秩亏网平差
秩亏自由网平差
二、秩亏自由网平差原理
法ቤተ መጻሕፍቲ ባይዱ程没有唯一解!
二、秩亏自由网平差原理
1.
令: 得:
可 见 是与基准条件无关的不变量。
二、秩亏自由网平差原理
2.法方程的解算
由协因数传播律,得:
三、S的具体形式
三、S的具体形式
§12-3 秩亏自由网平差
一 问题的提出
二
秩亏自由网平差原理
三
S的具体形式
一、问题的提出
1.自由网——当控制网中仅含有必要起算数据或无已知数据并 以待定点坐标为待定参数时,称为自由网。
2.附合网——当控制网中除必要起算数据外,还有多余起算数
据时,称为附合网。 自由网
则有:
ˆ X ˆ H h 1 1 3 ˆ X ˆ X ˆ h
2 1
2
ˆ1 l1 V1 x ˆ1 x ˆ 2 l2 V2 x ˆ2 l3 V3 x
ˆ X ˆ H h 2 2 3
一、问题的提出
因为 所以
一、问题的提出
即:
一、问题的提出
因为
B
所以
此时
0
无解 才有解!
只有
一、问题的提出
3.秩亏自由网
—— —— ——
自由网平差
求导
ˆ T P 2 K T N 0 得到 K N 1P X ˆ 2X 1 X1 11 11 X 1 1 ˆ1 x
ˆ T P 2K T N 0 得到 X ˆ Q N K 2X 2 X2 12 2 X 2 21 X 2
于是
1 ˆ ˆ X 2 QX 2 N 21 N11 PX1 X 1
V BT ( BBT ) 1W
BR BT ( BBT ) 1
右逆
第三讲 秩亏平差(Free Net Adjustment)
关于广义逆 2、广义逆(generalized Inverse)
设A是m×n矩阵,秩R(A)=r<=min(m,n), 如果G满足如下方程,
AGA A
定义为A的广义逆,G为n×m矩阵,并记为 A 一般不唯一。
第三讲 秩亏平差(Free Net Adjustment)
一、自由网平差概述
4、秩亏网平差方法分类(根据约束条件)
加权最小二乘最小范数解
V T PV min ˆTP X ˆ min X
X
最小二乘最小范数解
逆稳平差
V T PV min ˆTX ˆ min X
ˆ X ˆ 1 X ˆ X 2 V T PV min ˆ TX ˆ min X 2 2
关于向量范数(Norm of Vector) ——范数是比长度更广泛的概念
设
X ( x1, x2 xn )
1-范数
X xi
i 1
n
X
p
( xi )1/ p
i 1
n
p
p-范数
X
( x x x )
2 1 2 2
论秩亏自由网平差的性质及稳健基准的意义
论秩亏自由网平差的性质及稳健基准的意义
自由网平差是一种网络平差方法,它可以用来解决复杂的网络平差问题。
自由网平差具有三个特点:1、自由网平差是一种秩亏的网络平差方法,它可以解决复杂的网络平差问题;2、自由网平差是一种稳健的网络平差方法,它可以抵消网络中的噪声和误差;3、自由网平差是一种有效的网络平差方法,它可以有效地提高网络的精度和稳定性。
秩亏的自由网平差是指在网络平差过程中,网络的观测数据和计算结果之间存在着秩亏的状态,即观测数据和计算结果之间存在着不可解释的差异。
这种秩亏的状态可以通过调整网络中的参数来消除,从而达到网络平差的目的。
稳健基准是指在网络平差过程中,通过调整网络中的参数,使网络对噪声和误差具有较强的抗干扰能力,有效地抵消噪声和误差,从而提高网络的精度和稳定性。
稳健基准的意义在于,可以有效地抵消网络中的噪声和误差,保证网络的精度和稳定性。
秩亏网平差
h2
C
原因:网中没有已知高 程点。
秩亏网平差的概念
2、平差基准
测量控制网以点的坐标(及高程)为未知参数进行参数平 差时,网中必须具有必要的起算数据。例如,水平控制网必须 有一个已知点的坐标,一条已知边长和一个已知方位角;水准 网必须有一个已知点的高程。有时,网中还会有多余的起算数 据。测量平差中,将仅含必要起算数据的控制网称为 经典自由 网,将含有多余起算数据的控制网称为附合网。当控制网中存 在必要起算数据或多余起算数据时,观测方程的系数矩阵才可 能列满秩,起算数据不足时,就产生数亏。
B BT ( BBT )1
当 C 为满秩方阵时,
(GA) GA
T
C C C 1
对于参数平差模型(等精度) :
( AG)T AG
G 称为 A 的广义逆。
可以只满足一个或几个方程,共有 1 2 3 4 C4 C4 C4 C4 15 种不同的广 义逆。
ˆ L V AX ˆ ( AT A)1 AT L A L X
B
h1
A
h3
h2
C
ˆ 1 l1 v1 1 1 0 x v 1 0 1 x l ˆ 2 2 2 ˆ3 v3 0 1 1 x l3 0 l1 1 1 0 x1 h1 l 1 0 1 x 0 h 2 2 2 0 l 0 1 1 x 3 3 h3
(D-4)
R( A) u n , s n u
相容方程组的通解:
是满足(A-1)和(A-3)的最小范 Am
X X Gα
秩亏自由网
§8-2 秩亏自由网平差2学时在前面介绍的经典平差中,都是以已知的起算数据为基础,将控制网固定在已知数据上。
如水准网必须至少已知网中某一点的高程,平面网至少要已知一点的坐标、一条边的边长和一条边的方位角。
当网中没有必要的起算数据时,我们称其为自由网,本节将介绍网中没有起算数据时的平差方法,即自由网平差。
在经典间接平差中,网中具备必要的起算数据,误差方程为111ˆ⨯⨯⨯⨯-=n t t n n l xB V (8-2-1)式中系数阵B 为列满秩矩阵,其秩为t B R =)( 。
在最小二乘准则下得到的法方程为0ˆ11=-⨯⨯⨯t t tt bb W xN (8-2-2)由于其系数阵的秩为t B R PB B R N R Tbb ===)()()(,所以bb N 为满秩矩阵,即为非奇异阵,具有凯利逆bb N 1-,因此具有唯一解,即W N xbb 1ˆ-= (8-2-3)当网中无起算数据时,网中所有点均为待定点,设未知参数的个数为u ,误差方程为111ˆ⨯⨯⨯⨯-=n u u n n l xB V (8-2-4)式中d t u +=d 为必要的起算数据个数。
尽管增加了d 个参数,但B 的秩仍为必要观测个数,即u t B R <=)(其中B 为不满秩矩阵,称为秩亏阵,其秩亏数为d 。
组成法方程0ˆ11=-⨯⨯⨯u u u u W xN(8-2-5)式中PlB W PB B N T u T uu ==⨯⨯1,,且u t B R PB B R N R T<===)()()(,所以N 也为秩亏阵,秩亏数为:t u d -=(8-2-6)由上式知,不同类型控制网的秩亏数就是经典平差时必要的起算数据的个数。
即有:⎪⎩⎪⎨⎧=测角网网测边网、边角网、导线水准网、测站平差,4,3,1d在控制网秩亏的情况下,法方程有解但不唯一。
也就是说仅满足最小二乘准则,仍无法求得xˆ的唯一解,这就是秩亏网平差与经典平差的根本区别。
6秩亏自由网平差S的求法与基准解析
a jh
(
y
0 h
y
0 j
)
(
s
0 jh
)
2
, b jh
(x
0 h
x
0 j
)
(s
0 jh
)
2
自由测角网中没有固定点,因此每个水平角为两水平方向之
差。三个坐标点的坐标未知数必同时出现在误差方程中,故
系数阵中的每一行元素结构总是形如
(a jh a jk ) (bjh bjk ) a jh bjh a jk bjk
• 参考: Xu P L. A General Solution in Geodetic Nonlinear Rank-defect Models [ J ] . Bollettino di Geodesia e Scienze Affini , 1997 ,56 (1) :1225.
