG=DF+DG,∴EF=DF+BE;(2)【类比引申】①不成立,结论:EF=DF﹣BE;证明:如图2,将△ABE绕点A顺时针旋转90°至△ADM,∴∠EAB=∠MAD,AE=AM,∠EAM=90°,BE=DM,∴∠FAM=45°=∠EAF,∵AF=AF,∴△EAF≌△MAF(SAS),。
2020年中考数学复习专题练:《一次函数综合 》(含答案)
2020年中考数学复习专题练:《一次函数综合》1.如图,直线与x轴交于A点,与y轴交于B点,动点P从A点出发,沿AO方向向点O匀速运动,同时动点Q从B点出发,沿BA方向向点A匀速运动,P,Q两点的运动速度都是每秒1个单位,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s).(1)求A,B两点的坐标;(2)当t为何值时△AQP的面积为;(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q 的坐标.2.已知直线y=2x+b与x轴交于点A,与y轴交于点B,将线段BO绕着点B逆时针旋转90°得到线段BC,过点C作CD⊥x轴于点D,四边形OBCD的面积为36.(1)求直线AB的解析式;(2)点P为线段OD上一点,连接CP,点H为CP上一点,连接BH,且BH=BC,过点H 作CP的垂线交CD、OB于E、F,连接AE、AC,设点P的横坐标为t,△ACE的面积为S,求S与t的函数解析式;(3)在(2)的条件下,连接OH,过点F作FK⊥OH交x轴于点K,若PD=PK,求点P 的坐标.3.如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.(1)求k的值;(2)求点C的坐标;(3)求直线CD的表达式.4.如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF的解析式;(2)设OF=t,△OBF的面积为s,求s与t的函数关系(直接写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB=2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t的值.5.如图,在平面直角坐标系中,点A 的坐标为(0,1),点B 的坐标为(﹣3,﹣1),将线段AB 向右平移m (m >0)个单位,点A 、B 的对应点分别为点A ′,B ′.(1)画出线段AB ,当m =4时,点B ′的坐标是 ;(2)如果点B ′又在直线x =上,求此时A ′、B ′两点的坐标;(3)在第(2)题的条件下,在第一象限中是否存在这样的点P ,使得△A ′B ′P 是以A ′B ′为腰的等腰直角三角形?如果存在,直接写出点P 的坐标;如果不存在,试说明理由.6.如图,在平面直角坐标系xOy 中,直线l 1:y =x +2与x 轴交于点A ,直线l 2:y =3x ﹣6与x 轴交于点D ,与l 1相交于点C .(1)求点D 的坐标;(2)在y 轴上一点E ,若S △ACE =S △ACD ,求点E 的坐标;(3)直线l 1上一点P (1,3),平面内一点F ,若以A 、P 、F 为顶点的三角形与△APD 全等,求点F 的坐标.7.如图,在平面直角坐标系中,长方形OABC的顶点O为坐标原点,顶点A,C分别在x轴正半轴和y轴正半轴上,顶点B的坐标为(12,8),直线y=kx+8﹣6k(k<0)交边AB 于点P,交边BC于点Q.(1)当k=﹣1时,求点P,Q的坐标;(2)若直线PQ∥AC,BH是Rt△BPQ斜边PQ上的高,求BH的长;(3)若PQ平分∠OPB,求k的值.8.如图,直线y=﹣x+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0<t≤1.5).(1)直接写出A,B两点的坐标.(2)当t为何值时,PQ∥OB?(3)四边形PQBO面积能否是△ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,△APQ为直角三角形?(直接写出结果)9.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y =x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.10.已知:在平面直角坐标系中,点O为坐标原点,直线y=kx+8(k<0)分别交x轴,y 轴于点C,B,点A在第一象限,连接AB,AC,四边形ABOC是正方形.