北京市各区中考数学一模试卷精选汇编 几何证明专题

合集下载

2024年北京市九年级中考一模数学汇编:圆(含解析)

2024年北京市九年级中考一模数学汇编:圆(含解析)

2024北京初三一模数学汇编圆章节综合一、单选题1.(2024北京东城初三一模)如图,是的弦,是的直径,于点E .在下列结论中,不一定成立的是( )A .B .C .D .2.(2024北京东城初三一模)如图,作线段,在线段的延长线上作点,使得,取线段的中点,以为圆心,线段的长为半径作,分别过点作直径的垂线,交于点,连接,过点作于点.设,给出下面4个结论:①;;;④;上述结论中,正确结论的个数是()A .4个B .3个C .2个D .1个二、填空题3.(2024北京门头沟初三一模)如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是 .4.(2024北京大兴初三一模)如图,是的直径,点,在上,若,则的度数为 .AB O CD O CD AB ⊥AE BE =90CBD ∠=︒2COB D ∠=∠COB C∠=∠AC a =AC B ()CB b a b =<AB O O OA O C O 、AB O D F 、OD AF CF 、、C CE OD ⊥E CF c =2a b c +<c <)a b <+2ab ac bc <+AB O C D O AC BC =D ∠︒5.(2024北京通州初三一模)我国魏晋时期数学家刘徽在《九章算术注》中提出了著名的“割圆术”.所谓“割圆术”,是用圆内接正多边形的面积去无限逼近圆面积,并以此求取圆周率的方法,刘徽指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.例如,的半径为1,运用“割圆术”,以圆内接正六边形面积估计的面积,的面积近似为的面积,可得的估计值为 .6.(2024北京平谷初三一模)如图,内接于,为的直径, D 为上一点,连接.若,则的度数为 .7.(2024北京西城初三一模)如图, 在的内接四边形中, 点A 是的中点,连接, 若,则 .8.(2024北京石景山初三一模)如图,是的直径,是延长线上一点, 与相切于点.若,则 .πO O 1612S =⨯⨯正六边形O πO πABC O BC O O AD CD 、20D ∠=︒ACB ∠O ABCD BDAC 130DAB ∠=︒ACB =∠︒AB O P AB PC O C 40P ∠=︒A ∠=︒9.(2024北京顺义初三一模)如图,是的外接圆,,,平分,交于点D ,则的度数为 .10.(2024北京朝阳初三一模)如图,是的外接圆,于点,交于点,若,,则的长为 .11.(2024北京燕山初三一模)如图,是的直径,点在上,过点作的切线与直线交于点.若,则 °.三、解答题12.(2024北京朝阳初三一模)如图,在矩形中,,,点A 在直线l 上,与直线l 相交所得的锐角为.点F 在直线l 上,,⊥直线l ,垂足为点F 且,以为直径,在的左侧作半圆O ,点M 是半圆O 上任一点.发现:的最小值为 ,的最大值为 ,与直线l 的位置关系是 .思考:矩形保持不动,半圆O 沿直线l 向左平移,当点E 落在边上时,重叠部分面积为多少?O ABC AB AC =36BAC ∠=︒BD ABC ∠O DAB ∠O Rt ABC △OE AB ⊥D O E 8AB =2DE =BC AB O C O B O AC D 50D ∠=︒BOC ∠=ABCD 6AB =8BC =AD 60︒8AF =EF 6EF =EF EF AM AM OB ABCD AD13.(2024北京通州初三一模)如图,为的直径,过点A 作的切线,C 是半圆上一点(不与点A 、B 重合),连结,过点C 作于点E ,连接并延长交于点F .(1)求证:;(2)若的半径为5,,求的长.14.(2024北京东城初三一模)在平面直角坐标系中,的半径为1.对于线段给出如下定义:若线段与有两个交点,,且,则称线段是的“倍弦线”.(1)如图,点的横、纵坐标都是整数,在线段,,中,的“倍弦线”是_____;(2)的“倍弦线”与直线交于点,求点纵坐标的取值范围;(3)若的“倍弦线”过点,直线与线段有公共点,直接写出的取值范围.AB O O AM AB AC CD AB ⊥BD AM ∠=∠CAB AFB O 8AC =DF xOy O PQ PQ O M N ==PM MN NQ PQ O A B C D ,,,AB CB CD O O PQ 2x =E E E y O PQ (1,0)y x b =+PQ b15.(2024北京西城初三一模)在平面直角坐标系 中,已知的半径为.对于上的点 和平面内的直线 给出如下定义:点关于直线的对称点记为,若射线 上的点满足 则称点为点关于直线的“衍生点”.(1)当时,已知上两点 在点, 中,点关于直线的“衍生点”是 ,点关于直线的“衍生点”是 ;(2)为 上任意一点, 直线 与轴, 轴的交点分别为点 ,. 若线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,直接写出的取值范围;(3)当时,若过原点的直线上存在线段 ,对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”. 将线段长度的最大值记为,对于所有的直线,直接写出的最小值.16.(2024北京房山初三一模)在平面直角坐标系中,将中心为的等边三角形记作等边三角形,对于等边三角形和点(不与重合)给出如下定义:若等边三角形的边上存在点N ,使得直线与以为半径的⊙相切于点,则称点为等边三角形的“相关切点”.xOy O 1O P :l y ax =P l P 'OP Q OQ PP =',Q P l 0a =O121.2P P ⎛⎛ ⎝⎝,()112Q,232Q ⎫⎪⎪⎭,()(341,1Q Q --,1P l 2P l P O y x m =+()0m ≠x y A B AB S T S P l T P l m 11a -≤≤s MN MN R O P l R P l MN ()D s s ()D s xOy M M M P O M OP MN M P P M(1)如图,等边三角形的顶点分别为点,,.①在点,,中,等边三角形的“相关切点”是 ;②若直线上存在等边三角形的“相关切点”,求的取值范围;(2)已知点,等边三角形的边长为的两个“相关切点”,,使得△为等边三角形,直接写出的取值范围.17.(2024北京顺义初三一模)在平面直角坐标系中,对于图形M 和图形N 给出如下定义:如果图形M 上存在点P 、轴上存在点T ,使得点P 以点T 为旋转中心,逆时针旋转得到的点Q 在图形N 上,那么称图形N 是形M 的“关联图形”.(1)如图,点,,,.①在点B ,C ,D 中,点A 的“关联图形”是_____;②若不是点A 的“关联图形”,求的半径的取值范围;(2)已知点,,,的半径为1,以线段为对角线的正方形为,若是正方形的“关联图形”,直接写出的最小值和最大值.18.(2024北京门头沟初三一模)在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.M ()0,0O (A (3,B 132P ⎛ ⎝23,2P ⎛ ⎝()32,2P M y x b =+M b (2)M m m -,M M E F OEF m xOy y 90︒()3,2A -()0,1B -()3,2C ()1,6D -O O r (),0O m '()3,0E m -()2,1G m -O ' EG EFGH O ' EFGH m xOy O O(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,求b 的取值范围.40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O参考答案1.D【分析】此题考查了圆周角定理、垂径定理,熟练掌握圆周角定理、垂径定理是解题的关键.根据垂径定理、圆周角定理判断求解即可.【详解】解:是的直径,,,,,,故A 、B 、C 不符合题意,D 符合题意;故选:D .2.C【分析】本题考查了圆的基本性质以及勾股定理内容以及完全平方公式的应用,先找出半径,结合斜边大于直角边,得知①是正确的,结合勾股定理以及完全平方公式的变形运算,得证③是错误的;同理得证②是正确的.对④运用反证法,得出,与①的结论相矛盾,即可作答.【详解】解:∵∴∵∴(斜边)大于即故①是正确的;∴在中,即∴∵故③是错误的;∵∴∴CD OCD AB ⊥AE BE ∴=90CBD ∠=︒2COB D ∠=∠CBO C ∠=∠2a b c +<2a b c +>2a b c +<()A b C a CB b a ==>,()1122OF AB a b ==+OF AB⊥CF OF2a bc +>()111222OC AO AC a b a b a =-=+-=-Rt COF △222OC OF FC +=22211222a b b a c +⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭2222a b c +==2a b c +<)a b =+b a>()2b a ->222b a ab +>,故②是正确的;假设是正确的则∴∵,且∴∴即与①的结论相矛盾故④是错误的综上:正确结论的个数是个故选:C3.的圆周角所对的弦是直径【分析】本题考查圆周角定理,掌握“的圆周角所对的弦是直径”是正确解答的关键.根据圆周角定理进行判断即可.【详解】解:根据“的圆周角所对的弦是直径”即可得出答案,故答案为:的圆周角所对的弦是直径.4.45【分析】本题主要考查了圆周角定理,先由直径所对的圆周角为,可得,然后由得:,然后根据同弧所对的圆周角相等,即可求出的度数.【详解】解:∵是的直径,∴,∵,∴,∴.故答案为:455.3【分析】过作于,求得的度数,根据直角三角形的性质得到,求出三角形的面积,于是得到正十二边形的面积,根据圆的面积公式即可得到结论.本题考查了正多边形与圆,三角形的面积的计算,正确地作出辅助线是解题的关键.【详解】如图,是正十二边形的一条边,点是正十二边形的中心,设的半径为1,过作于,>=>c 2ab ac bc <+0ac ab bc ab<-+-()()0a c b b c a <-+-00c b c a -<->,a b<0c b c a ->->b c c a->-2a b c +>2a b c +<290︒90︒90︒90︒90︒90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒D ∠AB O 90ACB ∠=︒AC BC =45CAB CBA ∠=∠=︒45D CAB ∠=∠=︒A AM OB ⊥M AOB ∠AM AB O O A AM OB ⊥M在正十二边形中,,∴正十二边形的面积为,,,的近似值为3,故答案为:3.6./70度【分析】本题考查了直径所对的圆周角为直角,同弧所对的圆周角相等,三角形内角和定理等知识.熟练掌握直径所对的圆周角为直角,同弧所对的圆周角相等是解题的关键.由为的直径,可得,由,可得,根据,计算求解即可.【详解】解:∵为的直径,∴,∵,∴,∴,故答案为:.7.25【分析】本题考查了圆的内接四边形性质,圆周角定理等知识,利用圆的内接四边形的性质求出的性质,然后利用圆周角定理求解即可.【详解】解:∵的内接四边形中,,∴,∵点A 是的中点,3601230AOB ∠=︒÷=︒1122AM OA ∴==111112224AOB S OB AM ∴=⋅=⨯⨯= 11234⨯=231π∴=⨯3π∴=π∴70︒BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒180ACB BAC ABC ∠=︒-∠-∠BC O 90BAC ∠=︒ AC AC =20ABC D ∠=∠=︒18070ACB BAC ABC ∠=︒-∠-∠=︒70︒BCD ∠O ABCD 130DAB ∠=︒18500DA BCD B ∠︒∠==︒- BD∴,∴,故答案为:25.8.【分析】本题考查的是等腰三角形的性质,三角形的外角的性质,切线的性质,如图,连接,求解,再根据圆周角定理即可得答案.【详解】解:如图,连接,∵ 与相切于点.,∴,,∴,故答案为:9./72度【分析】本题考查了等腰三角形的性质,圆周角定理及三角形内角和定理,熟练掌握等腰三角形的性质及圆周角定理是解题的关键.根据等边对等角和三角形内角和定理可求得,再由角平分线及圆周角定理确定,即可求解.【详解】解:∵,,∴,∵平分,∴,∴,∴,故答案为:.10.【分析】本题考查了垂径定理,勾股定理和中位线定理,由垂径定理得,,则可得是的中位线,设半径为,由勾股定理得,求出即可求解,熟练掌握知识点的应用是解题的关键.【详解】解:∵,AD AB =1252ACD ACB BCD ∠=∠=∠=︒25OC 904050COP ∠=︒-︒=︒OC PC O C 40P ∠=︒90OCP ∠=︒904050COP ∠=︒-︒=︒1252A COP ∠=∠=︒2572︒72ABC C ∠=∠=︒36CBD CAD ∠=∠=︒AB AC =36BAC ∠=︒180180367222BAC ABC C ︒-∠︒-︒∠=∠===︒BD ABC ∠36CBD ∠=︒36CBD CAD ∠=∠=︒72DAB DAC CAB ∠=∠+∠=︒72︒6142AD BD AB ===90ADO BDO ∠=∠=︒OD ABC r 222OA OD AD =+=5r OE AB ⊥∴,,∵,∴是的中位线,∴,即,设半径为,则,在中,由勾股定理得:,∴,解得,∴,∴.11.【分析】本题考查了切线的性质,圆周角定理,直角三角形的性质,熟练掌握圆周角定理是解题的关键.先根据圆的切线垂直于经过切点的半径得到,根据直角三角形两个锐角互余计算出,然后根据圆周角定理即可求解.【详解】解:∵是的直径,为的切线,∴,∴,∵,∴,∴.故答案为:.12;;平行(或);思考:【分析】发现:如图1,连接,作于,由题意知,,,当三点共线时,最小,为;当重合时,最大,由勾股定理求解即可;由题意知,则,进而求解作答即可; 思考:如图2,连接,作于,则,,由,可得,,根据,计算求解即可.【详解】发现:解:如图1,连接,作于,142AD BD AB ===90ADO BDO ∠=∠=︒OA OC =OD ABC 12OD BC =2BC OD =r 2OD OE DE r =-=-Rt AOD 222OA OD AD =+()22224r r =-+=5r 23OD r =-=26BC OD ==8090ABD Ð=°40A ∠=︒AB O BD O AB BD ⊥90ABD Ð=°50D ∠=︒40A ∠=︒280BOC A ∠=∠=︒80310 3πAO AE 、BP AF ⊥P 3OM =60DAF ∠=︒A M O 、、AM AO OM -M E 、AM 30BAP ∠=︒132BP AB OF ===OG OH AD ⊥H 30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH =EOG EOG S S S =- 重叠扇形AO AE 、BP AF ⊥P由题意知,,,当三点共线时,最小,由勾股定理得,∴;当重合时,最大,由勾股定理得,,∴的最大值为;∵矩形,∴,∴,∴,又∵,∴,故答案为:平行(或);;;平行(或);思考:解:如图2,连接,作于,∵,∴,∴,∵,∴,∴3OM =60DAF ∠=︒A M O 、、AM AO ==AM 3-M E 、AM 10AE ==AM 10ABCD 90BAD ∠=︒30BAP ∠=︒132BP AB OF ===BP OF ∥OB l ∥ 310 OG OH AD ⊥H 60DAF EF AF ∠=︒⊥,30AEF ∠=︒1322OH OE ==OE OG =120EOG ∠=︒2GE EH ===EOG EOG S S S =- 重叠扇形212031336022π⋅=-⨯3π=∴重叠部分面积为【点睛】本题考查了勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积等知识.熟练掌握勾股定理,含的直角三角形,平行线的判定,等腰三角形的判定与性质,扇形面积是解题的关键.13.(1)证明见解析(2)【分析】本题考查切线的判定和性质,垂径定理,圆周角定理以及勾股定理,掌握切线的性质和判断方法,垂径定理,圆周角定理以及勾股定理是正确解答的关键.(1)根据切线的性质,平行线的判定和性质以及圆周角定理即可得出结论;(2)根据相似三角形的判定和性质以及垂径定理进行计算即可.【详解】(1)证明:是的切线,,于点,,,,,.(2)解:连结,于点,是的直径,,是的垂直平分线,,的半径为5,,,是的直径,,3π30︒30︒323DF =AM O 90BAM ∴∠=o CD AB ⊥ E 90CEA ∴∠= CD AF ∴∥∴∠=∠CDB AFB CDB CAB ∠=∠ ∴∠=∠CAB AFB AD CD AB ⊥ E AB O CE DE ∴=AB ∴CD 8AC AD ∴==O 10AB ∴=6BD =∴AB O 90BDA =∴∠,,,,.14.(1)、;(2);(3).【分析】本题是新定义阅读题,考查了理解能力,与圆的位置关系,勾股定理等知识,解决问题的关键是几何直观能力,数形结合.(1)根据定义验证可得结果;(2)根据最大值为6,所以以为圆心,3为半径画圆,根据勾股定理求得,进而求得结果;(3)以为圆心,1为半径作圆,直线与圆相切,此时,以为圆心,2为半径作圆,直线与圆相切,求得,进而求得结果.【详解】(1)解:如图1,,,,是的“倍弦线”,与不相交,,和不是的“倍弦线”,故答案为:、;(2)如图2,BAD AFB ∴∠=∠tan tan ∴∠=∠BAD AFB ∴=AD BD DF AD2AD DF BD ∴=⋅323∴=DF AB CD ≤≤E y 21b -≤≤+PQ O EF (2,0)y x b =+2b =-(1,0)-y x b =+I b 2AF FH BH === CG GF DF ===AB ∴CD O BC O 23AI AE DI BH ==BC ∴AD O AB CD以为圆心,3 为半径画圆交直线于和,,;(3)如图3,以为圆心,2为半径画圆,直线与相切,此时,以为圆心,1为半径作,直线与线切,此时15.(1)(2)(3)【分析】(1)先得出直线为,根据轴对称得出进而可得,勾股定理求得点与原点的距离,进而根据新定义即可求解;(2)依题意,当线段上存在一个点到原点的距离为时,则符合题意,进而分画出图形,即可求解;(3)根据题意,画出图形,就点的位置,分类讨论,根据新定义即可求解.【详解】(1)解:∵当时,直线为,即轴,∵∴∴∵, O 2x =E E'EFE y (1,0)O '-O '1y x b =+ 11b =(2,0)O ''O '' 2y x b =+O '' 22b =-21b ∴-≤≤+23Q Q ,2m ≤≤2m -≤≤-2l 0y =121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=1234,,,Q Q Q Q 02PP '≤≤AB 20,0m m ><P 0a =l 0y =x 121.2P P ⎛⎛ ⎝⎝,121,.2P P ''⎛⎛ ⎝⎝,11PP '=22P P '=()112Q ,232Q ⎫⎪⎪⎭,()(341,1Q Q --,∴,,∴点关于直线的“衍生点”是,点关于直线的“衍生点”是,故答案为:.(2)解:依题意,,由(2)可得当点是点关于直线的“衍生点”则,∵为 上任意一点, 直线 与轴, 轴的交点分别为点 ,.∴,∴当线段上存在一个点到原点的距离为时,当时,如图所示,当时,即与点重合时,存在点是点关于直线的“衍生点”,则则(除端点外)上所有的点到的距离都,∵对称轴为直线,不能为轴,则和不是点关于直线的“衍生点”,则符合题意,∵线段上存在点,,使得点是点关于直线的“衍生点”,点不是点关于直线的“衍生点”,∴,当,此时最短,则当时,,此时只有1个点到的距离为,其他的点都不是点关于直线的“衍生点”,∴根据对称性,当时,可得;综上所述,(3)∵时∴随着的变化,点关于直线的对称点始终在圆上,如图所示,依题意,直线是经过圆心,且经过的直线,经过圆心,1OQ =2OQ ==3OQ ==42OQ ==1P l 2Q 2P l 3Q 23Q Q ,02PP '≤≤S P l 2OS ≤P O y x m =+()0m ≠x y A B OA OB m ==AB 20m >2OS =S B S P l 2m =AB O 2<y ax =y ()0,2()2,0-P l 2m =AB S T S P l T P l m 2≥OS y x m '⊥=+OS '2OS '=m =O 2P l 2m ≤≤0m <2m -≤≤-2m ≤≤2m -≤≤-11a -≤≤a P l P 'l AB s①当点在(包括边界)上时,当重合时,当为直径时,则,根据新定义可得,∴,②当点在的内部的圆弧上时(不包括边界),当为直径时,则,则对于线段 上任意一点,都存在上的点和直线,使得点是点关于直线的“衍生点”.当在轴上时,两条边界线的正中间,则P AB ,P P 'PP '2OQ PP '==02PP '≤≤()2D s =P AD PP '2OQ PP '==MN R O P l R P l P y PP '即综上所述,【点睛】本题考查了一次函数,圆的定义,轴对称的性质,勾股定理求线段长,理解新定义,熟练掌握几何变换是解题的关键.16.(1)①,;②;(2)或.【分析】()根据新定义即可求解;找到关键点先求出此时的值,然后即可求解;()由可知,点在直线上,再根据新定义分四种情况画出图即可;本题考查了圆的切线,勾股定理和等边三角形的性质,熟练掌握知识点的应用是解题的关键.【详解】(1)如图,根据题意,直线与以为半径的相切,由图可知,等边三角形的“相关切点”是,故答案为:;根据题意,满足题意的点是以,半径为的弧上,如图,2PP OQ '≤=≤()2D s =()2D s =1P 2P 312b -≤21m ≤≤10m ≤1①②b 2().2M m m -2y x =-①OP MN M M 12P P 、12P P 、②P ()1,01若直线上存在等边三角形的“相关切点”,如图,由,是等腰直角三角形,,∴,∴,即,∵,∴,∴此时,∴的取值范围为;(2)如图,此时中,,,y x b =+M HIK OSK 1HI=KI =1OK OS ==b =3,2P ⎛ ⎝PL =32KL =OG =b =b b 312b -≤≤OEM △30EOM ∠=︒90OEM ∠=︒(),2M m m -此时,,解得:,如图,此时中,,,此时,,解得:(正值舍去),如图,4OM =()22224m m +-=1m =+OEM △30EOM∠=︒90OEM ∠=︒(),2M m m -4OM =()22224m m +-=1m =此时,,解得:或(舍去),如图,此时,,解得:(舍去)或,综上可知:.17.(1)①②;(2).【分析】(1)①根据“关联图形”的定义判断即可;②根据关联图形的定义,判断出点旋转后的轨迹, 从而得到的半径范围(2)根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最小值;根据关联图形的定义,求出点旋转后的轨迹,当与该轨迹有唯一交点时,取最大值;2OM =()22222m m +-=2m =0m =2OM =()22222m m +-=2m =0m =21m ≤≤10m ≤B0r <<m m A O G O ' m E O ' m【详解】(1)①点绕逆时针旋转得到点,故答案为:;②设点,那么点绕点逆时针旋转得到点,作轴交轴于点,作轴交轴于点,如图所示由旋转可知,,,,坐标为在上运动设与轴的交点为,与轴交点为当,,当时,,,以点为圆心,作圆,当与有为唯一交点时,半径为斜边上的高当不是点的关联图形时,故答案为:.(2)设点绕点逆时针旋转对应点为点,过点作轴交轴于点,连接A (0,2)90B B (0,)T a A T 90 A 'AJ y ⊥y J A K y '⊥y K AT A T '=90ATA ∠='︒90AJT ∠=︒90TAJ ATJ ∴∠+∠=︒90ATJ A TK =︒'+ TAJ A TK'∴∠=ATJ A KT'∴ ≌(3,2)A - 2TJ a KA '∴=-=3AJ TK==3OK TO TK a ∴=-=-∴A '(2,3)a a --A '∴1y x =-1y x =-x M y N0x =1y =-0y =1x =(1,0)M ∴(0,1)N-MN ∴==O O 1y x =-OMNOM ON r MN ⋅∴===∴OA 0r <0r <<(3,0)E m -(0,)T a 90︒E 'E 'E S y '⊥y S,,如图所示由旋转可知,,,,点坐标为所以在上运动,与轴的夹角为设在轴的交点为,那么点坐标为当与有唯一交点时,最大与相切为等腰直角三角形且故;TE TE 'AE =TE T E '=90ETE ∠='︒90ETO E TO '∴∠+∠=︒90ETO TEO ∠+∠=︒0E T TEO'∴∠=∠90EOT E ST '∠=∠=︒ETO TE S'∴ ≌3EO TS m ∴==-TO E S a'==(3)3TS TO SO a m a m∴=-=--=+-E '∴(,3)a a m +-E '3y x m =+-1k = 3y x m ∴=+-x 45︒3y x m =+-x Q Q (3,0)m -3y x m =+-O ' R m 3y x m =+- O ' 90O RQ ∴='∠︒O RQ '∴ 1O R '=(3)23O Q m m m '∴=--=-=m ∴=m设点绕点逆时针旋转对应点为点,过点作轴交轴于点,过点作轴交连接,,如图所示同理可证,,的坐标是在上运动设与轴的交点为,当与该直线有唯一交点时,取最小值.同理可证为等腰直角三角形,且故【点睛】本题考查了线段的旋转,三角形全等的判定与性质,圆与直线的关系判断,圆的切线的性质与计算,一次函数, “关联图形”等知识点,熟练掌握以上知识点并根据画出正确的图形是解题的关键.18.(1)①;②(2)【分析】(1)①求出点P关于的对称点,利用点到圆心的距离与半径比较,即可判断“等距点”;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,根据中位线定理则判断出点Q 的在以为圆心,半径为1的上,即可求解;(2)过点O 作点Q 的对称点,则点为,则上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,那么直线与有公共点即可,找到两个临界状态,即相切位置,分别求b 即可.(2,1)G m -(0,)T a 90 G 'G 'G P y '⊥y P G GQ y ⊥TG TG 'GTQ G TP ' ≌1TQ PG a '∴==-2GQ TP m==-(2)2PO TO TP a m a m ∴=-=--=+-G '∴(1,2)a a m -+-G '∴1y x m =+-1y x m =+-x (1,0)L m -O ' K m O KL ' O L K ''==112O L m m m '∴=--=-=m ∴=m 12,Q Q 13m ≤≤44b -≤≤+()()()12330,2,1,1,1Q Q Q -,O MP MP OP O 'QO '()2,0O 'O ' O 'O '()2,2O O '()2,2O ' y x b =-+O '【详解】(1)解:①如图,点P 关于的对称点分别为,则,,∴在上,∴点P 关于点Q 的“等距点”的是故答案为:;②在上任取一点点P 关于点Q 的“等距点”M ,连接,取的中点即为点Q ,连接,取其中点,连接,∴,∴点Q 的在以为圆心,半径为1的上,()()()12330,2,1,1,1Q Q Q -,()()()2,0,0,2,2,2--12d R ==22d R ==3d R==>()()2,0,0,2-O 12,Q Q 12,Q Q O MP MP OP O 'QO '112QO OM '==()2,0O 'O '∵与轴交于点,∴,故答案为:.(2)解:过点O 作点Q 的对称点,则点为,∴上所有的点关于点Q 的对称点都在以为圆心,半径为2的上,∵点P 在的图象上,∴当直线与相交即可,当直线与第一次相切时,设切点为点E ,直线与y 轴交点G ,当直线与第二次相切时,设切点为点F ,∵,∴∴,∵点,∴其点Q 与点O 的水平距离与铅锤距离均是1,∴,由相切得:,∴为等腰直角三角形,∴,同理可求当直线与第二次相切时,综上:【点睛】本题考查了新定义,中心对称,圆的定义,中位线定理,点与圆的位置关系,直线与圆的位置关系,勾股定理,熟练掌握知识点是解题的关键.O ' x ()()1,0,3,0-13m ≤≤13m ≤≤O 'O '()2,2O O '()2,2O ' y x b =-+y x b =-+O ' y x b =-+O ' y x b =-+O ' ()2,2O 'OO ¢=2OE OO O E ''=-=()1,1Q 45EOG ∠=︒GE OO '⊥ OGE 4OG b ==-=y x b =-+O ' 4b =+44b -≤≤+。

北京市各区中考数学一模试卷精选汇编 解四边形专题

北京市各区中考数学一模试卷精选汇编 解四边形专题

解四边形专题东城区21.如图,已知四边形ABCD是平行四边形,延长BA至点E,使AE= AB,连接DE,AC.(1)求证:四边形ACDE为平行四边形;(2)连接CE交AD于点O. 若AC=AB=3,,求线段CE的长.21.(1) 证明:∵平行四边形ABCD,∴,.∵AB=AE,∴,.∴四边形ACDE为平行四边形. -------------------2分(2) ∵,∴.∴平行四边形ACDE为菱形.∴AD⊥CE.∵,∴BC⊥CE.在Rt△EBC中,BE=6, ,∴.根据勾股定理,求得.----------------------5分西城区21.如图,在中,,分别以点,为圆心,长为半径在的右侧作弧,两弧交于点,分别连接,,,记与的交点为.(1)补全图形,求的度数并说明理由;(2)若,,求的长.BAD 【解析】(1)补全的图形如图所示..证明:由题意可知,,∵在中,,∴,∴,∴四边形为菱形,∴,∴.(2)∵四边形为菱形,∴.在中,,,,∴,∴.A BC DO海淀区21.如图,□的对角线相交于点,且AE∥BD,BE∥AC,OE = CD.(1)求证:四边形ABCD是菱形;(2)若AD = 2,则当四边形ABCD的形状是__________时,四边形的面积取得最大值是_______.C BEOAD21.(1)证明:∵,,∴四边形是平行四边形. ………………1分∵四边形是平行四边形,∴.∵,∴.∴平行四边形是矩形. ………………2分∴. ∴.∴平行四边形是菱形. ………………3分(2) 正方形; ………………4分2. ………………5分丰台区21.已知:如图,菱形ABCD ,分别延长AB ,CB 到点F ,E ,使得BF = BA ,BE = BC ,连接AE ,EF ,FC ,CA .(1)求证:四边形AEFC 为矩形;(2)连接DE 交AB 于点O ,如果DE ⊥AB ,AB = 4,求DE 的长.ABCEDF21.(1)证明:∵BF =BA ,BE =BC ,∴四边形AEFC 为平行四边形. ………………………1分 ∵四边形ABCD 为菱形, ∴BA =BC .∴BE =BF .∴BA + BF = BC + BE ,即AF =EC .∴四边形AEFC 为矩形. ………………………2分(2)解:连接DB .由(1)知,AD ∥EB ,且AD =EB . ∴四边形AEBD 为平行四边形 ∵DE ⊥AB ,∴四边形AEBD 为菱形.∴AEEB ,AB 2AG ,ED 2EG . ………………………4分 ∵矩形ABCD 中,EBAB ,AB=4, ∴AG 2,AE 4.∴Rt△AEG 中,EG=2.∴ED=4. ………………………5分 (其他证法相应给分) 石景山区21.如图,在四边形中,,,于点. (1)求证:;(2)若,求的长.B A CE D21.(1)证明:(法一)过点B作BH⊥CE于H,如图1.∵CE⊥AD,∴∠BHC=∠CED=90°,.∵∠BCD=90°,∴,∴.又BC=CD∴≌.∴.∵BH⊥CE,CE⊥AD,∠A=90°,∴四边形是矩形,∴.∴.………………3分(法二)过点C作CH⊥AB交AB的延长线于H.图略,证明略.(2)解:∵四边形是矩形,∴.∵在Rt中,,设,∴.∴.∴,.………………4分∵.∴.………………5分朝阳区21. 如图,在△ABC中,D是AB边上任意一点,E是BC边中点,过点C作AB的平行线,交DE的延长线于点F,连接BF,CD.(1)求证:四边形CDBF是平行四边形;(2)若∠FDB=30°,∠ABC=45°,BC=,求DF的长.21.(1)证明:∵CF∥AB,∴∠ECF=∠EBD.∵E是BC中点,∴CE=BE.∵∠CEF=∠BED,∴△CEF ≌△BED . ∴CF =BD .∴四边形CDBF 是平行四边形. ………………………2分(2)解:如图,作EM ⊥DB 于点M ,∵四边形CDBF 是平行四边形,BC =, ∴,.在Rt △EMB 中,. ……………………3分 在Rt △EMD 中,. …………………4分∴DF =8. ………………………………………………………5分 燕山区23. 如图,在△ABC 中,D,E 分别是AB,AC 的中点,BE=2DE ,延长DE到点F ,使得EF=BE,连接CF . (1)求证:四边形BCFE 是菱形;(2)若∠BCF =120°,CE=4,求菱形BCFE 的面积.23. (1)证明:∵点 D,E, 是 AB,AC 中点∴DE ∥BC, DE=BC ……………………….1′又BE=2DE,即DE=BE ∴BC=BE 又EF=BE ∴EF ∥BC, EF=BC∴四边形BCFE 是平行四边形……………………….2′ 又EF=BE∴四边形BCFE 是菱形 ……………………….3′ (2)∵四边形BCFE 是菱形 ∴BC=BE 又∠BCF =120° ∴∠BCE=60°∴△BCE 是等边三角形∴连结BF 交EC 于点O .∴BF ⊥EC 在Rt △BOC 中,BO=……………………….4′∴ ∴ ……………………….5′ 门头沟区21.在矩形ABCD 中,连接AC ,AC 的垂直平分线交AC 于点O ,分别交AD 、BC 于点E 、F ,连接CE 和AF .(1)求证:四边形AECF 为菱形;(2)若AB =4,BC =8,求菱形AECF 的周长. 21. (1)证明:∵EF 是AC 的垂直平分线,∴AO =OC ,∠AOE =∠COF =90°, (1)∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠EAO =∠FCO ,AB CD E F在△AEO 和△CFO 中,∵∠EAO =∠FCO ,AO =CO ,∠AOE =∠COF , ∴△AEO ≌△CFO (ASA ),∴OE =OF . ……………2分 又∵OA =OC ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴平行四边形AECF 是菱形;……………3分(2)设AF =x ,∵EF 是AC 的垂直平分线,∴AF =CF =x ,BF =8﹣x , ………………………………………4分在Rt △ABF 中,由勾股定理得:AB 2+BF 2=AF 2,42+(8﹣x )2=x 2, 解得 x =5,∴AF =5,∴菱形AECF 的周长为20.…………………5分 大兴区21. 如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE=O C ,CE=O D . (1)求证:四边形OCED 是菱形;(2)若∠BAC =30°,AC =4,求菱形OCED 的面积. 21.(1)证明:∵DE =OC ,CE =OD ,∴四边形OCED 是平行四边形 ………………………………1分 ∵矩形ABCD ,∴AC =BD ,OC =AC ,OD =BD . ∴OC =OD .∴平行四边形OCED 是菱形 ………………………………2分 (2)解:在矩形ABCD 中,∠ABC =90°,∠BAC =30°,AC =4,∴BC =2.∴AB =DC =.…………………………………………………3分连接OE ,交CD 于点F . ∵四边形OCED 为菱形, ∴F 为CD 中点. ∵O 为BD 中点, ∴OF =BC =1.∴OE =2OF =2 …………………………………………………4分 ∴S 菱形OCED =OE ·CD =×2×=…………………………………………………5分平谷区21.如图,在平面直角坐标系xOy 中,函数的图象与直线y =x +1交于点A (1,a ).(1)求a ,k 的值;(2)连结OA ,点P 是函数上一点,且满足OP=OA ,直接写出点P 的坐标(点A 除外). 21.解:(1)∵直线y =x +1经过点A (1,a ),∴a =2. ··························· 1 ∴A (1,2).∵函数的图象经过点A (1,2),∴k =2. (2)FEOABCD(2)点P 的坐标(2,1),(-1,-2),(-2,-1). ············ 5 怀柔区21.直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE⊥AD,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE; (2)若∠BAD=45°,,过点B 作BG⊥FC 于点G ,连接DG .依题意补全图形,并求四边形ABGD 的面积.21.(1)∵AB=AD,∴∠ABD=∠ADB,………………………………1分∵∠ADB=∠CDE,∴∠ABD=∠CDE.∵∠BAC=90°,∴∠ABD+∠ACB=90°. ∵CE⊥AE,∴∠DCE+∠CDE=90°. ∴∠ACB=∠DCE. …………………………………2分 (2)补全图形,如图所示: …………………………3分∵∠BAD=45°, ∠BAC=90°, ∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°, ∵AE⊥CF, BG⊥CF,∴AD∥BG.∵BG⊥CF, ∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.∵AB=AD,∴BG=AD.∴四边形ABGD 是平行四边形.∵AB=AD ∴平行四边形ABGD 是菱形.………………4分 设AB=BG=GD=AD=x ,∴BF=BG=x.∴AB+BF=x+x=2+. ∴x=, 过点B 作BH⊥AD 于H. ∴BH=AB=1.∴S 四边形ABDG =AD×BH=. ……………………………………………………………………5分 延庆区21.如图,Rt△ABC 中,∠ABC =90°,点D ,F 分别是AC ,AB 的中点,CE ∥DB ,BE ∥DC . (1)求证:四边形DBEC 是菱形;(2)若AD =3, DF =1,求四边形DBEC 面积.D GB ECFD HGB EAFEDCBA21.(1)在Rt△ABC 中,∵CE //DC ,BE //DC∴四边形DBEC 是平行四边形∵D 是AC 的中点,∠ABC =90°∴BD =DC ……1分 ∴四边形DBEC 是菱形 ……2分 (2)∵F 是AB 的中点∴BC =2DF =2,∠AFD =∠ABC =90° 在Rt△AFD 中,……3分 ∴……4分……5分顺义区21.如图,四边形ABCD 中,AD ∥BC ,∠A =90°,BD =BC ,点E 为CD 的中点,射线BE 交AD 的延长线于点F ,连接CF .(1)求证:四边形BCFD 是菱形;(2)若AD =1,BC =2,求BF 的长.21.(1)证明:∵BD=BC ,点E 是CD 的中点, ∴∠1=∠2. …………………………………………………… 1分 ∵AD ∥BC , ∴∠2=∠3.∴∠1=∠3.…………………………… 2分 ∴BD=DF . ∵BD=BC , ∴DF=BC . 又∵DF ∥BC ,∴四边形BCFD 是平行四边形. ∵BD=BC ,∴□BCFD 是菱形. …………………………………………………… 3分 (2)解:∵∠A =,AD =1,BD =BC =2,F EA BCD 321FEABCD∴.∵四边形BCFD是菱形,∴DF=BC=2.………………………………………………………… 4分∴AF=AD+DF=3.∴.……………………………… 5分。