• /special/opencourse/daishu.h tml 讲师:Gilbert Strang 职业:麻省理工学院 教授
1
0
1
0 1
0
m
m
m
GT
0
y10
1
0
m
x10
y
0 2
1 0
m
x
0 2
y
0 m
1
m xm0
H H
HH
H H
此时
1 0 0
G TG 0 1 0 I
0 0 1
➢ 由于测边网中的观测方程为非线性方程,在线性 化处理中,总假定坐标改正数为微小量,因此仅 取其一次项(即线性)。所以在假定坐标近似值 时,应尽量逼近坐标平差值,以减少因线性化所 带来的误差。一般可先假定任一点的坐标,再根 据相应的观测值推算网中其余点的近似坐标。
秩亏自由网平差的解法
R( A) r t
增加虚拟观测:
ˆ l AX 2 2 1 D ( l ) Q P 0 0
(1)
d t r
P 非奇异对称矩阵
ˆ l B X
d ,t
PI
T 即当 BB I
R( B ) d
(2)
① R( B ) d T ② AB 0
h3 15.817 m
x2 h1 x1 h3 x3 h2
各线路距离S相等,试求平差后各点高程及协因数。 解: 取各点近似高程为:
0 0 0 0 x10 H 10 0 m , x2 H2 12.345 m , x3 H3 15.817 m
PI
1. 列误差方程式
ˆ l V AX
( N i I )S i NSi 0 ( i 1,d )
因N 具有秩亏d=t-r,故N的特征值中必有d个为零,对应 零特征值必存在d个线性无关的特征向量,由此构成矩阵
ud
S ( S 1 S 2 S d )
BT S
R( S ) d
AS 0
(1)再确定
l
T ˆ ˆ X r X r min
Q N Q ( AT PA BT B) I Q A PA I Q B B 右乘 B
T T
T,顾及
ABT O
B T Q B T BBT O
Q B T B T ( BBT ) 1
Q B T B T ( BBT ) 1
左乘 AQ
伪观测法
AQ Q B T AQ B T ( BBT ) 1 ABT ( BBT ) 1 ( BBT ) 1 O
时满足该条件。 相当于
秩亏自由网平差
ˆ N BT Pl ( E N N )M 中挑选一个解,使得 从X
X min
所以,平差问题成为:
即求误差方程的最小 二乘、最小范数解。 最小二乘指改正数, 最小范数指参数。亦 即求长度最短的最小 二乘解。 武汉大学测绘学院 孙海燕
V T PV min ˆ l V BX ˆTX ˆ min X
武汉大学测绘学院 孙海燕
第四章 秩亏自由网平差
例:如图水准网,1)设 H 3 已知,则误差方程为
0 v1 1 l1 ˆ1 v 1 1 x l2 2 x ˆ2 v3 0 1 l3
法方程系数阵
rank( B) R( B) u t 2
2 1 B B 1 2
T T T 1
rank( BT B) t u 2
1 2 1 | B B | 3, ( B B) 3 1 2
ˆ ( BT B) 1 BT l x
(5) 若矩阵 P 正定,则
A( AT PA) AT PA A
(6) G 为 AT A 的广义逆,则 G T 也是 AT A的广义逆。 3、广义逆 A 的计算 若
rank ( A) r (n, m)
,设
1 A O 11 A m.n O O
A11 r .r A n.m A21 n r .r
4、不同基准下平差的各种量有什么变化
5、基准如何变换
武汉大学测绘学院 孙海燕
第四章 秩亏自由网平差
第二节 广义逆与线性方程组的解
m,n n ,1
线性方程组
Axb
m,1
a1
自 由 网 平 差
自由网平差班级:测绘0911 学号:姓名:日期:一、实验分析(1)实验的目的1.熟悉广义逆的概念和计算当观测值之间不存在着函数相关,是满秩的,以间接平差为例,在求解NX=BTPl的时候,N=BTPB,其秩R(N)=R(BTPB)=R(B)=t,N为非奇异的,存在凯利逆,所以法方程存在唯一的解,称为经典自由网平差,而当网中不设起始数据或不存在必要的起始数据,而且又设网点坐标为待平差参数,误差方程系数阵列亏,这样的平差称为秩亏自由网平差,而这里就引入了广义逆的概念,广义逆是对任何矩阵定义的一种逆矩阵,设A为n*m阵,秩R(A)=γ<=min(m,n),满足方程AGA=A,的G定义为A的广义逆,G为m*n阵,记为A-不唯一,称为A-型广义逆。
(仅当A为m=n阶非奇异方阵时,A-1=A-,唯一)2.了解秩亏自由网平差的原理和方法秩亏自由网平差的原理:误差方程式为V=BX-l,权阵P为D=σ02Q=σ02P-1平差原则:V T PV=min,X T X=min法方程及其解为 NX=B T Pl X=N M-B T Pl=N(NN)-B T Pl因N+也满足最小范数逆的两个条件,故N+∈Nm-,其解也可以用N+表达,即有X=N+B T Pl=N(NN)-N(NN)-NB T Pl,单位权方差估值仍为σ02=V T PV/f=V T PV/(n-R(B))X的协因数阵为 Q XX=Nm-B T PQPB(Nm-)T=N(NN)-N(NN)-N=N+ 或者Q XX=N+ B T PQPBN+=N+NN+=N+ 法方程系数阵N的伪逆N+就是参数估值X的协因数阵。
由误差方程式,顾及Q XV=Q-BQ XX B T=Q-BN+B T秩亏自由网平差的方法:第一步:求得误差方程:V=BX-l第二步:组成法方程:NX=B T Pl第三步:计算N(NN)-和Nm-=N(NN)-第四步:计算X=Nm-B T l第五步:平差结果的计算第六步:X的协因数计算Q XX=N+3.掌握如何使用自由网拟稳平差解决变形监测数据处理在监测自由网中,假定有一部分对于另一部分点是相对稳定的。
秩亏自由网平差方法研究
目录目录 ............................................................... 1 1 引言 (1)1.1 研究进程 ................................................... 1 1.2 选题目的 ................................................... 2 1.3 本课题要研究或解决的问题和拟采用的研究手段 ................. 2 2 秩亏自由网平差 .................................................. 3 2.1 问题的提出 ................................................. 3 2.2 秩亏自由网平差原理 ......................................... 5 2.3 S 的具体形式 ............................................... 7 3 平差方法分析及比较 . (8)3.1 重心基准的秩亏自由网平差 ................................... 8 3.2 拟稳平差 (9)3.3 最小范数准则ˆˆmin T p p x Px................................... 10 3.4 秩亏自由网的广义逆解法 .................................... 11 3.5 分析与比较 ................................................ 13 4 实例分析 ....................................................... 15 结 论 ............................................................ 21 致 谢 ............................................................ 22 参 考 文 献 . (23)1 引言1.1 研究进程近几十年来,测量平差与误差理论得到了很大的发展,除了经典测量平差方法(条件平差法、间接平差法、附有参数的条件平差法、附有限制条件的条件平差法),产生了一些新的测量模型,后者常称为近代测量平差方法.测量平差中的秩亏问题,引起了国内外许多学者的重视,纷纷发表文章从各个不同的角度加以论述.从大多数论文来分析,其中大部分谈论这类问题的求解方法.产生这种现象的原因,一方面是由于秩亏问题较古典平差问题新鲜,另一方面由于解决这类问题存在着各种各样的途径与方法.为了使秩亏问题更好的用于监测的目的,我国测量学者周江文教授于1980年提出一种拟稳平差方法.这种方法的特点,首先通过分析,确定网中相对稳定的未知量,对整个网做自由网平差的同时,是这些稳定未知量拟合于他们的稳定值.这种方法,既区别于传统固定若干未知量作强制符合,使监测网造成不必要的变形;又区别于自由网平差,因后者未知量没有稳定的基准.