(1)如图1,求直线BC的解析式;(2)如图2,点D,E分别在AB,OC上,点E关于y轴的对称点为点F,点G在EF上,且EG=2FG,连接DE,DG,设点G的横坐标为t,△DEG的面积为S,求S与t之间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,连接BE,BF,CD,点M在BF上,且FM=EG,点N在BE上,连接MN交DG于点H,∠BNM=∠BEF,且MH=NH,若CD=5BD,求S的值.11.如图,在平面直角坐标系xOy中,直线l:y=kx+b与x轴交于点A(﹣6,0),与y1轴交于点B(0,4),与直线l:y=x相交于点C.2(1)求直线l的函数表达式;1(2)求△COB的面积;(3)在x轴上是否存在一点P,使△POC是等腰三角形.若不存在,请说明理由;若存在,请直接写出点P的坐标.12.如图,直线y=x+4与x轴.y轴分别交于A.B两点直线BC与x轴交于点C(4,0).(1)求直线BC的解析式;(2)D(2,m)为线段BC上的点,作点D关于直线上x=﹣4的对称点E.CE交直线:x =﹣4于F,求线段CF的长;(3)y轴上是否存在一点M.使得以A、B、M为顶点的三角形为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.13.将矩形AOCB如图放置在平面直角坐标系中,E为边OC上的一个动点,过点E作ED⊥AE 交BC边于点D,且OA,OC的长是方程x2﹣20x+96=0的两个实数根,且OC>OA.(1)设OE=x,CD=y,求y与x的函数关系(不求x的取值范围).(2)当D为BC的中点时,求直线AE的解析式;(3)在(2)的条件下,平面内是否存在点F,使得以A,D,B,F为顶点的四边形为平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.14.如图,直线y=ax+b交x轴于点A,交y轴于点B,且a,b满足a=+4,直线y=kx﹣4k过定点C,点D为直线y=kx﹣4k上一点,∠DAB=45°.(1)a=,b=,C坐标为;(2)如图1,k=﹣1时,求点D的坐标;(3)如图2,在(2)的条件下,点M是直线y=kx﹣4k上一点,连接AM,将AM绕A顺时针旋转90°得AQ,OQ最小值为.15.在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交1于点C.=﹣x+10时,如图1.(1)当直线AB解析式为y2①求点C的坐标;②根据图象求出当x满足什么条件时﹣x+10<x.(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为9,且OA=6.P,Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值:若不存在,说明理由.16.如图1,在第四象限的矩形ABCD,点A与坐标原点O重合,且AB=4,AD=3.点Q从B 点出发以每秒1个单位长度的速度沿B→C→D运动,当点Q到达点D时,点Q停止运动,设点Q运动的时间为t秒.(1)请直接写出图1中,点C的坐标,并求出直线OC的表达式;(2)求△ACQ的面积S关于t的函数关系式,并写出t的取值范围;(3)如图2,当点Q开始运动时,点P从C点出发以每秒2个单位长度的速度运动向点A运动,当点P到达A点时点Q和点P同时停止运动,当△QCP与△ABC相似时,求出相应的t值.17.如图,在平面直角坐标系中,直线y=x+4与x轴交于点A,与y轴交于点B.(1)求点A,B的坐标;(2)点P从B点出发,沿射线BO方向运动,速度为每秒一个单位,当t为何值时,△ABP为直角三角形?(直接写出答案)(3)点E(5,0)过点E作直线l⊥x轴,点C在直线l上,点D在x轴上,以A、B、C、D四个点组成的四边形是平行四边形,请直接写出点D坐标.18.在平面直角坐标系中,一次函数y=﹣x+3图象与x轴交于点A,与y轴交于点B.(1)请直接写出点A坐标,点B坐标;(2)点C是直线AB上一个动点,当△AOC的面积是△BOC的面积的2倍时,求点C的坐标;(3)点D为直线AB上的一个动点,在平面内找另一个点E,且以O、B、D、E为顶点的四边形是菱形,请直接写出满足条件的菱形的周长.19.如图,在平面直角坐标系中,OA=OB,△OAB的面积是2.(1)求线段OB的中点C的坐标.(2)连结AC,过点O作OE⊥AC于E,交AB于点D.①直接写出点E的坐标.②连结CD,求证:∠ECO=∠DCB;(3)点P为x轴上一动点,点Q为平面内一点,以点A、C、P、Q为顶点作菱形,直接写出点Q的坐标.20.如图,正方形AOBC的边长为2,点O为坐标原点,边OB,OA分别在x轴,y轴上,点D是BC的中点,点P是线段AC上的一个点,如果将OA沿直线OP对折,使点A的对应点A′恰好落在PD所在直线上.(1)若点P是端点,即当点P在A点时,A′点的位置关系是,OP所在的直线是,当点P在C点时,A′点的位置关系是,OP所在的直线表达式是.