圆的一般方程.ppt课件

合集下载

高中数学必修二课件:圆的一般方程(42张PPT)

高中数学必修二课件:圆的一般方程(42张PPT)

此方程表示以(1,-2)为圆心,2为半径长的圆.
问题2:方程x2+y2+2x-2y+2=0表示什么图形?
提示:对方程x2+y2+2x-2y+2=0配方得
(x+1)2+(y-1)2=0,即x=-1且y=1. 此方程表示一个点(-1,1). 问题3:方程x2+y2-2x-4y+6=0表示什么图形? 提示:对方程x2+y2-2x-4y+6=0配方得 (x-1)2+(y-2)2=-1. 由于不存在点的坐标(x,y)满足这个方程,所以这 个方程不表示任何图形.
3.若方程x2+y2+2mx-2y+m2+5m=0表示圆,求 (1)实数m的取值范围; (2)圆心坐标和半径.
解:(1)根据题意知D2+E2-4F=(2m)2+(-2)2- 1 4(m +5m)>0,即4m +4-4m -20m>0,解得m<5,
2 2 2
1 故m的取值范围为(-∞,5).
(2)将方程x2+y2+2mx-2y+m2+5m=0写成标准 方程为(x+m)2+(y-1)2=1-5m, 故圆心坐标为(-m,1),半径r= 1-5m.
第 二 章 解 析 几 何 初 步
§2 圆 与 圆 的 方 程
2.2
圆 的 一 般 方 程
理解教材新知
把 握 热 点 考 向
考点一 考点二 考点三
应用创新演练
把圆的标准方程(x-a)2+(y-b)2=r2展开得,x2+y2 -2ax-2by+a2+b2-r2=0,这是一个二元二次方程的形 式,那么,是否一个二元二次方程都表示一个圆呢? 问题1:方程x2+y2-2x+4y+1=0表示什么图形? 提示:对x2+y2-2x+4y+1=0配方得 (x-1)2+(y+2)2=4.
1.若x2+y2-x+y-m=0表示一个圆的方程,则m的取值 范围是 1 A.m>-2 1 C.m<-2 1 B.m≥-2 D.m>-2 ( )

圆的一般方程ppt课件

圆的一般方程ppt课件
联立方程
,解得x 4,y 3.
2 x y 5 0
∴所求圆的圆心坐标为(4, 3),半径为r 5.
所求圆的方程为( x 4)2 ( y 3)2 25.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求
圆的方程.
变式:已知一圆过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4 3 ,求

解得D 8, E 6, F 0.
∴过O, M1, M2的圆方程为
圆心坐标为 (4 , 3),半径r 5 .
例1.求过三点 O(0, 0), M1(1, 1), M2(4, 2) 的圆的方程及圆
的半径和圆心坐标.
解2:(待定系数法) 设过O, M1, M2的圆方程为

a 2 b2 r 2
.
.O
.M(x,y)
.B(4,3)
x
例2.已知线段AB的端点B的坐标是(4,3),端点A在圆(x+1)2+y2=4
上运动,求线段AB的中点M的轨迹方程.
定点: B(4,3) ,
定圆:( x 1) 2 y 2 4 .
A (主动点)
M (从动点)
x0 4
y0 3
x
,y
.
2
2
x0 2 x 4, y0 2 y 3.
而方程 x 2 y 2 2 x 4 y 6 0 配方后得 ( x 1)2 ( y 2)2 1 ,
方程无意义,不表示任何图形.
形成概念
一般地,把方程 x 2 y 2 Dx Fy E 0 配方可得:
2
2