这种平差方法既不歪曲观测,又有相对稳定的基准,在相对稳定点事先获得较合理、精度较高的近视值得情况下,能够解答出准度较高的待估参数值.我国大地测量学家刘大杰教授在《在论亏秩自由网平差》从传统的测量平差观点出发论述和分析亏秩自由网平差之解的性质着重讨论了:1、按“附加条件法”讨论亏秩自由网平差问题,其结果与“假观测值法”相同,但前者较后者更为恰当.2、亏秩平差之解具有方差最小性,也具有无偏性.3、亏秩平差之解与参考系的关系.于正林教授在《自由网平差中若干问题的讨论》一文中着重讨论了秩亏网平差、拟稳平差、和加权秩亏网平差结果之间的相互转换,以及各种自由网平差所求得的参数估计值的统计性质等问题.中国矿业大学环境与测绘学院,针对自由网秩亏问题,提出一种名为双重条件平差的方法,该方法简洁易懂,且法方程的系数不会出现秩亏问题,对秩亏自由网平差有一定的参考价值.总之,在国内学术界对秩亏自由网平差的研究很多,通过各种途径和方法来探讨和研究.1.2 选题目的“测量平差”是测绘学中一个重要的基础理论和应用学科.近四十年来,随着测绘科技和相关学科的迅速发展,该学科在理论上有突出进展.其研究范围也由线性模型的经典平差向相关平差、滤波推估、秩亏平差、动态平差等方向扩展,从单纯地研究随机误差理论扩展至包括系统误差和粗差的全误差系统.而秩亏自由网平差在变形监测、GPS 网平差等有着重要的应用.1.3 本课题要研究或解决的问题和拟采用的研究手段1.3.1 本文研究的问题秩亏自由网是因为控制网中没有足够的起始数据, 即缺乏基准的平差问题 因此按间接平差进行平差时, 其误差方程的系数阵 B 不能满足列满秩的要求, 相应的法方程系数阵T bb N B PB 是秩亏阵.为了求定未知参数的唯一确定解, 除了遵循最小二乘准则外, 还需增加新的基准约束条件 , 等价于最小范数准则, 从而得到未知参数的唯一确定解. 本文主要从传统的测量平差的观点出发, 来分析和论述亏秩自由网平差之解的性质,讨论了亏秩平差之解与传统自由网平差之解的关系, 与广义逆矩阵的关系, 不变量的条件, 以及几种算法.1.3.2 研究途径 (1)文献查阅通过阅读 测量学、测量平差与误差理论 、广义测量平差 等专业书籍.了解与掌握误差理论与平差的基本知识和方法.在期刊网上检索相关文献,了解前人相关研究成果,对做好本次研究有重大的指导作用. (2)请教导师对于论文所涉及的知识,所存在的疑惑,通过咨询指导老师,老师的悉心解答对文章具有重要的指导意义. (3) 采集数据通过网上搜集数据,为文章后面的实例提供了有力的依据,使文章结构更加清晰明了.2 秩亏自由网平差2.1 问题的提出在经典间接平差中,必须有足够的起算数据.当控制网中仅含必要的起算数据,通常称为自由网.用经典方法平差这种网,俗称经典自由网平差.当控制网除必要的起算数据,还有多余的起算数据的网称为附合网,在间接平差时,不论是自由网还是附合网,当所选的参数不存在函数关系时,误差方程系数矩阵B 总是列满秩的,即R(B)=t (t 为必要观测).由此得到的法方程系数阵的秩t B R PB B R N R T bb ===)()()( 法方程具有唯一解.下图水准网中,假定3P 的高程已知为3H ,待定点1P 、2P 的高程平差值为0111ˆˆX X x =+,0222ˆˆX X x =+.各段路线长度为S ,高差为等权观测,误差方程 32312131ˆVxl B ⨯⨯⨯⨯=- (2-1) 的显式为1112223310ˆ11ˆ01v l x v l x v l ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦法方程及其显式为ˆT T B BxB l = (2-2) 1122ˆ21ˆ12xw x w -⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦在误差方程系数阵B 中,存在一个二阶行列式不等于零,如10111=-,故B 的秩R (B )=2,即B 为列满秩阵.由此法方程系数的秩R(N)=R(B)=2,所以法方程有唯一解为1ˆ()T T xB B B l -= (2-3)这就是经典自由网平差情况.水准网图上述间接平差函数模型还可以用下面方式组成:先设3P 点的平差值0333ˆˆX X x =+,参与列误差方程,然后另033ˆX X =,将3ˆ0x =作为参数的条件方程,于是其函数模型为33313131ˆVxl B ⨯⨯⨯⨯=- (2-4)13310ˆT C x⨯⨯= (2-5) 式中[]001T C =,其显式为111222333ˆ101ˆ110ˆ011v xl v x l v x l -⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦[]123ˆˆ0010ˆxx x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(即3ˆ0x =) 将(2-5)代入(2-4)式即得,可见俩种模型等价,平差结果相同. 在这种情况下,误差方程(2.1-4)的行列式等于零,即1011100011--=- 其中有二阶行列式不等于零,故R(B)=2,数2为网中必要观测数,B 为秩亏阵,其列亏数d=3-2=1,表示缺少一个起始高程,因此给定条件式(2-5),转化成附有限制条件的间接平差问题,可求其唯一解.没有起算数据的并以待定点坐标为待定参数的控制网,也是自由网.是一种特殊用途的控制网.一般网中待定坐标个数为u ,必要观测为t ,全部观测为n ,则B 为n ×u 阶矩阵,其秩R(B)=t <u ,列亏数d=u-t ,相应的法方程系数阵N 也是秩亏阵,R(N)=t <u ,秩亏数也为d=u-t.这种网称为秩亏自由网.产生秩亏的原因是控制网中没有起算数据,所以d 就是网中必要起算数据的个数,对于水准网,必要的起算数据是一个点的高程,故d=1.对于测角网,必要的起算数据是俩个点的坐标,故d=4.对于测边网或边角网,必要起算数据是一个点的坐标和一个方位,故d=3.秩亏自由网的法方程系数阵N 奇异,即0N =,故N 的凯利逆1N -不存在,法方程有无穷解.如何合理的求解这类平差问题,就是本文要讨论的秩亏自由网平差问题.2.2 秩亏自由网平差原理秩亏自由网平差的误差方程为111ˆn u n u n V B xl ⨯⨯⨯⨯=- (2-6) 式中u 为网中全部坐标参数的个数,系数矩阵的秩rk (B )=t<u,秩亏数d=u-t ,按最小二乘原理min T V PV =,P 为非奇异,所得法方程为ˆNxW = (2-7) W=T B Pl ,rk (N )=rk (T B PB )=t<u ,N 奇异,法方程具有无穷多组解. 在一个不设基准的平差问题即秩亏自由网中,若设其未知参数的个数为u ,必要观测为t<u ,则其基准个数应为d=u-t ,所以上述的秩亏数就是秩亏自由网中的基准秩亏数.为了在秩亏自由网中求得未知参数的唯一解,需对网中u 个参数给定d 个基准约束条件.例如,二位测角网,令其俩个点的坐标为已知,并取已知坐标的近似值,或固定一个点的坐标,一条边长和方位角.就可以给出诸如(2-8)式的基准约束条件.就可以唯一解出在此基准条件下的参数估值,这就是经典自由网平一般,为了获得位置参数的唯一解,给定加权的基准约束条件为1ˆT x d u u u u S P x⨯⨯⨯=0 (2-8) 式中rk (S )=d ,而且rk T B S ⎡⎤⎢⎥⎣⎦=u (2-9)BS=0 (2-10) 左乘T B P ,既得NS=0 (2-11)T S 行满秩表示(2.2-3)式中d 个方程互不相关,d 个条件与误差方程相互独立,由(2.2-5)式知,S 是矩阵N 的d 个零特征值所对应的d 个互不相关的特征向量所构成的矩阵,可由N 的特征值方程求出. x P 称为基准权,x P 不同取值反应了所取基准约束不同,亦即x P 对应了所选的基准数.