(2)若点P不是端点,用你所学的数学知识求出OP所在直线的表达式.(3)在(2)的情况下,x轴上是否存在点Q,使△DPQ的周长为最小值?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)令y=0,则﹣x+6=0,解得:x=8,令x=0时,y=6,∴点A(8,0),点B(0,6);(2)由(1)得:OA=8,OB=6,在Rt△AOB中,AB===10,∵当一个点停止运动,另一个点也随之停止运动,∴0<t≤8,∵点P的速度是每秒1个单位,点Q的速度是每秒1个单位,∴AP=t,AQ=AB﹣BQ=10﹣t,∴点Q到AP的距离为AQ•sin∠OAB=(10﹣t)×=(10﹣t),∴△AQP的面积S=×t×(10﹣t)=,解得t=5+(不合题意舍去)或t=5﹣,∴当t为(5﹣)秒时△AQP的面积为;(3)若∠APQ=90°,则△APQ∽△AOB,此时=,即:=,解得:t=,若∠AQP=90°,则△APQ∽△ABO,此时=,即:=,解得t=,∵0<t≤8,∴t的值为或,①当t=时,OP=8﹣=,PQ=AP•tan∠OAB=×=,∴点Q的坐标为:(,);②当t=时,AQ=,过点Q作QM⊥x轴于M,如图所示:∴AM=AQ•cos∠OAB=×=,则OM=8﹣=,QM=AQ•sin∠OAB=×=,∴点Q的坐标为:(,);综上所述,当t为秒或秒时,以点A,P,Q为顶点的三角形与△ABO相似,此时点Q的坐标分别为(,)、(,).2.解:(1)∵将线段BO绕着点B逆时针旋转90°得到线段BC,∴OB=BC,∠OBC=90°,∵CD⊥x轴于点D,∴∠CDO=90°,∵∠BOD=90°,∴四边形OBCD为正方形,∵四边形OBCD的面积为36.∴OB=6,∴B(0,6),∵直线y=2x+b与y轴交于点B,∴b=6,∴直线AB的解析式为y=2x+6;(2)∵直线y=2x+6与x轴交于点A,∴A(﹣3,0),如图1,过点B作BL⊥CP,垂足为L,交CD于点M,∵BH=BC,∴CL=HL,∵BL⊥CP,EF⊥CP,∴BM∥EF,∴CM=ME,∵∠CBM+∠BMC=∠BMC+∠MCL=90°∴∠CBM=∠PCD,∵∠BCM=∠PDC,BC=CD,∴△BCM≌△CDP(ASA),∴CM=PD,∴PD=CM=ME=6﹣t,∴CE=2CM=2(6﹣t),∵AD=OA+OD=9,∴S===﹣9t+54(0≤t≤6);(3)设PD=a,如图2,∵BF∥CD,BM∥EF,∴四边形BFEM是平行四边形,∴BF=EM=PD=a,∴OF=OP,连接FP,设FK与OH交于A',∴∠OFP=45°,∵∠FOP+∠FHP=180°,∴F、O、P、H四点共圆,∴∠OFP=∠OHP=45°,∴∠OHF=45°,∵FK⊥OH,∴∠FA'H=90°,∴∠EFK=45°,如图3,过点E作ER⊥EF交射线FK于点R,∴△EFR为等腰直角三角形,∴EF=ER,过点F作FG⊥CD于点G,过点R作x轴的平行线交y轴于点Q,交CD的延长线于点N,连接KE、∴∠RNE=∠FGE=90°,∠FEG=∠ERN,∴△EFG≌△REN(AAS),∴EN=FG,EG=RN=PD=a,∵CG=BF=a,GE=a,设ED=b,∴DN=CE=2a=OQ,OF=a+b,∵PD=PK=a,OD=CD=2a+b,∴OK=b,∵OK∥QR,∴,即,∴b(3a+b)=(a+b)2,∴a=b,∴3a=6,∴a=2,∴P(4,0).3.解:(1)令x=0,则y=2,即:OB=2,由勾股定理得:OA=6,则k=﹣;(2)设:BC=AC=a,则OC=6﹣a,在△BOC中,(2)2+(6﹣a)2=a2,解得:a=4,则点C(2,0);(3)点D时AB的中点,则点D(3,),将点C、D的坐标代入一次函数:y=kx+b得:,解得:,故直线CD的表达式为:y=x﹣2.4.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF的解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF的解析式为y=x+2;(2)△OBF的面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM ∥x轴交BA的延长线于点M,过点T作TK⊥CR交RC的延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α,∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t的值为2.5.