圆的一般方程ppt课件

圆的一般方程ppt课件
标准方程:x a2 y b2 r2
一般方程:x2 y2 Dx Ey F 0 (D2 E2 4F 0)
1.圆的标准方程带有明显的几何特征, 明确指出了圆心和半径.
2.圆的一般方程表现出明显的代数形 式与结构,突出了方程形式上的特点, 更适合方程理论的运用.
3.求轨迹方程的基本步骤
(1)设出动点坐标 x, y ; (2)求出动点坐标 x, y 所满足的
关系式.
作业布置
作业1:已知在点 P 在圆C :x2 y2 8x 6y 21 0 上运动,O 为坐标原点,求线段OP 的 中点M 的轨迹方程.
作业2:习题4.1A组、B组.
o
x
问题2:能否用 M点坐标表示 出 A 点坐标?
问题3:你能求出M点坐标 (x, y)所满足的关系式吗?
课堂小结
1.圆的一般方程 x2 y2 Dx Ey F 0
(其中D2 E 2 4F 0)
2.用待定系数法求圆方程的基本步骤
(1)设圆方程 ;(2)列方程组; (3)解出系数,写出方程.
创设情境 引入新课
温故知新 形成概念
问题1:直线方程有几种形式? 问题2:直线的一般式方程是什么形式?
Ax By C 0其中A, B不同时为0
关于 x, y的二元一次方程 问题3:圆心为 Ca,b ,半径为 r 的圆的
标准方程是什么?
x a2 y b2 r2
典例探究1
例1:求过点 O0,0, A1,1, B4,2 的圆的方程,并求圆的
半径长和圆心坐标. 解:设圆的方程是 x2 y2 Dx Ey F 0
将 O, A, B 的坐标依次代入方程,得
F 0 D E F 2 0 4D 2E F 20 0

圆的一般方程ppt课件

圆的一般方程ppt课件

x2 + 3y2 − 2x + 4y + 5 = 0不是圆的一般方程;
对于D,因为方程x2 + y2 − 3xy − 12 = 0中存在xy项,所以方程
x2 + y2 − 3xy − 12 = 0不是圆的一般方程.故选BCD.
课中探究
探究点二 求圆的一般方程
例2(1) 已知△ ABC的三个顶点为A 4,3 ,B 5,2 ,C 1,0 ,求△ ABC外接
又圆心在第二象限,所以D
= 2,E =
−4,
故圆C的一般方程为x2 + y2 + 2x − 4y + 3 = 0.
课中探究 (2)圆C关于直线x − y = 0对称的圆的一般方程. 解: 由(1)知圆C的圆心为C −1,2 ,设它关于直线x − y = 0对称的点为
C′ m, n ,则
m−1 − n+2 = 0,
半径的圆,我们把方程x2 + y2 + Dx + Ey + F = 0 D2 + E2 − 4F > 0 叫作圆的
一般方程.
课前预习
(1)圆的一般方程的特点是:①x2和y2的系数都是__1_;②没有__x_y_这样的二次
项;③D2 + E2 − 4F__>_0.
(2)方程x2 + y2 + Dx + Ey + F = 0并不一定表示圆,当其系数满足
解得m < 1.故选B.
课中探究
(2)(多选题)下列方程不是圆的一般方程的有( BCD )
A.x2 + y2 − 2x + 4y + 3 = 0
B.x2 + y2 − 2x + 2y + 7 = 0

圆的一般方程ppt课件

圆的一般方程ppt课件

(3)当D2+E2-4F<0时,方程无实数解,不表示任何图形.
01 圆的一般方程
圆的一般方程与圆的标准方程的联系:
一般方程 x2 +y 2+Dx+Ey+F=0
(D2+E2-4F>0)
配方
展开
标准方程 (x-a)2+(y-b)2=r2
【典例】已知三点A(4,3), B(5,2), C(1,0),求△ABC外接圆的方 程.
将 x2 +y 2+Dx+Ey+F=0 左边配方,得
(x+
D
2 )
+
(
y
+
E
2 )
=
D2 + E2 - 4F
2
2
4
(1)当 D2+E2-4F>0
时,
它表示以
-
D 2
,-
E 2为圆心,以r=为半径的圆;
(2)当D2+E2-4F=0时,方程表示点 (- D , - E ) ;
22
D2 + E2 - 4F 2
方法一: 几何方法
方法二: 待定系数法
y
A(4,3)
B(5,2)
0 C(1,0)
x
设圆的方程为x2 +y 2+Dx+Ey+F=0 (D2+E2-4F>0)
已知过三点A(4,3),B(5,2),C(1,0)
半径:圆心 到圆上一点
圆心:两条弦的中垂 线的交点
圆的方程为x2+y2-6x-2y+5=0
1.方程 2x2+2y2-4x+8y+10=0 表示的图形是( )
x2 +y 2+Dx+Ey+F=0
01 圆的一般方程
思考: 1.是不是任何一个形如 x2 +y 2+Dx+Ey+F=0方程都表 示的曲线是圆呢?