按最小二乘原理,另函数ˆ2()min T T T x V PV K S P x ϕ=+= (2-12) 得法方程为ˆˆˆ0x Tx Nx P xK W S P x+== (2-13)将上式的第一式左乘T S ,顾及(2-10)和(2-11)式的 T x S P SK=0 因二次型T x S P S 不能为零,故必有K=0于是(2-12)式为T V PV ϕ==min可见,秩亏自由网平差的最小二乘原则与位置的基准约束无关,亦即T V PV 是一个不变量,平差所得得改正数V 不因所选取的基准约束不同而异,这是一个重要将(2-13)式中的第二式左成x P S 后与第一式相加顾及K=0,可得ˆ()T x x N P SS P x W += (2-14) 由(2.2-4)式知系数矩阵满秩,令1()T p x x Q N P SS P -=+ (2-15) 则参数估计为ˆp p xQ W = (2-16) 按协因数传播律,ˆx的协因数为 ˆx p p p Q Q NQ = (2-17)顾及()T x x N P SS P + p Q =E (2-18) 上式也可写成ˆx p Q =p Q -p Q T x x P SS P p Q (2-19)在实际计算中,也可将S 标准化为G,使满足T xG PG E = (2-20) 用S 右乘(2-18)式,考虑NS=0得p Q x P S=S 1()T x S S P S - (2-21)将(2-21)式代入(2-19)式,顾及(2-20)式可得ˆTxp pQ Q GG =- (2-22) 单位权方差估计为20()T V PVn R B σ=- (2-23)2.3 S 的具体形式由(2-11)式确定的S ,具体形式可取为: 一维的水准网,秩亏数 d=1()1111T mS ⨯=⋅⋅⋅ (2-24)三维GPS 网,秩亏数 d=3()3333331TmS E E E ⨯⨯⨯⨯=⋅⋅⋅ (2-25)二维测边网,秩亏数d=332000000112210101001011Tmmm SY X Y X Y X ⨯⋅⋅⋅⎡⎤⎢⎥=⋅⋅⋅⎢⎥⎢⎥-⋅⋅⋅⎣⎦(2-26) 二维测角网秩亏数 d=4000000421122000000112210101001011Tmmm mm SY X Y X Y X X Y X Y X Y ⨯⋅⋅⋅⎡⎤⎢⎥⋅⋅⋅⎢⎥=⎢⎥--⋅⋅⋅-⎢⎥⋅⋅⋅⎣⎦(2-27) 以上均假设控制点总网点数为m.3 平差方法分析及比较3.1 重心基准的秩亏自由网平差采用重心基准,基准权设为单位阵,x P =E ,一般称为普通秩亏自由网平差 平差的模型为ˆˆ0min T T V Bxl S x V PV =-⎧⎫⎪⎪=⎨⎬⎪⎪=⎩⎭(3-1) 由(2-15)(2-16)(2-19)(2-22)式得模型的参数估计为1ˆ()T r r xQ W N SS W -==+ (3-2) ˆTxr r r r Q Q Q SS Q =- (3-3)下面以水准为例,说明重心基准的由来.对于水准网基准约束ˆ0T S x=的具体形式为 12ˆˆˆ0m xx x ++⋅⋅⋅+= 平差后各点高程的平差值为00111111ˆˆ()m m m i i i i i i i X X X xX X m m m =====+==∑∑∑ (3-4) 即平差后各高程点的平均值X 等于平差前各个高程近似值的平均值,水准网的重心高程不变.这也说明秩亏自由网平差基准取决于所取坐标近似值系统.3.2 拟稳平差以拟稳基准的秩亏自由网平差称为拟稳平差. 将网中参数分为俩类,设 ()12111T TT uu u x x x ⨯⨯⨯=其基准权为1122u u x u u OO P O E ⨯⨯⎡⎤⎢⎥=⎢⎥⎣⎦式中12u u u +=,2u >d.基准约束式为(2-8),令()12TTTd ud u d u SSS⨯⨯⨯=则拟稳平差的基准约束条件为22ˆ0TS x= (3-5) 顾及上述关系式,由(2-16),(2-14)式得1ˆ()T s sS x QW N S S W -==+ (3-6)()20T TT S x S S P S == (3-7)由(2-21)式得122()TS S Q S S S S -= (3-8)采用2S 标准化矩阵2G ,即2T G 2G =E ,将上式(2-19)式的ˆs T x S Q Q GG =- (3-9)拟稳平差是全部网点分为俩个部分1X 2X ,2X 是拟稳点的坐标参数,基准约束条件(3-5)仅包含参数2X .所以拟稳基准拟稳点组的重心基准平差. 当所取的2u d =时,拟稳平差就转化为经典自由网平差.3.3 最小范数准则ˆˆmin T p p x Px =通过基准变换推导出ˆp x=ˆx +SD ,从理论上证明了最小范数准则 ˆˆmin Tp p x Px = 与基准约束条件ˆ0T x S P x =等价.即上述的秩亏自由网平差模型(3-10)与(3-11)等价,俩者平差结果相同.说明基准条件与基准要求等价. 在加权范数最小的条件下,即在ˆˆmin T p p x Px = 的条件下,未知数的解为ˆˆP p p x x Q W Q W == 它的协因数阵为ˆP Tx p p pQ Q NQ Q GG ==- 式中1()T p xx Q N PGG P -=+ x P 为表示未知参数稳定程度的权矩阵.对与G 阵满足(2-9)(2-10)(2-11)式的条件.3.4 秩亏自由网的广义逆解法秩亏自由网平差按附加基准约束模型(3-10)进行平差.称为附加条件法.广义逆解法则采用与(3-10)的等价模型(3-11)来计算. 由(3-11)的前俩式,x 的最小二乘可由以下法方程得出Nx=W (3-12) 此解不唯一,因为N 为奇异阵.考虑参数约束要求ˆˆmin Tp p xPx =由(3-12)式可以解的参数加权最小范数的唯一解为ˆxmp P x N W = (3-13) 式中x m P N 是法方程系数阵N 的加权最小范数逆,xmP N 不唯一,但其解唯一. 根据加权最小范数逆的定义:对于相容方程NX=W ,1/21111()T x X p X ⨯= ,则同时满足,()T x xNGN N GN P PGN == (3-14) 的G 称为N 的加权最小范数逆,为xm P N . 在附加条件法参数解(2-16)式中的1()T p x x Q N P SS P -=+是N 的加权最小范数逆,这里就不证明了.加权最小范数逆不唯一,有多种选择,但必须满足(3-14)中的俩个条件. 当x P 正定是,在平差中常用的一种选择是11()x mTT P x x N P N NP N ---= (3-15)特别的当x P 为单位阵时()xm T T P N N NN -= (3-16) 下面对最小范数逆解的唯一性给出证明:设有俩个最小范数逆为1m N -和2m N -,相应的最小范数解为 11,m X N W-= 22m X N W -= 因为最小范数逆满足下列俩个方程:m NN N N -=()T m m N N N N --=所以()T T T m m N NN N N NN --==1T T m N NN N -=,2T T m N NN N -=上述俩式相减的12()T m m N N NN O ---= 俩边右乘以12()T m m N N ---得到1212()()T T m m m m N N NN N N O ------=上式是个二次型,要成立的话,必须有:12()m m N N N O ---=俩边同时右乘以任意解向量Y ,得12()m m N N NY O ---=又因为NY W =,故有:12()m m N N W O ---= 12m m N W N W O ---=所以:12m m N W N W --=可见,最小范数解不因最小范数逆不同而异,最小范数逆的解唯一.3.5 分析与比较秩亏自由网平差按附加基准约束模型(3-10)进行平差.称为附加条件法,对于重心基准平差,以水准网为例,平差后各高程点的平均值X 等于平差前各个高程近似值的平均值,水准网的重心高程不变.这也说明秩亏自由网平差基准取决于所取坐标近似值系统.在拟稳平差中,基准权1122u u x u u O O P O E ⨯⨯⎡⎤⎢⎥=⎢⎥⎣⎦(其中u1+u2=u ,u2>d.),当u2=d 时,就转换成为了经典自由网平差,也就是说经典自由网平差是拟稳平差的一种特例.最小范数准则ˆˆmin T p p x Px =与基准约束条件ˆ0Tx S Px =俩者等价,即俩种秩亏自由网平差模型等价.此外最小范数准则还与ˆˆ()min xx x tr Q P =等价(方差最小性).下面证明:ˆˆˆˆ()(())T TE x Px E tr x Px=ˆˆˆ(())(())T T x x E tr xxP tr E xx P ==及 ˆˆˆˆˆ()()()()T D xE xx E x E x =- 可得 2ˆˆ0ˆˆˆˆ()()(()())T T xx x x E x Px tr Q P tr E x P E x σ=+上式右边为常量,上述等价性得证.当x P =E 时,则有ˆˆ()xx tr Q min =当x P =220u u diag E ⎛⎫⎪⎝⎭时,则有22ˆˆ()min x x tr Q =.重心基准的参数估计具有最小迹的性质,而拟稳平差仅拟稳点坐标参数估计具有最小迹.广义逆解与附加条件的解相同,下面证明附加条件参数解(2-15) 1()T p x x Q N P SS P -=+是N 的加权最小范数逆.先证明一个有用的等式,由 ()T x x N P SS P + p Q =E 俩边右乘S ,考虑NS=0,得T p x x Q P S S P S S = 由(3-14)式得()T T p p x x x x NQ N NQ N P SS P P SS P =+-()Tp x x N E Q P SS P =-1(())TTx x N E S S PS S P N -=-=1()(())TT Tp x x x x Q N P E S S P SS P P -=- 1(())T Tx x x P E S S P S S P -=-x p P Q N =故有 1()xT m p x x P Q N P SS P N -=+∈ 也说明采用模型(3-10)与模型(3-11)进行秩亏自由网平差结果是相同的,再次说明俩模型等价.