北京中考数学一模试卷图形与证明题汇编

北京中考数学一模试卷图形与证明题汇编

ODCBA (昌平区一模)7.如图,已知,AB 是⊙O 的直径,点C ,D 在⊙O 上, ∠ABC =50°,则∠D 为A .50°B .45°C .40°D . 30° 答案:C8.已知:如图,在等边三角形ABC 中,M 、N 分别是AB 、AC 的中点,D 是MN 上任116CE BF += ,则等意一点,CD 、BD 的延长线分别与AB 、AC 交于F 、E ,若边三角形ABC 的边长为 A.81 B. 14 C. 21答案: C11.如图,已知菱形ABCD 的边长为5,对角线AC ,BD 相交于点O ,BD =6,则菱形ABCD 的面积为 . 答案: 2416.如图,已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB 的中点,F 为OC 的中点,联结EF .若∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC .答案:证明:∵E F OB OC 、分别是、的中点,∴OB =2OE ,OC =2OF .∵,OEF OFE ∠=∠∴OE =OF . ∴O B =OC .∵,,AOB DOC A D ∠=∠∠=∠∴△AOB ≌△DOC .∴AB =DC .19.在梯形ABCD 中,AB ∥CD ,BD ⊥AD ,BC =CD ,∠A =60°,BC =2cm . (1)求∠CBD 的度数; (2)求下底AB 的长.答案:解:∵AD BD ⊥, ∴︒=∠90ADB . ∵︒=∠60A , ∴︒=∠30ABD ∵AB ∥CD ,∴︒=∠=∠30CBD ABD ∵BC=CD,∴︒=∠=∠30CBD CDB∴︒=∠60ABC .∴ABC A ∠=∠.∴梯形ABCD 是等腰梯形. ∴AD=BC =2.在中,︒=∠90ADB ,︒=∠30ABD , ∴AB=2AD=4.20.如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明;OD C ABEFNMC BA E DFOFA B C D E D CBA(2)当AB =10,BC =8时,求BD 的长. 答案:1)答:BD 和⊙O 相切.证明:∵OD ⊥BC ,∴∠OFB =∠BFD =90°, ∴∠D +∠3=90°.∵∠4=∠D =∠2, ∴∠2+∠3=90°, ∴∠OBD =90°, 即OB ⊥BD .∵点B 在⊙O 上, ∴BD 和⊙O 相切.(2) ∵OD ⊥BC ,BC =8,∴BF =FC =4.∵ AB =10,∴OB =OA =5.在R t △OFB 中, ∠OFB =90°, ∵OB =5,BF =4,∴OF =3.∴tan ∠1=34=OF BF . 在R t △OBD 中, ∠OBD =90°,∵tan ∠1=34=OB BD , OB =5, ∴320=BD24. 已知, 点P 是∠MON 的平分线上的一动点,射线PA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°.(1)利用图1,求证:PA =PB ;(2)如图2,若点C 是AB 与OP 的交点,当 3POB PCB S S ∆∆=时,求PB 与PC 的比值; (3)若∠MON =60°,OB =2,射线AP交ON 于点D ,且满足且PBD ABO ∠=∠, 请借助图3补全图形,并求OP 的长.3214FODBCE ACAOP BMNT图1图2图3TNMBPOACTNMBPOA答案:解:(1)在OB 上截取OD =OA ,连接PD ,∵OP 平分∠MON , ∴∠MOP =∠NOP . 又∵OA =OD ,OP =OP , ∴△AO P ≌△DO P . ∴PA =PD ,∠1=∠2.∵∠APB +∠MON =180°, ∴∠1+∠3=180°. ∵∠2+∠4=180°,∴∠3=∠4. ∴PD =PB .∴PA =PB .(2)∵PA =PB ,∴∠3=∠4.∵∠1+∠2+∠APB =180°,且∠3+∠4+∠APB =180°, ∴∠1+∠2=∠3+∠4. ∴∠2=∠4. ∵∠5=∠5, ∴△PBC ∽△POB . ∴33P S =∆∆=POB S BC PB PC . (3)作BE ⊥OP 交OP 于E ,∵∠AOB =600,且OP 平分∠MON , ∴∠1=∠2=30°.∵∠AOB +∠APB =180°, ∴∠APB =120°. ∵PA =PB ,∴∠5=∠6=30°. ∵∠3+∠4=∠7,∴∠3+∠4=∠7=(180°-30°)÷2=75°. ∵在Rt △OBE 中,∠3=600,OB =2∴∠4=150,OE =3,BE =1 ∴∠4+∠5=450,∴在Rt △BPE 中,EP =BE =1 ∴OP =13+(朝阳区一模)11.如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =40°,点D 是弧BAC 上一点,则∠D 的度数是______. 答案:50°18.如图,在矩形ABCD 中,AB =5,BC =4,将矩形ABCD 翻折,使得点B 落在CD 边上的点E 处,折痕AF 交BC 于点F ,求FC 的长.FEDABC答案: 解:由题意,得AE=AB=5,AD=BC=4,EF=BF.在Rt △ADE 中,由勾股定理,得DE=3. 在矩形ABCD 中,DC=AB=5.D 1234AO P B M NT51243TNMBP OA C7612435ECAOPBM NT40︒OABC D(第11题图)∴CE=DC-DE=2. 设FC=x ,则EF=4-x.在Rt △CEF 中,()22242x x -=+.解得23=x .即FC=23.21.已知:如图,⊙O 的半径OC 垂直弦AB 于点H ,连接BC ,过点A 作弦AE ∥BC ,过点C 作CD ∥BA 交EA 延长线于点D ,延长CO 交AE 于点F . (1)求证:CD 为⊙O 的切线;(2)若BC =5,AB =8,求OF 的长.答案:(1)证明:∵OC ⊥AB ,CD ∥BA ,∴∠DCF=∠AHF=90°.∴CD 为⊙O 的切线.(2)解:∵OC ⊥AB ,AB =8,∴AH=BH=2AB =4.在Rt △BCH 中,∵BH=4,BC=5, ∴CH=3.∵AE ∥BC ,∴∠B=∠HAF. ∴△HAF ≌△HBC. ∴FH=CH=3,CF=6.连接BO ,设BO=x ,则OC=x ,OH=x-3.在Rt △BHO 中,由()22234x x =-+,解得625=x ∴611=-=OC CF OF .23.如图,在直角梯形ABC D 中,AD ∥BC ,∠B =90°,AB =8,34tan =∠CAD ,CA =CD ,E 、F 分别是线段AD 、AC 上的动点(点E 与点A 、D 不重合),且∠FEC =∠ACB ,设DE=x ,CF=y . (1)求AC 和AD 的长; (2)求y 与x 的函数关系式;(3)当△EFC 为等腰三角形时,求x 的值.答案:解:(1)∵AD ∥BC ,∠B=90°, ∴∠ACB=∠CAD.F CBDAEE O B HC AD F EO BHC ADF∴tan ∠ACB =tan ∠CAD=34. ∴34=BC AB. ∵AB=8, ∴BC=6. 则AC=10过点C 作CH ⊥AD 于点H ,∴CH=AB=8,则AH=6. ∵CA=CD, ∴AD=2AH=12.(2)∵CA=CD, ∴∠CAD=∠D. ∵∠FEC=∠ACB ,∠ACB=∠CAD ,∴∠FEC=∠D.∵∠AEC=∠1+∠FEC=∠2+∠D , ∴∠1=∠2.∴△AEF ∽△DCE.∴AECDAF DE =,即x -1210y -10x =. ∴1056101y 2+-=x x .(3)若△EFC 为等腰三角形.①当EC=EF 时,此时△AEF ≌△DCE ,∴AE=CD. 由12-x=10,得x=2.②当FC=FE 时,有∠FCE=∠FEC=∠CAE , ∴CE=AE=12-x.在Rt △CHE 中,由()()2228612+-=-x x ,解得311=x ③当CE=CF 时,有∠CFE=∠CEF=∠CAE ,此时点F 与点A 重合,故点E 与点D 也重合,不合题意,舍去 综上,当△EFC 为等腰三角形时,x=2或311=x .7.一元钱硬币的直径约为24mm ,则用它能完全覆盖住的正六边形的边长最大不能超过 A .12 mm B .123mm C .6mm D .63mm 答案:A答案:(1)证明:∵AD ∥BC , ∴∠1 =∠F .321FE BCA D∵点E 是AB 的中点, ∴BE=AE.在△BCE 和△AFE 中, ∠1=∠F ,∠3=∠2, BE=AE ,∴△BCE ≌△AFE. (2)相等, 平行.(大兴区一模)3.如图,△ABC 中,D 、E 分别为AC 、BC 边上的点,AB ∥DE , 若AD =5,CD =3,DE =4,则AB 的长为 A .332 B .316 C .310 D .38答案:A7.如图3,四边形OABC 为菱形,点A 、B 在以点O 为圆心的弧DE 上, 若OA=3,∠1=∠2,则扇形ODE 的面积为A.3π2B. 2πC.5π2D. 3π 答案:D11.如图,AB 是⊙O 的直径,C 、D 、E 都是⊙O 上的点,则∠ACE +∠BDE = .答案: 90o .15.已知,在△ABC 中,D E ∥AB ,F G ∥AC ,BE=GC. 求证:DE=FB.答案:证明:∵DE ∥AB∴∠B=∠DEC又∵FG ∥AC ∴∠FGB=∠C∵BE=GC ∴BE+EG=GC+EG即BG=EC 在△FBG 和△DEC 中⎪⎩⎪⎨⎧∠=∠=∠=∠C FGB EC BG DEC B ∴△FBG ≌△DEC∴DE=FB19.已知:如图,在直角梯形ABCD 中,AD ∥BC,∠A=90°,∠C=45°,上底AD = 8,AB=12,CD 边的垂直平分线交BC 边于点G ,且交AB 的延长线于点E ,求AE 的长.答案: 解:联结DGG FE DCB A 21E DCB AOEGFEDCBA∵EF 是CD 的垂直平分线 ∴DG =CG ∴∠GDC =∠C , 且∠C =45° ∴∠DGC=90°∵AD ∥BC,∠A=90° ∴∠ABC=90°∴四边形ABGD 是矩形 ∴BG=AD=8∴∠FGC =∠BGE =∠E= 45° ∴BE=BG=8 ∴AE=AB+BE=12+8=2020.如图,在边长为1的正方形网格内,点A 、B 、C 、D 、E 均在格点处.请你判断∠x+∠y 的度数,并加以证明.答案:∠x +∠y =45°.证明:如图,以AG 所在直线为对称轴,作AC 的轴对称图 形AF ,连结BF ,∵网格中的小正方形边长为1,且A 、B 、F 均在格点处, ∴AB=BF =13,AF =26.∴222BF AB AF +=∴△ABF 为等腰直角三角形,且∠ABF =90° ∴∠BAF=∠BFA =45°∵AF 与AC 关于直线AG 轴对称, ∴∠FAG =∠CAG. 又∵AG ∥EC , ∴∠x =∠CAG . ∴∠x =∠FAG. ∵DB ∥AG , ∴∠y =∠BAG.∴∠x +∠y=∠FAG+∠BAG =45°.23.在平面直角坐标系xOy 中,矩形ABCO 的面积为15,边OA 比OC 大2,E 为BC 的中点,以OE 为直径的⊙O ′交x 轴于D 点,过点D 作DF ⊥AE 于F.(1) 求OA ,OC 的长;(2) 求证:DF 为⊙O ′的切线;(3)由已知可得,△AOE 是等腰三角形.那么在直线BC 上是否存在除点E 以外的点P ,使△AOP 也是等腰三角形如果存在,请你证明点P 与⊙O ′的位置关系,如果不存在,请说明理由.答案: (1)解:在矩形ABCO 中,设OC=x ,则OA=x +2, 依题意得,x(x+2)=15.解得.5,321-==x x (不合题意,舍去) ∴ OC=3 ,OA =5 .(2)证明:连结O ′D ,在矩形OABC 中,∵ OC=AB ,∠OCB =∠ABC ,E 为BC 的中点,∴△OCE ≌△ABE . ∴ EO=EA .∴∠EOA =∠EAO .yxO 'F EDCBAO又∵O ′O = O ′D ,∴ ∠O ′DO =∠EOA =∠EAO . ∴ O ′D ∥EA . ∵ DF ⊥AE , ∴ DF ⊥O ′D .又∵点D 在⊙O ′上,O ′D 为⊙O ′的半径, ∴ DF 为⊙O ′的切线. (3)答:存在 .① 当OA=AP 时,以点A 为圆心,以AO 为半径画弧,交BC 于点1P 和4P 两点,则△AO 1P 、△AO 4P 均为等腰三角形.证明:过1P 点作1P H ⊥OA 于点H ,则1P H =OC=3, ∵ A 1P =OA=5,∴ AH =4,OH=1. ∴1P (1,3).∵1P (1,3)在⊙O ′的弦CE 上,且不与C 、E 重合, ∴ 点1P 在⊙O ′内. 类似可求4P (9,3). 显然,点4P 在点E 的右侧, ∴点4P 在⊙O ′外.② 当OA=OP 时,同①可求得,2P (4,3),3P (-4,3). 显然,点2P 在点E 的右侧,点3P 在点C 的左侧因此,在直线BC 上,除了E 点外,还存在点1P , 2P ,3P ,4P ,它们分别使△AOP 为等腰三角形,且点1P 在⊙O ′内,点2P 、3P 、4P 在⊙O ′外.24.已知:如图,在四边形ABCD 中, AD =B C ,∠A 、∠B 均为锐角. (1) 当∠A=∠B 时,则C D 与A B 的位置关系是CD AB ,大小关系是CD AB ;(2) 当∠A>∠B 时,(1)中C D 与A B 的大小关系是否还成立,证明你的结论. 答案:解:(1)答:如图1,CD ∥AB ,C D <A B .(2)答:C D <A B 还成立.证法1:如图2,分别过点D 、B 作BC 、C D 的平行线,两线交于F 点.∴ 四边形DCBF 为平行四边形. ∴.,FB DC BC FD == ∵ AD =B C ,∴ AD =FD .作∠ADF 的平分线交A B 于G 点,连结GF . ∴ ∠ADG =∠FDG . 在△ADG 和△FDG 中⎪⎩⎪⎨⎧=∠=∠=,,,DG DG FDG ADG FD AD ∴ △ADG ≌△FDG .D CBA∴ AG =FG .∵在△BFG 中,BF BG FG >+. ∴ .DC BG AG >+ ∴ DC <A B .证法2:如图3,分别过点D 、B 作A B 、AD 的平行线,两线交于F 点.∴ 四边形DABF 为平行四边形. ∴ .,BF AD AB DF == ∵ A D =B C , ∴ B C =BF .作∠CBF 的平分线交DF 于G 点,连结C G . 以下同证法112..将一个面积为1的等边三角形挖去连接三边中点所组成的三角形(如第①图)后,继续挖去连接剩余各个三角形三边中点所成的三角形(如第②图、第③图)…如此进行挖下去,第④个图中,剩余图形的面积为 ,那么第n(n 为正整数)个图中,挖去的所有三角形形的面积和为(用含n 的代数式表示).(3)若该公司购买全部门票共花了36000元,试求每张田径门票的价格. 答案:⎪⎭⎫ ⎝⎛25681)43(4或, n)(431-.22.一块矩形纸片,利用割补的办法可以拼成一块与它面积相等的平行四边形(如图1所示):请你根据图1作法的提示,利用图2画出一个平行四边形,使该平行四边形的面积等于所给的矩形面积. 要求:(1)画出的平行四边形有且只有一个顶点与B 点重合; (2)写出画图步骤;(3)写出所画的平行四边形的名称.答案:解:(1)过点C 作射线CE (不过A 、D 点);(2)过点B 作射线BF ∥CE ,且交DA 的延长线于点F ; (3)在CE 上任取一点G ,连结BG ; (4)过点F 作FE ∥BG ,交射线CE 于点E .则四边形BGEF 为所画的平行四边形.(东城区一模)3.如图,直线AB ∥CD ,∠A =70?,∠C =40?,则∠E 等于A . 30° B. 40° C. 60° D . 70° 答案:A4.如图,在△ABC 中,D 、E 分别是BC 、AC 边的中点.图1D 'D C BA 图2D CB A若DE=2,则AB的长度是A.6 B.5C.4 D.3答案:C6.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于A.11πB.10πC.9πD.8π答案:D8. 如图,在矩形ABCD中,AB=5,BC=4,E、F分别是AB、AD的中点.动点R从点B出发,沿B→C→D→F方向运动至点F处停止.设点R运动的路程为x,EFR△的面积为y,当y取到最大值时,点R应运动到A.BC的中点处B.C点处C.CD的中点处D.D点处答案:B16. 如图,在四边形ABCD中,AC是∠DAE的平分线,DA∥CE,∠AEB=∠CEB.求证:AB=CB.答案:证明:∵AC是∠DAE的平分线,∴∠1=∠2.又∵AD∥EC,∴∠2=∠3.∴∠1=∠3.∴AE=CE.在△ABE和△CBE中,AE=CE,∠AEB=∠CEB,BE=BE,∴△ABE≌△CBE.∴AB=CB. Com]18.如图,在平行四边形ABCD中,过点A分别作AE⊥BC于点E,AF⊥CD于点F.(1)求证:∠BAE=∠DAF;(2)若AE=4,AF=245,3sin5BAE∠=,求CF的长.答案:证明:(1)∵四边形ABCD是平行四边形,∴∠B=∠D.又Q AE⊥BC,AF⊥CD,∴∠AEB=∠AFD.A BCDE231AB CDEF∴∠BAE=∠DAF.(2)在Rt △ABE 中,sin ∠BAE=53,AE=4,可求 AB=5.又∵∠BAE=∠DAF , ∴ sin ∠DAF=sin ∠BAE=53. 在Rt △ADF 中,AF=524, sin ∠DAF =53,可求DF=518∵ CD=AB=5. ∴CF=5-518=57.20. 已知:AB 是⊙O 的弦,OD ⊥AB 于M 交⊙O 于点D ,CB ⊥AB 交AD 的延长线于C . (1)求证:AD =DC ;(2)过D 作⊙O 的切线交BC 于E ,若DE =2,CE=1,求⊙O 的半径.答案:(1)证明:在⊙O 中,OD ⊥AB ,CB ⊥AB ,∴AM =MB ,OD ∥BC . ∴AD =DC . (2)∵DE 为⊙O 切线,∴OD ⊥DE∴四边形MBED 为矩形.∴DE ∥AB. ∴MB=DE =2,M D=BE =EC =1. 连接OB.在R t △OBM 中,OB 2=OM 2+BM 2.解得 OB=25.22. 如图1,在△ABC 中,已知∠BAC =45°,AD ⊥BC 于D ,BD =2,DC =3,求AD 的长.小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB 、AC 为对称轴,画出△ABD 、△ACD 的轴对称图形,D 点的对称点为E 、F ,延长EB 、FC 相交于G 点,得到四边形AEGF 是正方形.设AD =x ,利用勾股定理,建立关于x 的方程模型,求出x 的值. (1)请你帮小萍求出x 的值.(2) 参考小萍的思路,探究并解答新问题:如图2,在△ABC 中,∠BAC =30°,AD ⊥BC 于D ,AD =4.请你按照小萍的方法画图,得到四边形AEGF ,求△BGC 的周长.(画图所用字母与图1中的字母对应)M O A B C D E图1 图2答案:解: (1)设AD =x ,由题意得,BG=x -2,CG=x-3. 在Rt △BCG 中,由勾股定理可得 222(2)(3)5x x -+-=. 解得 6x =.(2)参考小萍的做法得到四边形AEGF ,∠EAF=60°,∠EGF=120°,∠AEG=∠AFG= 90°,AE=AF=AD=4. 连结EF ,可得 △AEF 为等边三角形. ∴ EF=4.∴ ∠FEG=∠EFG= 30°. ∴ EG=FG.在△EFG 中,可求,433EG =. ∴△EFG 的周长=BG+CG+BC=BG+CG+EB+FC=2EG=833(房山区一模)4.如图,AB 为圆O 的直径,弦CD ?AB ,垂足为点E , 联结OC ,若OC=5,AE=2,则CD 等于A .3B .4C .6D .8 答案:D11.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,GF ED CBAABCD E (11题图)O E DC BA(4题图)EC PB A B’CA B P D F OED C B A (20题图)ABCDEFO D C B A O F E D C B A O F E D C BA 321AB CDEFDE12105552222AB AE BC EC -=-()()22225255x x -=--12x 2222BD DF OB OF -=-522225151(5)()()()2222x x --=-21215知:如图,在四边形ABFC 中,ACB ∠=90°,BC 的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE.(1) 求证:四边形BECF 是菱形;(2) 当A ∠的大小为多少度时,四边形BECF 是正方形答案:解:⑴∵ EF 垂直平分BC, ∴CF=BF,BE=CE ,∠BDE=90°又∵ ∠ACB=90°∴EF ∥AC∴E 为AB 中点, 即BE=AE ∵CF=AE ∴CF=BE ∴CF=FB=BE=CE∴四边形是BECF 菱形.⑵当∠A= 45°时,四边形是BECF 是正方形.20.在Rt △AFD 中,∠F =90°,点B 、C 分别在AD 、FD 上,以AB 为直径的半圆O 过点C ,联结AC ,将△AFC 沿AC 翻折得△AEC ,且点E 恰好落在直径AB 上.(1)判断:直线FC 与半圆O 的位置关系是_______________;并证明你的结论. (2)若OB =BD =2,求CE 的长. 答案:(1)直线FC 与⊙O 的位置关系是_相切_; 证明:联结OC∵OA=OC ,∴∠1=∠2,由翻折得,∠1=∠3,∠F=∠AEC=90°∴∠3=∠2∴OC ∥AF ,∴∠F=∠OCD=90°,∴FC 与⊙O 相切 (2)在Rt △OCD 中,cos ∠COD=OC 1OD 2=∴∠COD=60°在R t △OCD 中,CE=OC ·sin ∠COD=3 22.认真阅读下列问题,并加以解决:问题1:如图1,△ABC 是直角三角形,∠C =90o .现将△ABC 补成一个矩形.要求:使△ABC 的两个顶点成为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上.请将符合条件的所有矩形在图1中M P D C BA CA BP 图1 CBA PD图2FEP D C BAAB CAB C E DCB A 画出来;图1图2问题2:如图2,△ABC 是锐角三角形,且满足BC >AC >AB ,按问题1中的要求把它补成矩形.请问符合要求的矩形最多可以画出 个,并猜想它们面积之间的数量关系是 (填写“相等”或“不相等”);问题3:如果△ABC 是钝角三角形,且三边仍然满足BC >AC >AB ,现将它补成矩形.要求:△ABC 有两个顶点成为矩形的两个顶点,第三个顶点落在矩形的一边上,那么这几个矩形面积之间的数量关系是 (填写“相等”或“不相等”).答案:解:(1)(2)符合要求的矩形最多可以画出 3 个,它们面积之间的数量关系是 相等 ;………4’ (3) 不相等 .15. 已知:如图,∠B =∠D ,∠DAB=∠EAC ,AB=AD .求证:BC=DE .答案:证明:∵∠DAB=∠EAC∴∠DAB+∠BAE =∠EAC+∠BAE∵即∠DAE=∠BAC在△DAE 和△BAC 中B DAB ADBAC DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BC=DE(燕山区一模)3.已知一个等腰三角形有两边的长分别为2和5,则它的周长为A .7B .9C .12D .9或12 答案:C10.已知⊙O 1、⊙O 2的半径分别是2cm 、3cm ,当它们相切时,圆心距 O 1 O 2= . 答案: 1cm 或5cm 11.已知△ABC 中,D 、E 分别是两边AB 和AC 的中点,若△ABC 的面积是8cm 2,则四边形BCED 的面积是 cm 2. 答案:615.已知:如图,点D 在AB 的延长线上,AB =DE ,∠A =∠CBE =∠E. 判断△ABC 和△BDE 是否全等 并证明你的结论. 答案: 全等证明:∵∠CBE =∠E ,∴ BC ∥DE.又∵点D 在AB 的延长线上,∴∠CBA=∠D.在△ABC 和△EDB 中, 又∵∠A=∠E, AB=DE,∴△ABC ≌△EDB. 21.如图,等腰△ABC 中,AE 是底边BC 上的高,点O 在AE 上,⊙O 与AB 和BC 分别相切. (1)⊙O 是否为△ABC 的内切圆请说明理由. (2)若AB=5, BC=4,求⊙O 的半径. 答案: ⑴ 是理由是:∵⊙O 与AB 相切,把切点记作D. 联结OD ,则OD ⊥AB 于D. 作OF ⊥AC 于F , ∵AE 是底边BC 上的高,∴AE 也是顶角∠BAC 的平分线. ∴OF=OD=r 为⊙O 的半径. ∴⊙O 与AC 相切于F. 又∵ ⊙O 与BC 相切,∴⊙O 是△ABC 的内切圆. ⑵ ∵OE ⊥BC 于E ,∴点E 是切点,即OE=r. 由题意,AB=5,BE=21AB=2, ∴ AE=222-5=21.∵Rt △AOD ∽Rt △ABE ,∴BE ODAB OA =, 即2r5r -21=.解得,r=7212.∴ ⊙O 的半径是7212.D F24.已知:如图,等边△ABC 中,AB=1,P 是AB 边 上一动点,作PE ⊥BC ,垂足为E ;作EF ⊥AC , 垂足为F ;作FQ ⊥AB ,垂足为Q.(1)设BP=x ,AQ=y ,求y 与x 之间的函数关系式; (2)当点P 和点Q 重合时,求线段EF 的长; (3)当点P 和点Q 不重合,但线段PE 、FQ 相交时,求它们与线段EF 围成的三角形 周长的取值范围.24.答案:⑴∵△ABC 是等边三角形,AB=1. ∴∠A=∠B=∠C=60°, BC=CA=AB=1. 又∵∠BEP=∠CFE=∠FQA=90°, BP=x.∴BE=21x, CE=1-21x, CF=21-41x, AF=1-(21-41x)=21+41x.∴AQ=21AF=21(21+41x),∴ y=81x+41. ⑵由方程组⎪⎩⎪⎨⎧+==+.41x 81y 1,y x得x =32.∴当点P 和点Q 重合时,x =32,∴EF=3CF=3(21-41x)=33.⑶设线段PE 、FQ 相交于点M ,易证△MEF 是等边三角形,且当点P 和点A 重合时,EF 最短为43.∴ 433≤ m <3.25.已知:如图,在梯形ABCD 中,∠BCD=90°, tan ∠ADC=2,点E 在梯形内,点F 在梯形外,0.5CDABCE BE ==,∠EDC=∠FBC ,且DE=BF . (1)判断△ECF 的形状特点,并证明你的结论; (2)若∠BEC=135°,求∠BFE 的正弦值.答案:答案:⑴ 是等腰直角三角形. …………………………………………1分证明:作AH ⊥CD 于H ,∵梯形ABCD 中,∠BCD=90°,tan ∠ADC=2,即∠ADC ≠90°. ∴ AB ∥CD ,AH=BC ,AB=CH.又∵0.5CDAB=,即CH+DH=2AB=2CH第19题图第5题图AOPC BDCBA∴ DH=CH ,CD=2DH. ∵ tan ∠ADC=DHAH=2, ∴ AH=2DH=CD=BC. 在△EDC 和△FBC 中, 又∵∠EDC=∠FBC ,DE=BF , ∴△EDC ≌△FBC. ∴CE=CF, ∠ECD=∠FCB. ∵∠ECD+∠ECB=∠BCD=90°, ∴∠FCB+∠ECB=90°,即∠ECF=90°.∴△ECF 是等腰直角三角形. …………… ⑵ ∵ 在等腰Rt △ECF 中,∠ECF=90°, ∴ ∠CEF=45°,CE=22EF. 又∵∠BEC=135°,= ,∴ ∠BEF=90°,EF BE =42. 不妨设BE=2,EF= 4,则BF=18.∴sin ∠BFE=BF BE =182=31.(延庆县一模)5.如图是一张矩形纸片ABCD ,cm 10AD =,若将纸片沿DE 折叠, 使DC 落在DA 上,点C 的对应点为点F ,若cm BE 6=, 则DC 的长是A .cm 4B .cm 6C .cm 8D .cm 10 答案:A11.如图,⊙O 是等边三角形ABC 的外接圆,点P 在劣弧AB 上,ABP ∠ο22=,则BCP ∠的度数为_____________. 、答案: ο3819. 已知如图:直角梯形ABCD 中,BC AD //,ο90=∠BAD ,26CD ==BC ,1312sin =C , 求:梯形ABCD 的面积;答案:解:过点D 做E BC DE 于点⊥,CD=26 在DCE Rt ∆中,26DE CD DE 1312sin ===C ∴DE=24∴由勾股定理得:CE=10∴BE=CD-CE=16∵ο90=∠BAD ,E BC DE 于点⊥ ∴DE//B CHF EDBAC∵BC AD //∴四边形ABED 是平行四边形 ∴AD=BE=16 ∴5042DEBC AD S ABCD =+=)(20.如图,ABC ∆是等腰三角形,AC AB =,以AC 为直径的⊙O 与BC 交于点D ,AB DE ⊥,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为2,1=BE ,求A cos 的值.答案:证明:(1)连结AD ,OD ∵AC 是直径 ∴BC AD ⊥ ∵AB=AC∴D 是BC 的中点 ∵O 是AC 的中点∴AB //OD ∵AB DE ⊥ ∴DE OD ⊥∴DE 是⊙O 的切线(2)由(1)可知,AE OD //∴AE ODFA FO =∴BE AB ODAC FC OC FC -=++ ∴14242-=++FC FC ∴FC=2 ∴AF=6 ∴21cos ==AF AE A15.如图,AE AB =,AC AD =,EAC BAD ∠=∠, DE BC ,交于点O . 求证:AED AB C ∠=∠. 答案: 证明: ∵EAC BAD ∠=∠∴DAC EAC DAC BAD ∠+∠=∠+∠ 即: EAD BAC ∠=∠ 在EAD BAC ∆∆和 AE AB =EAD BAC ∠=∠AC AD = ∴EAD BAC ∆≅∆∴AED AB C ∠=∠(西城区一模)7.如图,在梯形ABCD 中,AB ∥CD ,∠A =60°,∠B =30°,A BFCDEO第20题图若AD =CD =6,则AB 的长等于( ).A .9B .12C .633+D .18答案:D8.如图,点A 在半径为3的⊙O 内,OA=3,P 为⊙O 上一点,当∠OPA 取最大值时,PA 的长等于( ). A .32B .6C .32D .23答案:B10.如图,甲、乙两盏路灯相距20米. 一天晚上,当小明从 路灯甲走到距路灯乙底部4米处时,发现自己的身影顶部 正好接触到路灯乙的底部.已知小明的身高为1.6米,那么 路灯甲的高为 米. 答案: 816. 如图,在四边形ABCD 中,AB =BC ,BF 平分∠ABC ,AF ∥DC , 连接AC ,CF . 求证:(1)AF =CF ;(2)CA 平分∠DCF . 答案: 证明:如图2.(1)∵ BF 平分ABC ∠,∴ ABF CBF ∠=∠. 在△ABF 与△CBF 中,,,,AB CB ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩∴ △ABF ≌△CBF . ∴ AF CF =.(2)∵ AF CF =,∴ FCA FAC ∠=∠. ∵ AF ∥DC ,∴ FAC DCA ∠=∠.∴ FCA DCA ∠=∠,即CA 平分DCF ∠.20.如图,四边形ABCD 是边长为9的正方形纸片,B '为CD 边上的点,C B '=3.将纸片沿某条直线折叠,使点B 落在点B '处,点A 的对应点为A ',折痕分别与A D ,BC 边交于点M ,N .(1)求BN 的长;(2)求四边形ABNM 的面积. 答案:解:如图3.(1)由题意,点A 与点A ',点B 与点B '分别关于直线MN 对称, ∴AM A M '=,BN B N '=. 设BN B N x '==,则9CN x =-. ∵ 正方形ABCD , ∴ o 90C ∠=.∴ 222CN B C B N ''+=.∵ C B '=3,∴ 222(9)3x x -+=.图2图3解得5x =.∴ 5BN =. (2)∵ 正方形ABCD ,∴ AD ∥BC ,o 90A ∠=.∵ 点M ,N 分别在AD ,BC 边上, ∴ 四边形ABNM 是直角梯形. ∵ '5BN B N ==,9BC =,∴ 4NC =.∴ 4sin 15∠=,4tan 13∠=. ∵ 1290∠+∠=︒,2390∠+∠=︒, ∴ 31∠=∠.∴ 4sin 3sin 15∠=∠=.在Rt △ DB P '中,∵90 D ∠=︒,6DB DC B C ''=-=,4sin 35DB PB '∠==', ∴ 152PB '=. ∵ 9A B AB ''==,∴ 32A P AB PB ''''=-=. ∵ 43∠=∠, ∴ 4tan 4tan 33∠=∠=. 在Rt △ A MP '中,∵ 90 A A '∠=∠=︒,32A P '=,4tan 43A M A P '∠==', ∴ 2A M '=.…………………………………………………………………4分 ∴ 1163()(25)9222ABNM S AM BN AB =+⨯=⨯+⨯=梯形.…………………5分21.如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .(1)求证:BD 是⊙O 的切线;(2)若E 是劣弧BC 上一点,AE 与BC 相交于点F , △BEF 的面积为8,且cos ∠BFA =32, 求△ACF 的面积.答案:(1)证明:连接BO .(如图4) ∵ AB =AD ,∴ ∠D =∠ABD .∵ AB =AO ,∴ ∠ABO =∠AOB .又∵ 在△OBD 中,∠D +∠DOB +∠ABO +∠ABD =180°,∴ ∠OBD =90°.图4∴ BD ⊥BO .∵ 点B 在⊙O 上,∴ BD 是⊙O 的切线 .(2)解:∵ ∠C =∠E ,∠CAF =∠EBF , ∴ △ACF ∽△BEF . ∵ AC 是⊙O 的直径,点B 在⊙O 上,∴ ∠ABC =90°.∵ 在Rt △BFA 中,∠ABF =90°,cos ∠BFA =32=AF BF , ∴24()9BEF ACF S BF S AF ∆∆==.又∵ BEF S ∆=8 ,∴ ACF S ∆=18 .25.在Rt △ABC 中,∠C =90°,D ,E 分别为CB ,CA 延长线上的点,BE 与AD 的交点为P . (1)若BD=AC ,AE=CD ,在图1中画出符合题意的图形,并直接写出∠APE 的度数; (2)若3AC BD =,3CD AE =,求∠APE 的度数.答案:解:(1)如图9,∠APE= 45 °. 2)解法一:如图10,将AE 平移到DF ,连接BF ,EF .则四边形AEFD 是平行四边形. ∴ AD ∥EF ,AD=EF .∵ 3AC BD =,3CD AE =,∴ 3=BD AC ,3==DFCDAE CD . ∴AC CDBD DF =. ∵ ∠C =90°,∴ 18090BDF C ∠=︒-∠=︒. ∴ ∠C=∠BDF . ∴ △ACD ∽△BDF .∴3AD ACBF BD ==,∠1=∠2. ∴ 3EF AD BF BF==.∵ ∠1+∠3=90°,∴ ∠2+∠3=90°. ∴ BF ⊥AD . ∴ BF ⊥EF .图10图9∴ 在Rt △BEF 中,3tan 3BF BEF EF ∠==. ∴ ∠APE =∠BEF =30°.解法二:如图11,将CA 平移到DF ,连接AF ,BF ,EF .则四边形ACDF 是平行四边形. ∵ ∠C =90°,∴ 四边形ACDF 是矩形,∠AFD =∠CAF = 90°,∠1+∠2=90°.∵ 在Rt △AEF 中,3tan 33AE AE AF CD ∠===, 在Rt △BDF 中,3tan 13BD BD DF AC ∠===, ∴ 3130∠=∠=︒.∴ ∠3+∠2=∠1+∠2=90°,即∠EFB =90°. ∴ ∠AFD =∠EFB .又∵ 32DF AF BF EF ==, ∴ △ADF ∽△EBF .∴ ∠4=∠5.∵ ∠APE+∠4=∠3+∠5, ∴ ∠APE =∠3=30°.(通州区一模)6.如图,⊙O 的半径为2,直线PA 、PB 为⊙O 的切线, A 、B 为切点,若PA ⊥PB ,则OP 的长为( ) A .42 B .4 C .22 D .2 答案:C16.已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、BF CD ⊥,垂足为E 、F ,求证:CE BF =. 答案:证明:ΘCD AE ⊥,CD BF ⊥ ∴︒=∠=∠90BFC AEC ∴︒=∠+∠90B BCF Θ ,90︒=∠ACB∴︒=∠+∠90ACF BCF ∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC . ∴BCF ∆≌CAE ∆(AAS ).图11F E DCB A∴BF CE =(3)按要求应该由哪位同学担任学生会干部职务,请你计算出他的最后得分.20.已知,如图,矩形ABCD 绕着它的对称中心O 按照顺时针方向旋转60°后得到矩形DFBE ,连接AF ,CE . 请你判断四边形AFED 是我们学习过的哪种特殊四边形,并加以证明.答案:解:判断:等腰梯形 证明:连结AO 、DO依题意可知:︒=∠=∠60DOE AOD , AO=OD=OE=OFΘEF 是矩形的对角线∴点F O E 、、在一条直线上, ∴︒=∠60AOF∴DOE AOD AOF ∆∆∆、、都是等边三角形, 且AOF ∆≌AOD ∆ ≌DOE ∆()SAS∴DE AF =ADO ∠=DOE ∠=︒60∴EF AD //,且EF AD ≠ ∴四边形AFED 是等腰梯形21.如图在平面直角坐标系xOy 中,点A 的坐标为(2,0),以点A 为圆心,2为半径的圆与x 轴交于O ,B 两点,C 为⊙A 上一点,P 是x 轴上的一点,连结CP ,将⊙A 向上平移1个单位长度,⊙A 与x 轴交于M 、N ,与y 轴相切于点G ,且CP 与⊙A相切于点C ,60CAP ∠=︒. 请你求出平移后MN 和PO 的长.答案:解:(1)过点A 作x AH ⊥轴,垂足为H ,连结AMΘAM =2,AH =1,根据勾股定理得:MH=3,∴MN=32(2)ΘCP 是⊙A 切线,且︒=∠60CAP ∴满足要求的C 有两个:C 1、C 2如图,︒=∠6011AP C 或︒=∠6022AP C当︒=∠6011AP C 时,Θ CP 是⊙A 切线, ∴11P AC ∠=︒90,21=AC∴41=AP在H AP Rt 1∆中,AH =1, 41=AP∴151=H P ∴2151-=OP同理可求152=H P∴2152+=OP ∴OP 的长是215-或215+(顺义区一模)HP 1P 2C 1G yxO NMC 2B A BAO yxOF DECB AE A BCDOOFEDCBA7.如图,ABC △内接于圆O ,50A =o ∠,60ABC =o∠,BD 是圆O 的直径, BD 交AC 于点E ,连结DC ,则BEC ∠等于 A .50︒ B .60︒ C .70︒ D .110︒答案:C16 已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 相交于点F .求证:BF AC =; 答案: 证明: ∵ CD AB ⊥∴ 90BDC CDA ∠=∠=︒ ∵ 45ABC ∠=︒∴ 45DCB ABC ∠=∠=︒ ∴ DB DC = ∵ BE AC ⊥ ∴ 90AEB ∠=︒∴ 90A ABE ∠+∠=︒ ∵ 90CDA ∠=︒∴ 90A ACD ∠+∠=︒ ∴ ABE ACD ∠=∠ 在BDF ∆和CDA ∆中BDC CDA DB DCABE ACD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BDF ∆≌CDA ∆ ∴BF AC =19.已知:如图,梯形ABCD 中,AD ∥BC ,90B ∠=︒,4AD AB ==,7BC =,点E 在BC 边上,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点'C 处. (1)求'C DE ∠的度数; (2)求△'C DE 的面积. 答案:解:(1) 过点D 作DF BC ⊥于F . ∵ AD BC P , 90B ∠=︒, AD AB =, ∴ 四边形ABFD 是正方形.∴4DF BF AB === , 3FC = 在Rt DFC ∆中,2222435CD DF FC =+=+=∴ '5C D =∵AD FD =,90A DFC ∠=∠=︒, 'C D CD = ∴ 'AC D FCD ∆≅∆∴ 'ADC FDC ∠=∠ , '3AC FC ==∴ ''''90ADF ADC C DF FDC C DF C DC ∠=∠+∠=∠+∠=∠=︒ ∵ 'C DE CDE ∠=∠ ∴ '45C DE ∠=︒(2) 设 EC x = , 则7BE x =- ,'C E x =C'E D C B A∵'3AC = ∴'1BC =在Rt 'BEC ∆中22(7)1x x -+= 解方程,得 257x =∴ '11255014722777C DE CDES S EC DF ∆∆==⋅=⨯⨯==20. 已知:如图,AB 是O e 的直径,BC 切O e 于B ,AC 交O e 于P ,D 为BC 边的中点,连结DP . (1) DP 是O e 的切线;(2) 若3cos 5A =, O e 的半径为5, 求DP 的长.答案:(1) 证明:连结OP 和BP∵AB 是O e 的直径,BC 切O e 于B , ∴ 90APB ∠=︒ , AB BC ⊥ , ∴ 90ABC ABP PBC ∠=∠+∠=︒ 在Rt BPC ∆中,D 为BC 边的中点 ∴ BD PD =∴ BPD PBD ∠=∠ ∵ OB OP =∴OPB OBP ∠=∠ ∴90OPD OPB BPD OBP PBD ABC ∠=∠+∠=∠+∠=∠=︒ 即 PD OP ⊥∴DP 是O e 的切线(2) 连结OD 在Rt ABC ∆中∵ 3cos 5A =, O e 的半径为5 ∴ 50cos 3AB AC A ==∵ OA OB =, DC DB =∴ 12523OD AC ==在Rt OPD ∆中222225202()56333PD OD OP =-=-==24. 已知:如图,等边△ABC 中,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,∠BAE =∠BDF ,点M 在线段DF 上,∠ABE =∠DBM .(1)猜想:线段AE 、MD 之间有怎样的数量关系,并加以证明;(2)在(1)的条件下延长BM 到P ,使MP =BM ,连接CP ,若AB =7,AE =72,OPCD B A OPCD BAABD CPO求tan ∠BCP 的值.答案:(1)猜想:2AE MD =证明:∵ △ABC 是等边三角形,点D 为BC 边的中点,∴ 2AB BC BD ==∵ ∠BAE =∠BDF , ∠ABE =∠DBM∴ ABE ∆∽DBM ∆∴2AE ABDM DB== 即2AE MD =(2)解:如图, 连接EP 由(1)ABE ∆∽DBM ∆∴2BE ABBM DB == ∴2BE BM =∵MP BM = ∴ 2BP BM =∴ BE BP =∵ 60EBP ABE ABP PBC ABP ABC ∠=∠+∠=∠+∠=∠=︒ ∴EBP ∆为等边三角形 ∴ EM BP ⊥∴ 90BMD ∠=︒ ∴90AEB ∠=︒在Rt △AEB 中,AB =7,AE =72 ∴ BE =21=22AE -AB∴ 3tan 2BAE ∠=∵ AB CB = ,BE BP = ,∠ABE =∠DBM ∴ ABE CBP ∆≅∆ ∴ BCP BAE ∠=∠∴ tan BCP ∠=3tan 2BAE ∠=(石景山区一模)3.已知:如图,m l ∥,等边ABC △的顶点B 在直线m 上,边BC 与直线m 所夹锐角为︒20,则α∠的度数为 A .︒60 B .︒45 C .︒40 D .︒30 答案:C6.已知:⊙O 的半径为2cm ,圆心到直线l 的距离为1cm ,将直线l 沿垂直于l 的方向平移,使l 与⊙O 相切,则平移的距离是第3题图l 20︒mBAαCA .1 cmB .2 cmC .3cmD .1 cm 或3cm答案:D8.已知:如图,无盖无底的正方体纸盒ABCD EFGH -,P ,Q 分别为棱FB ,GC 上QPHG FEDC BA的点,且12,2FP PB GQ QC ==,若将这个正方体纸盒沿折线AP PQ QH --裁剪并展开,得到的平面图形是 A .一个六边形 B .一个平行四边形C .两个直角三角形D . 一个直角三角形和一个直角梯形 答案:B11.已知:如图,AB ,BC 为⊙O 的弦,点D 在AB 上,若4=OD ,10=BC ,︒=∠=∠60B ODB ,则DB 的长为 .答案: 615.如图,在△ABC 中,BC AB ⊥,AC BE ⊥于E ,点F 在线段BE 上,21∠=∠,点D 在线段EC 上,请你从以下两个条件中选择一个作为条件,证明△AFD ≌△AFB . (1)DF ∥BC ; (2)DF BF =. 答案:情况一、添加条件:DF BC DF BC C FDE ∠=∠BC AB ⊥AC BE ⊥︒=∠+∠=∠+∠90EBC C EBC ABFC ABF ∠=∠ADF ABF ∠=∠ABF ∆ADF ∆⎪⎩⎪⎨⎧=∠=∠∠=∠AF AF ADF ABF 21AFD ∆AFB ∆DF BF =F AB FG ⊥G ACBE ⊥21∠=∠EF FG =BGF Rt ∆DEF Rt ∆︒=∠=∠90DEF BGF ⎩⎨⎧==DFBF EFFG BGF Rt ∆()HL DEF Rt ∆EDF GBF ∠=∠ABF ∆ADF ∆⎪⎩⎪⎨⎧=∠=∠∠=∠AF AF ADFABF 21AFD ∆AFB ∆ABCD AD AB CDA BCD =︒=∠︒=∠,,60904,2AB DF ==BFABCH AB CH AH BC ==,60,4CDA AD AB ===o ∠=︒60sin AD 23=︒60cos AD 22219BC CF +=ABCD O BD OD O AD第11题图D A O B C 21F A B CG DEBD ABE DBC BE O 33sin =∠ABE 2=CD O BE OE ABCD AD BC ADB DBC OE OD =OED ODE ABE DBC ABE OED ABDC ︒=90A ︒=∠+∠90AEB ABE ︒=∠+∠90AEB OED ︒=∠90BEO BE EFABCD 2=CD ︒=∠=∠90C A 2==CD AB ABE DBC =∠CBD sin 33sin =∠ABE 32sin =∠=CBD DCBD AEB Rt ∆2=AE 6=BE BEO Rt ∆︒=∠90BEO 222OB EB EO =+r()()222326r r -=+r 23DF ︒=∠90DEF ABCD ︒=∠=∠90C A 2==CD AB ABE DBC=∠CBD sin 33sin =∠ABE x BD x DC 3,==x BC 2=2=CD 22=BC ABE CBD ∠=∠tan tan AB AE BC DC =2222AE =2=AE E AD DF ︒=90FED AB EF //321==BD DF 23ABFE EFCD BDEF M AE P BP MP PEM PMB Q BD FQ ABCD R BD FR 21=QR FQ 32AB O ⊙2cm BC =F BC60ABC ∠=°E 2cm/s A A B A →→()(03)t s t <≤EFBEF △t 47 1 C 474749C F 、BE A D AC DF BF EC ∠=∠=,∥,AC DF Q ∥ACE DFB ∴∠=∠∴ACB DFE ∠=∠BF EC =BF CF EC CF ∴-=-BC EF =⎪⎩⎪⎨⎧=∠=∠∠=∠,,,EF BC DFE ACB D A ABC DEF ∴△≌△求ED 的长.答案:解:作DF ⊥BC 于F,EG ⊥BC 于G. ∵∠A =90°,AD ∥BC ∴ 四边形ABFD 是矩形. ∵ BC =5,AD :BC =2:5. ∴ AD=BF=2. ∴ FC=3.在Rt △DFC 中, ∵ ∠C =45°, ∴ DC=23. 在Rt △BEC 中,PMFEDCB AOBG E C MAFEB CDAABO D CEAB C F EDO F E D C B A OFE DCBA ABC FED∴ EC =225 ∴ DE =2222523=-20.如图,在ABC △中,AB AC =,AE 是角平分线,BM 平分ABC ∠交AE 于点M ,经过B M ,两点的O ⊙交BC 于 点G ,交AB 于点F ,FB 恰为O ⊙的直径. (1)求证:AE 与O ⊙相切; (2)当14cos 3BC C ==,时,求O ⊙的半径.答案:解:(1)证明:连结OM ,则OM OB =. ∴ 12∠=∠.∵ BM 平分ABC ∠. ∴ 13∠=∠. ∴ 23∠=∠. ∴ OM BC ∥.∴ AMO AEB ∠=∠. 在ABC △中,∵ AB AC =,AE 是角平分线, ∴ AE BC ⊥. ∴ 90AEB ∠=°. ∴ 90AMO ∠=°. ∴ OM AE ⊥. ∴ AE 与O ⊙相切.(2)解:在ABC △中,AB AC =,AE 是角平分线,∴12BE BC ABC C =∠=∠,. ∵14cos 3BC C ==,,∴2=BE ,.31cos =∠ABC在ABE △中,90AEB ∠=°,∴6cos BEAB ABC==∠.设O ⊙的半径为r ,则6AO r =-. ∵OM BC ∥,∴AOM ABE △∽△.∴ OM AO BE AB =. ∴ 626r r -=.解得32r =.∴ O ⊙的半径为32.24.已知点A ,B 分别是两条平行线m ,n 上任意两点,C是直线n 上一点,且上,BC =k AB (k ≠0). ∠ABC=90°,点E 在AC 的延长线(1)当k =1时,在图(1)中,作∠BEF =∠ABC ,EF 交直线m 于点F .,写出线段EF 与EB 的数量关系,并加以证明;OBG E C MA F123(2)若k ≠1,如图(2),∠BEF =∠ABC ,其它条件不变,探究线段EF 与EB 的数量关系,并说明理由.答案:解:(1)正确画出图形EF EB =. 证明:如图(1),在直线m 上截取AM AB =,连结ME .BC kAB =Q ,1k =,BC AB ∴=.90ABC ∠=o Q ,45CAB ACB ∴∠=∠=o . m n Q ∥,45MAE ACB CAB ∴∠=∠=∠=o ,90FAB ∠=o.AE AE =Q ,MAE BAE ∴△≌△. EM EB ∴=,AME ABE ∠=∠.90BEF ABC ∠=∠=o Q ,180FAB BEF ∴∠+∠=o . 180ABE EFA ∴∠+∠=o .又180AME EMF ∠+∠=o Q ,EMF EFA ∴∠=∠.EM EF ∴=.EF EB ∴=.(2)1EF EB k =.说明:如图(2),过点E 作EM m ⊥,EN AB ⊥,垂足为M N ,..m n Q ∥,90ABC ∠=o,90MAB ∴∠=o .∴四边形MENA 为矩形.ME NA ∴=,90MEN ∠=o . 90BEF ABC ∠=∠=o Q , MEF NEB ∴∠=∠. MEF NEB ∴△∽△. ME EF EN EB ∴=.AN EFEN EB∴=. 在Rt ANE △和Rt ABC △中,tan EN BCBAC k AN AB∠===, 1EF EB k∴=.18.在平面直角坐标系中,A 点坐标为(04),,C 点坐标为(100),. (1)如图①,若直线AB OC ∥,AB 上有一动点P ,当P 点的坐标为 时,有PO PC =;(2)如图②,若直线AB 与OC 不平行, 在过点A 的直线4y x =-+上是否存在点P ,使90OPC ∠=︒,若有这样的点P ,求出它的坐标.若没有,请简要说明理由.答案:解:(1)(54), (2)设(4)P x x -+,,连接OP PC ,,过P 作PE OC ⊥于E , PN OA ⊥于N ,因为222(4)OP x x =+-+, 222(4)(10)PC x x =-++-,222OP PC OC +=,新课标第一网所以22222(4)(4)(10)10x x x x +-++-++-=.2980x x -+=, 11x =,28x =.所以P 坐标(13),或(84)-,.图(2)A BC M EN mn FF M nm C B A E 图(1)。