解:(1)∵点A的坐标为(0,1),点B的坐标为(﹣3,﹣1),将线段AB向右平移m(m>0)个单位,∴A'(m,1),B'(m﹣3,﹣1),当m=4时,A'(4,1),B'(1,﹣1),故答案(1,﹣1);(2)由(1)知,B'(m﹣3,﹣1),∵点B′又在直线x=上,∴m﹣3=,∴m=6,由(1)知,A'(m,1),B'(m﹣3,﹣1),∴A'(6,1),B'(3,﹣1);(3)存在,理由:如图,由(2)知,A'(6,1),B'(3,﹣1),过点B'作GH∥x轴,过点P作PG⊥GH于G,过点A'作A'H⊥GH于H,∴H(6,﹣1),∴A'H=2,B'H=3,∵△PA'B'是等腰直角三角形,∴A'B'=PB',∠A'B'P=90°,∴∠PB'G+∠A'B'H=90°,∵∠PB'G+∠B'PG=90°,∴∠B'PG=∠A'B'H,∴△PB'G≌△A'B'H(AAS),∴B'G=A'H=2,PG=B'H=3,∴P(1,2),同理:P'(4,4),即:点P的坐标为(1,2)或(4,4).:y=3x﹣6与x轴交于点D,6.解:(1)∵直线l2∴令y=0,则3x﹣6=0,∴x =2,∴D (2,0);(2)如图1,∵直线l 1:y =x +2与x 轴交于点A , ∴令y =0.∴x +2=0,∴x =﹣2,∴A (﹣2,0),由(1)知,D (2,0), ∴AD =4,联立直线l 1,l 2的解析式得,, 解得,, ∴C (4,6),∴S △ACD =AD •|y C |=×4×6=12, ∵S △ACE =S △ACD ,∴S △ACE =12,直线l 1与y 轴的交点记作点B , ∴B (0,2),设点E (0,m ),∴BE =|m ﹣2|,∴S △ACE =BE •|x C ﹣x A |=|m ﹣2|×|4+2|=4|m ﹣2|=12, ∴m =﹣2或m =6,∴点E (0,﹣2)或(0,6);(3)如图2,①当点F 在直线l 1上方时,∵以A 、P 、F 为顶点的三角形与△APD 全等,∴Ⅰ、当△APF'≌△APD时,连接DF',BD,由(2)知,B(0,2),由(1)知,A(﹣2,0),D(2,0),∴OB=OA=OD,∴∠ABO=∠DBO=45°,∴∠ABD=90°,∴DB⊥l,1∵△APF'≌△APD,∴PF'=PD,AF'=AD,∴直线l是线段DF'的垂直平分线,1对称,∴点D,F'关于直线l1∴DF'⊥l,1∴DF'过点B,且点B是DF'的中点,∴F'(﹣2,4),Ⅱ、当△PAF≌△APD时,∴PF=AD,∠APF=∠PAD,∴PF∥AD,∵点D(2,0),A(﹣2,6),∴点D向左平移4个单位,∴点P向左平移4个单位得,F(1﹣4,6),∴F(﹣3,3),②当点F在直线l下方时,1∵△PAF''≌△APD,由①Ⅱ知,△PAF≌△APD,∴△PAF≌△PAF'',∴AF=AF'',PF=PF'',∴点F与点F'关于直线l对称,1,∴FF''⊥l1∵DF'⊥l,1∴FF'∥DF',而点F'(﹣2,4)先向左平移一个单位,再向下平移一个单位,∴D(2,0),向左平移1个单位,再向下平移一个单位得F''(2﹣1,0﹣1),∴F''(1,﹣1),即:点F的坐标为(﹣3,3)或(﹣2,4)或(1,﹣1).7.解:(1)当k=﹣1时,该直线表达式为y=﹣x+14,∵四边形OABC是长方形,点P,Q分别在边AB,BC上,点B(12,8),∴点P的横坐标为12,点Q的纵坐标为8,当x=12时,y=﹣1×12+14=2,当y=8时,﹣x+14=8,解得x=6,∴点P,Q的坐标分别是P(12,2),Q(6,8);(2)如图1,过点B作BH⊥PQ于H,∵长方形OABC的顶点B的坐标是(12,8),∴点A的坐标为(12,0),点C的坐标为(0,8).设直线AC表达式为y=ax+b,则解得,,∴直线AC的解析式为y=﹣x+8,∵PQ∥AC,∴k=﹣.∴直线PQ表达式为y=﹣x+12,∵当x=12时,y=4;当y=8时,8=﹣x+12,∴x=6,∴BP=4,BQ=6.在Rt△BPQ中,根据勾股定理得,PQ==2,∵S=BQ•BP=PQ•BH,△PBQ∴×4×6=××BH,∴BH=;(3)∵当x=12时,y=6k+8;当y=8时,x=6.∴点P的坐标为(12,6k+8),点Q的坐标为(6,8).∴AP=6k+8,AO=12,BQ=CQ=6,AB=OC=8.∴BP=8﹣(6k+8)=﹣6k,过点Q作QM⊥OP于点M,连接OQ,如图2,∵PQ平分∠OPB,∴∠QPB=∠QPM,又∵∠PMQ=∠B=90°,PQ=PQ,∴△BPQ≌△MPQ(AAS),∴QM=QB=6,MP=BP=﹣6k,在Rt△OCQ中,根据勾股定理得,OQ=10,在Rt△OQM中,根据勾股定理得OM=8,∴OP=OM+MP=8﹣6k,∵在Rt△OAP中,OA2+AP2=OP2,即122+(6k+8)2=(8﹣6k)2.解得,k=﹣.8.