圆的标准方程 圆的一般方程 教学课件(共39张PPT)高中数学北师大版(2019)选择性必修第一册

圆的标准方程 圆的一般方程 教学课件(共39张PPT)高中数学北师大版(2019)选择性必修第一册

(, )
r
由两点间的距离公式得
x
a
2
y b
2
r,
(, )
O
将上式两边平方得 x a
2
y b
2
r 2 .①
x
思考一下
以方程①的解为坐标点一定在圆 C 上吗?
设以方程①的任意解 x, y 为坐标的点记为点 Q ,
因为 x, y 是方程①的解,代入方程①可得: x a 2 y b 2 r 2
10
D +3E
20
4 D+2 E
F050ຫໍສະໝຸດ 5D 5EF0
解得 D
F
2, E
0
4, F
2
2
x
+
y
故所求圆的方程为
20 ,
2x
4y
20
0.
例 5:讨论方程 x +y
2
2
x 3
解: 将原方程组整理为 1 2 x2

2
y2 表示的是什么图形?
1 y2
2
0,
6x 9
1 时,方程(1)是一元一次方程 6x 9
思考交流
对于点 Px0 , y0 和圆 C : x a 2 y b 2 r 2 ,由圆的标准方程的概念,可知点 P
在圆 C 上的充要条件是 x0 a2 y0 b2 r 2 .
2
2
当点 P 不在圆 C 上时,一定有 x0 a y0 b r 2 ,此时,存在以下两种情况:
PC r

x0 a 2 y0 b2
r
x0 a y0 b r 2

2.4.2圆的一般方程 课件(共18张PPT)

2.4.2圆的一般方程 课件(共18张PPT)
解:设M的坐标为(x, y) , 点A坐标是(x0,y0).
由于点B的坐标是(4 , 3) , 且M是线段AB
x0 4
y0 3
的中点, 所以
x
y
2
2
x0 2 x 4
因为点A在圆上运动 , 所以A的
于是有:
y0 2 y 3 坐标满足圆的方程 , 即:
( x0 1) y0 4 (2 x 4 1) (2 y 3) 4
(3)圆心(a , - 3a ), 半径 | a | .
练习:判断下列方程分别表示什么图形?
2
2
(1) x + y = 0
2
2
(2) x + y - 2 x + 4 y - 6 = 0
2
2
2
(3) x + y + 2ax - b = 0
(1)原点(0,0)
(2)表示圆 , 坐标为(1,-2) , 半径是 .
课 堂 练 习
1.写出下列各圆的圆心坐标和半径:
(1)
x y 6x 0
(2)
x y 2by 0
2
2
2
2
(3) x 2 y 2 2ax 2 3ay 3a 2 0
解: (1)圆心坐标(3, 0) ,半径为3.
(2)圆心坐标(0, b) , 半径为 |b| .
y
一点,也就是点M属于集合
| OM | 1 M
{M |
}
| AM | 2
A x
由两点间的距离公式,得
C O
x y
2
2
1
化简得 x2+y2+2x3=0

2.4.2圆的一般方程课件(人教版)

2.4.2圆的一般方程课件(人教版)
足的关系式.轨迹是指点在运动变化过程中
形成的图形、在解析几何中,我们常常把图
形看作点的轨迹(集合).
分析:如图,点A运动引起点M运动,而点
A在已知圆上运动,点A的坐标满足方程
+ 1 2 + 2 = 4.建立点M与点A坐标之间的
关系,就可以利用点A的坐标所满足的关系式
得到点M的坐标满足的关系式,求出点M的轨
2
2
(3)当D2 + E2 − 4F < 0时,方程(2)没有实数解,它不表示任何图形.
概念生成
因此,当2 + 2 − 4 > 0时,方程x 2 + y 2 + Dx + Ey + F = 0表示一个圆.
我们把方程x 2 + y 2 + Dx + Ey + F = 0叫做圆的一般方程.
2
2
解:设圆的方程是 2 + 2 + + + = 0 ①.
因为O,M1,M2三点都在圆上,所以它们的坐标都是方程①的解.把
它们的坐标依次代入方程①,得到关于D,E,F的一个三元一次方程组
=0
= −8
ቐ + + + 2 = 0 ,解这个方程组,得ቐ = 6 ,
4 + 2 + + 20 = 0
圆的标准方程: (x-a) +(y-b) =r2
圆的一般方程与标准方程的关系:
D
E
1
2
2
(1)a= ,b= ,r=
D E 4F
2
2
2
(2)标准方程易于看出圆心与半径,
(3)一般方程突出形式上的特点:

2.4.2圆的一般方程ppt课件新教材人教A版选择性必修第一册

2.4.2圆的一般方程ppt课件新教材人教A版选择性必修第一册
1 + 1 + − + =0,
= − 7,
组ቐ 1 + 16 + + 4 + =0, 解得ቐ = − 3,
16 + 4 + 4 − 2 + =0,
=2.
故圆的方程为x2+y2-7x-3y+2=0.
问题式预习
2.4.2 圆的一般方程
02
任务型课堂
任务一 圆的一般方程的概念辨析
(3)解出a,b,r或D,E,F,得到标准方程或一般方程.
知识点三
轨迹方程与轨迹
点M的________是指点M的坐标(x,y)满足的关系式.点M
的 轨迹
____是
轨迹方程
指点M在运动变化过程中形成的图形.在解析几何中,我们常常把
轨迹
图形看作点的____(集合).
2.4.2 圆的一般方程
问题式预习
任务型课堂
3
2
,因此方程表示圆心为
1
3

2

3
,半径为

1 2
3
+ +
23
的圆.
3
2 2
3
2.4.2 圆的一般方程
问题式预习
任务型课堂
课后素养评价
【类题通法】
方程x2+y2+Dx+Ey+F=0是否表示圆的两种判断方法:
(1)配方法.对形如x2+y2+Dx+Ey+F=0的二元二次方程,可以通
过配方变形成“标准”形式后,观察是否表示圆.
第二章 直线和圆的方程
2.4 圆的方程
2.4.2 圆的一般方程
问题式预习
2.4.2 圆的一般方程
任务型课堂

圆的一般方程(20张PPT)——高中数学人教A版选择性必修第一册

圆的一般方程(20张PPT)——高中数学人教A版选择性必修第一册
同学们再见!
授课老师:
时间:2024年9月1日
2024课件
同学们再见!
授课老师:
时间:2024年9月1日
第二章直线和圆的方程2.4.2圆的一般方程
0 1在平面直角坐标系中,探索并掌握圆的一般方程.0 2能够应用圆的方程解决简单的数学问题和实际问题.0 3初步了解用代数方法处理几何问题的基本思想和基本方法Dx+E y+F=0 叫做圆的一般方程,且D²+E²-4F >0,
圆的一般方程
为圆心,
将方程x²+y²+Dx+Ey+ F=0(2) 的左边配方,并把常数项移到右 边 ,( 1 ) 当D²+E²-4F>0 时,比较方程①和圆的标准方程,可以看出方程(2)表示 为圆心, 为半径的圆;( 2 ) 当D²+E²-4F=0 时,方程(2)只有实数解 声 手它表示一个点( 3 ) 当D²+E²-4F<0 时,方程(2)没有实数解,它不表示任何图形.
例题巩固例1 求过三点0(0,0),M ₁(1,1), M ₂ (4,2)的圆的方程,并求这个圆的圆心坐标和半径.
解:设圆的方程是x²+y²+Dx+Ey+F=0.①因为0 ,M₁ ,M₂ 三点都在圆上,把它们的坐标依次代入方程①,
所以所求圆的方程是x²+y²-8x+6y=0.故所求圆的圆心坐标是(4,-3),半径
解得
(1)根据题意,选择标准方程或一般方程;(2)根据条件列出关于a,b,r 或 D,E,F 的方程组;(3)解出a,b,r 或 D,E,F, 得到标准方程或一般方程.
求圆的方程常用待定系数法的步骤
例2已知线段 AB的端点B的坐标是(4,3),端点A 在圆(x+1)²+y²=4上运动,求线段AB 的中点M 的轨迹方程.