2021北京各区中考一模分类汇编-专题14 三角形全等相似证明(教师版)

2021北京各区中考一模分类汇编-专题14 三角形全等相似证明(教师版)

专题14 三角形全等相似证明一、简单几何证明(共4小题)1.(2021·海淀一模)如图,点B ,E ,C ,F 在一条直线上,AB ∥DE ,AB =DE ,BE =CF .求证:A D ∠=∠.〖分析〗全等SAS〖解答〗证明:∵ AB ∥DE ,∴ ∠B =∠DEF . ∵ BE =CF ,∴ BE +EC =CF +EC . ∴ BC =EF . 在△ABC 和△DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ △ABC ≌ △DEF . ∴ ∠A =∠D .2.(2021·通州一模)已知:如图,在ABC 和DEF 中,点B 、E 、C 、F 四点在一条直线AD 上,且,,BE CF AB DE B DEF ==∠=∠. 求证:ABC DEF ≅〖分析〗全等SAS 〖解答〗证明:BE CF =FE DC BABC EF ∴=………………………………………………………………………1分∴在ABC 与DEF 中AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩……………………………………………4分 ()ABC DEF SAS ∴≅……………………………………………………………5分3.(2021·房山一模)已知:如图,AB 与CD 交于点E ,点E 是线段AB 的中点,A B ∠=∠.求证:AC BD =.〖分析〗全等ASA〖解答〗证明:∵点E 是线段AB 的中点,∴AE BE =. …………………………1分 在△ACE 与△BDE 中,.A B AE BE AEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩,,∴△ACE ≌△BDE . …………………………4分 ∴AC BD =. …………………………5分DE CBA4.(2021·门头沟一模)〖分析〗等腰三角形和等边三角形的性质〖解答〗解:∵△ABC是等边三角形BD⊥AC∴∠DBC=12∠ABC =30°,………………………3分∵DB=DE,∴∠E=∠DBC =30°………………………5分二、作图题(共14小题)5.(2021·西城一模)阅读材料并解决问题:已知:如图,∠AOB及内部一点P。