总之,(1)无论用哪种方法所得到的改正数V 是一样的,单位权中误差不变.(2)用附加条件法讨论时便于分析和验证估值的最优性,而用广义逆矩阵方法容易导出为未知数的唯一解,并可以根据广义逆矩阵的方法得到适当的算法.(3)对于一定的参考系秩亏平差的解具有方差最小性(即ˆˆ()xx tr Q min =).(4)对所得的ˆˆxx Q 可作为该网不受起算数据误差影响的内精度值,来衡量整个网的精度.(5)当所平差的秩亏自由网的G 阵已知时采用附加条件法较方便(测量上遇到的自由网,G 阵一般是已知的),当G 阵不知道时,则宜采用广义逆矩阵法.4 实例分析例1:图水准网,C B A 、、点全为待定点,同精度独立高差观测值为m h 345.121=,m h 478.32=,m h 817.153-=,平差时选取C B A 、、三个待定点的高程平差值为未知参数321ˆˆˆX X X 、、,并取近似值)823.25345.22100302010m X X X X (⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=试分别用直接法和附加条件法求解参数的平差值及其协因数阵.解:1.直接解法 误差方程为⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=600ˆˆˆ101110011321x xx V 法方程为0606ˆˆˆ211121112321=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------x xx由法方程易知⎪⎪⎭⎫ ⎝⎛--=211211N , ⎪⎪⎭⎫ ⎝⎛----=1211121N , ⎪⎪⎭⎫ ⎝⎛=061W所以有⎪⎪⎭⎫⎝⎛==-6336271)(11111T N N Q未知参数的改正数为)(202)(ˆ111111111m m W Q N W N N N xT T T ⎪⎪⎪⎭⎫⎝⎛-===-未知参数的平差值为)821.25345.22002.10ˆˆˆˆˆˆ321030201321m x x x X X X X X X (⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎭⎫ ⎝⎛未知参数的协因数阵为⎪⎪⎪⎭⎫⎝⎛------==2111211129111111111ˆˆN Q N Q N Q T X X2.附加条件法解法一中已求得法方程为0ˆ=-W xN 的具体形式为: 0606ˆˆˆ211121112321=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛------x xx该水准网有3个待定点,所以附加阵为()11113=⨯TS⎪⎪⎭⎫ ⎝⎛=⨯31313113TG则有TGG N N +=⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛------=11111111131211121112⎪⎪⎪⎭⎫⎝⎛------=72227222731 ⎪⎪⎪⎭⎫⎝⎛=-522252225911N所以有)(20260652225222591ˆ1m m W N x⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛==-未知参数的的协因数阵为⎪⎪⎪⎭⎫⎝⎛------=-=-211121112911ˆˆT X X GG N Q结果与直接解法完全相同.例2 如图的水准网中,观测高差﹑距离和各带定点高程近视值列于表1中分别进行下列自由网平差.如下图(1) 以6号点为固定点的经典自由网平差; (2) 以重心基准的自由网平差,P=E ;(3) 以1 2 5 6 四个点为拟稳基准的拟稳平差,Px=diag (1 1 0 0 1 1).各种平差的参数估值分别记为ˆc x ˆr x ˆs x 及解向量的各范数值;参数估值的协因数及其迹列于下列图表中.观测数据与改正数 表-1未知参数的估值ˆx(mm ) 表-2 其中ˆx=(1 2 5 6 3 4 ) 1ˆx =(1 2 5 6) 2ˆx =(3 4)未知参数估值ˆx的协因数 表-3由上表所列的数值,可以清楚看到各种自由网平差所具有的特点. (1)各法所得得改正数V 相同,均具有min T V PV =. (2)普通秩亏自由网平差61ˆ0i i x ==∑,且有ˆˆm i n T x x =(ˆˆTx x =248.38)和tr(1ˆi x Q =)=min(ˆx Q =29.40).(3)拟稳平差满足1ˆ0ix=∑且有11ˆˆmin T x x =(1.01)和tr(ˆ1x Q )=min (tr ˆ1x Q )=20.47.(4)经典平差可以看做一种特殊的拟稳平差,满足6ˆ0x =和tr (ˆ6x Q )=0.(5)总之,各种秩亏自由网平差均满足ˆ0i x i iP x =∑且有ˆˆmin T p p x Px =.结 论通过以上分析和实例验证,在经典间接平差中,必须有足够的起算数据,所选的待定参数之间不存在函数关系时,误差方程的系数阵总是列满秩的,且秩等于必要观测数,法方程系数是一个对称的满秩矩阵,即法方程有唯一解.而秩亏自由网没有起算数据参与的并以待定点参数的网,误差方程不是列满秩,其相应的法方程系数阵为奇异阵,要求出参数的解,一种从传统测量平差观点出发,利用假观测法或附加条件式来讨论,一种是从线性代数观点出发利用广义逆矩阵来讨论,俩种方法得到的结果是相同的,(1)无论用哪种方法所得到的改正数V 是一样的,单位权中误差不变. (2)用附加条件法讨论时便于分析和验证估值的最优性,而用广义逆矩阵方法容易导出为未知数的唯一解,并可以根据广义逆矩阵的方法得到适当的算法.(3)对于一定的参考系秩亏平差的解具有方差最小性(即ˆˆ()xx tr Q min ).(4)对所得的ˆˆxx Q 可作为该网不受起算数据误差影响的内精度值,来衡量整个网的精度.(5)当所平差的秩亏自由网的G 阵已知时采用附加条件法较方便(测量上遇到的自由网,G 阵一般是已知的),当G 阵不知道时,则宜采用广义逆矩阵法.致谢首先,向我的指导老师魏东升老师以衷心的感谢!感谢魏东升老师的细心的指导,在论文的进行过程中,魏东升师做了大量的指导工作,对论文的结构及内容提出了许多的意见和建议.在论文定稿期间,魏东升老师还花了大量的时间做了仔细认真的审阅并提出了许多宝贵的意见.同时也感谢教研室龙江平等老师的细心解答与指导.其次,在论文实践期间,感谢同学在论文过程中给予的帮助!在此,向帮助我的老师、同学、表示深深的感谢,感谢他们对我的支持和帮助.谢谢.参考文献[1] 崔希璋,於宗俦,陶本藻,刘大杰.广义测量平差. 北京:测绘出版社,1982[2] 崔希璋,於宗俦,陶本藻,刘大杰,,于正林广义测量平差(第二版)北京:测绘出版社 1992[3]. 崔希璋,於宗俦,陶本藻,刘大杰,于正林广义测量平差(第二版)武汉:武汉大学出版社 2009.[4] 武汉大学测绘学院测量平差学科组,误差理论与测量平差基础,武汉:武汉大学出版社 2003[5] 刘大杰论亏秩自由网平差武汉大学测绘学院学报 1981[6] 于正林自由网平差中若干问题的讨论武汉测绘科技大学学报 1986[7] 张卡,张书毕秩亏自由网的双重条件平差徐州:中国矿业大学环境与测绘学院2004[8] 赵超英秩亏自由网平差及其通解长安大学:地球科学与环境学报2010[9] 王帅,高井祥秩亏自由网平差中最小范数解的唯一性分析中国矿业大学:勘察科学与技术 2011[10] 鲁铁定,张立亭自由网平差的直接解算西安科技大学学报第24卷4期2004[11] 冯浩鉴论秩亏网平差测绘学报第13卷第4期国家测绘局1984[12] 谢建,朱建军约束秩亏自由网平差的一种新的算法测绘工程第18卷2期中南大学 2009[13] 王军最小范数在秩亏自由网平差中的应用科教前言2012第7期神华宁夏煤业集团有限责任公司银川 2012[14] 武汉测绘学院最小二乘法教研组. 最小二乘法北京中国工业出版社 1961[15] 李庆海概率论统计原理在测量中的应用北京:测绘出版社 1982[16] 高士纯测量平差基础习题集北京:北京测绘出版社 1983[17] 刘大杰于正林控制网测量平差北京:北京测绘出版社 1985[18] 陶本藻自由网平差变形分析武汉:武汉测绘科技大学出版社 1992[19] 黄维斌近代平差理论及应用北京:解放军出版社 1992[20]杨元喜抗差估计理论及其应用北京:八一出版社 1987[21]王维松线性模型的理论及其应用合肥:安徽教务出版社 1987.。
第二章2自由网平差基准
1 0 0 ...