解:(1)令y=0,则﹣x+4=0,解得x=4,x=0时,y=4,∴OA=6,OB=8,∴点A(4,0),B(0,4);(2)在Rt△AOB中,由勾股定理得,AB===4,∵点P的速度是每秒2个单位,点Q的速度是每秒1个单位,∴AP=2t,AQ=AB﹣BQ=4﹣t,若PQ ∥OB ,则∠APQ =∠AOB =90°,则 ∴,解得t =;(3)如图,作QH ⊥OA 于H ,∴QH ∥OB ,∴△QAH ∽△BAO , ∴,即,∴QH =4﹣t ,当四边形PQBO 面积是△ABO 面积的时,S △APQ =S △AOB , ∴•2t •(4﹣t )=×, 整理得t 2﹣4t +4=0,解得t =(2﹣)或t =(2+)(舍去)∴t 的值为=(2﹣)四边形PQBO 面积是△ABO 面积的.(4)若∠APQ =90°,由(2)可知t =;若∠AQP =90°,则cos ∠OAB =, ∴=,解得t =8﹣4,∵0<t ≤1.5,∴t 的值为,∴当t 为时,△APQ 为直角三角形.9.解:(1)∵点E 是直线y =x +2上一点,点E 的纵坐标是6,∴x+2=6,解得,x=4,∴点E的坐标是(4,6),∵点T(x,y)是点D和E的融合点,∴x==,y==2,∴点T的坐标为(,2),故答案为:(,2);(2)设点E的坐标为(a,a+2),∵点T(x,y)是点D和E的融合点,∴x=,y=,解得,a=3x﹣3,a=3y﹣2,∴3x﹣3=3y﹣2,整理得,y=x﹣;(3)设点E的坐标为(a,a+2),则点T的坐标为(,),当∠THD=90°时,点E与点T的横坐标相同,∴=a,解得,a=,此时点E的坐标为(,),当∠TDH=90°时,点T与点D的横坐标相同,∴=3,解得,a=6,此时点E的坐标为(6,8),当∠DTH=90°时,该情况不存在,综上所述,当△DTH为直角三角形时,点E的坐标为(,)或(6,8).10.解:(1)当x=0时,y=kx+8=8所以B(0,8),OB=8∵四边形ABOC是正方形∴OB=OC=8∴C(8,0)得8k+8=0∴k=﹣1∴y=﹣x+8(2)∵点E关于y轴的对称点为点F∴OE=OF=EF∵EG=2FGEG=EF∴OE=3OG=﹣3t∴EG=﹣4t∴S=(﹣8≤t<0)(3)作ML∥EF,交BE于点L,作EQ⊥LG,则∠BEF=∠BLM 显然BM=BL,MF=LE∴LE=GE∴∠3=∠BEF而已知∠2=∠BEF∴∠2=∠3,MN∥EQ∴∠2=∠BLM∵∠1+∠2=∠BLM∴∠1=∠2∵GL⊥MN∴GL过MN的中点∴G,L,D在一条直线上∵CD=5BD∴(5BD)2﹣(8﹣BD)2=82得BD=2∴82+(﹣3t)2=(2﹣4t)2得t=﹣2∴S=3211.解:(1)将点A(﹣6,0),B(0,4)代入y=kx+b中,得,∴,的函数表达式为y=x+4;∴直线l1(2)由(1)知,直线l的函数表达式为y=x+4①,1:y=x,∵直线l2联立①②解得,,∴C(6,8),∵B(0,4),∴OB=4,=OB•|x C|=×4×6=12;∴S△COB(3)设P(m,0),∵O(0,0),C(6,8),∴OP=|m|.OC=10,CP=,∵△POC是等腰三角形,①当OP=OC时,∴|m|=10,∴m=±10,∴P(﹣10,0)或(10,0),②当OP=CP时,∴|m|=,∴m=,∴P(,0),③当OC=CP时,∴10=,∴m=0(舍)或m=12,∴P(12,0),即:满足条件的点P的坐标为(﹣10,0)或(10,0)或(12,0)或(,0).12.解:(1)∵直线y=x+4与x轴、y轴分别交于A、B两点,∴A(﹣4,0),B(0,4),设直线BC的解析式为:y=kx+4,∴4k+4=0,∴k=﹣,∴直线BC的解析式为:y=﹣x+4;(2)如图1,∵D(2,m)为线段BC上的点,∴m=﹣2+4=2,∴D(2,2),∵点D关于直线上x=﹣4的对称点E,∴E(﹣10,2),∴直线CE的解析式为y=﹣x+,当x=﹣4时,y=,∴F(﹣4,),∴AF =,AC =8, ∴CF ==2;(3)存在,如图2,∵AO =4,OB =4,∴AB =8,∠ABO =30°,∠BAO =60°,当BA =BM =8时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴OM =8+4或OM =8﹣4, ∴M 1(0,8+4),M 3=(0.4﹣8); 当AB =MM =8时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴OM =OB =4,∴M 4(0,﹣4),当MA =MB 时,以A 、B 、M 为顶点的三角形为等腰三角形, ∴∠MAB =∠MBA =30°,∴∠MAO =30°,∴OM =, ∴M 2(0,),综上所述,点M 的坐标为M 1(0,8+4),M 2(0,),M 3=(0.4﹣8),M 4(0,﹣4).13.