2024年北京市西城区中考数学一模试卷及答案解析

2024年北京市西城区中考数学一模试卷及答案解析

2024年北京市西城区中考数学一模试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)如图是某几何体的展开图,该几何体是()A.圆锥B.三棱柱C.三棱锥D.四棱锥2.(2分)2024年5.5G技术正式开始商用,它的数据下载的最高速率从5G初期的1Gbps 提升到10Gbps,给我们的智慧生活“提速”.其中10Gbps表示每秒传输10000000000位(bit)的数据.将10000000000用科学记数法表示应为()A.0.1×1011B.1×1010C.1×1011D.10×109 3.(2分)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.4.(2分)直尺和三角板如图摆放,若∠1=55°,则∠2的大小为()A.35°B.55°C.135°D.145°5.(2分)不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为()A.B.C.D.6.(2分)已知﹣2<a<﹣1,则下列结论正确的是()A.a<1<﹣a<2B.1<a<﹣a<2C.1<﹣a<2<a D.﹣a<1<a<2 7.(2分)若关于x的一元二次方程kx2+x﹣2=0有两个实数根,则实数k的取值范围是()A.k≤﹣B.k>﹣且k≠0C.k≥﹣且k≠0D.k≥﹣且k≠08.(2分)如图,在Rt△ABC中,∠ACB=90°,BC=a,AC=b(其中a<b).CD⊥AB 于点D,点E在边AB上,BE=BC.设CD=h,AD=m,BD=n,给出下面三个结论:①n2+h2<(m+n)2;②2h2>m2+n2;③AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③二、填空题(共16分,每题2分)9.(2分)若在实数范围内有意义,则实数x的取值范围为.10.(2分)分解因式:x2y﹣12xy+36y=.11.(2分)方程=的解为.12.(2分)在平面直角坐标系xOy中,若函数y=(k≠0)的图象经过点(﹣1,8)和(2,n),则n的值为.13.(2分)如图,在▱ABCD中,点E在边AD上,BA,CE的延长线交于点F.若AF=1,AB=2,则=.14.(2分)如图,在⊙O的内接四边形ABCD中,点A是的中点,连接AC,若∠DAB =130°,则∠ACB=°.15.(2分)如图,两个边长相等的正六边形的公共边为BD,点A,B,C在同一直线上,点O1,O2分别为两个正六边形的中心.则tan∠O2AC的值为.16.(2分)将1,2,3,4,5,…,37这37个连续整数不重不漏地填入37个空格中.要求:从左至右,第1个数是第2个数的倍数,第1个数与第2个数之和是第3个数的倍数,第1,2,3个数之和是第4个数的倍数,…,前36个数的和是第37个数的倍数.若第1个空格填入37,则第2个空格所填入的数为,第37个空格所填入的数为.37…三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.(5分)计算:|﹣|﹣()﹣1+2sin60°﹣.18.(5分)解不等式组:.19.(5分)已知x2﹣x﹣4=0,求代数式(x﹣2)2+(x﹣1)(x+3)的值.20.(5分)如图,点E在▱ABCD的对角线DB的延长线上,AE=AD,AF⊥BD于点F,EG∥BC交AF的延长线于点G,连接DG.(1)求证:四边形AEGD是菱形;(2)若AF=BF,tan∠AEF=,AB=4,求菱形AEGD的面积.21.(5分)某学校组织学生社团活动,打算恰好用1000元经费购买围棋和象棋,其中围棋每套40元,象棋每套30元.所购买围棋的套数能否是所购买象棋套数的2倍?若能,请求出所购买的围棋和象棋的套数,若不能,请说明理由.22.(5分)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点A(3,5),B (﹣2,0),且与y轴交于点C.(1)求该函数的解析式及点C的坐标;(2)当x<2时,对于x的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.23.(6分)某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8,8.8,8.9,9.4,9.4,9.4,9.6,9.6,9.6,9.8,10,10,10,10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:平均数中位数众数甲9.5m9.2乙9.59.6n 根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);甲9.29.29.29.29.1乙9.49.49.48.98.8②甲同学从剩余的10颗山植中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为_______和;(3)估计这些山楂共能制作多少串冰糖葫芦.24.(6分)如图,AB为⊙O的直径,弦CD⊥AB于点H,⊙O的切线CE与BA的延长线交于点E,AF∥CE,AF与⊙O的交点为F.(1)求证:AF=CD;(2)若⊙O的半径为6,AH=2OH,求AE的长.25.(6分)如图,点O为边长为1的等边三角形ABC的外心.线段PQ经过点O,交边AB 于点P,交边AC于点Q.若AP=x,AQ=y1,S△APQ:S△ABC=y2,下表给出了x,y1,y2的一些数据(近似值精确到0.0001).x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.92940.51350.5 y20.46540.450.44470.44550.450.45710.46610.47650.48780.5(1)补全表格;(2)在同一平面直角坐标系xOy中描出了部分点(x,y1),(x,y2).请补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象;(3)结合函数图象,解决下列问题:①当△APQ是等腰三角形时,y1关于x的函数图象上的对应点记为(a,b),请在x轴上标出横坐标为a的点;②当y2取最大值时,x的值为.26.(6分)在平面直角坐标系xOy中,点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上.设抛物线的对称轴为直线x=t.(1)若y1=3,求t的值;(2)若当t+1<m<t+2时,都有y1>y3>y2,求t的取值范围.27.(7分)在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点(不与点A,B重合),点E在射线AC上且满足AE=AD,过点D作直线BE的垂线交直线BC于点F,垂足为点G,直线BE交射线AM于点P.(1)如图1,若点D在线段AB上,当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP,AB的数量关系,并证明.28.(7分)在平面直角坐标系xOy中,已知⊙O的半径为1,对于⊙O上的点P和平面内的直线l:y=ax给出如下定义:点P关于直线l的对称点记为P′,若射线OP上的点Q 满足OQ=PP′,则称点Q为点P关于直线l的“衍生点”.(1)当a=0时,已知⊙O上两点P1(,),P2(﹣,﹣),在点Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣)中,点P1关于直线l的“衍生点”是,点P2关于直线l的“衍生点”是;(2)P为⊙O上任意一点,直线y=x+m(m≠0)与x轴,y轴的交点分别为点A,B.若线段AB上存在点S,T,使得点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,直接写出m的取值范围;(3)当﹣1≤a≤1时,若过原点的直线s上存在线段MN,对于线段MN上任意一点R,都存在⊙O上的点P和直线l,使得点R是点P关于直线l的“衍生点”.将线段MN长度的最大值记为D(s),对于所有的直线s,直接写出D(s)的最小值.2024年北京市西城区中考数学一模试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.【分析】通过展开图的面数,展开图的各个面的形状进行判断即可.【解答】解:由题意可知,该几何体的底面是一个三角形,侧面由三个三角形组成,故该几何体是三棱锥.故选:C.【点评】本题考查棱柱的展开与折叠,掌握三棱锥展开图的特征是正确判断的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【解答】解:10000000000=1×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【解答】解:A.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;B.该图是中心对称图形,不是轴对称图形,故本选项不合题意;C.该图是轴对称图形,不是中心对称图形,故本选项不符合题意;D.该图既是中心对称图形也是轴对称图形,故本选项符合题意.故选:D.【点评】本题考查了中心对称图形和轴对称图形,熟练掌握中心对称图形和轴对称图形的概念是解题的关键.4.【分析】求出∠3=90°﹣55°=35°,由平行线的性质推出∠3=∠4=35°,由邻补角的性质得到∠2=180°﹣35°=145°.【解答】解:∵∠1=55°,∴∠3=90°﹣55°=35°,∵直尺的对边平行,∴∠3=∠4=35°,∴∠2=180°﹣35°=145°.故选:D.【点评】本题考查平行线的性质关键是由平行线的性质推出∠3=∠4=35°.5.【分析】列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红蓝红(红,红)(红,蓝)蓝(蓝,红)(蓝,蓝)共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为.故选:A.【点评】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.6.【分析】根据﹣2<a<﹣1,判断出﹣a的取值范围,进而推出a、﹣a的大小关系即可.【解答】解:∵﹣2<a<﹣1,∴1<﹣a<2,∴a<1<﹣a<2.故选:A.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是判断出﹣a的取值范围.7.【分析】根据一元二次方程kx2+x﹣2=0有两个实数根,构建不等式求解.【解答】解:由题意,Δ≥0且k≠0,∴1+8k≥0,∴k≥﹣,∴k≥﹣且k≠0.故选:C.【点评】考查根的判别式,解题的关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.8.【分析】因为CD⊥AB,所以∠CDB=∠CDA=90°,由勾股定理得,n2+h2=a2,因为∠ACB=90°,由勾股定理得,(m+n)2=a2+b2,因为a2<a2+b2,所以n2+h2<(m+n)2,由射影定理得,h2=mn,所以2h2=2mn,因为a<b,a=,b=,则m>n,所以(m﹣n)2>0,可得m2+n2>2mn,所以m2+n2>2h2,方程x2+2ax﹣b2=0配方得(x+a)2﹣(a2+b2)=0,因为a2+b2=(m+n)2,可得(x+a)2=(m+n)2,解得x的值,因为BE=BC,BC=a,可得BE=a,因为AB=AD+BD=m+n,所以AE=m+n ﹣a,可得AE的长是否是关于x的方程x2+2ax﹣b2=0的一个实数根.【解答】解:∵CD⊥AB,∴∠CDB=∠CDA=90°,∴n2+h2=a2,∵∠ACB=90°,∴(m+n)2=a2+b2,∵a2<a2+b2,∴n2+h2<(m+n)2,故①符合题意,∵h2=mn,∴2h2=2mn,∵a<b,a=,b=,∴m>n,∴(m﹣n)2>0,即m2+n2>2mn,∴m2+n2>2h2,故②不符合题意,x2+2ax﹣b2=0,配方得,(x+a)2﹣(a2+b2)=0,∵a2+b2=(m+n)2,∴(x+a)2﹣(m+n)2=0,即(x+a)2=(m+n)2,∴x=m+n﹣a或x=﹣m﹣n﹣a,∵BE=BC,BC=a,∴BE=a,∵AB=AD+BD=m+n,∴AE=m+n﹣a,∴AE的长是关于x的方程x2+2ax﹣b2=0的一个实数根x=m+n﹣a,故③符合题意,故选:B.【点评】本题考查了射影定理、勾股定理,关键是掌握射影定理的运用.二、填空题(共16分,每题2分)9.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵x﹣3≥0,∴x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.10.【分析】提取公因式后用完全平方公式分解即可.【解答】解:x2y﹣12xy+36y=y(x2﹣12x+36)=y(x﹣6)2,故答案为:y(x﹣6)2.【点评】本题考查了因式分解,熟练掌握提取公因式和公式法分解因式是关键.11.【分析】方程两边都乘(3x﹣1)(x﹣2)得出4(x﹣2)=3(3x﹣1),求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘(3x﹣1)(x﹣2),得4(x﹣2)=3(3x﹣1),4x﹣8=9x﹣3,4x﹣9x=﹣3+8,﹣5x=5,x=﹣1,检验:当x=﹣1时,(3x﹣1)(x﹣2)≠0,所以分式方程的解是x=﹣1.故答案为:x=﹣1.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.12.【分析】由点A的坐标,利用待定系数法可求出反比例函数解析式,再利用反比例函数图象上点的坐标特征,即可求出n的值.【解答】解:将点(﹣1,8)代入y=(k≠0)得:8=,解得:k=﹣8,∴反比例函数解析式为y=﹣当x=2时,y=﹣=﹣4,∴n的值为﹣4.故答案为:﹣4.【点评】本题考查了反比例函数图象上点的坐标特征以及待定系数法求反比例函数解析式,根据给定坐标,利用待定系数法求出反比例函数解析式是解题的关键.13.【分析】由平行四边形的性质得到AB∥CD,CD=AB=2,推出△FAE∽△CDE,得到=,而AF=1,于是得到=.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=2,∴△FAE∽△CDE,∴=,∵AF=1,∴=.故答案为:.【点评】本题考查平行四边形的性质,相似三角形的判定和性质,关键是由△FAE∽△CDE,推出=.14.【分析】根据圆内接四边形的性质求出∠DCB,再根据圆周角定理求出∠ACB.【解答】解:∵四边形ABCD为圆内接四边形,∴∠DAB+∠DCB=180°,∵∠DAB=130°,∴∠DCB=180°﹣130°=50°,∵点A是的中点,∴∠ACB=∠ACD=×50°=25°,故答案为:25.【点评】本题考查的是圆内接四边形的性质、圆周角定理,熟记圆内接四边形的性质是解题的关键.15.【分析】根据正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义进行计算即可.【解答】解:如图,连接O2C,过O2点作O2E⊥BC,垂足为E,设正六边形的边长为a,则O1A=O1B=O2C=a,在Rt△O2CE中,O2C=a,∠CO2E=30°,∴EC=O2C=a=BE,O2E=O2C=a,∴AE=2a+a=a,∴tan∠O2AC==.故答案为:.【点评】本题考查正多边形和圆,掌握正六边形的性质,直角三角形的边角关系以及锐角三角函数的定义是正确解答的关键.16.【分析】根据第1个数是第2个数的倍数,第1个空格填入37,而37是质数,可知第2个空格所填入的数为1,根据前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,且前37个数的和是第37个数的倍数,即可得出结果.【解答】解:根据要求:第1个数是第2个数的倍数,第1个空格填入37,而37是质数,∴第2个空格所填入的数为1,∵前36个数的和是第37个数的倍数,∴前37个数的和是第37个数的倍数,∴前37个数的和为:1+2+3+⋯+37=703=37×19,且37与19都是质数,假设第37个数为x,则(37×19﹣x)一定能被x整除,∵x≠37,第2个空格所填入的数为1,∴x的值只能是19,故答案为:1,19.【点评】本题考查的是数字的变化规律,从题目中找出数字间的倍数关系是解题的关键.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【分析】利用特殊角的三角函数值及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式===﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】首先解出两个不等式的解集,再根据同小取小确定不等式组的解集.【解答】解:,解解不等式①,得:x<3,解不等式②,得:x≤7,∴原不等式组的解集为x<3.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.19.【分析】利用完全平方公式,多项式乘多项式的法则进行计算,然后把x2﹣x=4代入化简后的式子进行计算,即可解答.【解答】解:(x﹣2)2+(x﹣1)(x+3)=x2﹣4x+4+x2+3x﹣x﹣3=2x2﹣2x+1,∵x2﹣x﹣4=0,∴x2﹣x=4,∴当x2﹣x=4时,原式=2(x2﹣x)+1=2×4+1=8+1=9.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.20.【分析】(1)根据等腰三角形三线合一的性质得出EF=DF,再证△GEF和△ADF全等,得出GF=AF,于是根据对角线相等的四边形是平行四边形推出四边形AEGD是平行四边形,再根据一组邻边相等的平行四边形是菱形即可得出四边形AEGD是菱形;(2)分别求出AF、EF的长,即可得出对角线AG、ED的长,根据菱形的面积公式计算即可.【解答】(1)证明:∵AE=AD,AF⊥BD,∴EF=DF,∵四边形ABCD是平行四边形,∴AD∥BC,∵EG∥BC,∴AD∥EG,∴∠GEF=∠ADF,在△GEF和△ADF中,,∴△GEF≌△ADF(ASA),∴GF=AF,∵EF=DF,∴四边形AEGD是平行四边形,∵AE=AD,∴四边形AEGD是菱形;(2)解:∵AF⊥BD,AF=BF,∴△AFB是等腰直角三角形,∵AB=4,∴由勾股定理得,,∵tan∠AEF=,∴,即,∴EF=,∵四边形AEGD是菱形,∴AG=2AF=,ED=2EF=,∴菱形AEGD的面积.【点评】本题考查了菱形的判定与性质,平行四边形的性质,勾股定理,锐角三角函数,菱形的面积等,熟练掌握这些知识点是解题的关键.21.【分析】设购买象棋x套,若购买围棋2x套,可得40×2x+30x=1000,解得x=9,即可判断不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【解答】解:不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍,理由如下:设购买象棋x套,若购买围棋2x套,根据题意得:40×2x+30x=1000,解得x=9,∵x是整数,∴x=9不符合题意,∴不能恰好用1000元经费购买围棋和象棋,使所购买围棋的套数是所购买象棋套数的2倍.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意列出方程.22.【分析】(1)利用待定系数法求函数解析式,然后计算自变量为0时对应的函数值得到C点坐标;(2)先利用(1)中解析式计算x=2时,y=4,再把点(2,4)代入y=﹣3x+n中得到n=10,则利用一次函数的性质可判断当n≥10时满足条件.【解答】解:(1)根据题意得,解得,∴一次函数解析式为y=x+2,当x=0时,y=x+2=2,∴C(0,2);(2)当x=2时,y=x+2=4,把点(2,4)代入y=﹣3x+n得﹣6+n=4,解得n=10,∴当n≥10时,对于x<2的每一个值,函数y=﹣3x+n的值大于函数y=kx+b(k≠0)的值.【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数的性质.23.【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【解答】解:(1)根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以m=9.4;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以n=10.故答案为:9.4,10.(2)①根据题意可知甲同学的5个冰糖葫芦重量分布于9.1﹣9.2之间,乙同学的5个冰糖葫芦重量分布于8.8﹣9.4,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.②∵要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:[(9.3﹣9.48)2+(9.4﹣9.48)2+(9.5﹣9.48)2+(9.6﹣9.48)2+(9.6﹣9.48)2]×=0.0136,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:[(9.4﹣9.6)2+(9.5﹣9.6)2+(9.6﹣9.6)2+(9.6﹣9.6)2+(9.9﹣9.6)2]×=0.028,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:[(9.3﹣9.54)2+(9.4﹣9.54)2+(9.5﹣9.54)2+(9.6﹣9.54)2+(9.9﹣9.54)2]×=0.0424,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.故答案为:甲;9.3、9.6.(3)7.6千克=7600克,7600÷9.5=800(个),800÷5=160(串),答:能制作160串冰糖葫芦.【点评】本题考查了平均数、众数、中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.24.【分析】(1)连接AC、OC、BC,由切线的性质证明CE⊥OC,而AB为⊙O的直径,所以∠OCE=∠ACB=90°,可证明∠ACE=∠B,由AF∥CE,得∠CAF=∠ACE=∠B,则=,由垂径定理得=,则=,即可证明=,所以AF=CD;(2)由⊙O的半径为6,AH=2OH,得OC=OA=2OH+OH=6,求得OH=2,因为==cos∠COE,所以OE==18,则AE=12.【解答】(1)证明:连接AC、OC、BC,则OC=OA,∵CE与⊙O相切于点C,∴CE⊥OC,∵AB为⊙O的直径,∴∠OCE=∠ACB=90°,∴∠ACE+∠OCA=90°,∠B+∠OAC=90°,∵∠OCA=∠OAC,∴∠ACE=∠B,∵AF∥CE,∴∠CAF=∠ACE=∠B,∴=,∵CD⊥AB,∴=,∴=,∴=+=+=,∴AF=CD.(2)解:∵⊙O的半径为6,AH=2OH,∴OC=OA=2OH+OH=6,∴OH=2,∵∠OHC=∠OCE=90°,∴==cos∠COE,∴OE===18,∴AE=OE﹣OA=18﹣6=12,∴AE的长为12.【点评】此题重点考查圆周角定理、切线的性质定理、平行线的性质、垂径定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.25.【分析】(1)利用已知条件得到:当x=0.5时,点P为AB的中点,当y1=1时,此时点Q在点C处,由题意计算当x=0.5时的y1即可;(2)补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象即可;(3)①当△APQ是等腰三角形时,利用等边三角形的判定与性质解答即可求得a值,在x轴上描出横坐标为的点即可;②观察图象即可得出结论.【解答】(1)解:当x=0.5时,点P为AB的中点,∵点O为边长为1的等边三角形ABC的外心,∵y1=1,∴此时点Q在点C处,如图所示:∵△ABC为等边三角形,点P为AB的中点,点Q在点C处,∴∴y2=S△APQ:S△ABC=0.5,填报如下:x0.50.550.60.650.70.750.80.850.90.951 y110.84620.750.68420.63640.60.57140.54840.52940.51350.5 y20.50.46540.450.44470.44550.450.45710.46610.47650.48780.5(2)解:补全表格中数据的对应点,并分别画出y1与y2关于x的函数图象如图所示:(3)解:①连接AO并延长交BC于点D,连接OB,如图,∵△ABC为等边三角形,点O为△ABC外心,∴∠OBD=∠BAD=30°,AD⊥BC,,OA=OB,∴,∴,∴.当△APQ是等腰三角形时,AP=AQ,∵∠PAQ=60°,∴△PAQ为等边三角形,∴∠APQ=60°,∴∠APQ=∠ABC,∴PQ∥BC,∴∠AOP=∠ADB=90°.∴,∴.∴,∴b=,在x轴上标出横坐标为a的点,如图所示:②根据函数图象可知,函数y2的最大值为0.5,此时x=0.5或x=1.故答案为:0.5或1.【点评】本题主要考查了还是的图象与性质,描点法画出函数的图象,等边三角形的性质,等边三角形的外心的性质,直角三角形的性质,勾股定理,直角三角形的边角关系定理,特殊角的三角函数值,熟练掌握等边三角形的性质和函数图象的画法是解题的关键.26.【分析】(1)把A点的坐标代入解析式求得b=2a,然后利用对称轴公式即可求得;(2)由题意可知点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t ﹣2),分两种情况讨论,得到关于t的不等式组,解不等式组从而求得t的取值范围.【解答】解:(1)∵点A(﹣2,3)在抛物线y=ax2+bx+3(a>0)上,∴3=4a﹣2b+3,∴b=2a,∴t=﹣=﹣1;(2)∵a>0,∴抛物线y=ax2+bx+3(a>0)开口向上,当x>t时,y随x的增大而增大,∵当t+1<m<t+2时,都有y1>y3>y2,∴点A(﹣2,y1)在对称轴的左侧,C(m,y3)在对称轴的右侧,∵点A(﹣2,y1),B(2,y2),C(m,y3)在抛物线y=ax2+bx+3(a>0)上,∴点A(﹣2,y1)关于直线x=t的对称点为(2t+2),B(2,y2)关于直线x=t的对称点为(2t﹣2),当t≥2时,则,解得2≤t≤3;当t<2时,则,解得1≤t<2,故1≤t≤3.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟练掌握二次函数的性质是解题的关键.27.【分析】(1)根据等腰直角三角形的性质证明∠AEP=∠APE=67.5°,进而可以解决问题;(2)结合(1)即可补全图形,作CQ∥AP交BE于点Q,证明△BDF≌△CEQ(ASA),得BF=CQ,再根据等腰直角三角形的性质即可解决问题.【解答】解:(1)在△ABC中,∵∠ABC=∠ACB=45°,∴AB=AC,∠BAC=90°,∴∠ABE+∠AEB=90°,∵AM⊥BC,∴∠MAC=BAC=45°,BM=CM,∵AP=AE,∴∠AEP=∠APE=(180°﹣∠MAC)=(180°﹣45°)=67.5°,∵DF⊥BE,∴∠ABE+∠BDF=90°,∴∠BDF=∠AEP=67.5°;(2)如图,即为补全的图形,线段CF,MP,AB的数量关系为:CF=2MP+AB,证明:如图2,作CQ∥AP交BE于点Q,∵CO∥AP,BM=CM,∴==,∴CQ=2MP,∵AM⊥BC,∴∠AMC=90°,∵CQ∥AP,∴∠BCQ=∠AMC=90°,∴∠QCE=180°﹣∠ACB﹣∠BCQ=45°,∵∠DBF=∠ABC=45°,∴∠DBF=∠QCE,∵DG⊥BE,∴∠DGB=∠BAC=90°,∵∠DBG=∠ABE,∴∠D=∠E,∵AD=AE,AB=AC,∴AD﹣AB=AE﹣AC,∴BD=CE,∴△BDF≌△CEQ(ASA),∴BF=CQ,∵CF=BF+BC,BC=AB,∴CF=CQ+√AB=2MP+AB.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,平行线分线段成比例定理,解决本题的关键是得到△BDF≌△CEQ.28.【分析】(1)a=0,则直线l为x轴,据此求出P1,P2的对称点P1′,P2′,然后可以求出P1P1′和P2P2′的长度,用勾股定理求出Q1,Q2,Q3,Q4到原点的距离,判断是否符合新定义即可;(2)因为直线y=ax过圆心O,所以P′也在圆上,所以PP′不大于圆的直径,因为存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,所以线段AB上存在到O的距离不小于2的点,也存在不大于2的点,据此解答;(3)根据P所在位置分类讨论,得出PP′的取值范围,从而根据新定理求出MN的长度的最大值,从而得解.【解答】解:(1)当a=0时,直线l为y=0,即x轴,∵P1(,),P2(﹣,﹣),∴P1′(,﹣),P2′(﹣,),∴P1P1′=,P2P2′=,∵Q1(1,2),Q2(,),Q3(﹣1,﹣1),Q4(﹣,﹣),∴OQ1=,OQ2=,OQ3=,OQ4=2,∴点P1关于直线l的“衍生点”是Q2,点P2关于直线l的“衍生点”是Q3;故答案为:Q2,Q3;(2)∵直线l:y=ax过圆心O,∴P′也在⊙O上,∴PP′≤2,∵存在点S是点P关于直线l的“衍生点”,点T不是点P关于直线l的“衍生点”,∴线段AB上存在到O的距离不小于2的点,也存在不大于2的点,令x=0,则y=m,令y=0,则x=﹣m,∴A(﹣m,0),B(0,m),当OA=OB=2时,线段AB上所有点到O的距离都不大于2,此时,m=±2,又∵y=ax不能是y轴,∴(1,0)和(﹣1,0)不能同时是P和P′,∴m=±2符合题意;当O到线段AB的距离是2时,∵OA=OB,OA⊥OB,∴△AOB是等腰直角三角形,∴OA=2,∴m=±2,∴要满足线段AB上存在到O的距离不小于2的点,也存在不大于2的点,需要满足:﹣2≤m≤﹣2或2≤m≤2,∴﹣2≤m≤﹣2或2≤m≤2;(3)∵﹣1≤a≤1,∴在图中作直线y=x和直线y=﹣x,将⊙O分成四份,如图:①当P在或上时,当P,P′重合时,PP′=0,当PP′为直径时,PP′=2,∴0≤PP′≤2,∴D(s)=2,②当P在或上时,当PP′为直径时,PP′=2,当P在y轴上时,直线l为y=x或y=﹣x时,PP′取最小值,此时,PP′=,∴≤PP′≤2,∴D(s)=2﹣,综上所述,D(s)的最小值为2﹣.【点评】本题主要考查了圆的综合题,结合一次函数的图象、轴对称的性质、勾股定理等知识点,充分理解新定义,是本题解题的关键。

2024年北京市九年级中考一模数学汇编:平行四边形(含解析)

2024年北京市九年级中考一模数学汇编:平行四边形(含解析)