圆的一般方程ppt课件

圆的一般方程ppt课件
(3)x2 ( y 3)2 25
x2 y2 4x 6y 8 0 x2 y2 8x 8y 15 0 x2 y2 6 y 16 0
问题2、形如x2+y2+Dx+Ey+F=0的方程的曲线都是圆吗?
将方程:x2 y2 Dx Ey F 0 (1)配方得:
x
D 2
2
y
E 2
2
D2
E2 4
4F
(1)当D2+E2-4F>0时,方程(1)表示以
D , 2
E 2
为圆心,以
1 D2 E2 4F 为半径的圆
2
(2)当D2+E2-4F=0时,方程(1)表示一个点
D 2

E 2
(3)当D2+E2-4F<0时,方程(1)不表示任何图形
例题与练习
例题1、求过三点O(0,0),M1(1,1),M2(4,2)的圆的方 程,并求这个圆的圆心和半径
变式练习
求圆C : x2 y2 8x 2y 8 0关于点(2,-1)对称的 圆的方程为
课堂小结
1.圆的一般方程的结构特点. 2.待定系数法求圆的方程. 3.求轨迹方程的方法
课后作业
教材P88习题2.4 A组复习巩固1-x+Ey+F=0,因为O,M1,M2 三点都在圆上,所以它们的坐标满足圆的方程,将坐标 带入方程得:
F 0
D 8
D E F 2 0
解得:E 6
4D 2E F 20 0
F 0
所以,所求圆的方程为:x2+y2-8x+6y=0
方法总结
求圆的方程常用待定系数法,其大致步骤是: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于a,b,r或D,E,F的方程组; (3)解出a,b,r或D,E,F,得到标准方程或一般方程

圆的一般方程(共25张PPT)

圆的一般方程(共25张PPT)
2 2
栏目 导引
第四章
圆与方程
题型三
例3
有关圆的轨迹问题
等腰三角形的顶点是A(4,2),底边一个端点是
B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹
是什么.
【解】 设另一端点 C 的坐标为 (x, y).依题意,得 |AC| = |AB|.由两点间距离公式,得 x- 42+ y- 22 = 4- 32+ 2- 52, 整理得 (x- 4)2+ (y- 2)2= 10.
栏目 导引
第四章
圆与方程
【方法感悟】
1.圆的一般方程的特点 (1)圆的一般方程体现了圆方程形式上的特点:①x2与y2 的系数相同且不为0;②没有xy项. (2)圆的一般方程必须满足D2+E2-4F>0这个条件. (3)
栏目 导引
第四章
圆与方程
2.求与圆有关的轨迹问题常用的方法 (1)直接法:根据题目的条件,建立适当的平面直角坐标 系,设出动点坐标,并找出动点坐标所满足的关系式.
栏目 导引
第四章
圆与方程
这是以点 A(4,2)为圆心,以 10为半径的圆,如图所示,又因 为 A、 B、 C 为三角形的三个顶点,所以 A、 B、 C 三点不共 线.即点 B、 C 不能重合且 B、 C 不能为圆 A 的一直径的两 个端点.因为点 B、 C 不能重合,所以点 C 不能为 (3,5).
栏目 导引
第四章
圆与方程
又因为点 B、 C 不能为一直径的两个端点, x+ 3 y+ 5 所以 ≠ 4,且 ≠ 2,即点 C 不能为 (5,- 1). 2 2 故端点 C 的轨迹方程是 (x- 4)2+ (y- 2)2= 10(除去点 (3,5)和 (5, - 1)), 它的轨迹是以点 A(4,2)为圆心, 10为半径的圆, 但除去 (3,5)和 (5,- 1)两点.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x y 2ax 2by a b r 0
2
2、那么我们能否将以上形式写得更简单一点呢?
令D 2a, E 2b, F a b r .
2 2 2
任意圆的方程都可成 x y Dx Ey F 0的形式.
2 2
3、反过来想一想,形如
x y Dx Ey F 0
2 2
表示的图形是 (
B
)
A.点 B.圆 C.两直线 D.不存在
2.若圆x y Dx Ey F 0
2 2
与x轴相切于原点 , 则有(
A.F 0, D 0, E 0 B.E F 0, D 0 C.D F 0, E 0 D.D E 0, F 0
一、复习与回顾
圆的标准方程的形式是怎样的?
2 2 2 ( x a) ( y b) r
从中可以看出圆心和半径各是什么?
圆心a, b, 半径r.
二、新课
1、同学们想一想,若把圆的标准方程
( x a ) 2 ( y b) 2 r 2
2 2 2 2
展开后,会得出怎样的形式?
2
D)
2
5
( a ,0 )
B. x 7 y 25 C. x 3 y 2 25
2
5 (5,4)
D. x 3 y 25
2 2
或 x 7 y 25
D 2 E 2 4 F
以 1
2
为半径的圆;
(2) 当
2 D
2 E
4 F