解:(1)x2﹣20x+96=0 (x﹣8)(x﹣12)=0x 1=8,x2=12,∵OC>OA,∴OA=8,OC=12,∵ED⊥AE,∴∠AEO+∠DEC=90°,又∵∠AEO+∠OAE=90°,∴∠OAE=∠CED,又∠AOE=∠ECD=90°,∴△AOE∽△ECD,∴=,即=,∴y=﹣x2+x;(2)当D为BC的中点时,y=4,∴﹣x2+x=4,解得,x1=4,x2=8,设直线AE的解析式为:y=kx+b,当x=4时,点E的坐标为(4,0),解得,,∴直线AE的解析式为:y=﹣2x+8;当x=8时,点E的坐标为(8,0),解得,,∴直线AE的解析式为:y=﹣x+8,∴当D为BC的中点时,直线AE的解析式为y=﹣2x+8或y=﹣x+8;(3)当点F在线段OA上时,FA=BD=4,∴OF=4,即点F的坐标为(0,4),当点F在线段OA的延长线上时,FA=BD=4,∴OF=12,即点F的坐标为(0,12),当点F在线段BC右侧、AB∥DF时,DF=AB=12,∴点F的坐标为(24,4),综上所述,以A,D,B,F为顶点的四边形为平行四边形时,点F的坐标为(0,4)或(0,12)或(24,4).14.解:(1)∵4﹣b≥0,b﹣4≥0,∴b=4,则a=4,对于直线y=kx﹣4k,当y=0时,x=4,∴点C的坐标为(4,0),故答案为:4;4;(4,0);(2)当D在线段BC上时,作BE⊥BA交AD的延长线于点E,作EF⊥y轴于F,则∠BEF+∠EBO=90°,∠ABO+∠EBO=90°,∴∠BEF=∠ABO,∵∠DAB=45°,∴BA=BE,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA,EF=OB=4,对于直线y=4x+4,当y=0时,x=﹣1,∴OA=1,∴E(4,3)设直线AE解析式为y=mx+n,,解得,,则直线AE解析式为y=x+,,解得,,∴D(,);当D在CB延长线上时,同理可得D(,);(3)设M(m,﹣m+4),由(2)可得,△ANM≌△QHA,∴MN=AH=﹣m+4,AN=QH=m+1,∴Q(﹣m+3,﹣m﹣1)则OQ2=(﹣m+3)2+(﹣m﹣1)2=2(m﹣1)2+8,当m=1时,OQ最小为,故答案为:2.15.解:(1)①由題意,,解得:,所以C(4,4).②观察图象可知x>4时,直线AB位于直线OC的下方,即x>4时,﹣x+10<x.(2)由题意,在OC上截取OM=OP,连结MQ,∵ON平分∠AOC,∴∠AOQ=∠COQ,又OQ=OQ.∴△POQ≌△MOQ(SAS),∴PQ=MQ,∴AQ+PQ=AQ+MQ,当A、Q、M在同一直銭上,且AM⊥OC吋,AQ+MQ最小,即AQ+PQ存在最小値;∴AB⊥ON,∴∠AEO=∠CEO,∴△AEO≌△CEO(ASA),∴OC=OA=6,∵△OAC的面积为9,∴OC•AM=9,∴AM=3,∴AQ+PQ存在最小值,最小值为3.16.解:(1)∵在第四象限的矩形ABCD,点A与坐标原点O重合,且AB=4,AD=3,∴点C的坐标为(4,﹣3),设直线OC的函数解析式为y=kx,﹣3=4k,得k=﹣,即直线OC的表达式为y=﹣x;(2)当0≤t<3时,S==﹣2t+6,当3<t≤7时,S==,由上可得,S=;(3)∵AB=4,BC=3,∠ABC=90°,∴AC=5,当△ABC∽△QPC时,则,∵AC=5,QC=3﹣t,CB=3,CP=2t,∴,解得,t=;当△ABC∽△PQC时,,∵AC=5,PC=2t,BC=3,QC=3﹣t,∴,解得,t =;由上可得,当△QCP 与△ABC 相似时,t 值是或. 17.解:(1)∵直线y =x +4,∴当y =0时,x =﹣3,当x =0时,y =4,∴点A 的坐标为(﹣3,0),点B 的坐标为:(0,4);(2)当t 为4或时,△ABP 为直角三角形,理由:当∠BPA =90°时,此时点P 与点O 重合,此时t =OB =4,当∠BAP =90°时,△BAO ∽△BPA ,则,∵点A 的坐标为(﹣3,0),点B 的坐标为:(0,4),∴OA =3,OB =4,∵∠BOA =90°,∴AB =5, ∴,解得,BP =,由上可得,当t 为4或时,△ABP 为直角三角形; (3)点D 坐标是(2,0)或(8,0),理由:当四边形ABC 1D 1是平行四边形时,∵点A 的坐标为(﹣3,0),点B 的坐标为:(0,4),点E 的坐标为(5,0), ∴BC 1=5,∵四边形ABC 1D 1是平行四边形,∴BC 1=AD 1,∴AD 1=5,∵点A 的坐标为(﹣3,0),∴点D 1的坐标为(2,0);当四边形ABD 2C 2是平行四边形时,则ED 2=OA ,∵点A 的坐标为(﹣3,0),点E 的坐标为(5,0),∴OA=3,∴OD=8,2的坐标为(8,0);∴D2由上可得,点D坐标是(2,0)或(8,0).18.解:(1)在y=﹣x+3中,令x=0,则y=3;令y=0,则x=3;∴A(3,0),B(0,3);故答案为:(3,0);(0,3).