2024北京初三一模数学汇编平行四边形一、单选题1.(2024北京朝阳初三一模)如图,四边形是正方形, 点分别在的延长线上, 且,设. 给出下面三个结论:①;②;上述结论中,所有正确结论的序号是( )A .①②B .②③C .①③D .①②③2.(2024北京丰台初三一模)如图,在正方形中,点E ,F 分别是边上的点,,且,过点E 作于点H ,过点F 作于点G ,交于点D ,连接设,,,给出下面三个结论:①②;③.上述结论中,所有正确结论的序号是( )A .①②B .①③C .②③D .①②③3.(2024北京平谷初三一模)如图,正方形中,点、、、分别为、、、边上的点,点、、为对角线上的点,四边形和四边形均为正方形,它们的面积分别表示为和,给出下面三个结论:ABCD E F ,AB BC ,BE CF =AD a AE b AF c ===,,a b c +>22ab c <2a >.ABCD AD AB ,AE AF =0AE ED <<EH BC ⊥FG CD ⊥EH FG ,OB OD BD ,,.AE a =ED b =BD c =a b +>c >a b +>ABCD E H G F AB BC CD AD K M N BD EKNF MHCG 1S 2S①;②;③.上述结论中,所有正确结论的序号是( )A .②B .①③C .②③D .①②③4.(2024北京东城初三一模)在平面直角坐标系中,点,,为的顶点,则顶点D 的坐标为( )A .B .C .D .二、填空题5.(2024北京房山初三一模)如图,在矩形中,,分别为,的中点,则的值为 .6.(2024北京顺义初三一模)如图,在矩形中,直线分别交于点E ,F ,O ,只需添加一个条件即可证明,这个条件可以是 (写出一个即可).7.(2024北京海淀初三一模)如图,在正方形中.点E ,F ,G 分别在边,,上,.若,,则的度数为 (用含的式子表示).三、解答题8.(2024北京平谷初三一模)如图,在中,,,点D 为边中点,于E ,作的平分线交于点F ,过点E 作的垂线交于点G ,交于点H .12S S =2DF AF =12924ABCD S S S =+正方形xOy ()0,2A ()1,0B -()2,0C ABCD Y ()3,2-()2,2()3,2()2,3ABCD M N BC CD MN ACABCD EF ,,AD BC BD BOF DOE △△≌ABCD CD AD BC FD CG <FG AE =1a ∠=2∠a ABC 90BAC ∠=︒AB AC =BC DE AB ⊥EDC ∠AC DF DF BC(1)依题意补全图形;(2)求证:;(3)判断线段、与之间的数量关系,并证明.9.(2024北京门头沟初三一模)如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.(1)求证:四边形是菱形;(2)若,,求的长.10.(2024北京平谷初三一模)如图,中,,点D 、E 分别是边的中点,连接并延长,使,连接.(1)求证:四边形是平行四边形;(2)若,求证:四边形是菱形.DH BE =FD HC BE ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF BCFD 1AD =2CF =BF Rt ABC △90ACB ∠=︒BC AB 、DE 2EF DE =AF CE 、ACEF 30B ∠=︒ACEF11.(2024北京通州初三一模)如图,将线段绕点A 逆时针旋转度()得到线段,连结,点N 是的中点,点D ,E 分别在线段,的延长线上,且.(1)________(用含的代数式表示);(2)连结,点F 为的中点,连接,,.①依题意补全图形;②若,用等式表示线段与的数量关系,并证明.12.(2024北京东城初三一模)如图,四边形是菱形.延长到点E ,使得,延长到点F ,使得,连接,,,.(1)求证:四边形是矩形;(2)若,,求的长.13.(2024北京顺义初三一模)如图,在正方形中,点E ,F 分别在,的延长线上,且,的延长线交于点G .(1)求的度数;AB α0180α︒<<︒AC BC BC AC BC CE DE =EDC ∠=αBD BD AF EF NF AF EF ⊥NF CE ABCD BA AE AB =DA AF AD =BD DE EF FB BDEF 120ADC ∠=︒2EF =BF ABCD DC CB BF CE =EB AF AGE ∠(2)在线段EG 上取点H ,使得,连接,.①依题意补全图形;②用等式表示线段与的数量关系,并证明.14.(2024北京海淀初三一模)如图,在平行四边形中,O 为的中点,点E ,F 分別在上,经过点O ,.(1)求证:四边形为菱形;(2)若E 为的中点,,.求的长.15.(2024北京东城初三一模)如图,在正方形中,将边所在直线绕点逆时针旋转度得到直线,作点关于直线的对称点,连接.(1)依题意补全图形;(2)求的度数;(3)延长分别交直线于点,试探究:线段和之间的数量关系,并证明.16.(2024北京东城初三一模)如图,在等腰中,平分,过点作交的延长线于,连接,过点作交的延长线于.GH AG =AH CH CH GB ABCD AC BC AD ,EF AE AF =AECF BC 3AE =4AC =AB ABCD AD D αDM A DM P CP DP 、DPC ∠DP CP 、AB AD 、E F 、DE BE 、AF ABC ,AB BC BO =ABC ∠A AD BC ∥BO D CD D DE BD ⊥BC E(1)判断四边形的形状,并说明理由;(2)若,求的长.ABCD 4,120AB ABE =∠=︒DE参考答案1.A【分析】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,证明,结合三角形的三边关系判断①;完全平方公式结合勾股定理判定②;勾股定理判断③.【详解】解:∵正方形,∴,∵,∴,∴,∴,∵,∴;故①正确;∵,即:,∴,∴;故②正确;,且为动点,∴无法确定和的关系,故③错误;故选A .2.A【分析】本题考查了正方形的性质、勾股定理、三角形的三边关系等知识点,①根据即可判断;②根据题意可推出四边形是正方形,结合即可判断;③证,结合即可判断;【详解】解:∵四边形是正方形,∴∴即:,故③错误;∵,,∴四边形均是矩形∵,∴四边形是正方形∴∴DAE BAF △≌△ABCD ,90ADAB BC DAB ABC ==∠=∠=︒BE CF =AE BF =DAE BAF △≌△AF DE c ==AD AE DE +>a b c +>222AD AE DE +=222+=a b c ()2222220b a a ab b c ab -=-+=->22ab c <c =,E F c 2a BD ==AFOE OE DE DO +>DEO BFO ≌△△BO DO BD +>ABCD ,AB AD BD ===AD AE ED BD =+=a b +=EH BC ⊥FG CD ⊥,,AEHB AFGD AFOE AE AF =AFOE AE AF OE OF a====OD ==∵∴①正确;∵,∴∵∴∴∵∴,故②正确;故选:A3.C【分析】本题考查了正方形的性质,等腰直角三角形的性质,解题的关键是掌握正方形的性质.根据正方形的性质和等腰直角三角形的性质可得,,,进而得到,根据正方形的面积公式即可判断①;根据,,,即可判断②;由,,可判断③.【详解】解:①四边形是正方形,,四边形和四边形均为正方形,,,和都是等腰直角三角形,,,同理可得,,,,,故①错误;②和都是等腰直角三角形,,,四边形为正方形,,,故②正确;OE DE DO+>a b +>,AD AB AEAF ==DE BF=90,,DEO BFO OE OF ∠=∠=︒=DEO BFO≌△△OD BO ==BO DO BD+>c >12BH CH MH BC ===BK EK KN ==DN KN =13EK BD ==DF =E F F =FN EF =212299ABCD S BC S ==正方形221144ABCD S BC S ==正方形ABCD ∴45ABD CBD ∠=∠=︒ EKNF MHCG ∴90BHM CHM ∠=∠=︒90BKE NKE ∠=∠=︒∴BEK △B M H V ∴12BH CH MH BC ===BK EK KN ==DN KN =∴13EK BD BC ==∴222129S EK BC ⎫===⎪⎪⎭22221124S MH BC BC ⎛⎫=== ⎪⎝⎭∴12S S ≠ AEF △DFN △∴DF E F F = EKNF ∴FN EF =∴2DF AF =③由①知:,,,故③正确;故选:C .4.C【分析】本题主要考查了平行四边形的性质,坐标与图形,勾股定理,设点D 的坐标为,由平行四边形对角线中点坐标相同可得,解方程即可得到答案.【详解】解:设点D 的坐标为,由平行四边形对角线中点坐标相同可得,∴,∴点D 的坐标为,故选:C .5./【分析】此题考查矩形的性质,三角形中位线定理.连接,利用三角形中位线定理得出,进而利用矩形的性质解答即可.【详解】解:连接, 四边形是矩形,,,分别为,的中点,是是中位线,,,212299ABCD S BC S ==正方形221144ABCD S BC S ==正方形∴122919244249ABCD ABCD ABCD S S S S S ++=⨯⨯=正方形正方形正方形(),m n 0212220022m n +-+⎧=⎪⎪⎨++⎪=⎪⎩(),m n 0212220022m n +-+⎧=⎪⎪⎨++⎪=⎪⎩32m n =⎧⎨=⎩()3,2120.5BD 12MN BD =BD ABCD AC BD ∴=M N BC CD MN ∴CDB △∴12MN BD =∴12MN AC =故答案为:.6.(答案不唯一)【分析】本题考查了矩形的性质,全等三角形的判定,熟练掌握相关知识点是解题的关键.根据矩形的性质得出,确定,再由全等三角形的判定即可证明.【详解】解:添加条件为:,证明:∵矩形,∴,∴,∵,,∴,故答案为:(答案不唯一).7./【分析】本题主要考查了正方形的性质,矩形的判定和性质,三角形全等的判定和性质,过点G 作于点H ,证明,得出,求出,根据,即可求出结果.【详解】解:过点G 作于点H ,如图所示:∵四边形为正方形,∴,,,∵,∴四边形为矩形,∴,∴,∵,∴,∴,∵,∴,∴,12OE OF =AD BC ∥DEO BFO ∠=∠OE OF =ABCD AD BC ∥DEO BFO ∠=∠DOE BOF ∠=∠OE OF =(ASA)BOF DOE △△≌OE OF =180α︒-180α-+︒GH AD ⊥()Rt Rt HL ADE GHF ≌DAE HGF ∠=∠90EOF ∠=︒2360DEA D EOF ∠+∠+∠+∠=︒GH AD ⊥ABCD AB BC CD AD ===90C D ∠=∠=︒AB CD ∥90GHD D C ∠=∠=∠=︒CDHG GH CD =GH AD =FG AE =()Rt Rt HL ADE GHF ≌DAE HGF ∠=∠90HGF HFG ∠+∠=︒90DAE HFG ∠+∠=︒90AOF ∠=︒∴,∵,∴,∵,∴.故答案为:.8.(1)见解析(2)见解析(3),见解析【分析】(1)根据题意补全图形即可;(2)通过证明,得到,根据题意易得,由,可得为等腰直角三角形,于是;(3)过点作于点,得为的中位线,则,根据三角形内角和定理求得,于是,进而,以此得出,即,在中,利用勾股定理即可得到结论.【详解】(1)解:补全图形如图所示.(2)证明:平分,,,,在和中,,,,,,在中,,,为等腰直角三角形,,又,即,为等腰直角三角形,90EOF ∠=︒AB CD ∥1DEA ∠=∠2360DEA D EOF ∠+∠+∠+∠=︒236019090180a ∠=︒-∠-︒-︒=︒-180α︒-222BE HC DF +=ASA EDG HDG ≌DE DH =45B ∠=︒DE AB ⊥BDE △BE DE DH ==F FN CD ⊥N DE ABC BD CD =67.5CDF CFD ∠=∠=︒CD CF BD ==CN FN BE DE DH ====CD DH CD CN -=-CH DN =Rt DFN DF EDC ∠EDG HDG ∴∠=∠EH DF ⊥ 90EGD HGD ∴∠=∠=︒EDG △HDG △EGD HGD ∠=∠DG DG =EDG HDG ∠=∠(ASA)EDG HDG ∴ ≌D E D H ∴=ABC 90BAC ∠=︒AB AC =ABC ∴ 45B ∴∠=︒DE AB ∵⊥90DEB ∠=︒BDE ∴.(3)解:,证明如下:如图,过点作于点,则为等腰直角三角形,,,又为的中点,为的中位线,,,,平分,,,,即,,,,即,在中,由勾股定理得,.【点睛】本题主要考查等腰三角形的判定与性质、全等三角形的判定于性质、三角形中位线定理、角平分线的定义、勾股定理,解题关键是利用等腰直角三角形的性质将目标线段转化到直角三角形中,再根据勾股定理解决问题.9.(1)见解析(2)【分析】本题考查了勾股定理,全等三角形的判定与性质,平行四边形、菱形的判定与性质.关键是掌握有一组邻边相等的平行四边形是菱形,以及直角三角形两直角边平方和等于斜边平方.(1)先证明,则,得出四边形是平行四边形,结合即可求证四边形是菱形;(2)根据菱形的性质得出,进而得出BE DE DH ∴==222HC BE FD +=F FN CD ⊥N CFN 90DEB CAB ∠=∠=︒ DE AC ∴∥E AB DE ∴ABC BD CD ∴=45BDE ∠=︒ 135CDE ∴∠=︒DF EDC ∠67.5EDF CDF ∴∠=∠=︒45C ∠=︒ 18067.5CFD CDF C ∴∠=︒-∠-∠=︒CDF CFD ∠=∠CD CF BD ∴==CN FN BE DE DH ∴====CD DH CD CN ∴-=-CH DN =Rt DFN 222DN FN DF +=222HC BE FD ∴+=()AAS DEF CEB ≌DF BC =BCFD BD BC =BCFD 2BD DF CF ===3,AF AD CF AB =+===根据勾股定理即可得出【详解】(1)证明:∵,∴,∴,∵点E 为中点,∴,在和中,,∴,∴,∴四边形是平行四边形,∵,∴四边形是菱形;(2)解:∵四边形是菱形,,∴,∵,,∴∴10.(1)见解析(2)见解析【分析】(1)由点D 、E 分别是边的中点,可得,且,则,进而可证四边形是平行四边形;(2)由E 为中点,可得,由,可得,证明是等边三角形,则,进而可证四边形是菱形.【详解】(1)证明:∵点D 、E 分别是边的中点,∴,且,∵,∴,∴四边形是平行四边形;(2)证明:中,,E 为中点,BF ==AD BC ∥DF BC ∥,DFE CBE FDE BCE ∠=∠∠=∠CD CE DE =DEF CEB DFE CBE FDE BCE CE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS DEF CEB ≌DF BC =BCFD BD BC =BCFD BCFD 2CF =2BD DF CF ===1AD =90A ∠=︒3,AF AD CF AB =+===BF ==BC AB 、∥D E A C 12DE AC =EF AC =ACEF AB 12CE AB AE ==30B ∠=︒60BAC ∠=︒AEC △AC EC =ACEF BC AB 、∥D E A C 12DE AC =2EF DE =EF AC =ACEF Rt ABC △90ACB ∠=︒AB∴,∵,∴,∴是等边三角形,∴,∴四边形是菱形.【点睛】本题考查了中位线,平行四边形的判定,直角三角形斜边的中线等于斜边的一半,等边三角形的判定与性质,菱形的判定等知识.熟练掌握中位线,平行四边形的判定,直角三角形斜边的中线等于斜边的一半,等边三角形的判定与性质,菱形的判定是解题的关键.11.(1)(2)①见解析;②,证明见解析【分析】本题考查了根据条件画图,平行四边形的性质和判定,全等三角形的判定和性质,解直角三角形等知识,解决问题的关键是作辅助线,构造全等三角形.(1)根据旋转和题意即可得出;(2)①根据题意画出图形即可;②延长至点,使,连接.证明四边形为平行四边形,证明,算出,,结合三角形中位线定理即可求解;【详解】(1)∵,由旋转得,∴,∵,∴.(2)①补全图形如图:②延长至点,使,连接.12CE AB AE ==30B ∠=︒60BAC ∠=︒AEC △AC EC =ACEF 1902α︒-CE =1902CDE DCE ACB α∠=∠=∠=︒-AF M FM AF =,,,BM DM EM AE ABMD ACE MDE V V ≌90α=︒45ECD EDC ∠=∠=︒A α∠=AB AC =18019022ABC ACB αα︒-∠=∠==︒-CE DE =1902CDE DCE ACB α∠=∠=∠=︒-AF M FM AF =,,,BM DM EM AE∵点为线段中点,∴四边形为平行四边形,,,,,,又,,∴,∴,,,,∴,∴,∵为中点,为中点,∴是中位线,,∴.12.(1)见解析(2)【分析】(1)先证明四边形为平行四边形,再由菱形的性质得,则,然后由矩形的判定即可得出结论;(2)由矩形的性质得,,再由菱形的性质得,,进而证明F BD ABMD ,AB DM AB DM ∴=∥180BAC ADM ∴∠+∠=︒180ADM α∴∠=︒-AF EF ⊥ AE ME ∴=,AB AC EC ED ==Q AC DM ∴=()ACE MDE SSS ≌1180902MDE ACE ACB α∠=∠=︒-∠=︒+11909022ADM MDE CDE ααα⎛⎫∴∠=∠-∠=︒+-︒-= ⎪⎝⎭180αα∴︒-=90α∴=︒45ECD EDC ∠=∠=︒CD =N BC F BD NF BDC 2CD NF ∴=CE=BDEF AB AD =BE DF =90DBF ∠=︒2BD EF ==60ADB ∠=︒AB AD =是等边三角形,得,则,然后由勾股定理求出的长即可.【详解】(1)证明:,,四边形为平行四边形,四边形为菱形,,,,平行四边形是矩形;(2)解:由(1)可知,,四边形是矩形,,,四边形是菱形,,,是等边三角形,,,即的长为【点睛】本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质以及勾股定理等知识,熟练掌握矩形的判定与性质是解题的关键.13.(1)(2),证明见解析【分析】本题考查了正方形的性质,平行线的性质,三角形的全等判定,等腰直角三角形的性质,熟练的掌握它们的性质和判定,作出合理的辅助线是解决问题的关键.(1)根据题意可得,,,,由此可证,得到,再根据,,即可得到.(2)依据题意补充图形后,过点作交于点,根据,,可得到、为等腰直角三角形,再证,即可得到线段与的数量关系.【详解】(1)解:如图所示,为正方形,ABD △2AB AD BD ===24DF AD ==BF AE AB =Q AF AD =∴BDEF ABCD AB AD ∴=AE AB AF AD ∴===BE DF ∴=∴BDEF AB AD =BDEF 90DBF ∴∠=︒2BD EF == ABCD 1602ADB ADC ∴∠=∠=︒AB AD =ABD ∴ 2AB AD BD ∴===24DF AD ∴==BF ∴==BF 90AGE ∠=︒CH =AB BC =BF CE =90ABF BCE ∠=∠=︒ABF BCE ≌F E ∠=∠90E CBE ∠+∠=︒CBE GBF ∠=∠90AGE ∠=︒B BI AH ∥AF I GH AG =BI AH ∥GAH GBI AIB BHC ≌CH GB ABCD,,,, ,,,,,,..(2)解:① 如图所示,在线段上取点H ,使得,连接,,② 过点作交于点,如图所示,,,为等腰直角三角形,,,,,为等腰直角三角形,,,即,(第一问已证),,∴AB BC =90ABC DCB ∠=∠=︒∴90ABF BCE ∠=∠=︒ 90AB BC ABF BCE BF CE =⎧⎪∠=∠=︒⎨⎪=⎩∴ABF BCE ≌∴F E ∠=∠ 90E CBE ∠+∠=︒CBE GBF ∠=∠∴90F GBF ∠+∠=︒∴90FGB ∠=︒∴18090AGE FGB ∠=︒-∠=︒∴90AGE ∠=︒EG GH AG =AH CH B BI AH ∥AF I 90AGE ∠=︒GH AG =∴GAH ∴45GAH GHA ∠=∠=︒ BI AH ∥∴45GIB GAH ∠=∠=︒45GBI GHA ∠=∠=︒∴GBI ∴GB GI =∴AG GI GH GB -=-AI HB = ABF BCE ≌∴FAB EBC ∠=∠又 ,,,为等腰直角三角形,,.14.(1)证明见解析;(2)【分析】本题考查了平行四边形的性质、菱形的判定与性质,勾股定理,全等三角形的判定与性质,正确掌握相关性质内容是解题的关键.(1)先得出,.结合线段中点,得出,得证,根据一组邻边相等的平行四边形是菱形,即可作答.(2)先得出,结合菱形性质,在中,由勾股定理得,代入数值进行计算,即可作答.【详解】(1)证明:四边形为平行四边形,.,.为的中点,...,四边形为平行四边形.,四边形为菱形.(2)解:为的中点,,.四边形为菱形,..在中,由勾股定理得为的中点,【点睛】本题考查了平行四边形的性质、菱形的判定与性质,勾股定理,全等三角形的判定与性质,正确 AB BC =∴AIB BHC ≌∴CH BI = GBI ∴BI =∴CH =AFO CEO ∠=∠FAO ECO ∠=∠AO CO =AOF COE ≌122OA AC ==Rt AOE △OE = ABCD AD BC ∴∥AFO CEO ∴∠=∠FAO ECO ∠=∠O AC AO CO ∴=AOF COE ∴ ≌AF EC ∴=AF EC ∴AECF = AE AF ∴AECF O AC 4AC =122OA AC ∴== AECF AC EF ∴⊥90AOE ∴∠= ∴Rt AOE △OE ===E BC 2AB OE ∴==掌握相关性质内容是解题的关键.15.(1)见解析(2)(3)点在线段上时,;点在线段延长线上时,;点在线段延长线上时,,见解析【分析】本题考查四边形综合题,熟知轴对称作图及性质,根据题意分类讨论是解题的关键.(1)作点关于直线的对称点,连接即可;(2)连接,根据轴对称性质可得,,可求出,根据等腰三角形的性质,利用三角形内角和可求出;(3)分三种情况,当交线段、线段延长线上、线段延长线上于点时,分别可证,进而可得,即可求证.【详解】(1)解:如图,作点关于直线的对称点,连接;(2)连接,点关于直线对称,垂直平分,,,,四边形为正方形,,,45DPC α∠=︒+E AB DE BE AF =+E AB AF DE BE =+E BA BE DE AF =+A DM P CP DP 、AP AD PD =ADM PDM α∠=∠=902CDP α∠=︒-()1180902452DPC αα∠=︒-︒+=︒+DP AB AB BA E CDF DAK △≌△DE EK =A DM P CP DP 、AP ,A P DM DM ∴AP ∴AD PD =∴PDM ADM α∠=∠=902PDC α∴∠=︒- ABCD AD DC ∴=∴DP DC =;(3)当交线段于点时,延长至,使,连接,,,又,在和中,,由(2)可知,,,,,,,,,即;当交线段延长线于点时,在延长线上截取,连接,()11802DPC PDC ∴∠=︒-∠45DPC α∴∠=︒+①DP AB E AB K BK AF =DK ,AD AB BK AF == DF AK ∴=,90CD AD CDA DAK =∠=∠=︒ CDF DAK DC AD CDF DAKDF AK =⎧⎪∠=∠⎨⎪=⎩CDF DAK ∴△≌△F K ∴∠=∠∴45DCP DPC α∠=∠=︒+9045K F DCP α∴∠=∠=︒-∠=︒-DC AB ∥45CDK K α∴∠=∠=︒-9045EDK ADE CDK α∴∠=︒-∠-∠=︒-EDK K ∴∠=∠DE EK ∴=DE BE BK BE AF ∴=+=+DE BE AF =+②DP AB E AB BK AF =DK由同理可证,,,,,,即;当交线段延长线于点时,在上截取,连接,由题意可知,,,,,又,,在和中,①CDF DAK △≌△45K F α∴∠=∠=︒-9045EDK ADE CDK α∴∠=︒-∠-∠=︒-K KDE ∴∠=∠ED EK ∴=ED BK BE AF BE ∴=-=-AF DE BE =+③DP BA E BA BK AF =DK DP DC =()11802DCP PDC ∴∠=︒-∠()2360908102PDC ADM MDP ADC αα∠=∠+∠+∠=︒-+︒=︒- ()118081023152DCP αα∴∠=︒-︒+=-︒= AD AB DF AK ∴=CDF DAK DC AD CDF DAKDF AK =⎧⎪∠=∠⎨⎪=⎩CDF DAK ∴△≌△,,又,,,,即.16.(1)四边形是菱形,理由见详解(2)【分析】本题考查了菱形的判定与性质,等腰三角形的性质,平行线的性质,熟练掌握菱形的判定与性质是解题的关键.(1)先利用等腰三角形的三线合一性质可得,再利用平行线的性质可得,,从而利用证明,进而可得,再利用对角线互相平分线的四边形是平行四边形可得四边形是平行四边形,然后利用菱形的定义可得四边形是菱形,即可解答;(2)先利用角平分线的定义可得,再利用菱形的性质可得,从而可得是等边三角形,进而可得,然后利用垂直定义可得,从而可得,进而可得,再利用勾股定理进行计算,即可解答.【详解】(1)解:四边形是菱形,理由:,平分,,,,,,,四边形是平行四边形,,四边形是菱形;(2)平分,,,四边形是菱形,,是等边三角形,,315ADK DCP α∴∠=∠=-︒()90315405AKD DFC αα∴∠=∠=︒--︒=︒-()2360315405EDK EDA ADK ααα∠=∠+∠=︒-+-︒=︒- EDK AKD ∴∠=∠ED EK ∴=DE BE BK BE AF ∴=-=-BE DE AF =+ABCD AO CO =DAO ACB ∠=∠ADO CBO ∠=∠AAS ADO CBO ≌DO BO =ABCD ABCD 60DBC ∠=︒3BC CD AB ===BCD 4BD BC ==90BDE ∠=︒30E ∠=︒28BE BD ==ABCD AB BC = BO ABC ∠AO CO ∴=AD BE DAO ACB ∴∠=∠ADO CBO ∠=∠()ADO CBO AAS ∴ ≌DO BO ∴=∴ABCD AB BC = ∴ABCD BO ABC ∠120ABE ∠=︒1602DBC ABE ∴∠=∠=︒ ABCD 4BC CD AB ∴===BCD ∴ 4BD BC ∴==,,,,的长为BD DE⊥∵90BDE∴∠=︒9030E DBC∴∠=︒-∠=︒28BE BD∴==DE∴=== DE∴。

2021北京中考数学一模分类汇编《几何综合》含答案解析

2021北京中考数学一模分类汇编《几何综合》含答案解析

2021北京市中考数学一模分类汇编——几何综合1.(2021•海淀区一模)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM =80°.D在射线CM上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.2.(2021•西城区一模)如图,在△ABC中,AB=AC,∠BAC>90°,D是△ABC内一点,∠ADC=∠BAC.过点B作BE∥CD交AD的延长线于点E.(1)依题意补全图形;(2)求证:∠CAD=∠ABE;(3)在(1)补全的图形中,不添加其他新的线段,在图中找出与CD相等的线段并加以证明.3.(2021•东城区一模)已知∠MAN=30°,点B为边AM上一个定点,点P为线段AB上一个动点(不与点A,B重合),点P关于直线AN的对称点为点Q,连接AQ,BQ,点A 关于直线BQ的对称点为点C,连接PQ,CP.(1)如图1,若点P为线段AB的中点;①直接写出∠AQB的度数;②依题意补全图形,并直接写出线段CP与AP的数量关系;(2)如图2,若线段CP与BQ交于点D.①设∠BQP=α,求∠CPQ的大小(用含α的式子表示);②用等式表示线段DC,DQ,DP之间的数量关系,并证明.4.(2021•朝阳区一模)如图,在等腰三角形ABC中,∠BAC<60°,AB=AC,D为BC 边的中点,将线段AC绕点A逆时针旋转60°得到线段AE,连接BE交AD于点F.(1)依题意补全图形(2)求∠AFE的度数;(3)用等式表示线段AF,BF,EF之间的数量关系,并证明.5.(2021•丰台区一模)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),将射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.6.(2021•石景山区一模)在△ABC中,AB=AC,∠BAC=α(0°<α<60°).点E是△ABC内动点,连接AE,CE,将△AEC绕点A顺时针旋转α,使AC边与AB重合,得到△ADB,延长CE与射线BD交于点M(点M与点D不重合).(1)依题意补全图1;(2)探究∠ADM与∠AEM的数量关系为;(3)如图2,若DE平分∠ADB,用等式表示线段MC,AE,BD之间的数量关系,并证明.7.(2021•通州区一模)已知点P为线段AB上一点,将线段AP绕点A逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD 中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM∥BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.8.(2021•房山区一模)已知:在△ABC中,∠A=45°,∠ABC=α,以BC为斜边作等腰Rt△BDC,使得A,D两点在直线BC的同侧,过点D作DE⊥AB于点E.(1)如图1,当α=20°时,①求∠CDE的度数;②判断线段AE与BE的数量关系;(2)若45°<α<90°,线段AE与BE的数量关系是否保持不变?依题意补全图2,并证明.9.(2021•平谷区一模)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D 不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明.10.(2021•顺义区一模)如图,等腰三角形ABC中,AB=AC,CD⊥AB于点D,∠A=α.(1)求出∠DCB的大小(用含α的式子表示);(2)延长CD至点E,使CE=AC,连接AE并延长交CB的延长线于点F.①依题意补全图形;②用等式表示线段EF与BC之间的数量关系,并证明.11.(2021•延庆区一模)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②若AB=6,EC=2,求BF的长;(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.12.(2021•大兴区一模)如图1,等边△ABC中,点P是BC边上一点,作点C关于直线AP的对称点D,连接CD,BD,作AE⊥BD于点E;(1)若∠P AC=10°,依题意补全图1,并直接写出∠BCD的度数;(2)如图2,若∠P AC=α(0°<α<30°),①求证:∠BCD=∠BAE;②用等式表示线段BD,CD,AE之间的数量关系并加以证明.13.(2021•门头沟区一模)在正方形ABCD中,将边AD绕点A逆时针旋转α(0°<α<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG∥AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<α<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.2021北京市中考数学一模分类汇编——几何综合1.(2021•海淀区一模)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM =80°.D在射线CM上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.【分析】(1)由题意画出图形,如图所示;(2)由“SAS”可证△AEC≌△DEF,可得AC=DF=AB;(3)由题意可得点G在以点D为圆心,DC为半径的圆上,点G在以点F为圆心,FB 为半径的圆上,则两圆的交点为G,由“SSS”可证△ABF≌△DFG,可得∠BAF=∠FDG =140°,即可求解.【解答】解:(1)如图所示:(2)AB=DF,理由如下:∵E是AD的中点,∴AE=DE,∵C关于点E的对称点为F,∴CE=EF,又∵∠AEC=∠FED,∴△AEC≌△DEF(SAS),∴AC=DF,∵AB=AC,∴AB=DF;(3)如图2,连接AF,∵AE=DE,CE=EF,∴四边形ACDF是平行四边形,∴∠ACM+∠CAF=180°,AF=CD,DF=AC=AB,∴∠CAF=100°=∠CDF,∴∠BAF=140°,∵DG=DC,∴点G在以点D为圆心,DC为半径的圆上,∵FG=FB,∴点G在以点F为圆心,FB为半径的圆上,∴两圆的交点为G,∵AB=DF,AF=DG,FB=FG,∴△ABF≌△DFG(SSS),∴∠BAF=∠FDG=140°,∴∠CDG=40°,同理可证△ABF≌△DFG',∴∠BAF=∠G'DF=140°,∴∠CDG'=360°﹣100°﹣140°=120°,综上所述:∠CDG=40°或120°.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形的判定和性质,确定点G的位置是本题的关键.2.(2021•西城区一模)如图,在△ABC中,AB=AC,∠BAC>90°,D是△ABC内一点,∠ADC=∠BAC.过点B作BE∥CD交AD的延长线于点E.(1)依题意补全图形;(2)求证:∠CAD=∠ABE;(3)在(1)补全的图形中,不添加其他新的线段,在图中找出与CD相等的线段并加以证明.【分析】(1)根据要求作出图形即可.(2)利用三角形内角和定理以及平行线的性质证明即可.(3)结论:CD=AE,证明△ABE≌△CAT(AAS),即可解决问题.【解答】(1)解:图形如图所示.(2)证明:∵CD∥BE,∴∠CDE=∠AEB,∵∠ADC=∠BAC,∴∠ABC+∠ACB=∠DAC+∠ACD=∠CDE=∠AEB,∵∠BAE+∠ABE+∠AEB=180°,∠BAE+∠DAC+2∠ABC=180°,∴∠BAE+∠ABE+2∠ABC=180°,∴∠CAD=∠ABE.(3)解:结论:CD=AE.理由:在AE的延长线上取一点T,使得CD=CT,∵CD=CT,∴∠T=∠CDT,∵CD∥BE,∴∠AEB=∠T,∵AB=AC,∠ABE=∠CAT,∴△ABE≌△CAT(AAS),∴AE=CT,∴CD=AE.【点评】本题考查作图﹣复杂作图,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会添加常用辅助线,构造全等三角形解决问题.3.(2021•东城区一模)已知∠MAN=30°,点B为边AM上一个定点,点P为线段AB上一个动点(不与点A,B重合),点P关于直线AN的对称点为点Q,连接AQ,BQ,点A 关于直线BQ的对称点为点C,连接PQ,CP.(1)如图1,若点P为线段AB的中点;①直接写出∠AQB的度数;②依题意补全图形,并直接写出线段CP与AP的数量关系;(2)如图2,若线段CP与BQ交于点D.①设∠BQP=α,求∠CPQ的大小(用含α的式子表示);②用等式表示线段DC,DQ,DP之间的数量关系,并证明.【分析】(1)①证明PQ=P A=PB,可得结论.②图形如图所示:结论:PC=P A.证明∠APC=90°,可得结论.(2)①如图2中,连接BC,CQ.证明B,P,Q,C四点共圆,推出∠CPB=∠CQB=∠AQB,由∠APC+∠CPB=180°,推出∠P AQ+∠PDQ=180°,推出∠PDQ=120°,推出∠DQP+∠DPQ=60°,可得结论.②如图2﹣1中,结论:CD=DP+DQ.连接AD,在AD上取一点T,使得DT=DP.利用全等三角形的性质解决问题即可.【解答】解:(1)①∵P,Q关于AN对称,∴AP=AQ,∠P AN=∠QAN=30°,∴△APQ是等边三角形,∴PQ=P A,∵点P为线段AB的中点,∴PB=P A,∴PQ=P A=PB,∴∠AQB=90°.②图形如图所示:结论:PC=P A.理由:∵∠AQB=90°,A,C关于BQ对称,∴AQ=QC,∴PQ=QC=AQ,∴∠CP A=60°,∴=tan60°,∴PC=P A.(2)①如图2中,连接BC,CQ.∵A,C关于BQ对称,∴BC=BA,CQ=AQ,∵BQ=BQ,∴△BQC≌BQA(SSS),∴∠BCQ=∠BAQ=60°,∠BQC=∠BQA,∵∠APQ=60°,∴∠BPQ=120°,∴∠BPQ+∠BCQ=180°,∴B,P,Q,C四点共圆,∴∠CPB=∠CQB=∠AQB,∵∠APC+∠CPB=180°,∴∠P AQ+∠PDQ=180°,∴∠PDQ=120°,∴∠DQP+∠DPQ=60°,∴∠CPQ=60°﹣α.②如图2﹣1中,结论:CD=DP+DQ.理由:连接AD,在AD上取一点T,使得DT=DP.∵∠P AQ+∠PDQ=180°,∴A,P,D,Q四点共圆,∴∠PDT=∠PQA=60°,∵DT=DP,∴△PDT是等边三角形,∴PD=PT,∠DPT=∠QP A=60°,∴∠DPQ=∠TP A,∵PD=PT,PQ=P A,∴△DPQ≌△TP A(SAS),∴DQ=TA,∴AD=DT+AT=PD+DQ,∵A,C关于BQ对称,∴DC=AD,∴CD=DP+DQ.【点评】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,四点共圆等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.4.(2021•朝阳区一模)如图,在等腰三角形ABC中,∠BAC<60°,AB=AC,D为BC 边的中点,将线段AC绕点A逆时针旋转60°得到线段AE,连接BE交AD于点F.(1)依题意补全图形(2)求∠AFE的度数;(3)用等式表示线段AF,BF,EF之间的数量关系,并证明.【分析】(1)根据要求作出图形即可.(2)利用圆周角定理解决问题即可.(3)结论:EF=AF+BF.如图,连接CF,EC,在EF上取一点T,使得FT=FC,连接CT.证明△FCA≌△TCE(SAS),推出AF=ET,可得结论.【解答】解:(1)图形如图所示:(2)∵AB=AC=AE,∴点A是△BCE的外心,∵∠CAE=60°,∠CBE=∠CAE,∴∠CBE=30°,∵AB=AC,BD=DC,∴AD⊥BC,∴∠BDF=90°,∴∠AFE=∠BFD=90°﹣30°=60°.(3)结论:EF=AF+BF.理由:如图,连接CF,EC,在EF上取一点T,使得FT=FC,连接CT.∵AD垂直平分线段BC,∴FB=FC,∴∠BFD=∠CFD=∠AFE=60°,∴∠CFE=60°,∵FT=FC,∴△CFT是等边三角形,∴CF=CT,∠FCT=60°,∵AC=AE,∠CAE=60°,∴△ACE是等边三角形,∴CA=CE,∠ACE=∠FCT=60°,∴∠FCA=∠TCE,∴△FCA≌△TCE(SAS),∴AF=ET,∴EF=FT+ET=BF+AF.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,圆周角定理,等边三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.(2021•丰台区一模)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP(0°<∠ACP<45°),将射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.【解答】解:(1)如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∵AD⊥CP,DF=DE,∴CE=CF,∴∠DCF=∠DCE=45°,∵∠ACB=90°,∴∠ACD+∠ECB=45°,∵∠DCA+∠ACF=∠DCF=45°,∴∠FCA=∠ECB,在△ACF和△BCE中,,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=DE.【点评】本题考查作图﹣旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.6.(2021•石景山区一模)在△ABC中,AB=AC,∠BAC=α(0°<α<60°).点E是△ABC内动点,连接AE,CE,将△AEC绕点A顺时针旋转α,使AC边与AB重合,得到△ADB,延长CE与射线BD交于点M(点M与点D不重合).(1)依题意补全图1;(2)探究∠ADM与∠AEM的数量关系为∠ADM=∠AEM或∠ADM+∠AEM=180°;(3)如图2,若DE平分∠ADB,用等式表示线段MC,AE,BD之间的数量关系,并证明.【分析】(1)按要求作图即可;(2)△AEC绕点A顺时针旋转得到△ADB可得∠AEC=∠ADB,即可得到答案;(3)由∠ADM=∠AEM可得A、M、D、E共圆,证明△AMD≌△EDM得AD=ME,从而可得MC=AE+BD.【解答】解:(1)补全图1如下:(2)当M在线段BD延长线上时,如上图1,∵将△AEC绕点A顺时针旋转得到△ADB,∴∠AEC=∠ADB,∴∠ADM=∠AEM,当M在线段BD上时,如上图2,∵将△AEC绕点A顺时针旋转得到△ADB,∴∠AEC=∠ADB,∵∠AEC+∠AEM=180°,∴∠ADM+∠AEM=180°,故答案为:∠ADM=∠AEM或∠ADM+∠AEM=180°;(3)MC=AE+BD,理由如下:连接AM,△AMD和△AME公共边为AM,且∠ADM=∠AEM,∴A、M、D、E共圆,如图:∵A、M、D、E共圆,∴∠MAD=∠MED,∵DE平分∠ADB,∴∠ADE=∠EDB,∵将△AEC绕点A顺时针旋转得到△ADB,∴AD=AE,BD=EC,∴∠ADE=∠AED,∴∠EDB=∠AED,∴BM∥AE,∴∠DME=∠AEM,∵∠ADM=∠AEM,∴∠DME=∠ADM,在△AMD和△EDM中,,∴△AMD≌△EDM(AAS),∴AD=ME,∴AE=ME,∵MC=ME+EC,∴MC=AE+BD.【点评】本题考查三角形的旋转变换,解题的关键是利用A、M、D、E共圆,证明△AMD ≌△EDM.7.(2021•通州区一模)已知点P为线段AB上一点,将线段AP绕点A逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM∥BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.【分析】(1)由旋转可得,△APC是等边三角形,∠PBD=120°,则∠BPM+∠PBD=180°,所以PM∥BD.(2)延长BM至点G,使得MG=MB,连接AG,BC,GC,PC,可证△CBG是等边三角形且点M是BG的中点,则有CM⊥BM,CM=MB.【解答】解:(1)有题意可得,∠CAP=60°,且AP=AC,∴△APC是等边三角形,∴∠APC=60°,∴∠BPM=60°,又∵∠PBD=120°,∴∠BPM+∠PBD=180°,∴PM∥BD.(2)猜想,CM⊥MB,CM=MB,理由如下:如图2,延长BM至点G,使得MG=MB,连接AG,BC,GC,PC,GD,∵AM=MD,GM=BM,∴四边形AGDB是平行四边形,∴AG=BD,AG∥BD,∴∠BAG=180°﹣∠ABD=60°,∴∠CAG=120°,∵△APC是等边三角形,∴AC=CP,∠CPB=120°,∵PB=DB=AG,∴△CAG≌△CPB(SAS),∴CG=CB,∠ACG=∠PCB,∴∠GCB=60°,∴△CBG是等边三角形,∵GM=BM,∴CM⊥BM,CM=MB.【点评】本题主要考查旋转的性质,等边三角形的性质与判定等;构造合适辅助线是解题关键.8.(2021•房山区一模)已知:在△ABC中,∠A=45°,∠ABC=α,以BC为斜边作等腰Rt△BDC,使得A,D两点在直线BC的同侧,过点D作DE⊥AB于点E.(1)如图1,当α=20°时,①求∠CDE的度数;②判断线段AE与BE的数量关系;(2)若45°<α<90°,线段AE与BE的数量关系是否保持不变?依题意补全图2,并证明.【分析】(1)①由余角的性质可求∠CDE=∠DBE=25°;②通过证明点A,点C,点B,点H四点共圆,由垂径定理可得AE=BE;(2)通过证明点A,点B,点C,点H四点共圆,由垂径定理可得AE=BE.【解答】解:(1)①∵∠CDB=90°,CD=DB,∴∠DBC=∠DCB=45°,∴∠DBE=∠DBC﹣∠ABC=25°,∵DE⊥AB,∴∠DEB=90°=∠CDB,∴∠CDE+∠EDB=∠EDB+∠ABD=90°,∴∠CDE=∠DBE=25°;②AE=BE,理由如下:如图1,延长BD至H,使BD=DH,连接CH,∵BD=DH,CD⊥BD,∴CH=BC,∴∠CHB=∠CBH=45°,∴∠A=∠CHB=45°,∠HCB=90°,∴点A,点C,点B,点H四点共圆,∵∠HCB=90°,∴BH是直径,D是圆心,∵DE⊥AB,∴AE=BE;(2)不变,理由如下:如图2,延长BD至H,使BD=DH,连接CH,∵BD=DH,CD⊥BD,∴CH=BC,∴∠CHB=∠CBH=45°,∴∠A=∠CHB=45°,∠HCB=90°,∴点A,点B,点C,点H四点共圆,∵∠HCB=90°,∴BH是直径,D是圆心,∵DE⊥AB,∴AE=BE.【点评】本题是三角形综合题,考查了等腰直角三角形的性质,四点共圆,垂径定理等知识,证明点A,点B,点C,点H四点共圆是本题的关键.9.(2021•平谷区一模)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D 不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB的上任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC,理由如下:过D作DH⊥CB于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,,∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∠B=45°,∴DH=HB=EF,∴AC=BC=CH+BH=FC+EF;(2)依题意补全图形,结论:EF=FC+AC,理由如下:过D作DH⊥CB交CB的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,,∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∠B=45°,∴DH=HB=EF,∴EF=CH+BC=FC+AC.【点评】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.10.(2021•顺义区一模)如图,等腰三角形ABC中,AB=AC,CD⊥AB于点D,∠A=α.(1)求出∠DCB的大小(用含α的式子表示);(2)延长CD至点E,使CE=AC,连接AE并延长交CB的延长线于点F.①依题意补全图形;②用等式表示线段EF与BC之间的数量关系,并证明.【分析】(1)根据等腰三角形的性质即可得出结论;(2)①根据题意即可补全的图形;②过点E作EH⊥FC于点H,过点A作AG⊥FC于点G,结合(1)证明△AGC≌△CHE 可得CG=EH,设EH=FH=x,则EF=x,进而可得结论.【解答】解:(1)∵等腰三角形ABC中,AB=AC,∠A=α,∴∠ACB=∠B==90°﹣,∵CD⊥AB,∴∠ACD=90°﹣∠A=90°﹣α,∴∠DCB=∠ACB﹣∠ACD=90°﹣﹣90°+α=;(2)①如图即为补全的图形;②=,证明:∵∠ACE=∠ACB﹣∠DCB=90°﹣﹣=90°﹣α,∵CE=AC,∴∠CAE=∠CEA==45°+,∵∠AEC=∠F+∠ECF,∴45°+=∠F+,∴∠F=45°,过点E作EH⊥FC于点H,过点A作AG⊥FC于点G,∴∠BAG=∠CAG=,在△AGC和△CHE中,,∴△AGC≌△CHE(AAS),∴CG=EH,∵∠F=45°,∴FH=EH,设EH=FH=x,则EF=x,∴BC=2CG=2x,∴==.【点评】本题考查了全等三角形的判定与性质,三角形内角和,等腰三角形的性质,解决本题的关键是掌握全等三角形的判定与性质.11.(2021•延庆区一模)在正方形ABCD中,点E在射线BC上(不与点B、C重合),连接DB,DE,将DE绕点E逆时针旋转90°得到EF,连接BF.(1)如图1,点E在BC边上.①依题意补全图1;②若AB=6,EC=2,求BF的长;(2)如图2,点E在BC边的延长线上,用等式表示线段BD,BE,BF之间的数量关系.【分析】(1)①根据要求画出图形即可;②过点F作FH⊥CB,交CB的延长线于H.证明△DCE≌△EHF(AAS),推出EC=FH,DC=EH,推出CE=BH=FH,再利用勾股定理解决问题即可;(2)由②可得△DCE≌△EHF,推出EC=FH,DC=EH,推出CE=BH=FH,再利用等腰直角三角形的性质解决问题即可【解答】解(1)图形如图所示.过点F作FH⊥CB,交CB的延长线于H,∵四边形ABCD是正方形,∴CD=AB=6,∠C=90°,∵∠DEF=∠C=90°,∴∠DEC+∠FEH=90°,∠DEC+∠EDC=90°,∴∠FEH=∠EDC,在△DEC和△EFH中,,∴△DEC≌△EFH(AAS),∴EC=FH=2,CD=BC=EH=6,∴HB=EC=2,∴Rt△FHB中,BF===2.(2)结论:BF+BD=BE.理由:过点F作FH⊥CB,交CB于H,∵四边形ABCD是正方形,∴CD=AB=6,∠DCE=90°,∵∠DEF=∠DCE=90°,∴∠DEC+∠FEH=90°,∠DEC+∠EDC=90°,∴∠FEH=∠EDC,在△DEC和△EFH中,,∴△DEC≌△EFH(AAS),∴EC=FH,CD=BC=EH,∴HB=EC=HF,∴△DCB和△BHF都是等腰直角三角形,∴BD=BC=HE,BF=BH,∵HE+BH=BE,∴BF+BD=BE.【点评】本题考查作图﹣旋转变换,全等三角形的判定和性质,等腰直角三角形的性质和判定等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2021•大兴区一模)如图1,等边△ABC中,点P是BC边上一点,作点C关于直线AP的对称点D,连接CD,BD,作AE⊥BD于点E;(1)若∠P AC=10°,依题意补全图1,并直接写出∠BCD的度数;(2)如图2,若∠P AC=α(0°<α<30°),①求证:∠BCD=∠BAE;②用等式表示线段BD,CD,AE之间的数量关系并加以证明.【分析】(1)由题意画出图形;根据三角形内角和定理求出∠ABD,由∠BCD=∠ACD ﹣∠ACB即可得到结论;(2)①由轴对称的性质可得AP垂直平分BD,可得AB=AD=AC,∠BAP=∠P AD=α,由等腰三角形的性质可求解;②在AE上截取AF=CD,根据全等三角形判定的SAS定理证得△BAF≌△BCD,由全等三角形的性质得到∠ABF=∠CBD,BF=BD,可得∠FBE=∠ABC=60°,由三角函数的定义求得EF=BD,进而得到AE=CD+BD.【解答】(1)解:∵△ABC是等边三角形,∴∠ACB=60°,∵C关于直线AP的对称是D,∴AP⊥CD,AC=AD,∴∠ACD=90﹣∠P AC=90°﹣10°=80°,∴∠BCD=∠ACD﹣∠ACB=20°;(2)①证明:如图,连接AD,根据题意得,AO⊥CD∵∠P AC=α,∴∠ACD=90°﹣α,∵△ABC是等边三角形,∴∠ACB=60°,∴∠BCD=∠ACD﹣∠ACB=90°﹣α﹣60°=30°﹣α,∵C关于直线AP的对称是D,∴AP⊥CD,AC=AD,∴∠P AD=∠P AC=α,∵AB=AC=AD,AE⊥BD,∴∠BAE=∠DAE=∠BAD=(∠BAC﹣∠CAD)=(60°﹣2α)=30°﹣α,∴∠BCD=∠BAE;②解:用等式表示线段BD,CD,AE之间的数量关系是AE=CD+BD.证明:在AE上截取AF=CD,连接BF,∵△ABC是等边三角形,∴AB=AC,∵∠BCD=∠BAE,∴△BAF≌△BCD(SAS),∴∠ABF=∠CBD,BF=BD,∴∠FBE=∠ABC=60°,∴EF=BF•sin60°=BF=BD,∴AE=AF+EF=CD+BD.【点评】本题考查了几何变换综合题,等边三角形的判定和性质,轴对称的性质,全等三角形的判定和性质,正确的作出辅助线是解题的关键.13.(2021•门头沟区一模)在正方形ABCD中,将边AD绕点A逆时针旋转α(0°<α<90°)得到线段AE,AE与CD延长线相交于点F,过B作BG∥AF交CF于点G,连接BE.(1)如图1,求证:∠BGC=2∠AEB;(2)当(45°<α<90°)时,依题意补全图2,用等式表示线段AH,EF,DG之间的数量关系,并证明.【分析】(1)根据BG∥AF,得到∠GBE=∠AEB,由AD绕点A逆时针旋转α得到线段AE,得到AE=AB,∠ABE=∠AEB=∠GBE,由正方形性质得到CD∥AB,得到∠BGC =2∠AEB;(2)按照题意补全图形即可,在DC上取DN=AH,连接AN交BG于M,交BE于P,连接HM,EM,利用△ADN≌△BAH、△ABP≌△MBP、△ABH≌△MBH证明A、H、M、B共圆,从而可得∠DNA=∠GMN,GN=GM,再证明EF=GM,即可得到EF=AH+DG.【解答】解:(1)证明:∵边AD绕点A逆时针旋转α(0°<α<90°)得到线段AE,∴AD=AE,∵正方形ABCD,∴AB=AD=AE,∴∠AEB=∠ABE,∵BG∥AF,∴∠AEB=∠GBE,∴∠ABE=∠AEB=∠GBE,∴∠ABG=2∠AEB,∵正方形ABCD,∴AB∥CD,∴∠BGC=∠ABG,∴∠BGC=2∠AEB;(2)补全图2如下:线段AH,EF,DG之间的数量关系为:EF=AH+DG,理由如下:在DC上取DN=AH,连接AN交BG于M,交BE于P,连接HM,EM,如图:∵正方形ABCD,∴AB=AD,∠ADN=∠BAH=90°,又DN=AH,∴△ADN≌△BAH(SAS),∴∠DNA=∠AHB,∠DAN=∠ABH,∵∠DNA+∠DAN=90°,∴∠DAN+∠AHB=90°,∴∠APH=90°,∴∠BPM=∠BP A=90°,由(1)知∠ABE=∠GBE,且BP=BP,∴△ABP≌△MBP(ASA),∴AB=MB,而BH=BH,∠ABE=∠GBE,∴△ABH≌△MBH(SAS),∴∠HAB=∠HMB=90°,∴A、H、M、B共圆,∴∠AHB=∠AMB=∠GMN,∴∠DNA=∠GMN,∴GN=GM,∵CF∥AB,BG∥AF,∴四边形ABGF是平行四边形,∴BG=AF,∵AE=AD=AB=MB,∴EF=GM,∴EF=GN,∵GN=DG+DN,∴EF=DG+AH.【点评】本题考查正方形性质应用及全等三角形的性质和判定,难度较大,解题的关键是构造辅助线,将AH+DG转化为GN.。