...
GCT
42t
0
ac1132
1 b12 d13
0 a12
0
... b12
0
0 c13
... d13
... ... 0 ...
3、二维测边网、边角网、导线网 ①基准条件:一个已知点坐标、一条边上的方位角
Xˆ1 0 Yˆ1 0
a12 Xˆ1 b12Yˆ1 a12 Xˆ 2 b12Yˆ2 0
M
GTG
M
H
m
m
, H
(Yi 2
X
2 i
)
S
2 i
H
i 1
i 1
标准化后G:
1
m
0
GT
Y1
m
X1
m
0
1
m
1
0
m
X 1 Y2
mm
Y1 X 2
mm
0 ....
1
...
m
X2
...
m
Y2
...
m
基准条件也可写为:
1 m
m i 1
Xˆ i
1 m
m
Yˆi
i 1
0 0
S02i
(S00i )2
2(
X
0 i
X 0 )Xˆ i
2(Yi0
Yi )Yˆi
(S00i )2
2(
X
0 i
Xˆ
i
Yi0Yˆ) 2X 0 Xˆ i
2YYˆi
将m个点至重心点的边长取和得:
m
m
m
m
m
S
2 0i
(
S
0 0i
第三讲秩亏自由网平差
AR A ( A A)
A是降秩矩阵时:秩分解法、降阶法。
降阶法:
• 在秩亏的方阵A中,删去d个某一行和相应的某 一列降阶求逆,删去位置均以“0”代之,即得奇 异方阵的广义逆A-。 • 可见A-不唯一。 1 1 0 • 例如: A 0 1 1 ,( R A) 2,d 3 2 1
T B T B
I PV 0 D 2 I 0 0 D 2 I 0 0 0 B ˆ L ( X ) 0 DX I Lx 0 B ˆ T X B I DX
T d1 du uu u1
V B l ˆ V T x 0 Vg S Px P P 0 0 I
平差准则:
V PV min
T
按间接平差法求参数:
1、合并
2、法方程: 3、解参数
B l ˆ Bx ˆl , V T x 0 S Px P 0 P 0 I ˆ B T Pl 0 B T PBx B P S T P 0 x
3)即网中存在d 个起始数据, 这就是固定基准下的经 典自由网平差。
秩亏问题解决:经典平差(附加固定的基准条件 )和伪逆平差(直接利用广义逆求解 ); 优缺点:解法简捷 ,但没考虑到解法物理意义, 不能反映真实情况。 提出:拟稳平差理论。 “拟稳平差”的基本思想:考虑到监测网中的点 ,处于不同的地质构造和地球物理环境,随着时 间的延伸,都可能发生变动,但是总存在相对变 化小的,即相对稳定的点。
1、定义:满足下列四个条件,即
AA A A A AA A ( AA )T AA ( A A)T A A
论秩亏自由网平差的性质及稳健基准的意义
论秩亏自由网平差的性质及稳健基准的意义
泰勒-普克网平差的性质及稳健基准的意义
一、泰勒-普克网平差的性质
1、平差基础
泰勒-普克网平差是一种在某一程度上把差距变成零的基础计算手段,其核心
目标是让差距最小化。
就其本质而言,泰勒-普克网平差也是一种多变量数学优化
技术,是一种最优化技术,所获得平差结果使残差最小化并能确定被估量参数的最优值。
2、平差技术特点
泰勒-普克网平差技术的特点有:它仅考虑坐标计算,因此它的计算简单可靠;由于其利用了既定的数学规律,它的计算结果是固定的;另外,它只需要坐标测量观测点以及观测张角即可得到正确的平差曲线坐标数据,降低了计算错误的可能性。
二、稳健基准的意义
1、基准点确定泰勒-普克网系统构建完成后,必须确定基准点,这些基准点的
确定有利于经线的稳定性,其能够将准确的坐标视图和参考坐标视图实现统一,保证经线的准确度。
2、精度分析稳健基准的设置能够更好地保证平差精度,并可以充分发挥最大
可接受误差的作用,因此能够更好地提高经线测量准确性。
3、丰富经线系统基准点确定后,能够为拓展测量着许多有用的信息,增强经
线系统的完整性和稳定性,以保证经线系统的精度和准确度。
综上所述,泰勒-普克网平差作为一项多变量数学优化技术,它能够有效地让
多个观测结果变为零的一种差距,其特点是只考虑坐标计算,实现数学优化后获得
平差结果,能够将准确的坐标视图和参考坐标视图实现统一。
同时,稳健基准的设置有利于经线系统的稳定性,可以充分发挥最大可接受误差的作用,确定有助于拓展测量的同时,也能够更好地提高经线测量的准确性。
5第二章秩亏自由网平差的解法
N
m
N (NN )
为最小范数逆
Xˆ r Nm AT Pl
以上是最小二乘最小范数解
根据最小范数的定义知,该逆应满足:
NN
m
N
N
(
N
m
N
)
T
N
m
N
[证明]:
(1)
NN
m
N
NN (NN )
N
N
由广义逆的性质三有 A( AT A) AT A A或AT A( AT A) AT AT
DDT ( AT A( AT A) AT AT )(A( AT A) AT A A) ( AT A( AT A) AT A( AT A) AT A AT A( AT A) AT A AT A( AT A) AT A AT A 0
的条件极值问题。 组成新的函数:
Xˆ T Xˆ 2K T (NXˆ AT Pl)
对 Xˆ 求偏导数并令其等于零,得:
Xˆ
2Xˆ T
2K T N
0
Xˆ N T K
(1)
NXˆ AT Pl
(2)
NN T K AT Pl
K (NN T ) AT Pl Xˆ r N T (NN T ) AT Pl N (NN ) AT Pl
主要内容
➢ 问题的引入 ➢ 秩亏自由网平差的原理 ➢ 广义逆的补充知识 ➢ 秩亏自由网平差的解法
秩亏自由网平差的解法分类
√①求N 的最小范数逆
----Mittermayer(1971)
√②伪逆解法 ③√ 附加条件法 ④√ 伪观测法
----Mittermayer(1971)
----Mittermayer(1972)
H
0 1
第二章1秩亏自由网平差与拟稳平差
N
1
2 1 1 / 3 1 2
如不设其始高程,则X 1 H1 , X 2 H 2 , X 3 H 3 均为未知高程,
那么,误差方程:
0 1 X 1 L1 1 1 1 0 X 2 L2 0 1 1 X 3 L3
ˆ ˆ ˆ X T X 2K T ( NX AT Pl)
ˆ 对 X 求偏导数令其等于零,得:
ˆ 2 X T 2 K T N 0(极值点) ˆ X
ˆ X N T k (1) ˆ NX AT Pl(2)
所以
NN T K AT Pl
ˆ K ( NN T ) AT Pl, X r N T ( NN T ) AT Pl N ( NN ) AT Pl
水准网中通过观测高差无法确定高程有一个未知数需要有一个高程基准相对于海平面来说例100这时如果还考虑水准尺之间的尺度比这时尺度比为未知参数用高差也无法确定它那就需要一个尺度标准这时d测角网
二、 秩亏自由网平差
3.1 平差问题的基准与网的秩亏数 一、平差问题的基准: 例:
设:H=1.000m 为已知。
ˆ ( N m1 N m2 ) NX 0 ( N m1 N m2 ) AT Pl 0 N m1 AT Pl N m2 AT Pl
两边右乘
ˆ X
例:
ˆ ˆ ˆ X1 X 2 X
是最小范数解是唯一的。
取各点近似高程:
0 0 0 0 H10 X 10 0m, H 2 X 2 12.345m, H 3 X 3 15.823m
高程基准:
d 3 Cn2一维网),高程基准——位置基准,基准个数 d 0 d1 d 2 =2,当不考虑尺度比 d 0 1 。 三角网,测边网,测角网,导线网(二维网)
【免费下载】秩亏网平差若干计算方法
秩亏网平差若干计算方法1.概述在测量平差中,控制网中除了必要起算数据外还有多余起算数据的是附合网,仅有必要起算数据的是自由网,这两种控制网在间接平差时误差方程系数矩阵都是满秩的,由此得到的法方程系数阵也是满秩的,即法方程B N =B T PB 有唯一解。
这是经典平差的范畴。
自由网中有一种具有特殊用途的控制网,就是秩亏自由网,这种自由网没有起始数据参与平差并且以待定点的坐标为待定参数。
此时的误差方程的系数阵是列亏阵,由此所得的法方程系数阵也是秩亏阵。
一般设网中全B N =B T PB 部的待定坐标个数为,必要观测数为,全部观测数为,为阶矩阵,相u t n B n ×u 应的法方程系数阵是阶矩阵,,秩亏数都为N u ×u R (B )=R (N )=t <u ,所以法方程有无穷组解。
这里产生秩亏的原因是控制网中没有起算d =u ‒t 数据,所以就是网中必要的起算数据个数。
对于水准网,必要起算数据是一个d 点的高程,故;对于测角网,必要起算数据是两个点的坐标,故;d =1d =4对于测边网或是边角网,必要起算数据是一个点的坐标和一条边的方位,故。
d =32.秩亏网平差模型以间接平差为例,令个坐标参数的平差值为,观测向量为,则秩亏网的误u X ~L 差方程为:(1)V =Bx ~‒l 式中,,,,R (B )=t <u d =u ‒t X ~=X 0+x ~l =L ‒L0随机模型是:(2)D =σ2Q =σ2P ‒1根据最小二乘原理,在下,可组成发方程如下:V T PV =min (3)B T PBx ~‒B T Pl =0若是按照直接解法用如下的方程组来解求的解:x ~(a ){V =Bx ~‒lB T PBx ~-B T Pl =0V T PV =min容易得到,即该方程组有解但不唯一,虽然满足最小二乘准则,但|B T PB|=0有无穷多组的解,无法求得唯一的,因为参数必须在一定的坐标基准下x ~x ~x ~才能唯一确定。
第六章近代平差简介
• b)秩亏测边网或边角网重心基准 • c)秩亏测角网重心基准
• 以上两项均有: i 1 条件成立, i 1 参照a)的水准网重心基准,可知b)、c)两项中也 有重心基准条件存在。
i
ˆ x
m
ˆi 0 0 , y
m
6、秩亏自由网平差的一些特性 • 1)参数估计值的有偏性
~ 由 Ax l
T T • 2)、x ˆ x ˆ min与G x ˆ 0等价
ˆ U 0的条件下,对x ˆ有 不同基准下的平差,均 是在满足Nx ˆ解。设有满足不同基准 不同的约束,故而产生 了不同的x 的 ˆ1 U 0 Nx ˆ1、x ˆ 2,有: 两个最小二乘解 x ˆ2 U 0 Nx ˆ1 x ˆ2 0 上两式相减: N x ˆ1 x ˆ 2=GD 考虑:NG=0 故有:x ˆ x ˆ GD 式中D未知, x ˆ T x ˆ min,需要: 若要满足x ˆ T x ˆ ˆ x T x ˆ ˆ T G=0 x ˆ T x ˆ min G T x ˆ 0 =2 x =2 x D D
• 1)、水准网的G阵
2 -1 -1 如前例:N=-1 2 -1 其中:R N 2, d 1 -1 -1 2
N有一个为零的特征值。 设其特征向量为:G= g1
g2
g3
T
2 -1 -1 g1 NG 0 -1 2 -1 g 2 0 -1 -1 2 g 3 得通解:g1 g 2 g 3 c--任意常数 标准化后:G =
T
若G阵经标准化: G G=I 则可用:Q x ˆx ˆ=QG-GG
T
T
注意:秩亏网平差的广 义逆法及附加阵法均是 在最 小二乘原则下得到法方 程后,由于其系数阵秩 亏, 再加上最小范数约束而 得到的结果,所以这两 种平 差法的结果完全相同。
秩亏自由网平差S的求法与基准
1 m 0
0 ym
H
H
0 1 m 0 xm H
此时
1 0 0 T G G 0 1 0 I 0 0 1
由于测边网中的误差方程为非线性方程,在线性 化处理中,总假定坐标改正数为微小量,因此仅 取其一次项。所以在假定坐标近似值时,应尽量 逼近坐标平差值,以减少因线性化所带来的误差。 一般可先假定任一点的坐标,再根据相应的观测 值推算网中其余点的近似坐标。 • Xu P L. A General Solution in Geodetic Nonlinear Rank-defect Models [ J ] . Bollettino di Geodesia e Scienze Affini , 1997 ,56 (1) :1225.