0
时,
方程表示一个点 (3) 当
D E 2 , 2 ,
< 0
2 2 4 F D E
时,
方程不表示任何图形.
圆的一般方程
定义:
2 2
2 2
圆的一般方程:
当D E 4F 0时,
方程可化为(1) ( x 3) y 9;
2 2
(2) x ( y b) b ;
2 2 2
(3) ( x a) ( y 3a) a .
2 2 2
例1求过三点O(0,0)、M 1 (1,1)、M 2 (4,2)的 圆方程并求这个圆半径 和圆心坐标 .
解 : 设所求圆的方程为 x 2 y 2 Dx Ey F 0,
例题3.已知曲线C : x y 4m x 2m y 20m 20 0
2 2
(1).证明:不论m取何实数,曲线 C 恒过一定点; (2).证明:当m 2时,曲线C是一个圆, 且圆心在一条定直线上 ; (3).若曲线C与y轴相切,求m的值.
课堂练习:
1.方程2 x 2 y 4 x 8 y 1 0
2 2
的方程的曲线就一定是圆吗?
4、将
2 Dx Ey F 0 x2 y
左边配方,得
D 2 E 2 D 2 E 2 4F (x ) (y ) 4 2 2
(1)当
D E 4F 0
2 2
时, 为圆心,
方程表示以
E D , 2 2
方程x y Dx Ey F 0表示一个圆 , 该方程称为圆的一般方 程.
小结:
(1)圆的一般方程与圆的标准方程之间的关系; D E 1 a ,b , r D 2 E 2 4 F ( D 2 E 2 4 F 0) 2 2 2 (2)圆的标准方程的优点在于它明确指出了圆的圆心 及半径,而一般方程突出了方程形式上的特点.
5.圆的一般方程与二元二 次方程 Ax Bxy Cy Dx Ey F 0的关系.
2 2
当A C 0, B 0, D E 4 AF 0时
2 2
二元二次方程才表示圆 的一般方程 .
圆的一般方程特点 : 2 2 x y Dx Ey F 0
(1) x 和y 系数相同 , 不等于0;
2 2
(2)没有xy这样的二次项 .
练习: 求各圆的半径和圆心坐 标: (1) x y 6 x 0 ;
2 2
(2) x 2 y 2 2by 0(b 0); (3) x 2 y 2 2ax 2 3ay 3a 2 0(a 0).
C
)
3.x y ax 2ay 2a a 1 0
2 2 2
表示圆, 则a的取值范围是(
D
)
2 2 A. ,2 B. ,2 C. 2,0 D. 2, 3 3 a 2 3 2 2 法一 : ( x ) ( y a) a a 1 2 4 3 2 a a 1 0 法二 : 特殊值法 4 2 2 法三 : 利用公式D E 4F 0
由题意得:
(a 2) 2 (b 4) 2 (a 8) 2 (b 6) 2 , b6 1 ( ) 1; a 8 3

a b 4, 3a b 18.
11 3 2 125 a ,b , r . 2 2 2
11 2 3 2 125 所求方程为( x ) ( y ) . 2 2 2
4.已知一曲线是与两个定 点 1 O(0,0)、A(3,0)距离的比为 的 2 y 点的轨迹, 求此 M 曲线的方程 , 并画出曲线 .
C O
x
பைடு நூலகம்
x 1
2
y 4
2
5..圆心在x轴, 半径是5且以A(5,4) 为中点的弦长是 2 5 , 则这个圆 的方程是(
2 2
A. x 3 y 25
(待定系数法)
点评:
(1)若知道或涉及圆心和半径, 我们一般采用圆的标准方程较简单; (2)若已知三点求圆的方程,我们常常 采用圆的一般方程用待定系数法求解.
例2求过点A(2,4)且与直线l : x 3 y 26 0 相切于点B(8,6)的圆的方程 .
解(法1) : 设所求圆方程为 ( x a)2 ( y b)2 r 2 ,
相关文档
最新文档