北京市各区2022年中考数学一模汇编平面几何初步

北京市各区2022年中考数学一模汇编平面几何初步

北京市 2022年各区中考一模汇编平面几何初步一、平面几何之对称性1.【 2022平谷一模,第05题】根据?北京日报?报道,到 2022年年底,55公里长的长安街及延长线的市政设施、道路及附属设施等,将全部实现“中国风〞设计风格.在以下设计图中,轴对称图形的个数为A.1个 B.2个 C.3个D.4个2.【 2022朝阳一模,第04题】以下图形选自历届世博会会徽,其中是轴对称图形的是A B C D3.【 2022海淀一模,第04题】以下图形中,是轴对称图形但不是中心对称图形的是A. B. C. D.4.【 2022通州一模,第04题】下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的是A.B.二、平面几何之角度5.【 2022东城一模,第05题】如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=A .52°B .38°C .42°D .62°6.【 2022丰台一模,第05题】如图,直线AB ∥CD ,BE 平分∠ABC ,交CD 于点D , ∠CDB =30°,那么∠C 的度数为 A. 150° B. 130°C. 120°D. 100°7.【 2022丰台一模,第12题】如图,在同一平面内,将边长相等的正三角形、正五边形的一边 重合,那么∠1=°.8.【 2022平谷一模,第04题】如图,直线a // b ,△ABC 为等腰直角三角形,∠BAC =90°,那么∠1的度数为A .90°B .60°C .45°D .30°9.【 2022东城一模,第13题】一个正多边形的每个外角都等于72°,那么这个正多边形的边数是.10.【 2022西城一模,第03题】如图,直线CD AB //,直线EF 分别与AB ,CD 交于点E ,F ,FP EF ⊥,且与BEF ∠的平分线交于P ,假设120∠=︒,那么2∠的度数是〔〕A .35°B .30°C .25°D .20°DA BCE1ba 1BCA详细解答1. B2. B3. C4. D5. A6. C7.488. C9. 510.A。

2023年北京市初三一模数学试题汇编:几何综合(第27题)

2023年北京市初三一模数学试题汇编:几何综合(第27题)

2023北京初三一模数学汇编几何综合(第27题)一、解答题∠平分线的一点,点M,N分1.(2023·北京西城·统考一模)如图,直线AB,CD交于点O,点E是BOC别是射线OA,OC上的点,且ME=NE.∠=∠;(1)求证:MEN AOC(2)点F在线段NO上,点G在线段NO延长线上,连接EF,EG,若EF=EG,依题意补全图形,用等式表示线段NF,OG,OM之间的数量关系,并证明.2.(2023·北京朝阳·统考一模)如图,∠MON=α,点A在ON上,过点A作OM的平行线,与∠MON的平分线交于点B,点C在OB上(不与点O,B重合),连接AC,将线段AC绕点A顺时针旋转180°-α,得到线段AD,连接BD.(1)直接写出线段AO与AB之间的数量关系,并证明∠MOB=∠DBA;(2)连接DC并延长,分别交AB,OM于点E,F. 若α=60°,用等式表示线段EF与AC之间的数量关系,并证明.3.(2023·北京海淀·统考一模)如图,正方形ABCD中,点E,F分别在BC,CD上,BE=CF,AE,BF交于点G.(1)求∠AGF的度数;(2)在线段AG上截取MG=BG,连接DM,∠AGF的角平分线交DM于点N.①依题意补全图形;②用等式表示线段MN与ND的数量关系,并证明.备用图4.(2023·北京房山·统考一模)如图,正方形ABCD 中,点E 是边BC 上的一点,连接AE ,将射线AE 绕 点A 逆时针旋转90°交CD 的延长线于点F ,连接EF ,取EF 中点G ,连接DG . (1)依题意补全图形;用等式表示∠ADG 与∠CDG 的数量关系,并证明; (2)若DG,用等式表示线段BC 与BE 的数量关系,并证明.5.(2023·北京丰台·统考一模)在正方形ABCD 中,点O 为对角线AC 的中点,点E 在对角线AC 上,连接EB ,点F 在直线AD 上(点F 与点D 不重合),且EF = EB. (1)如图1,当点E 在线段AO 上(不与端点重合)时,①求证:∠AFE = ∠ABE ;②用等式表示线段AB ,AE ,AF 的数量关系并证明;(2)如图2,当点E 在线段OC 上(不与端点重合)时,补全图形,并直接写出线段AB ,AE ,AF 的数量关系.图1 图26.(2023·北京门头沟·统考一模)已知正方形ABCD 和一动点E ,连接CE ,将线段CE 绕点C 顺时针旋转90°得到线段CF ,连接BE ,DF .(1)如图1,当点E 在正方形ABCD 内部时, ①依题意补全图1;G FED CBA G FEDCBA ABCD E②求证:BE DF =;(2)如图2,当点E 在正方形ABCD 外部时,连接AF ,取AF 中点M ,连接AE ,DM ,用等式表示线段AE 与DM 的数量关系,并证明.7.(2023·北京顺义·统考一模)已知:如图,△ABC 中,AC=BC ,∠ACB =90°,点D 在AB 边上,点A 关 于直线CD 的对称点为E ,射线BE 交直线CD 于点F ,连接AF .(1)设∠ACD =α,用含α的代数式表示∠CBF 的大小,并求∠CFB 的度数; (2)用等式表示线段AF ,CF ,BF 之间的数量关系,并证明.8.(2023·北京通州·统考一模)直线MO 是线段AB 的垂直平分线,垂足为点O ,点C 是直线OM 上一点,连接AC .以AC 为斜边作等腰直角ACD △,连接OD .(1)如图1,若CO AB =,求AOD ∠的度数;(2)如图2所示,点E 是直线MO 上一点,且CE AB =,连接DE ,延长DO 至点F ,使得OF OD =, 连接AF .根据题意补全图2,写出线段,DE AF 之间的关系,并证明.9.(2023·北京延庆·统考一模)如图,在△ABC 中,∠BAC =90°,AB=AC ,AD 是BC 边上的高,点E 是边 AB 上的一动点(不与点A ,B重合),连接CE 交AD 于点F .将线段CF 绕点C 顺时针旋转90°得到线段CG ,连接AG . (1)如图1,当CE 是∠ACB 的角平分线时,①求证:AE=AF ;②直接写出∠CAG= °.(2)依题意补全图2,用等式表示线段AF ,AC ,AG 之间的数量关系,并证明.图1 图2 10.(2023·北京燕山·统考一模)如图,△ABC 中,∠ACB =90°,AC =BC ,D 为边BC 上一点(不与点B , C 重合),连接AD ,过点C 作CE ⊥AD 于点E ,过点B 作BF ⊥CE , 交直线CE 于点F .(1) 依题意补全图形;用等式表示线段CE 与BF 的数量关系,并证明; (2) 点G 为AB 中点,连接FG ,用等式表示线段AE ,BF ,FG 之间的数量关系,并证明.GFEDCBADB图1图2 参考答案1. (1)证明:作EH ⊥CD ,EK ⊥AB ,垂足分别是H ,K ,如图1. ∵ OE 是∠BOC 的平分线, ∴ EH =EK . ∵ ME =NE ,∴ Rt △EHN ≌Rt △EKM . ∴ ∠ENH =∠EMK . 记ME 与OC 的交点为P ,∴ ∠EPN =∠OPM .∴ ∠MEN =∠AOC . ····························································· 3分 (2)OM = NF +OG .证明:在线段OM 上截取OG 1=OG ,连接EG 1,如图2.∵ OE 是∠BOC 的平分线,∴ ∠EON =∠EOB . ∵ ∠MOF =∠DOB , ∴ ∠EOM =∠EOD . ∵ OE =OE ,∴ △EOG 1≌△EOG .∴ EG 1=EG ,∠EG 1O =∠EGF .∵ EF =EG ,∴ EF =EG 1EFG =∠EGF . ∴ ∠EFG =∠EG 1O . ∴ ∠EFN =∠EG 1M . ∵ ∠ENF =∠EM G 1.∴ △ENF ≌△EM G 1. ∴ NF =M G 1. ∵ OM =M G 1+O G 1,∴ OM =NF +OG . ······························································· 7分2.解:(1)AO =AB.证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB , ∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB.根据题意,得AC=AD ,∠OAB=∠CAD.∴∠CAO=∠DAB.∴△OAC ≌△BAD. ∴∠COA=∠DBA. ∴∠MOB=∠DBA.(2)EF =.证明:如图,在OM 上截取OH=BE ,连接CH.∵△OAC ≌△BAD , ∴OC=BD. 又OH=BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED , ∵OM//AB , ∴∠MFC=∠BED. ∴∠MFC=∠OHC. ∴CF=CH. ∴CF=DE. ∴CD=EF. ∵α=60°,∴∠CAD=180°-α=120°, 作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK=30°,1.2CK CD =∴.CK AC =∴CD .∴EF =.3.(本题满分7分)(1)∵ 四边形ABCD 是正方形, ∴ AB =BC ,∠ABE =∠BCF =90°. 又∵ BE =CF ,∴ △ABE ≌△BCF (SAS ). ………………………………………………………1分 ∴ ∠BAE =∠FBC .∵ ∠FBC +∠ABG =90°, ∴ ∠BAE +∠ABG =90°.∴ ∠AGF =90°. …………………………………………………………………2分 (2)① 依题意补全图形.…………………………………………………………………………………3分 ② 线段MN 与ND 的数量关系为MN =ND . …………………………………4分 证明:过点A 作AH ⊥AE 交GN 延长线于点H ,连接DH . ∵ ∠AGF =90°,GN 平分∠AGF , ∴ ∠AGN =12∠AGF =45°. ∵ AH ⊥AE , ∴ ∠GAH =90°. ∴ ∠AHG =∠AGH =45°. ∴ AG =AH .∵ 四边形ABCD 是正方形, ∴ ∠BAD =90°,AB =AD .∵ ∠GAH =90°,∴ ∠BAG =∠DAH .∴ △BAG ≌△DAH (SAS ). ∴ BG =DH ,∠AHD =∠AGB =90°. ∵ BG =GM ,∠AHG =45°, ∴ GM =DH ,∠DHN =∠NGM =45°.∵ ∠HND =∠GNM ,∴ △HND ≌△GNM (AAS ).∴ MN =ND . ……………………………………………………………7分4.(1)补完图形如下:……………………1分∠ADG =∠CDG . ……………………2分M NG F EDC BAH M NG F EDCBA证明:如图,连接AG 、CG∵∠EAF =90° ,点G 是EF 中点, ∴AG =12EF ∵正方形ABCD ,∠ECF =90° ,∴CG =12EF∴AG =CG ……………………3分 ∵AD =CD ,DG =DG ∴△ADG ≌△CDG∴∠CDG =∠ADG ……………………4分 (2)BC =3BE ……………………5分过点G 作GH ⊥CD 于点H , 易证GH 是△CEF 的中位线,∴CE =2GH . ……………………6分 易证△GDH 是等腰直角三角形,∴DG .又∵DG =DF ,∴DF =GH . 易证△ADF ≌△ABE ∴DF =BE , ∴BE =GH . ∵CE =2GH , ∴CE =2BE∴BC =3BE ……………………7分 (其它证法酌情给分)5.(1) ①证明:连接DE . ∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°. ∵点E 在对角线AC 上,∴∠BAC =∠DAC =45°. ∵AE =AE ,∴△ABE ≌△ADE . ∴BE =DE ,∠ABE =∠ADE . ∵EF =BE ,∴DE =EF . ∴∠F =∠ADE .∴∠F =∠ABE . ……2分 ②AB=AF +2AE ; ……3分 证明:过点E 作EG ⊥AE 交AB 于点G .∴ ∠AEG =90°. ∵∠BAE =45°, ∴ ∠AGE =∠BAE =45°. ∴AG =2AE ,∠EGB =135°. ∵∠F AE =∠F AB +∠BAE =135°, ∴ ∠EGB =∠F AE . ∵∠F =∠ABE ,EF=EB , ∴△AEF ≌△GEB . ∴BG=AF . ∴AB=BG+GA=AF +2AE . ……5分 (2)正确补全图形;AB+AF=2AE . ……7分 6.(本小题满分7分)解:(1)① 图1;……………………………………………1分②∵正方形ABCD ,∴BC =DC ,∠BCD =90°. ……………………2分∵线段CE 绕点C 顺时针旋转90°得到线段CF ,∴CE =CF ,∠ECF =90°. ∴∠BCE+∠ECD =∠DCF+∠ECD =90°.∴∠BCE =∠DCF . ……………………………3分 图1 ∴△BCE ≌△DCF .∴BE =DF . …………………………………………………………………………4分ADBM(2)猜想:AE =2DM .证明:如图2,延长AD 到N ,使得DN =AD .∵M 是AF 中点,∴NF =2DM .………………………5分 ∵由(1)得△BCE ≌△DCF , ∴∠EBC =∠FDC ,EB =FD .又∵正方形ABCD ,∴AB =AD ,∠ABC =∠ADC = 90°. ∵DN =AD ,∠ADC +∠CDN =180°,∴AB =DN ,∠CDN = 90°.∴EBC ABC FDC CDN ∠−∠=∠−∠, 图2即:∠ABE =∠NDF .∴△ABE ≌△NDF . ……………………………………………………………6分 ∴AE =NF .∴AE =2DM .……………………………………………………………………7分7.(1)解:∵A 、E 关于直线CD 对称,∴∠ACF =∠ECF =α,AC =CE . ∵∠ACB =90°,∴∠BCE =90°-2α. …………………………………………… 1分 ∵AC =CE , ∴CB =CE . ∴∠CBF =∠CEB =12(180°-∠BCE )=45°+α. …………………… 2分 ∠CFB =∠CEB -∠ECF =45°+α-α=45°. …………………… 3分(2)线段AF ,CF ,BF 之间的数量关系AF +BF CF . ……………… 4分证明:过C 作MC ⊥CF 于C 交F A 的延长线于点M . ∵A 、E 关于FC 对称 ∴∠AFC =∠CFE =45°. ∵MC ⊥CF∴∠M =∠AFC =45°. ∴MC =FC .∵∠ACB =∠MCF =90° ∴∠MCA =∠BCF . 又∵AC =BC ∴△MCA ≌△FCB .NFE∴MA=FB.∴MF=AF+MA=AF+BF.∵MC=FC,∠MCF=90°∴MF.∴AF+BF.……………………………………………………7分8.暂缺9.(本小题满分7分)(1)①证明:∵在△ABC中,∠BAC=90°,AB=AC,∴∠ACB =∠B= 45°.∵AD是BC边上的高,∴∠BAD =∠CAD= 45°.∵CE是∠ACB的角平分线,∴∠ACE =∠BCE.∵∠AFE =∠CAD+∠ACE,∠AEF =∠B+∠BCE.∴∠AFE =∠AEF.∴AE = AF.②∠CAG= 45°.(2)依题意补全图形.AC=AF+AG.证明:过点C作CM⊥AC于点C,交AD的延长线于点M.∵∠CAD= 45°,∴∠M= 45°.∴CA = CM.∴AM.∵∠ACM= 90°,∴∠ACF+∠MCF = 90°.∵∠FCG= 90°,∴∠ACF+∠ACG = 90°.∴∠MCF =∠ACG.∵CF= CG,∴△MCF≌△ACG.∴MF = AG.∴AM =AF +AG.AC=AF+AG.GFED CBAB………… 2分………… 3分………… 7分10.(本题满分7分)解:(1)依题意补全图形,如图.线段CE与BF的数量关系:CE=BF.证明:∵∠ACB=90°,∴∠CAE+∠CDE=90°.∵CE⊥AD,∴∠CED=90°,∴∠DCE+∠CDE=90°,∴∠CAE=∠DCE.在△ACE和△CBF中,∠AEC=∠CFB=90°,∠CAE=∠BCF,AC=BC,∴△ACE≌△CBF,∴CE=BF.……………………………………………3分(2)线段AE,BF,FG之间的数量关系:AE-BF.证明:连接CG,EG,设CF与AB交于点H.∵∠ACB=90°,AC=BC,点G为AB中点,∴CG⊥AB,CG=BG=12 AB.∵∠CGH=∠BFH=90°,∠CHG=∠BHF,∴∠GCH=∠FBH.由(1)得△ACE≌△CBF,∴AE=CF,CE=BF.在△GCE和△中,CG=BG,∠GCE=∠GBF,CE=BF,∴△GCE≌△GBF,∴GE=GF,∠CGE=∠BGF,∴∠EGF=∠EGB+∠BGF=∠EGB+∠CGE=∠CGB=90°,∴△GEF是等腰直角三角形,∴EF.∵CF-CE=EF,CF=AE,CE=BF,∴AE-BF.……………………………………………7分GFE DCB AH。

2021-2023北京初三一模数学汇编:全等三角形

2021-2023北京初三一模数学汇编:全等三角形

2021-2023北京初三一模数学汇编全等三角形2.(2023北京朝阳初三一模)如图,在△13cm,则△ABC的周长为6.(2021北京初三一模)如图,点△条件,使得ABC甲的方法:∠的平分线交证明:作BAC10.(2023北京门头沟初三一模)等腰三角形的两个底角相等”这个性质定理时,添加的辅助线以下两种不同的叙述方法,请选择其中一种完成证明.等腰三角形的性质定理:等腰三角形的两个底角相等.法一证明:如图,做11.(2023北京朝阳初三一模)下面是证明等腰三角形的两个底角相等中一种,完成证明.已知:如图,在∠=∠求证:B C方法一证明:如图,作12.(2023北京西城初三一模)如图,直线AB ,CD 交于点别是射线OA ,NE .(1)求证:MEN AOC ∠=∠;(2)点F 在线段NO 上,点G 在线段NO 延长线上,连接表示线段NF ,OG ,OM 之间的数量关系,并证明.13.(2022北京石景山初三一模)如图,△ACB 中,AC 重合),CD BD <,点E 在AD 的延长线上,且ED AD =(1)依题意补全图形;(2)求证:BE BF =;(3)用等式表示线段AF 与CD 的数量关系,并证明.14.(2022北京平谷初三一模)如图,在△ABC 中,∠A ,B 重合),作射线CD ,过点A 作AE ⊥CD 于E ,在线段(1)依题意补全图形;(2)求证:∠CAE =∠BCD ;(3)判断线段BG 与GF 之间的数量关系,并证明.15.(2021北京房山初三一模)如图,AB 与CD 交于点E ,点E 是AB 的中点,∠A =∠B .试说明:AC =BD .16.(2021北京初三一模)已知:如图1,在ABC 中,60CAB ∠=︒.求作:射线CP ,使得//CP AB .下面是小明设计的尺规作图过程.作法:如图2,①以点A 为圆心,适当长为半径作弧,分别交AC ,AB 于D ,E 两点;②以点C 为圆心,AD 长为半径作弧,交AC 的延长线于点F ;③以点F 为圆心,DE 长为半径作弧,两弧在FCB ∠内部交于点P ;④作射线CP .所以射线CP 就是所求作的射线.根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接FP ,DE .CF AD = ,CP AE =,FP DE =.ADE ∴V V ≌__________,DAE ∴∠=∠__________,//CP AB ∴(__________)(填推理的依据).18.(2021北京通州初三一模)已知:如图,在参考答案1.5【分析】根据垂直平分线的性质可得DA DC =,进而根据已知以及三角形的周长公式即可求解.【详解】解:∵DE 是AC 的垂直平分线,∴DA DC =,∵AB AC =,2AC =,∴2AB =∴ABD 的周长是235AB BD AD AB BD DC AB BC ++=++=+=+=,故答案为:5.【点睛】本题考查了垂直平分线的性质,熟练掌握垂直平分线的性质是解题的关键.2.19cm/19厘米【分析】根据线段的垂直平分线的性质得到DA =DC ,结合△ABD 的周长从而得到结论.【详解】解:∵DE 是AC 的垂直平分线,∴AD =CD ,∵△ABD 的周长为13cm ,∴AB +BD +AD =AB +BD +CD =13cm ,∵AC =6cm ,∴△ABC 的周长=AB +BD +CD +AC =13+6=19cm ,故答案为:19cm .【点睛】本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,熟练掌握线段垂直平分线的性质是解题的关键.3.AB =DE (答案不唯一)【分析】根据全等三角形的判定定理结合图形即可得出结果.【详解】解:添加条件为AB =DE ,在△ABC 与△DEF 中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,,,△ABC ≌△DEF (SAS ),故答案为AB =DE (答案不唯一).【点睛】题目主要考查全等三角形的判定定理,熟练掌握全等三角形的判定是解题关键.4.见解析(只要画出一种即可)【分析】根据两边及其夹角对应相等的两个三角形全等进行作图即可.【详解】解:∵DE =AB ,∴分两种情况:135DEF ABC ∠=∠=︒或135EDF ABC ∠=∠=︒,找出点F 的位置,连接DF 、EF ,BC =EF 或FD =CB ,∴△ABC ≌△DEF (SAS )或△ABC ≌△EDF (SAS ),即为要求作的DEF ,如图所示:故答案为:见解析(只要画出其中一种即可)【点睛】本题主要考查了在方格纸中作一个三角形与已知三角形全等,解题的关键是确定点F 的位置.5.AB AD =或BC CD =或BAC DAC ∠=∠或ACB ACD∠=∠【分析】根据题意直接由全等三角形的判定定理进行分析即可求解.【详解】解:若添加AB AD =,且AC AC =,由“HL ”可证RtΔRtΔABC ADC ≅;若添加BC CD =,且AC AC =,由“HL ”可证RtΔRtΔABC ADC ≅;若添加BAC DAC ∠=∠,且AC AC =,由“AAS ”可证RtΔRtΔABC ADC ≅;若添加BCA DCA ∠=∠,且AC AC =,由“AAS ”可证RtΔRtΔABC ADC ≅;故答案为:AB AD =或BC CD =或BAC DAC ∠=∠或ACB ACD ∠=∠(答案不唯一).【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解答本题的关键.6.BC EF =或B E ∠=∠或A D ∠=∠(答案不唯一)【分析】由全等三角形的判定定理可求解.【详解】解://BC EF ,BCA EFD ∴∠=∠,若添加BC EF =,且AC FD =,由“SAS ”可证ABC DEF ≌△△;若添加B E ∠=∠,且AC FD =,由“AAS ”可证ABC DEF ≌△△;若添加A D ∠=∠,且AC FD =,由“ASA ”可证ABC DEF ≌△△;故答案为:BC EF =或B E ∠=∠或A D ∠=∠(答案不唯一).【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是本题的关键.7.AD =BC 或∠D =∠C 或∠DBA =∠CAB 等(答案不唯一,填一个即可).【分析】根据三角形全等的判定定理,添加边相等或角相等即可.【详解】解:添加AD =BC ,可用SAS 判断ABC BAD ≌;添加∠D =∠C ,可用AAS 判断ABC BAD ≌;添加∠DBA =∠CAB ,可用ASA 判断ABC BAD ≌;故答案为:AD =BC 或∠D =∠C 或∠DBA =∠CAB 等(答案不唯一,填一个即可).【点睛】本题考查了全等三角形的判定,解题关键是熟记全等三角形的判定定理,准确添加正确条件.8.AC =AD 或C D ∠=∠或CBA DBA ∠=∠.【分析】由AE 平分∠CAD ,可得∠CAB =∠DAB ,由AB 共用从边上考虑,只能添加AC =AD ,可证()ABC ABD SAS △≌△,从角上考虑,可添加C D ∠=∠或CBA DBA ∠=∠()ABC ABD AAS △≌△,()ABC ABD ASA △≌△即可.【详解】解:因为AE 平分∠CAD ,所以∠CAB =∠DAB ,又∵AB=AB ,已具备一边一角,从边上考虑,只能添加AC =AD ,在△ABC 和△ABD 中,AC AD CAB DAB AB AB =⎧⎪∠=∠⎨⎪=⎩,()ABC ABD SAS △≌△,从角上考虑,可添加C D ∠=∠或CBA DBA ∠=∠,添加,C D ∠=∠在△ABC 和△ABD 中,C D CAB DAB AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC ABD AAS △≌△,添加CBA DBA ∠=∠,在△ABC 和△ABD 中,CBA DBA AB AB CAB DAB ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ABC ABD ASA △≌△,故答案为:AC =AD 或C D ∠=∠或CBA DBA ∠=∠.【点睛】本题考查三角形全等的判定,掌握三角形全等判定定理是解题关键.9.选择甲的方法,证明见解析.【分析】选择甲的方法,作BAC ∠的平分线交BC 于点D ,得BAD CAD ∠=∠,结合已知即可证明ABD ACD △≌△()AAS 从而得到结论.【详解】解:选择甲的方法:证明:作BAC ∠的平分线交BC 于点D .∴BAD CAD ∠=∠.在ABD △与ACD 中,B C BAD CAD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABD ACD △≌△()AAS ∴AB AC =.【点睛】本题考查了全等三角形的证明和性质,解题的关键是熟练掌握全等三角形的证明方法.10.见解析【分析】方法一:根据“SAS ”证明ABD ACD △≌△即可得出结论;方法二:根据“SSS ”证明ABD ACD △≌△即可得出结论.【详解】方法一:AD 平分BAC ∠,∴BAD CAD ∠=∠.AB AC =,AD AD =,∴ABD CAD ≌△△,∴B C ∠=∠.方法二:D 为BC 中点,∴BD CD =.AB AC =,AD AD =,∴ABD CAD≌△△∴B C ∠=∠.【点睛】本题主要考查了全等三角形的判定和性质,解题的关键是熟练掌握三角形全等的判定方法.11.见解析【分析】方法一:取BC 中点D ,连接AD .利用SSS 证明ABD ACD △≌△,由全等三角形的性质可得出结论;方法二:作BAC ∠的角平分线,交BC 于点D .利用SAS 证明ABD ACD △≌△,由全等三角形的性质可得出结论.【详解】解:方法一,证明:如图,取BC 中点D ,连接AD ,则BD CD =,在ABD △和ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,(SSS)ABD ACD ∴ ≌,B C ∴∠=∠;方法二:证明:如图,作BAC ∠的角平分线,交BC 于点D .BAD CAD ∴∠=∠,在ABD △和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACD ∴△≌△(),B C ∴∠=∠.【点睛】本题考查了全等三角形的判定与性质,证明ABD ACD △≌△是解题的关键.12.(1)见解析(2)OM NF OG =+,理由见解析【分析】(1)先根据角的平分线的性质,过点E 作EH CD ⊥,EK AB ⊥,垂足分别是H ,K ,得EH EK =,再根据三角形全等的判定,证明Rt EHN Rt EKM ≌即可得结论.(2)作辅助线,在线段OM 上截取1OG OG =,连接EG 1,先证明1EOG EOG ≌,得1EG EG =,1EG O EGF ∠=∠,再证明1ENF EMG ≌,得1NF MG =,再推导得出结论.【详解】(1)(1)证明:作EH CD ⊥,EK AB ⊥,垂足分别是H ,K ,如图.∵OE 是BOC ∠的平分线,∴EH EK =.∵ME NE =,∴Rt EHN Rt EKM ≌.∴ENH EMK ∠∠=.记ME 与OC 的交点为P ,∴EPN OPM ∠∠=.∴MEN AOC ∠∠=.(2)(2)OM NF OG =+.证明:在线段OM 上截取1OG OG =,连接EG 1,如图.∵OE 是BOC ∠的平分线,∴EON EOB ∠∠=.∵MOF DOB ∠∠=,∴EOM EOD ∠∠=.∵OE OE =,∴1EOG EOG ≌.∴1EG EG =,1EG O EGF ∠=∠.∵EF EG =,∴1EF EG =,EFG EGF ∠=∠.∴1EFG EG O ∠=∠.∴1EFN EG M ∠=∠.∵1ENF EMG ∠=∠.∴1ENF EMG ≌.∴1NF MG =.∵11OM MG OG =+,∴OM NF OG =+.【点睛】此题考查了角平分线的性质、全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.13.(1)见解析(2)见解析(3)2AF CD =,证明见解析【分析】(1)根据题目步骤作图即可;(2)过E 作EM ⊥BC 于M ,先由中线倍长证明ADC EDM ≅ ,得到AC EM BC ==,再证明BCF EMB ≅ ,得到BF BE =;(3)由(2)中全等可得到,FC BM CD DM ==,即可推理出2AF CM CD ==.【详解】(1)依题意补全图形如下:(2)过E 作EM ⊥BC 于M在ADC △和EDM △中ACD EMD ADC EDM AD ED ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADC EDM ≅ (AAS )∴AC EM=∵AC BC=∴AC EM BC==∵BE ⊥BF∴90FBC BEM MBE∠=∠=︒-∠在FBC 和EBM △中FBC BEM BC EM C EMB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BCF EMB ≅ (ASA ),∴BF BE=(3)2AF CD =,证明如下:由(2)得ADC EDM ≅ ,BCF EMB≅ ∴,FC BM CD DM ==,∴AC FC BC BM -=-,2CM CD=∴2AF CM CD ==.【点睛】本题考查全等三角形的性质与判定,解题的关键是根据倍长中线模型作垂直构造全等.14.(1)见解析(2)见解析(3)BG GF =,证明见解析【分析】(1)根据题意作图即可;(2)根据垂线的定义,等角的余角相等即可证明;(3)过点B 作BH AD ⊥于点H ,则90CHB ∠=︒,证明ACE CBH ≌,结合已知条件EF =EC ,证明EFG HBG ≌,即可得到FG BG =.【详解】(1)如图所示,(2) AE CD ⊥,90AEC ∴∠=︒,90ACE CAE ∴∠+∠=︒.90ACB ∠=︒ ,90ACE ECB ∴∠+∠=︒,CAE ECB ∠=∠∴,即∠CAE =∠BCD .(3)FG BG =,理由如下,如图,过点B 作BH AD ⊥于点H ,则90CHB ∠=︒,由(2)可知CAE BCD ∠=∠,CAE BCH ∴∠=∠,90AEC =︒∠ ,AEC CHB ∴∠=∠.又AC CB = ,ACE CBH ∴ ≌,BH CE ∴=.CE EF = ,BH EF ∴=,又90,BHG FEG EGF HGB ∠=∠=︒∠=∠ ,∴EFG HBG ≌,FG BG ∴=.【点睛】本题考查了画垂线,线段,等角的余角相等,全等三角形的性质与判定,掌握全等三角形的性质,正确的作出图形是解题的关键.15.见解析【分析】证明△AEC ≌△BED (ASA ),可得AC =B D .【详解】解:证明:∵E 是AB 的中点,∴AE =BE ,在△AEC 和△BED 中,A B AE BE AEC BED ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEC ≌△BED (ASA ),∴AC =B D .【点睛】本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.16.(1)见解析;(2)CFP ,FCP ,同位角相等两直线平行【分析】(1)根据要求作出图形即可.(2)利用全等三角形的性质证明即可.【详解】解:(1)如图,射线CP 即为所求作.(2)连接FP ,DE .CF AD = ,CP AE =,FP DE =.ADE CFP ∴V V ≌,DAE FCP ∴∠=∠,CP AB ∴‖(同位角相等两直线平行).故答案为:CFP ,FCP ,同位角相等两直线平行.【点睛】本题考查作图-复杂作图,全等三角形的判定和性质,平行线的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.证明见解析【分析】根据平行得出B DEF ∠=∠,然后用“边角边”证明ABC DEF ≌△△即可.【详解】证明:∵//AB DE ,∴B DEF ∠=∠.∵BE CF =,∴BE EC CF EC +=+.∴BC EF =.在ABC 和DEF 中,,,,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴ABC DEF ≌△△.∴A D ∠=∠.【点睛】本题考查了全等三角形的判定与性质,解题关键是熟练运用已知条件,推导证明出全等三角形判定所需条件,运用全等三角形判定定理证明.18.见解析【分析】由BE CF =,得到BC EF =,根据SAS 证明△ABC ≌△DEF 即可.【详解】证明:∵BE CF=∴BC EF=在ABC 与DEF 中AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩∴()ABC DEF SAS ≌【点睛】本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS 、SAS 、ASA 、AAS 和HL .。