(2)∵A(3,0),B(0,3),∴OA=3,OB=3,=OA×OB=×3×3=,∴S△AOB设C(m,n),①当点C在线段AB上时,如图1,∵△AOC的面积是△BOC的面积的2倍,∴S△AOC=,∴∴m=2或m=﹣2(舍去),∵点C在直线y=﹣x+3上,∴﹣2+3=n,∴n=1,∴C(2,1).②当点C在线段AB的延长线上时,如图2,∵△AOC的面积是△BOC的面积的2倍,∴S△BOC =S△AOB,∴×OB×|m|=,∴m=﹣3或m=3(舍去),∴C(﹣3,6).综合以上可得点C的坐标为(2,1)或(﹣3,6).(3)如图3,以OB为边的菱形OBDE中,∵OB=3,∴周长为3×4=12,如图4,以OB边的菱形OBDE中,同理周长为12.如图5,以OB为对角线的菱形ODBE中,∵OB=OA=3,∴∠OBA=45°,∴∠DBE=90°,∴四边形ODBE为正方形,∴BD=3×.∴四边形ODBE的周长为4×.综上可得以O、B、D、E为顶点的菱形的周长为12或6.故答案为:12或6.19.解:(1)∵OA=OB,△OAB的面积是2.∴OA•OB=2,∴OA=OB=2,线段OB的中点C的坐标为:(﹣1,0),答:线段OB的中点C的坐标为:(﹣1,0).(2)①过点E作EF⊥OB,∵∠AOC=90°,OA=2,OC=1,∴AC=,∵OE⊥AC,由面积法得:OE===,∵∠EOF+∠AOE=∠EAO+∠AOE=90°,∴∠EOF=∠EAO,∴tan∠EOF=tan∠EAO=,设EF=x,则OF=2x,∴由勾股定理得:,解得:x=,2x=,∴点E坐标为:(﹣,).②证明:过点B作OB的垂线,交OE于点G,由(2)①可知,∠EOF=∠EAO,∴在△AOC和△OBG中,∴△AOC≌△OBG(ASA),∴∠ECO=∠BGD,BG=OC,∵C为线段OB的中点,∴BG=BC,∵OA =OB ,∠AOC =∠OBG =90°,∴∠GBD =∠CBD =45°,∴在△BGD 和△BCD 中,∴△BGD ≌△BCD (SAS )∴∠DCB =∠BGD ,又∠ECO =∠BGD ,∴∠ECO =∠DCB .(3)由菱形对角线互相垂直的性质,易知,P 1(1,0),Q 1(0,﹣2)符合题意; ∵AC =,∴分别以点C 和点A 为圆心,以为半径作圆,与x 轴可得两个交点P 2(﹣,0),P 3(,0)从而得Q 2(﹣,2),Q 3(,2), 由tan ∠ACO =2,可知,当以AC 为菱形的对角线时,AC 被另一条对角线垂直平分,,从而另一条对角线P 4Q 4的一半为,从而P 4C =,∴P 4(,0),Q 4(﹣,2)综上,点Q 的坐标为:(0,﹣2)、(﹣,2)、(,2),(﹣,2).20.解:(1)由轴对称的性质可得,若点P 是端点,即当点P 在A 点时,A ′点的位置关系是点A ,OP 所在的直线是y 轴;当点P 在C 点时,∵∠AOC =∠BOC =45°,∴A′点的位置关系是点B,OP所在的直线表达式是y=x.故答案为:A,y轴;B,y=x.(2)连接OD,∵正方形AOBC的边长为2,点D是BC的中点,∴==.由折叠的性质可知,OA′=OA=2,∠OA′D=90°.∴A′D=1.设点P(x,2),PA′=x,PC=2﹣x,CD=1.∴(x+1)2=(2﹣x)2+12.解得x=.所以P(,2),∴OP所在直线的表达式是y=3x.(3)存在.若△DPQ的周长为最小,即是要PQ+DQ为最小.∵点D关于x轴的对称点是D′(2,﹣1),∴设直线PD'的解析式为y=kx+b,,解得,∴直线PD′的函数表达式为y=﹣x+.当y=0时,x=.∴点Q(,0).。
2020年中考数学找规律专题复习试题(带答案和解释)
中考数学专题复习:找规律1.下图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l 3,14,l 5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为【 】.A .32B .126C .135D .144【答案】D 。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】由日历表可知,圈出的9个数中,最大数与最小数的差总为16,又已知最大数与最小数的积为192,所以设最大数为x ,则最小数为x -16。
∴x (x -16)=192,解得x =24或x =-8(负数舍去)。
∴最大数为24,最小数为8。
∴圈出的9个数为8,9,10,15,16,17,22,23,24。
和为144。
故选D 。
2.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【 】A .7队B .6队C .5队D .4队【答案】C 。