主要内容
秩亏自由网平差的三种解法回顾 各类自由网S的确定 S与基准的关系
自由网:内部形状仅由相对观测值确定的大地网
对于任一自由网,依据最小二乘原理进行平差后,就 可以达到合理消除网中各种几何条件不符值的目的,此 时自由网可以得到唯一的闭合网形,即可确定网的最佳 相对形状 若此时网中拥有必要的起算数据,则可由此起算数据 推求其它的未知数据 对于秩亏自由网,由于网中无外部固定数据,因此网 形的外部绝对位置就无法确定,因而网形浮动 若要唯一确定网形,必须给定基准
ˆ 0 0 X 1 V1 1 1 V 0 X ˆ 0 1 1 2 2 6 ˆ 1 0 1 V3 X 3
x2 h1 h2 x3
(1)
x1
h3
3、测角网
对于自由测角网,其系数阵A的秩亏数为4,即缺少两个 位置基准(X,Y)、一个方位基准和一个尺度基准。测角网 的误差方程式为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
GAG G
(A-2) (A-3) (A-4)
(GA)T GA ( AG) AG
T
G 称为 A 的广义逆。
可以只满足一个或几个方程,共有 1 2 3 4 C4 C4 C4 C4 15 种 不 同 的 广义逆。
同时满足(1)和(4) ,称为最小二 乘逆,用 Al 表示; 同时满足 4 个方程, 称为伪逆, 用A 表示。
GAG G
(A-2) (A-3) (A-4)
(GA)T GA ( AG)T AG
G 称为 A 的广义逆。
可以只满足一个或几个方程,共有 1 2 3 4 C4 C4 C4 C4 15 种不同的广 义逆。
补充知识
B、线性方程组的解
设方程组
m n n1
AX b
m1
(B-1)
ˆ 1 l1 l 2 2 1 1 x 1 2 1 x ˆ 2 l1 l3 0 ˆ3 1 1 2 x l 2 l3
v1 1 1 v 1 0 1 x l ˆ 2 2 2 ˆ3 v3 0 1 1 x l3 0 l1 1 1 0 x1 h1 l 1 0 1 x 0 h 2 2 2 0 l 0 1 1 x 3 3 h3
m1
也不是唯一的。
最小二乘解的通解为:
不相容方程组没有通常意义下的解。 但在各种实际问题中,往往要求出最 小二乘解。最小二乘解为:
X Alb ( I Al A)Y
其中 Y Rn 。
(C-3)
XAb
逆,简称最小二乘逆。
l
(C-2)
其中 Al 满足(A-1)和(A-4)的广义
如果把(C-2)式中的 Al 理解为可变 的,该式也是通解。
AGA A
(A-1) (A-4)
( AG)T AG
补充知识
D、相容方程组的解
相容方程组解不唯一时,常常要求出 II-
设相容方程组
m n n1
AX b
m1
(D-1)
范数最小的解( X X min ) ,为
T
X m Am b
降秩是怎样产生的? ˆ l 1 1 0 x
rk( N ) ? 2
秩亏网平差的概念
v1 1 1 0 x1 h1 v 1 0 1 x h 2 2 2 v3 0 1 1 x3 h3
0 ˆ1 x1 x1 x x x0 x ˆ 2 2 2 0 ˆ3 x x 3 3 x
ˆ 1 l1 l 2 2 1 1 x 1 2 1 x ˆ 2 l1 l3 0 ˆ3 1 1 2 x l 2 l3
h2
C
原因:网中没有已知高 程点。
秩亏网平差的概念
2、平差基准
测量控制网以点的坐标(及高程)为未知参数进行参数平 差时,网中必须具有必要的起算数据。例如,水平控制网必须 有一个已知点的坐标,一条已知边长和一个已知方位角;水准 网必须有一个已知点的高程。有时,网中还会有多余的起算数 据。测量平差中,将仅含必要起算数据的控制网称为 经典自由 网,将含有多余起算数据的控制网称为附合网。当控制网中存 在必要起算数据或多余起算数据时,观测方程的系数矩阵才可 能列满秩,起算数据不足时,就产生数亏。
秩亏网平差的概念
v1 1 1 0 x1 h1 v 1 0 1 x h 2 2 2 v3 0 1 1 x3 h3
0 ˆ1 x1 x1 x x x0 x ˆ 2 2 2 0 ˆ3 x x 3 3 x
A 是唯一存在的,其它的广义逆一般都不唯一。
补充知识
A、广义逆(Moore-Penrose逆)
定义:设 A 为 m n 阶矩阵,如果
存在 n m 矩阵 G ,满足 AGA A (A-1)
当 A 列满秩时,
A ( AT A)1 AT
当 B 行满秩时,
GAG G
(A-2) (A-3) (A-4)
存在 n m 矩阵 G P ,满足
只满足 (1) , 称为加权广义逆, 用 AP 表示;
同时满足(1)和(2) ,称为自反逆,
(E-1) (E-2) (E-3)
用 AP r 表示;
AGP A A GP AGP GP
同时满足(1)和(3) ,称为最小二
乘逆,用 APl 表示;
( PAGP )T PAGP
对于条件平差模型(等精度) :
BV W 0 V BT ( BT B)1W BW
补充知识
A、广义逆(Moore-Penrose逆)
定义:设 A 为 m n 阶矩阵,如果
存在 n m 矩阵 G ,满足 AGA A (A-1)
A 的部分性质:
( AT A) A ( AT ) ( AT A) A ( AAT ) A ( AT A) AT ( AAT ) ( AT ) ( AT A) A ( AT ) A ( AT A) AT AT ( AAT )
求得的解。
AP APm AAPl
称为加权最小二乘最小范数解。
秩亏网平差的概念
参数平差模型
ˆ L V AX
n1 nt t 1
1、秩亏原因与类型
形亏:必要观测不足(网 形不定)
例: 只观测一个方向的前方交会
n1
A 是 nt 矩阵,要求 R( A) t
此时,参数最小二乘平差值:
B
h1
A
h3
h2
C
ˆ 1 l1 v1 1 1 0 x v 1 0 1 x l ˆ 2 2 2 ˆ3 v3 0 1 1 x l3 0 l1 1 1 0 x1 h1 l 1 0 1 x 0 h 2 2 2 0 l 0 1 1 x 3 3 h3
水准网图
秩亏网平差的概念
v1 1 1 0 x1 h1 v 1 0 1 x h 2 2 2 v3 0 1 1 x3 h3
0 ˆ1 x1 x1 x x x0 x ˆ 2 2 2 0 ˆ3 x x 3 3 x
秩亏网平差的概念
2、平差基准
必要起算数据,也叫平差基准。如果控制网没有 起算数据或起算数据不足,就说控制网没有基准或基 准不足。没有基准或基准不足的控制网以坐标为参数 按参数平差法进行平差计算时,误差方程的系数阵的 秩小于系数阵的列数,系数阵秩亏,所以将此类控制 网称为秩亏自由网,简称秩亏网。
秩亏网平差的概念
2 1 ΣL 0 P
ˆ ( AT PA)1 AT PL X
秩亏网平差将参数平差系数矩阵列 满秩的条件放宽为可以秩亏,即
数亏:缺少必要起算数据 (位置、方位、尺度不定)
例: 无起始点的水准环,无 固定点的水平网
R( A) t
( AT PA) 的凯里逆不存在,无法进行
参数平差。
本节可只研究数亏问题
相容方程组的条件:
~ ~ R( A) R( A), A A b (B-2)
或
b AA b
如果
(B-3)
R( A) min(m, n)
且相容,有多组解(不定解)
补充知识
C、不相容方程组的最小二乘解
设不相容方程组
m n n1
最小二乘逆不是唯一的, 最小二乘解
(C-1)
AX b
B BT ( BBT )1
当 C 为满秩方阵时,
(GA) GA
T
C C C 1
对于参数平差模型(等精度) :
( AG)T AG
G 称为 A 的广义逆。
可以只满足一个或几个方程,共有 1 2 3 4 C4 C4 C4 C4 15 种不同的广 义逆。
ˆ L V AX ˆ ( AT A)1 AT L A L X
最小范数逆并不是唯一的,但最小 范数解是唯一的。
因为 A 也属于最小范数逆(同时满 足 4 个方程) ,最小范数解也可以表 示为
相容方程组的通解:
X Ab ( I A A)Y
其中 Y 是任意 n 1 向量。
(D-3)
X A b
(D-5)
补充知识
E、广加权广义逆
定义:设 A 为 m n 阶矩阵,如果
2、平差基准
常见控制网的必起算数据与基准数
(1)高程网(水准网、三角高程网) 一个点的高程值; 基准数=1
设线性方程组
m n n1
AX b
m1
(E-5)
注意:
加权最小二乘最小范数解 X 不是按
为不相容方程,写为
V AX b
按
(E-6)
V T PV min
解(E-6) ,为
X AP b
X T PX X min
(E-7) (E-8)
V T PV X T PX X min (E-9)
B
h1
A
h3
ˆ 1 l1 v1 1 1 0 x v 1 0 1 x l ˆ 2 2 2 ˆ3 v3 0 1 1 x l3 0 l1 1 1 0 x1 h1 l 1 0 1 x 0 h 2 2 2 0 l 0 1 1 x 3 3 h3