2024年北京市东城区九年级中考复习一模数学试卷(含答案)

2024年北京市东城区九年级中考复习一模数学试卷(含答案)

东城区2023—2024学年度第二学期初三年级统一测试(一)数学试卷2024.4一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个1.在下列几何体中,俯视图是矩形的几何体是2. 2024年2月29日,在国家统计局发布的《中华人民共和国2023年国民经济和社会发展统计公报》中,2023年全年完成造林面积400万公顷,其中人工造林面积133万公顷.将1 330 000用科学记数法表示应为A. B. C. D.3.在平面直角坐标系xOy中,点A(0,2), B(-1,0),C(2,0),为□ABCD的顶点,则顶点D的坐标为A.(-3,2)B. (2,2)C. (3,2)D. (2,3)4.若实数a,b在数轴上的对应点的位置如图所示,在下列结论中,正确的是A. B. C. D.5. 在平面直角坐标系xOy中,点P(1,2)在反比例函数 (k是常数,k≠0)的图象上.下列各点中,在该反比例函数的图象上的是A. (-2,0)B. (-1,2)C. (-1,-2)D. (1,-2)6. 如图,AB是O的弦,CD是O的直径,CD⊥AB于点E. 在下列结论中,不一定成立的是A. AE=BEB. ∠CBD=90°C. ∠COB=2∠DD. ∠COB=∠C7. 一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球后放回,摇匀后再随机摸出一个小球,两次摸出的小球标号相同的概率为A. B. C. D.8. 2024年1月23日,国内在建规模最大塔式光热项目-----甘肃省阿克塞汇东新能“光热+光伏”试点项目,一万多面定日镜(如图1)全部安装完成.该项目建成后,年发电量将达17亿千瓦时.该项目采用塔式聚光热技术,使用国内首创的五边形巨蜥式定日镜,单块定日镜(如图2)的形状可近似看作正五边形,面积约为48.则该正五边形的边长大约是(结果保留一位小数,参考数据:tan36°≈0.7,tan54°≈1.4,,)A. 5.2 mB. 4.8 mC. 3.7 mD. 2.6 m二、填空题(本题共16分,每小题2分)9. 若二次根式有意义,则实数的取值范围是 .10. 因式分解:= .11.方程的解为 .12. 若关于的一元二次方程有两个不相等的实数根,则实数的取值范围是 .13. 为了解某校初三年级500名学生每周在校的体育锻炼时间(单位:小时),随机抽取了50名学生进行调查,结果如下表所示:时间学生人数1016195以此估计该校初三年级500名学生一周在校的体育锻炼时间不低于7小时的约有________人.14. 在Rt△ABC中,∠A=90°,点D在AC上,DE⊥BC于点E,且DE=DA,连接DB.若∠C=20°,则∠DBE的度数为°.15. 阅读材料:如图,已知直线l及直线l外一点P.按如下步骤作图:①在直线l上任取两点A,B,作射线AP,以点P为圆心,PA的长为半径画弧,交射线AP于点C;②连接BC,分别以点B,C为圆心,大于的长为半径画弧,两弧分别交于点M,N,作直线MN,交BC于点Q;②作直线PQ.回答问题:(1)由步骤②得到的直线MN是线段BC的;(2)若△CPQ与△CAB的面积分别为,则= .16. 简单多面体的顶点数(V)、面数(F)、棱数(E)之间存在一定的数量关系,称为欧拉公式.(1)四种简单多面体的顶点数、面数、棱数如下表.在简单多面体中V,F,E之间的数量关系是_________;(2)数学节期间,老师布置了让同学们自制手工艺品进行展示的任务,小张同学计划做一个如图所示的简单多面体作品.该多面体满足以下两个条件:①每个面的形状是正三角形或正五边形;②每条棱都是正三角形和正五边形的公共边.小张同学需要准备正三角形和正五边形的材料共个.三、解答题(本题共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程.17. 计算:18.解不等式组:19. 已知,求代数式的值.20.如图,四边形ABCD是菱形. 延长BA到点E,使得AE=A B,延长DA到点F,使得AF=AD,连接BD,DE,EF,FB.(1)求证:四边形BDEF是矩形;(2)若∠ADC=120°,EF=2,求BF的长.21. 每当优美的“东方红”乐曲从北京站的钟楼响起时,会唤起很多人的回忆,也引起了同学们的关注.某数学兴趣小组测量钟楼AB的高度.同学们发现在钟楼下方有建筑物遮挡,不能直接到达钟楼的底部点B的位置,被遮挡部分的水平距离为BC的长度.通过对示意图的分析讨论,制定了多种测量方案 ,其中一种方案的测量工具是皮尺和一根直杆.同学们在某两天的正午时刻测量了钟楼AB顶端A的影子D到点C的距离,以及同一时刻直杆的高度与影长. 设AB 的长为x米,BC的长为y米.测量数据(精确到0.1米)如表所示:(1)由第一次测量数据列出关于x,y的方程是,由第二次测量数据列出关于x,y的方程是,(2)该小组通过上述方程组成的方程组,已经求得y=10,则钟楼的高度约为米 .22. 在平面直角坐标系中,一次函数(k为常数,k≠0)的图象由函数的图象平移得到,且经过点A,与x轴交于点.(1)求这个一次函数的解析式及点的坐标;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.23. 某校初三年级两个班要举行韵律操比赛. 两个班各选择8名选手,统计了他们的身高(单位:cm),数据整理如下:a. 1班 1681711721741741761771792班 168170171174176176178183b. 每班8名选手的身高的平均数、中位数、众数如下:根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)如果某班选手的身高的方差越小,则认为该班选手的身高比较整齐.据此推断:在1班和2班的选手中,身高比较整齐的是班(填“1”或“2”);(3) 1班的6位首发选手的身高分别为171,172,174,174,176,177.如果2班已经选出5位首发选手,身高分别为171,174,176,176,178,要使得2班6位首发选手的平均身高不低于1班6位首发选手的平均身高,且方差尽可能小,则第六位选手的身高是 cm .24. 如图,AB 为⊙O 的直径,点C 在⊙O 上,∠EAC =∠CAB ,直线CD ⊥AE 于点D ,交AB 的延长线于点F .(1)求证:直线CD 为⊙O 的切线;(2)当,CD =4时,求BF 的长.25. 小明是一位羽毛球爱好者,在一次单打训练中,小明对“挑球”这种击球方式进行路线分析,球被击出后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系xOy ,击球点P 到球网AB 的水平距离OB =1.5m .小明在同一击球点练习两次,球均过网,且落在界内.第一次练习时,小明击出的羽毛球的飞行高度(单位:m )与水平距离x (单位:m )近似满足函数关系.第二次练习时,小明击出的羽毛球的飞行高度(单位:m )与水平距离x (单位:m )的几组数据如下:根据上述信息,回答下列问题:(1)直接写出击球点的高度;(2)求小明第二次练习时,羽毛球的飞行高度与水平距离x 满足的函数关系式;水平距离x / m01234竖直高度/ m 1.1 1.6 1.92 1.9(3)设第一次、第二次练习时,羽毛球落地点与球网的距离分别为d1,d2,则d1d2(填“>”,“<”或“=”)26. 在平面直角坐标系xOy中,,是抛物线上任意两点,设抛物线的对称轴为直线.(1)若点(2,1)在该抛物线上,求的值;(2)当时,对于,都有,求的取值范围.27. 在Rt△ABC中,∠BAC=90°,AB=AC,点D,E是BC边上的点,,连接AD. 过点D作AD的垂线,过点E作BC的垂线,两垂线交于点F.连接AF交BC于点G.(1)如图1,当点D与点B重合时,直接写出∠DAF与之间的数量关系;(2)如图2,当点D与点B不重合(点D在点E的左侧)时,①补全图形;②∠DAF与在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD,DG,CG的数量关系.28. 在平面直角坐标系xOy中,已知线段PQ和直线,,线段PQ关于直线,的“垂点距离”定义如下:过点P作PM⊥于点M,过点Q作QN⊥于点N,连接MN,称MN的长为线段PQ关于直线和的“垂点距离”,记作d.(1)已知点P(2,1),Q(1,2),则线段PQ关于x轴和y轴的“垂点距离”d为________;(2)如图1,线段PQ在直线上运动(点P的横坐标大于点Q的横坐标)),若PQ=,则线段PQ关于x轴和y轴的“垂点距离”d的最小值为________;(3) 如图2,已知点A(0,2),⊙A的半径为1,直线与⊙A交于P,Q两点(点P的横坐标大于点Q的横坐标),直接写出线段PQ关于x轴和直线的“垂点距离”d的取值范围.东城区2023—2024学年度第二学期初三年级统一测试(一)数学答案2024.4一、选择题(每题2分,共16分)题号12345678答案 B C C B C D B A二、填空题(每题2分,共16分)9.10.11.12. 13. 240 14.35 15.(1)垂直平分线(2)1:416.(1)(2)32三、解答题(共68分,17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17. 解:——————————————————————————4分———————————————————— 5分18. 解:解不等式①,得—————————————————————————2分解不等式②,得—————————————————————————4分∴原不等式组的解集为——————————————————— 5分19. 解:——————————————————————————2分——————————————————————————3分∵,∴——————————————————————————4分∴原式—————————————————————5分20. (1) 证明:∵AE=AB,AF=AD,∴四边形BDEF是平行四边形. ——————1分∵四边形ABCD是菱形,∴AD=AB.∴DF=BE.∴四边形BDEF是矩形. ——————————————————————2分(2) 解:∵四边形BDEF是矩形,EF=2,∴∠DBF=90°,BD = EF=2.—————————————————————3分∵四边形ABCD是菱形,∠ADC=120°,∴∠ADB=∠ADC=60°.——————————————————————4分∴∠DFB=30°.在Rt△DBF中,∠DBF=90°,BD =2,∴DF=2 BD=4.根据勾股定理,得—————————5分21.解:(1),;——————————————3分(2)43.0 —————————————————5分22.解:(1)∵一次函数y = kx + b( k ≠0)的图象由函数的图象平移得到,∴. ——————————————————————1分∵一次函数的图象过点(3, 2),∴l+b=2.∴b = 1.∴这个一次函数的解析式为——————————2分当时,∴点坐标为. ——————————3分(2) m≥3. ——————————5分23.解:(1)175,176.-------------2分(2)1. ------------------------------------4分(3)170. ------------------------------------6分24. (1)证明:如图,连接OC.∵OA=OC,∴∠ACO=∠CAO.∵∠EAC=∠CAB,∴∠EAC=∠ACO.∴AD∥OC. -----------------------------1分∵CD⊥AE于点D,∴∠ADC=90°,∴∠OCF=∠ADC=90°. --------------------------------2分∴OC⊥DC.∵OC为⊙O的半径,∴直线CD为⊙O的切线. ------------------------------------3分(2)设.∵∴-----------------------------------4分∴∵||∴-----------------------------------5分∵∴∴∵∴.-----------------------------------6分25.解:(1)小明在两次练习中击球点的高度均为1.1m;-----------------------1分(2)设羽毛球的飞行路线满足的函数关系式为.将(0,1.1)代入,解得.∴羽毛球的飞行路线满足的函数关系式为:.---4分(3)-----------------------6分26.解:(1)∵点(2,1)在抛物线上,∴.∴..........................................................2分(2)∵,∴当时,y随x的增大而增大;当时,y随x的增大而减小......3分①当时,∵,,∴.∴成立......................................................4分②当时,(i)若,则点关于直线的对称点为.∴,∴成立.(ii)若,则.∴成立......................................................5分③当时,∵,总可取,∵,∴.此时,,不合题意.④当时,若,取此时,不合题意.综上所述,的取值范围为..................................................................6分27.解:(1)---------------1分(2)①补全图形如图.-------------------------2分②关系仍成立.-------------------------3分证明:过点A作AH⊥BC于H,(3)---------------7分28. 解:(1)2.------------2分(2)2. -------------2分(3).--------7分。

【精编版】2024.4北京各区初三一模数学分类汇编-几何综合

【精编版】2024.4北京各区初三一模数学分类汇编-几何综合

专题——几何综合2024 一模·题型分类汇编12024海淀一模27在△ABC中,∠ACB=90°,∠ABC=30°,将线段AC绕点A顺时针旋转α(0°<α≤60°)得到线段AD.点D关于直线BC的对称点为E,连接AE,DE.(1)如图1,当α=60°时,用等式表示线段AE与BD的数量关系,并证明;(2)连接BD,依题意补全图2,若AE=BD,求a的大小.在△ABC中,∠ABC=∠ACB=45°,AM⊥BC于点M.D是射线AB上的动点(不与点A,B重合),点E在射线AC上且满足AE=AD,过点D作直线BE的垂线交直线BC于点F,垂足为点G,直线BE交射线AM于点P.(1)如图1,若点D在线段AB上,当AP=AE时,求∠BDF的大小;(2)如图2,若点D在线段AB的延长线上,依题意补全图形,用等式表示线段CF,MP,AB的数量关系,并证明.在Rt△ABC中,∠BAC=90°,AB=AC,点D,E是BC边上的点,DE=12BC,连接AD.过点D作AD的垂线,过点E作BC的垂线,两垂线交于点F.连接AF交BC于点G.(1)如图1,当点D与点B重合时,直接写出∠DAF与∠BAC之间的数量关系;(2)如图2,当点D与点B不重合(点D在点E的左侧)时,1补全图形;2DAF与∠BAC在(1)中的数量关系是否仍然成立?若成立,加以证明;若不成立,请说明理由.(3)在(2)的条件下,直接用等式表示线段BD,DG,CG之间的数量关系.如图,在菱形ABCD中,∠BAD=120°,E是CD边上一点(不与点C,D重合).将线段AE绕点A逆时针旋转60°得到线段AF,连接DF,连接BF交AC于点G.(1)依据题意,补全图形;(2)求证:GB=GF;(3)用等式表示线段BC,CE,BG之间的数量关系.在△ABC中,AB=AC,∠BAC=α,点D是BC中点,点E是线段BC上一点,以点A为中心,将线段AE逆时针旋转α得到线段AF,连接EF.(1)如图1,当点E与点D重合时,线段EF,AC交于点G,求证:点G是EF的中点;(2)如图2,当点E在线段BD上时(不与点B,D重合),若点H是EF的中点,作射线DH交AC于点M,补全图形,直接写出∠AMD的大小,并证明.如图,将线段AB绕点A逆时针旋转α度(0°<α<180°)得到线段AC,连结BC,点N是BC的中点,点D,E分别在线段AC,BC的延长线上,且CE=DE.(1)∠EDC=______(用含α的代数式表示);(2)连结BD,点F为BD的中点,连接AF,EF,NF.1依题意补全图形;2若AF⊥EF,用等式表示线段NF与CE的数量关系,并证明.在△ABC中,AC=BC,∠ACB=90°,点D是线段AB上一个动点(不与点A,B重合),∠ACD=α(0<α<45°),以D 为中心,将线段DC顺时针旋转90°得到线段DE,连接EB.(1)依题意补全图形;(2)求∠EDB的大小(用含α的代数式表示);(3)用等式表示线段BE,BC,AD之间的数量关系,并证明.如图,AB=BC,∠ABC=90°,点P在射线AB上,且∠CEP=90°,点F在EP上且EF=EC,连接AF,取AF中点G,连接EG并延长至H,使GH=GE,连接AH.(1)如图27-1,当点P在线段AB上时,1用等式表示AH与CE的数量关系;2连接BH,BE,直接写出BH,BE的数量关系和位置关系;(2)如图27-2,当点P在线段AB的延长线上时,依题意补全图形2,猜想2中的结论是否还成立,并证明.在△ABC中,AB=AC,∠BAC=2α(45°<α<90°),D是BC上的动点(不与点C重合),且BD>DC,连接AD,将射线AD绕点A顺时针旋转α得到射线AG,过点D作DE⊥AD交射线AG于点E,连接BE,在BD上取一点H,使HD =CD,连接EH.(1)依题意补全图形;(2)直接写出∠ABE的大小,并证明.在△ABC中,AC=BC,∠ACB=90°,点D在线段AC上(点D与点A、点C不重合),连接BD,过点D作DB的垂线交直线AB于点E,过点A作AB的垂线交直线DE于点F(1)如图1,当点D在线段AC上时,①求证:∠ABD=∠AFD;②用等式表示线段AB,AD,AF之间的数量关系并证明.(2)如图2,当点D在线段AC的延长线上时,依题意补全图形,并直接用等式表示线段AB,AD,AF之间的数量关系.如图,在正方形ABCD中,点E,F分别在DC,CB的延长线上,且BF=CE,EB的延长线交AF于点G.(1)求∠AGE的度数;(2)在线段EG上取点H,使得GH=AG,连接AH,CH.1依题意补全图形;2用等式表示线段CH与GB的数量关系,并证明..在△ABC 中,∠ACB =90°,AC =BC ,M 为 AB 的中点,D 为线段 AM 上的动点(不与点 A ,M 重合),过点D 作DE ⊥AB ,且DE =DM ,连接CM .(1)如图1,当点E 在线段AC 上时,求证:D 是AM 的中点;(2)当DE 位于图2位置时,连接CE ,过点E 作EF ⊥CE ,交AB 于点F .用等式表示线段BF 与DE 的数量关系,并证明.图1图2C E B A D M ED CBA M在△ABC 中,AB AC ,0° BAC 60°,将线段BC 绕点B 逆时针旋转60°得到线段BD ,连接AD .将线段AD 绕点A 顺时针旋转90°得到线段AE ,连接DE .(1)如图1,求证:EA ∥BC ;(2)延长BC 到点F ,使得CF CB ,连接DF 交AC 于点M ,依题意补全图2.若点M 是AC 的中点,用等式表示线段MF ,MD ,DE 之间的数量关系,并证明.E A D C B E DCB A图1图2142024平谷一模2727.如图,在әABC中,øBAC=90ʎ,AB=AC,点D为BC边中点,DEʅAB于E,作øEDC的平分线交AC于点F,过点E作DF的垂线交DF于点G,交BC于点H.(1)依题意补全图形;(2)求证:DH=BE;(3)判断线段FD㊁HC与BE之间的数量关系,并证明.。

2023年北京市初三一模数学试题汇编:几何图形初步章节综合

2023年北京市初三一模数学试题汇编:几何图形初步章节综合

2023北京初三一模数学汇编几何图形初步章节综合 一、单选题1.(2023·北京通州·统考一模)如图,是某一个几何体的表面展开图,这个几何体是( )A .五棱锥B .四棱锥C .四棱柱D .三棱柱2.(2023·北京丰台·统考一模)下列度数的角,只借助一副三角尺不能拼出的是( ) A .15︒ B .75︒ C .105︒ D .115︒3.(2023·北京房山·统考一模)如图是某几何体的展开图,该几何体是( )A .长方体B .四棱锥C .三棱柱D .正方体4.(2023·北京西城·统考一模)下面几何体中,是圆柱的是( )A .B .C .D .5.(2023·北京西城·统考一模)如图,点O 在直线AB 上,OC OD ⊥,若50AOC ∠=,则BOD ∠的度数是( )A .120B .130C .140D .1506.(2023·北京海淀·统考一模)在一条沿直线MN 铺设的电缆两侧有甲、乙两个小区,现要求在MN 上选取一点P ,向两个小区铺设电缆.下面四种铺设方案中,使用电缆材料最少的是( ) A . B .C.D.7.(2023·北京门头沟·统考一模)如图,下列水平放置的几何体中,其侧面展开图是扇形的是()A.B.C.D.8.(2023·北京平谷·统考一模)下面几何体中,是圆柱的为()A.B.C.D.9.(2023·北京·统考一模)下列几何体中,是圆锥的为()A.B.C.D.参考答案1.D【分析】侧面为三个长方形,底边为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故选:D .【点睛】本题考查的是三棱柱的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.2.D【分析】根据一副三角尺的角度(90,45,30,60︒︒︒︒)能否通过和或差求出所对应的度数即可.【详解】解:A 、453015︒−︒=︒,即能用三角尺画出15︒的角,故本选项不符合题意; B 、453075︒+︒=︒,即能用三角尺画出75︒的角,故本选项不符合题意;C 、4560105︒+︒=︒,即能用三角尺画出105︒的角,故本选项不符合题意;D 、根据90,45,30,60︒︒︒︒的组合不得出115︒的角,即不能用三角尺画出115︒的角,故本选项符合题意; 故选D .【点睛】本题考查了角的有关计算的应用,主要考查学生的理解能力和计算能力,掌握一副三角尺的角度有90,45,30,60︒︒︒︒是本题的关键.3.A【分析】展开图为六个长方形,易得是长方体的展开图.【详解】解:∵长方体的展开图是六个长方形,∴由展开图可得此几何体为长方体,故A 正确.故选:A .【点睛】本题主要考查了由展开图得几何体,关键是考查同学们的空间想象能力.4.B【分析】根据圆柱体的特征进行判断即可.【详解】解:A.是正方体,不符合题意;B.是圆柱,符合题意;C.是圆锥,不符合题意;D.是球体,不符合题意,故选:B .【点睛】本题考查了认识立体图形,熟练掌握每个几何体的特征是解题的关键.5.C【分析】根据余角和平角的定义分析得出答案.【详解】解:∵OC OD ⊥,∴90COD ∠=︒,∴90905040AOD AOC ∠=︒−∠=︒−︒=︒,再根据邻补角的定义,得∠=︒−∠=︒−︒=︒.BOD AOD180********故选C.【点睛】此题主要考查了余角和邻补角的定义,正确把握余角和邻补角的定义是解题关键.6.A【分析】根据两点之间线段最短即可得出答案.【详解】解:甲、乙位于直线MN的两侧,∴根据两点之间线段最短,连接甲、乙两点,与直线MN交于点P,点P即为所求;故选:A.【点睛】本题考查两点之间线段最短的公理,解题的关键是分析题中两点的位置是在直线的同侧还是异侧,在异侧连接两点即可,在同侧需做其中一点的对称点再连接.7.D【分析】侧面展开图是把一个立方体从其侧面竖直剪开,展开后的那个平面即为侧面展开图,据此逐一判断即可.【详解】解:A选项侧面展开图是矩形;B选项侧面展开图是矩形;C选项侧面展开图是矩形;D选项侧面展开图是扇形;故选:D.【点睛】本题考查几何体的侧面展开图,侧面展开图是把立方体从其侧面竖直剪开,展开后的那个平面即为侧面展开图,理解侧面展开图的定义是解题的关键.8.A【分析】根据圆柱体的特征判断即可.【详解】解:A、是圆柱,故此选项符合题意;B、是圆锥,故此选项不符合题意;C、是三棱锥,故此选项不符合题意;D、是球体,故此选项不符合题意;故选:A.【点睛】本题考查了认识立体图形,熟练掌握每个几何体的特征是解题的关键.9.D【分析】根据圆锥的特征:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,进行判断即可.【详解】解:圆锥是由一个圆形的底面,和一个弯曲的侧面围成的,因此选项D中的几何体符合题意,故选D.【点睛】本题考查认识立体图形,掌握几种常见几何体的形体特征是正确判断的前提.。

2023年北京市海淀区中考一模数学试卷(含答案解析)

2023年北京市海淀区中考一模数学试卷(含答案解析)