【考点】分类归纳(数字的变化类),一元二次方程的应用。
【分析】设邀请x 个球队参加比赛,那么第一个球队和其他球队打(x -1)场球,第二个球队和其他球队 打(x -2)场,以此类推可以知道共打(1+2+3+…+x -1)= x(x 1)2-场球,根据计划安排10场比赛即可 列出方程:x(x 1)102-=, ∴x 2-x -20=0,解得x =5或x =-4(不合题意,舍去)。
故选C 。
3.观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ . 【答案】2k2k+1。
【考点】分类归纳(数字的变化类)。
【分析】根据已知得出数字分母与分子的变化规律:分子是连续的偶数,分母是连续的奇数,∴第k个数分子是2k,分母是2k+1。
∴这一组数的第k个数是2k2k+1。
4. 填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是▲ .【答案】900。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载,另外祝您生活愉快,工作顺利,万事如意!
2020最新中考数学专题训练真题及答案
目录
实数专题训练 (4)
实数专题训练答案 (10)
代数式、整式及因式分解专题训练 (11)
代数式、整式及因式分解专题训练答案 (17)
分式和二次根式专题训练 (19)
分式和二次根式专题训练答案 (24)
一次方程及方程组专题训练 (25)
一次方程及方程组专题训练答案 (32)
一元二次方程及分式方程专题训练 (33)
一元二次方程及分式方程专题训练答案 (40)
一元一次不等式及不等式组专题训练 (41)
一元一次不等式及不等式组专题训练答案 (46)
一次函数及反比例函数专题训练 (48)
一次函数及反比例函数专题训练答案 (55)
二次函数及其应用专题训练 (57)
二次函数及其应用专题训练答案 (66)
立体图形的认识及角、相交线与平行线专题训练 (67)
立体图形的认识及角、相交线与平行线专题训练答案. 77 三角形专题训练 (78)
三角形专题训练答案 (87)
多边形及四边形专题训练 (89)
多边形及四边形专题训练答案 (93)
圆及尺规作图专题训练 (95)
圆及尺规作图专题训练答案 (103)
轴对称专题训练 (105)
轴对称专题训练答案 (113)
平移与旋转专题训练 (115)
平移与旋转专题训练答案 (126)
相似图形专题训练 (127)
相似图形专题训练答案 (136)
图形与坐标专题训练 (138)
图形与坐标专题训练答案 (149)
图形与证明专题训练 (151)
图形与证明专题训练答案 (158)
概率专题训练 (160)
概率专题训练答案 (170)
统计专题训练 (172)
统计专题训练答案 (180)
实数专题训练
一、填空题:(每题 3 分,共 36 分)
1、-2 的倒数是____。
2、4 的平方根是____。
3、-27 的立方根是____。
4、3-2 的绝对值是____。
5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-1
2 ____-1
3。
7、近似数0.020精确到____位,它有____个有效数字。
8、若 n 为自然数,那么(-1)2n+(-1)2n+1=____。
9、若实数 a、b 满足|a-2|+( b+1
2
)2=0,则 ab=____。
10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。
11、已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长为____。
(结果保留两个有效数字)
12、罗马数字共有 7 个:I(表示 1),V(表示 5),X (表示 10),L(表示 50),C(表示 100),D(表示 500),M(表示 1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:
如IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL=___,XI=___。
二、选择题:(每题 4 分,共 24 分)
1、下列各数中是负数的是()
A、-(-3)
B、-(-3)2
C、-(-2)3
D、|-2|
,(-3)2,3.14,2,sin30°,0 各数中,2、在π,-1
7
无理数有()
A、2 个
B、3 个
C、4 个
D、5 个
3、绝对值大于 1 小于 4 的整数的和是()
A、0
B、5
C、-5
D、10
4、下列命题中正确的个数有()
①实数不是有理数就是无理数② a<a+a。