2023年北京市海淀区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________A....【答案】A【分析】在正面内得到的由前向后观察物体的视图,叫做主视图;再结合常见几何体的主视图特征判断即可【详解】解:.主视图为矩形,符合题意;.主视图为三角形,不符合题意;.主视图为有一公共边的两个三角形,不符合题意;.主视图为圆,不符合题意;..C..【分析】根据两点之间线段最短即可得出答案.甲、乙位于直线MN的两侧,A .m n<B .0m n +>C .【答案】B 【分析】根据数轴上点的位置可知21n -<<-<【详解】解:由题意得,2134n m -<<-<<<,A .63︒B .36︒【答案】C【分析】如解析图所示,Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,由此利用直角三角形两锐角互余即可求出答案.【详解】解:如图所示,在Rt △ABD 中,9090BAD ACD =︒=︒∠,∠,27CAD ∠=︒,∴90CAD ADC ABD ADB +=︒=+∠∠∠∠,∴27ABD CAD ==︒∠∠,∴被测物体表面的倾斜角α为27︒,故选C .【点睛】本题主要考查了直角三角形两锐角互余,正确理解题意是解题的关键.8.图1是变量y 与变量x 的函数关系的图象,图2是变量z 与变量y 的函数关系的图象,则z 与x 的函数关系的图象可能是()A .B .C .D .【答案】C【分析】设两个直线关系式,再表示出z ,x 之间的关系式,即可得出图象.【详解】根据图像可知y 与x 是一次函数,z 和y 是正比例函数,设关系式为y kx b =+,1z k y =,所以1111()z k y k kx b k kx k b ==+=+,可知z 与x 是一次函数,所以图像C 符合题意.故选:C .【点睛】本题主要考查了函数图像的判断,表示出各函数关系式是解题的关键.二、填空题【答案】5【分析】由菱形的性质可得出结合勾股定理即可求出BC =【详解】解:∵四边形ABCD ∴142OB OD BD ===,OC ∴2225BC OB OC =+=.【答案】31︒(答案不唯一)当点M 在点E 处时,延长EF 交∵120AFE FAB ∠∠==︒,AFE ∠∴60AFH FAH ∠∠==︒,∴AH HF =,∴AHF 是正三角形,∴60H ∠=︒,AB烧制一个大尺寸陶艺品的位置可替换为烧制两个中尺寸或六个小尺寸陶艺品,小陶艺品的位置不能替换为烧制较大陶艺品.某批次需要生产10个大尺寸陶艺品,(1)烧制这批陶艺品,(2)若A款电热窑每次烧制成本为这批陶艺品成本最低为【答案】2【分析】(1)根据需要生产品,B款电热窑每次烧制故答案为:135.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意是解题的关键.方法一证明:如图,延长BC 到点得CD BC =,连接AD .【答案】证明见解析【分析】方法一:如图,延长BC 到点CD BC =,连接AD ,先证明ACB 得到AB AD =,进而证明ABD △是等边三角形,得到AB BD =,由此即可证明方法二:如图,在线段AB 上取一点,使得BD BC =,连接CD ,先求出进而证明BCD △是等边三角形,得到CD BD =,60BCD ∠=︒,进一步证明(1)求证:四边形ABEF 为矩形;(2)若634AB BC CE ===,,,求ED 【答案】(1)见解析(2)10【分析】(1)由题意易证四边形ABEF 边形是矩形即可判定;(2)由题意易证BEC EDF ∽,即得出后由勾股定理即可求解.【详解】(1)证明:∵BE AD ∥,即∴四边形ABEF 为平行四边形.∵90A ∠=︒,∴四边形ABEF 为矩形;(2)解:∵BE AD ∥,∴BEC D ∠=∠.∵四边形ABEF 为矩形,∴90C EFD ∠=∠=︒,6EF AB ==,∴BEC EDF ∽,∴CE BC DF EF=,即436DF =,【点睛】本题考查矩形的判定和性质,平行线的性质,相似三角形的判定和性质,勾股定理.熟练掌握上述知识是解题关键.22.在平面直角坐标系xOy 中,一次函数y kx b =+的图象过点()()1,3,2,2.(1)求这个一次函数的解析式;(2)当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)一次函数的解析式+4y x =-;(2)1m ≥【分析】(1)用待定系数法求解即可;(2)根据题意列出关于m 的不等式即可求解.【详解】(1)解:∵一次函数y kx b =+的图象过点()()1,3,2,2,∴把()()1,3,2,2代入得:+32+2k b k b =⎧⎨=⎩,解得:14k b =-⎧⎨=⎩,∴一次函数的解析式+4y x =-;(2)解:由(1)得:一次函数的解析式+4y x =-,当2x =时,2y =,当2x >时,对于x 的每一个值,一次函数y mx =的值大于一次函数y kx b =+的值,把2x =代入y mx =得:2y m =,∴22m ≥,解得:1m ≥.【点睛】本题考查了一次函数的应用,灵活掌握所学知识是解题关键.23.如图,AB 为O 的直径,C 为O 上一点,D 为 BC的中点,DE AC ⊥交AC 的延长线于点E .(1)求证:直线DE 为O (2)延长,AB ED 交于点F 【答案】(1)证明见解析(2)23【分析】(1)连接BC ,连接根据垂径定理可得CFD ∠(2)设O 的半径为r ,则1r =,则2AB =,再证明【详解】(1)证明:连接∵AB 是O 的直径,∴90ACB ∠=︒,∵点D 是 BC的中点,∴OD BC ⊥,又∵DE AC ⊥,∴四边形CEDF 是矩形,∴90ODE ∠=︒,【点睛】本题考查了切线的性质判定,垂径定理,矩形的性质与判定,解直角三角形,圆周角定理,正确的作出辅助线是解题的关键.24.某小组对当地2022年3月至述和分析得到了部分信息.a.西红柿与黄瓜市场价格的折线图:b.西红柿与黄瓜价格的众数和中位数:(1)建立如图所示的平面直角坐标系.通过对某只野兔一次跳跃中水平距离x (单位:m 测量,得到以下数据:水平距离/mx 00.41 1.42 2.4竖直高度/m y 00.480.90.980.80.48根据上述数据,回答下列问题:①野兔本次跳跃的最远水平距离为_________m ,最大竖直高度为②求满足条件的抛物线的解析式;(2)已知野兔在高速奔跑时,某次跳跃的最远水平距离为在野兔起跳点前方2m 处有高为0.8m 的篱笆,则野兔此次跳跃能”)跃过篱笆.【答案】(1)①2.8,0.98;②()20.5 1.40.98y x =--+(2)能(1)求AGF ∠的度数;(2)在线段AG 上截取MG BG =,连接,DM AGF ∠的角平分线交DM 于点N .①依题意补全图形;②用等式表示线段MN 与ND 的数量关系,并证明.【答案】(1)90︒(2)①见解析②MN ND =,证明见解析【分析】(1)根据正方形的性质,得90AB BC ABE BCF ∠∠ =,==,利用SAS 证明ABE BCF ≌得出角相等,再将角进行等量代换便可得结论.(2)①根据题意画出图形即可,②作AH AG ⊥交GN 的延长线于点H ,构造全等三角形,得出BG MG DH DHN MGN ==∠=∠,,再证MGN DHN ≅ ,问题即可解决.【详解】(1)∵四边形ABCD 是正方形,∴90AB BC ABE BCF =∠=∠=︒,,在ABE 和BCF 中,,AB BC ABE BCF BE CF =⎧⎪∠=∠⎨⎪=⎩∴ABE BCF SAS ≌(),∴BAE CBF∠=∠∴90AGF BAE ABG CBF ABG ABE ∠=∠+∠=∠+∠=∠=︒.(2)①根据题意画图如下②MN ND =,理由如下作AH AG ⊥交GN 的延长线于点∵GN 平分AGF ∠,AGF ∠=∴1452AGH AGF ∠=∠=︒∴AGH 为等腰直角三角形∴,AG AH AGH AHG =∠=∠∵四边形ABCD 为正方形(2)解:①设直线CD 的解析式为由题意得,点()02C ,,点D ∴202k b b +=⎧⎨=⎩,∴12k b =-⎧⎨=⎩,∴直线CD 的解析式为y =-设点M 的坐标为(2m m -+,∴点M 的关联直线为y mx =∴点M 的关联直线经过定点②同理可得直线CD 的解析式为设点M 的坐标为2n n d ⎛- ⎝,∴点M 的关联直线为y =∴点M 的关联直线经过定点如图所示,过点T 作TN ⊥∴222EF NF TF TN ==-∴要想EF 最小,则要使TN ∵EF 的最小值为4,即NF ∴22TN TF NF =-=最大由(2)①可知,当点N 与点∴()(222112d ⎛⎫--+-= ⎪⎝⎭∴244115d d +++=,∴23440d d --=,∴()()3220d d +-=,解得2d =或23d =-.正确推出点M的关联直线经过定点是解题的关键.。

2021年北京各区初三数学中考一模汇编――几何综合

2021年北京各区初三数学中考一模汇编――几何综合

2021年北京各区初三数学中考一模汇编――几何综合2021年北京初三数学各区一模汇编――几何综合1、(2021东城一模)已知△ABC中,AD是?BAC的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.⑴如图1,若?BAC?60?,①直接写出?B和?ACB的度数;②若AB=2,求AC和AH的长;⑵如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.2、(2021西城一模)正方形ABCD的边长为2. 将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN. ⑴如图1,当0°<α> 45°时,</α>①依题意补全图1;②用等式表示∠NCE与∠BAM之间的数量关系:;⑵当45°<α> 90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;⑶当0° <α> 90°时,若边AD的中点为F,直接写出线段EF的最大值. </α> </α>图1 备用图几何综合(共6 页)第1 页3、(2021海淀一模)如图,已知?AOB?60?,点P为射线OA上的一个动点,过点P作PE?OB,交OB于点E,点D在?AOB内,且满足?DPA??OPE,DP?PE?6. ⑴当DP?PE时,求DE的长;⑵在点P的运动过程中,请判断是否存在一个定点M,使得4、(2021朝阳一模)如图,在菱形ABCD中,∠DAB=60°,点E 为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD 于点F,G.⑴依题意补全图形;⑵若∠ACE=α,求∠AFC 的大小(用含α的式子表示);⑶用等式表示线段AE、AF与CG之间的数量关系,并证明.几何综合(共6 页)第2 页DM的值不变?并证明你的判断. *****B5、(2021丰台一模)如图,Rt△ABC中,∠ACB = 90°,CA = CB,过点C在△ABC外作射线CE,且∠BCE = ?,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.⑴依题意补全图形;⑵当?= 30°时,直接写出∠CMA的度数;⑶当0°CEAB6、(2021石景山一模)在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转90°得到线段AQ,连接BP,DQ.⑴依题意补全图1;⑵①连接DP,若点P,Q,D恰好在同一条直线上,求证:DP2?DQ2?2AB2;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.AB PM ABM 几何综合(共6 页)第3 页D图1CD备用图C7、(2021通州一模)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.⑴设∠ONP=α,求∠AMN的度数;⑵写出线段AM,BC之间的等量关系,并证明.8、(2021大兴一模)如图,在等腰直角△A BC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥CF于点G,连接AG.⑴求证:∠ABG=∠ACF;⑵用等式表示线段CG,AG,BG之间的等量关系,并证明.9、(2021顺义一模)如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.⑴依题意补全图形;⑵求证:∠FAC=∠APF;⑶判断线段FM与PN的数量关系,并加以证明.几何综合(共6 页)第4 页*****、(2021房山一模)如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG. ⑴依题意补全图形;αA⑵求∠AGE的度数(用含α的式子表示);⑶用等式表示线段EG与EF,AF之间的数量关系,并说明理由.BCD11、(2021怀柔一模)如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC. ⑴依题意补全图形;⑵求∠ECD的度数;⑶若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.?A?2?,DE?AB于点E,12、(2021门头沟一模)如图,在△ABC 中,AB=AC,点D是BC的中点,DF?AC于点F.⑴?EDB?_________°;(用含?的式子表示)⑵作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180??2?,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含?的锐角三角函数表示)并写出解题思路.AFEBDC几何综合(共6 页)第5 页13、(2021平谷一模)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.⑴补全图1;⑵如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);⑶如图2,当∠BAC=α时,直接写出α,DF,AE的关系.14、(2021延庆一模)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.⑴求证:∠FBC=∠CDF.⑵作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.A B图1备用图*****BCE 几何综合(共6 页)第6 页13、(2021平谷一模)在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.⑴补全图1;⑵如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);⑶如图2,当∠BAC=α时,直接写出α,DF,AE的关系.14、(2021延庆一模)如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.⑴求证:∠FBC=∠CDF.⑵作点C关于直线DE的对称点G,连接CG,FG.①依据题意补全图形;②用等式表示线段DF,BF,CG之间的数量关系并加以证明.A B图1备用图*****BCE 几何综合(共6 页)第6 页。

北京市各区中考数学一模试卷精选汇编几何综合

北京市各区中考数学一模试卷精选汇编几何综合

几何综合东城区27. 已知△ABC中,AD是的平分线,且AD=AB,过点C作AD的垂线,交AD的延长线于点H.(1)如图1,若①直接写出和的度数;②若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.27. (1)①,;--------------------2分②作DE⊥AC交AC于点E.Rt△ADE中,由,AD=2可得DE=1,AE.Rt△CDE中,由,DE=1,可得EC=1.∴AC.Rt△ACH中,由,可得AH; --------------4分(2)线段AH与AB+AC之间的数量关系:2AH=AB+AC证明:延长AB和CH交于点F,取BF中点G,连接GH.易证△ACH ≌△AFH.∴,.∴.∵,∴ .∴ .∴ .∴()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==. --------------7分 西城区27.正方形的边长为,将射线绕点顺时针旋转,所得射线与线段交于点,作于点,点与点关于直线对称,连接. (1)如图,当时, ①依题意补全图.②用等式表示与之间的数量关系:__________. (2)当时,探究与之间的数量关系并加以证明. (3)当时,若边的中点为,直接写出线段长的最大值.CDBA图1备用图C DBAM【解析】(1)①补全的图形如图所示:NEMABDC②. (2), 连接,NQMABDC E, , ∴, ∴, ∵, , ∴. (3)∵,∴点在以为直径的圆上,E∴. 海淀区27.如图,已知,点为射线上的一个动点,过点作,交于点,点在内,且满足,. (1)当时,求的长;(2)在点的运动过程中,请判断是否存在一个定点,使得的值不变?并证明你的判断.27..解:(1)作⊥交于.∵⊥,,∴.∴.∴. ……………1分∵,,∴,.∴.∴. ………………3分(2)当点在射线上且满足时,的值不变,始终为1.理由如下:………………4分当点与点不重合时,延长到使得.∵, Array∴.∴.∵,是公共边,∴≌.∴. ………………5分作⊥于,⊥于.∵,∴. ………………6分∵⊥,⊥,⊥,∴四边形为矩形.∴.∵,∴.∵⊥,∴.∴,即.当点与点重合时,由上过程可知结论成立. ……………7分丰台区27.如图,Rt△ABC中,∠ACB = 90°,CA = CB,过点C在△ABC外作射线CE,且∠BCE = ,点B 关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.(1)依题意补全图形;(2)当= 30°时,直接写出∠CMA的度数;(3)当0°<< 45°时,用等式表示线段AM,CN之间的数量关系,并证明.CEA B27.解:(1)如图;…………………1分(2)45°;…………………2分(3)结论:AM=CN.…………………3分证明:作AG⊥EC的延长线于点G.∵点B与点D关于CE对称,∴CE是BD的垂直平分线.∴CB=CD.∴∠1=∠2=.∵CA=CB,∴CA=CD.∴∠3=∠CAD.∵∠4=90°,∴∠3=(180°∠ACD)=(180°90°)=45°.∴∠5=∠2+∠3=+45°-=45°.…………………5分∵∠4=90°,CE是BD的垂直平分线,∴∠1+∠7=90°,∠1+∠6=90°.∴∠6=∠7.∵AG⊥EC,∴∠G=90°=∠8.∴在△BCN和△CAG中,∠8=∠G,∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AM=AG.∴AM=CN.…………………7分(其他证法相应给分.)石景山区27.在正方形ABCD中,M是BC边上一点,点P在射线AM上,将线段AP绕点A顺时针旋转得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接,若点P,Q,D恰好在同一条直线上,求证:;②若点P,Q,C恰好在同一条直线上,则BP与AB的数量关系为:.27.(1)补全图形如图1. ………………… 1分C图1(2)①证明:连接,如图2,∵线段绕点顺时针旋转90°得到线段,∴,.∵四边形是正方形,∴,.∴.∴△≌△.………………… 3分∴,.∵在中,,∴.∵在中,,又∵,,∴.………………… 5分②.………………… 7分证明:过点A作AE⊥PQ于E ,连接BE AC∴AE是△PAQ的垂线∵三△PAQ是等腰直角三角形(已证)∴AE是等腰直角三角形PAQ的垂线,角平分线∴∠AEP=90°,AE=PE∵正方形ABCD∴∠ABC=90°∠ACB=∠BAC=45°∠AEP+∠ABC=180°∴A ,B,C,E四点共圆∴∠AEB=∠ACB=45°,∠CEB=∠BAC=45°∴∠AEB=∠CEB=45°∵B E=BE∴△ABE≌△PBE (SAS)∴BP=AB朝阳区27. 如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD 于点F,G.(1)依题意补全图形;(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.27.(1)补全的图形如图所示.……………………………………1分(2)解:由题意可知,∠ECF=∠ACG=120°.∴∠FCG=∠ACE=α.∵四边形ABCD是菱形,∠DAB=60°,∴∠DAC=∠BAC= 30°. ……………………………………………2分∴∠AGC=30°.∴∠AFC =α+30°. …………………………3分(3)用等式表示线段AE 、AF 与CG 之间的数量关系为.证明:作CH ⊥AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°.∴CA=CG. …………………………………………………5分 ∴HG =AG.∵∠ACE =∠GCF ,∠CAE =∠CGF ,∴△ACE ≌△GCF. ……………………………6分 ∴AE =FG . 在Rt △HCG 中,∴AG =CG . …………………………………………7分 即AF+AE =CG . 燕山区27.如图,抛物线的顶点为M ,直线y=m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶. (1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是 (2)抛物线对应的准蝶形必经过B (m ,m ),则m = ,对应的碟宽AB 是 (3)抛物线对应的碟宽在x 轴上,且AB =6.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (,),使得∠APB 为锐角,若有,请求出的取值范围.若没有,请说明理由. ,备用图y=moyxMBA1Oxy27.解:(1)MN与AB的关系是 MN⊥AB,MN=AB…………………………………2′(2) m= 2 对应的碟宽是4…………………………………4′ (3) ①由已知,抛物线必过(3,0),代入得,∴抛物线的解析式是…………………………………5′②由①知,∠APB 为直角,的对称轴上P(0,3),P(0,-3)时,∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,的取值范围是…………………………………7′门头沟区27. 如图,在△ABC中,AB=AC,,点D是BC的中点,,.(1)_________°;(用含的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段与之间的数量关系,(用含的锐角三角函数表示)并写出解题思路.27.(本小题满分7分)B(1)……………………………………………1分(2)①补全图形正确②数量关系:…………………………………3分∵∴DA平分∵,∴,……………………4分∵∴∵∴∴……………………5分∴③数量关系:……………………6分证明思路:a.由可得b. 由可得,进而通过,可得进而得到c.过可得,最终得到……………7分大兴区27.如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥C F于点G,连接AG.(1)求证:∠ABG=∠ACF;(2)用等式表示线段C G,AG,BG之间的等量关系,并证明.27.(1)证明:∵∠CAB=90°.∵BG⊥CF于点G,∴∠BGF=∠CAB=90°.∵∠GFB=∠CFA. ………………………………………………1分∴∠ABG=∠ACF. ………………………………………………2分(2)CG=AG+BG. …………………………………………………3分证明:在CG上截取CH=BG,连接AH,…………………………4分∵△ABC是等腰直角三角形,∴∠CAB=90°,AB=AC.∵∠ABG=∠ACH.∴△ABG≌△ACH. …………………………………………………… 5分∴AG =AH,∠GAB=∠HAC.∴∠GAH=90°.∴ .∴GH=AG. ………………………………………………………6分∴CG=CH+GH=AG+BG. ………………………………………7分平谷区27.在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.(1)补全图1;(2)如图1,当∠BAC=90°时,①求证:BE=DE;②写出判断DF与AB的位置关系的思路(不用写出证明过程);(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.27(2)①延长AE,交BC于点H. (2)∵AB=AC, AE平分∠BAC,∴AH⊥BC于H,BH=HC.∵CD⊥BC于点C,BB图2B∴EH∥CD.∴BE=DE. (3)②延长FE,交AB于点G.由AB=AC,得∠ABC=∠ACB.由EF∥BC,得∠AGF=∠AFG.得AG=AF.由等腰三角形三线合一得GE=E F.·· 4由∠GEB=∠FED,可证△BEG≌△DEF.可得∠ABE=∠FDE. (5)从而可证得DF∥AB. (6)(3). (7)怀柔区27.如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.(1)依题意补全图形;(2)求∠ECD的度数;(3)若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF 长的思路.27.(1)如图CA………………………………………………1分FEDB CB(2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段AE. ∴∠DAE=90°,AD=AE. ∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC, ∴△ABD≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC, ∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分 (3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分 Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt△ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt△AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分 延庆区27.如图1,正方形ABCD 中,点E 是BC 延长线上一点,连接DE ,过点B 作BF ⊥DE 于点F ,连接FC .(1)求证:∠FBC =∠CDF .(2)作点C 关于直线DE 的对称点G ,连接CG ,FG .①依据题意补全图形;②用等式表示线段DF ,BF ,CG 之间的数量关系并加以证明.27.(1)证明:∵四边形ABCD 是正方形,∴∠DCB =90°. ∴∠CDF +∠E =90°. ∵BF ⊥DE ,∴∠FBC +∠E =90°. ∴∠FBC =∠CDF .……2分(2)①……3分②猜想:数量关系为:BF =DF +CG .证明:在BF 上取点M 使得BM =DF 连接CM .∵四边形ABCD 是正方形, ∴BC =DC .∵∠FBC =∠CDF ,BM =DF , ∴△BMC ≌△DFC . ∴CM =CF ,∠1=∠2. ∴△MCF 是等腰直角三角形.∴∠MCF =90°,∠4=45°. ……5分 ∵点C 与点G 关于直线DE 对称, ∴CF =GF ,∠5=∠6. ∵BF ⊥DE ,∠4=45°, ∴∠5=45°, ∴∠CFG =90°, ∴∠CFG =∠MCF , ∴CM ∥GF . ∵CM =CF ,CF =GF , ∴CM =GF ,图1FDEC BA G FDBA∴四边形CGFM是平行四边形,∴CG=MF.∴BF=DF+CG.……7分顺义区27. 如图,在正方形ABCD中,E是BC边上一点,连接AE,延长CB至点F,使BF=BE,过点F作FH⊥AE于点H,射线FH分别交AB、CD于点M、N,交对角线AC于点P,连接AF.(1)依题意补全图形;(2)求证:∠FAC=∠APF;(3)判断线段FM与PN的数量关系,并加以证明.27.(1)补全图如图所示.………………………………………………………… 1分(2)证明∵正方形ABCD,∴∠BAC=∠BCA=45°,∠ABC=90°,∴∠PAH=45°-∠BAE.∵FH⊥AE.∴∠APF=45°+∠BAE.∵BF=BE,∴AF=AE,∠BAF=∠BAE.∴∠FAC=45°+∠BAF.∴∠FAC=∠APF.…………………………… 4分(3)判断:FM=PN.…………………………………… 5分证明:过B作BQ∥MN交CD于点Q,∴MN=BQ,BQ⊥AE.∵正方形ABCD,∴AB=BC,∠ABC=∠BCD=90°.∴∠BAE=∠CBQ.∴△ABE≌△BCQ.∴AE=BQ.∴AE=MN.∵∠FAC=∠APF,∴AF=FP.∵AF=AE,∴AE=FP.∴FP=MN.∴FM=PN.…………………………………………………………… 8分。

北京市各区中考数学一模汇编平面几何之三角形273

北京市各区中考数学一模汇编平面几何之三角形273

北京市2016年各区中考一模汇编平面几何之三角形1.【2016东城一模,第20题】如图,在△ABC 中,AB=AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).2. 【2016丰台一模,第20题】如图,在ABC ∆中,AD 是BC 边上的高线,BE AC ⊥于点E ,∠BAD =∠CBE. 求证:AB AC =.3. 【2016平谷一模,第20题】如图,△ABC 中,AB =AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD ⊥BC 于D ,G 是FC 的中点,连接GD .求证:GD ⊥DE .4321AFBCD EG4.【2016朝阳一模,第20题】如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1.1FEC A5. 【2016西城一模,第19题】如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =.求证:AB 平分EAD ∠.6.【2016通州一模】如图,在△ABC 中,AC =BC ,BD ⊥AC 于点D ,在△ABC 外作∠CAE =∠CBD ,过点C 作CE ⊥AE 于点E .如果∠BCE =140︒,求∠BAC 的度数.7. 【2016海淀一模,第20题】如图,在ABC ∆中,90,BAC AD BD ∠=⊥于点D ,DE为AC 边上的中线,求证:ÐBAD =ÐEDCAB DEC8. 【2016东城一模,第28题】如图,等边△ABC ,其边长为1,D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF =120°.(1)直接写出DE 与DF 的数量关系;(2)若BE ,DE ,CF 能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE +AF 的长是否为定值?如果是,请求出该值,如果不是,请说明理由.C BB详细解答1.【2016东城一模,第20题】如图,在△ABC 中,AB =AC ,BD 平分∠ABC 交AC 于点D ,AE ∥BD 交CB 的延长线于点E .若∠BAC =40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).解:∠E =35°,或∠EAB =35°,或∠EAC =75° . …………1分∵在△ABC 中,AB =AC ,∠BAC =40°, ∴∠ABC =∠ACB =70°. …………3分 又∵BD 平分∠ABC ,∴∠ABD =∠CBD =35° . …………4分 ∵AE ∥BD ,∴∠E =∠EAB =35° . …………5分 ∴∠EAC =∠EAB +∠BAC =75° .2.【2016丰台一模,第20题】如图,在ABC ∆中,AD 是BC 边上的高线,BE AC ⊥于 点E ,∠BAD =∠CBE .求证:AB AC =.证明:∵在△ABC 中,AD 是BC 边上的高线,BE AC ⊥于点E ,∴∠ADB =∠BEC = 90°.-------- 2分. ∴∠ABC+∠BAD =∠C+∠CBE = 90°. 又∵∠=∠BAD CBE ,∴∠ABC =∠C . ---------- 4分 ∴AB AC =.------------ 5分3. 【2016平谷一模,第20题】如图,△ABC 中,AB =AC ,点D 是BC 上一点,DE ⊥AB 于E ,FD ⊥BC 于D ,G 是FC的中点,连接GD .求证:GD ⊥DE .证明:∵AB =AC ,∴∠B =∠C ....................................................1 ∵DE ⊥AB ,FD ⊥BC , ∴∠BED =∠FDC =90°. ∴∠1=∠3.......................................................2 ∵ G 是直角三角形FDC 的斜边中点, ∴GD =GF . (3)∴∠2=∠3. ∴∠1=∠2. ∵∠FDC =∠2+∠4=90°, ∴∠1+∠4=90°.………………………………………4 ∴∠2+∠FDE =90°.∴ GD ⊥DE . ……………………………………………5 4.【2016朝阳一模,第20题】如图,E 为AC 上一点,EF ∥AB 交AF 于点F ,且AE = EF . 求证:BAC ∠= 2∠1. 证明:∵EF ∥AB ,∴∠1=∠FAB .…………………… 2分 ∵AE =EF ,∴∠EAF =∠EFA .……………… 3分 ∵∠1=∠EFA ,∴∠EAF =∠1.…………………… 4分 ∴∠BAC =2∠1.…………………5分5. 【2016西城一模,第19题】如图,在ABC ∆中,AB AC =,AD 是BC 边上的中线,AE BE ⊥于点E ,且12BE BC =.求证:AB 平分EAD ∠.6.【2016通州一模】如图,在△ABC 中,AC =BC ,BD ⊥AC 于点D ,在△ABC 外作∠CAE =∠CBD ,过点C 作CE ⊥AE 于点E .如果∠BCE =140︒,求∠BAC 的度数.1FECA4321A F BC D EGCBCB解:∵BD ⊥AC ,CE ⊥AE ,∴90BDC E ∠=∠=︒,∵∠CAE =∠CBD ,∴△BDC ∽△AEC ,………………… 2分; ∴∠BCD =∠ACE , ∵∠BCE =140︒,∴∠BCD =∠ACE =70︒,………………… 4分; ∵AC =BC ,∴∠ABC =∠BAC=55︒. ………………… 5分.7.【2016海淀一模,第20题】如图,在ABC ∆中,90,BAC AD BD ∠=⊥于点D ,DE 为AC 边上的中线,求证:ÐBAD =ÐEDCAB DEC证明:∵ÐBAC =90°,90BAD DAC ∴∠+∠=︒,∵AD ^BC ,90ADC ∴∠=︒,90DAC C ∴∠+∠=︒,BAD C ∴∠=∠。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何证明
东城区
19. 如图,在△ABC中,∠BAC=90°,AD⊥BC于点D. BF平分∠ABC交AD于点E,交
AC于点F. 求证:AE=AF.
19.证明:∵∠BAC=90°,
∴∠FBA+∠AFB=90°. -------------------1分
∵AD⊥BC,
∴∠DBE+∠DEB=90°.---------------- 2分
∵BE平分∠ABC,
∴∠DBE=∠FBA. -------------------3分
∴∠AFB=∠DEB. -------------------4分
∵∠DEB=∠FEA,
∴∠AFB=∠FEA.
∴AE=AF. -------------------5分
西城区
19.如图,AD平分BAC
<.
∠,BD AD
⊥于点D,AB的中点为E,AE AC
(1)求证:DE AC
∥.
(2)点F在线段AC上运动,当AF AE
△全等的三角形是__________.
=时,图中与ADF
E
D
C
B
A
【解析】(1)证明:∵AD 平分BAC ∠, ∴12∠=∠, ∵BD AD ⊥于点D , ∴90ADB ∠=︒, ∴ABD △为直角三角形. ∵AB 的中点为E , ∴2AB AE =
,2
AB
DE =, ∴DE AE =, ∴13∠=∠, ∴23∠=∠, ∴DE AC ∥. (2)ADE △.
3
21E
D
C
B
A
海淀区
19.如图,△ABC 中,90ACB ∠=︒,D 为AB 的中点,连接CD ,过点B 作CD 的平
行线EF ,求证:BC 平分ABF ∠.
F
E D
C
B A
19. 证明:∵90ACB ∠=︒,D 为AB 的中点, ∴1
2
CD AB BD =
=. ∴ABC DCB ∠=∠. …………… ∵DC EF ∥,
∴CBF DCB ∠=∠.
∴CBF ABC ∠=∠. ∴BC 平分ABF ∠.
丰台区
19.如图,在△ABC 中,AB = AC ,D 是BC 边上的中点,DE ⊥AB 于点E ,DF ⊥AC 于点
F .
求证:DE = DF .
F D
E C
B
A
19.证明:连接AD .
∵AB =BC ,D 是BC 边上的中点,
∴∠BAD =∠CAD . ………………………3分 ∵DE ⊥AB 于点E ,DF ⊥AC 于点F ,
∴DE =DF . ………………………5分 (其他证法相应给分)
石景山区
19.问题:将菱形的面积五等分.
小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O 是菱形ABCD 的对角线交点,5AB ,下面是小红将菱形ABCD 面积五等分的操作与证明思路,请补充完整.
O H
G
F
E D
C
B A
A
B
C
E F
(1)在AB 边上取点E ,使4AE =,连接OA ,OE ; (2)在BC 边上取点F ,使BF = ,连接OF ; (3)在CD 边上取点G ,使CG = ,连接OG ; (4)在DA 边上取点H ,使DH = ,连接OH .
由于AE = + = + = + = . 可证S △AOE ==EOFB FOGC GOHD S S S ==四边形四边形四边形S △HOA .
19.解:3,2,1; ………………2分
EB 、BF ;FC 、CG ;GD 、DH ;HA. ………………4分
朝阳区
19. 如图,在△ACB 中,AC =BC ,AD 为△ACB 的高线,CE 为△ACB 的中线.
求证:∠DAB =∠ACE.
19. 证明:∵AC =BC ,CE 为△ACB 的中线,
∴∠CAB =∠B ,CE ⊥AB . ……………………………………………2分 ∴∠CAB +∠ACE =90°. ………………………………………………3分 ∵AD 为△ACB 的高线, ∴∠D =90°.
∴∠DAB +∠B =90°. ……………………………………………………4分 ∴∠DAB =∠ACE . ………………………………………………………5分
燕山区
19.文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题。

已知正方形的边长是2,就能求出图中阴影部分的面积.
C S 6S 5
S 2S 3
S 1
S 1
S 4
S 1
E C
B
A
证明:321S S S S ABCD ++=矩形=2 , 4S = ,5S = ,
=6S + ,
61S S S +=阴影=321S S S ++= .
19. 4S = 2S , 5S = 3S
=6S 4S + 5S
61S S S +=阴影面积=321S S S ++= 2 ……………………….5′
门头沟区
19.如图,在△ABC 中,AD 是BC 边上的高,BE 平分∠ABC 交AC 边于E ,∠BAC =60°,∠ABE =25°. 求∠DAC 的度数.
19.解 (本小题满分5分)∵BE 平分∠ABC , ∴∠ABC =2∠ABE =2×25°=50°, ………2分 ∵AD 是BC 边上的高,
∴∠BAD =90°﹣∠ABC =90°﹣50°=40°, …………4分 ∴∠DAC =∠BAC ﹣∠BAD =60°﹣40°=20° ………………5分 大兴区
19.如图,在△ABC 中,AB =AC ,点D ,点E
分别是BC ,AC 上一点,且DE ⊥AD . 若∠BAD=55°, ∠B=50°,求∠DEC 的度数. 19.解:∵AB =AC ,
∴∠B =∠C .
E
D
A
B
C
∵∠B=50°,
∴∠C =50°.……………………1分
∴∠BAC=180°-50°-50°=80°.…………………………………………………2分∵∠BAD=55°,
∴∠DAE=25°.…………………………………………………………………3分
∵DE⊥AD,
∴∠ADE=90°.…………………………………………………………………4分
∴∠DEC=∠DAE+∠ADE=115°.………………………………………………5分
平谷区
19.如图,在△ABC中,AB=AC,点D是BC边上一点,EF垂直平分CD,交AC于点E,交BC于点F,连结DE,求证:DE∥AB.
19.证明:∵AB=AC,
∴∠B=∠C. (1)
∵EF垂直平分CD,
∴ED=EC. (2)
∴∠EDC=∠C. (3)
∴∠EDC=∠B. (4)
∴DF∥AB. (5)
E
怀柔区
19.如图,在平面直角坐标系xOy中,每个小正方形的边长都为1,△DE F和△ABC的顶点都在格点上,回答下列问题:
(1)△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:;
(2)画出△ABC绕点B逆时针旋转90º的图形△A′BC′;
(3)在(2)中,点C所形成的路径的长度为.
19.(1)答案不唯一.例如:先沿y轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y轴翻折. ……………3分
(2)如图所示
………………………………………4分
(3)π .………………………………………………5分
延庆区
19.如图,在△ABC中,AD平分∠BAC交BC于点D,过点D作DE∥AB交AC于点E.求证:AE=DE.
E
D
B
A
19.证明:∵AD平分∠BAC
∴∠BAD=∠DAE,
∵DE∥AB
∴∠BAD=∠ADE ……3分
∴∠DAE=∠ADE ……4分
∴AE=DE ……5分
顺义区
19.如图,矩形ABCD中,点E是CD延长线上一点,
且DE=DC,求证:∠E=∠BAC.
E
A
D
B C
19.证明:∵四边形ABCD是矩形,
∴∠ADC=90 ,AB∥CD.…………………………………………………1分
∵DE=DC,
∴AE=AC.…………………………………………………………………2分
∴∠E=∠ACE.………………………………………………………………3分
∵AB∥CD,
∴∠BAC=∠ACE.……………………………………………………………4分
∴∠E=∠BAC.……………………………………………………………5分如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档