史陶比尔资料(冷却水接头)Pages from Accessory

合集下载

史陶比尔电模块

史陶比尔电模块

史陶比尔电模块
(实用版)
目录
1.史陶比尔电模块的概述
2.史陶比尔电模块的特点与优势
3.史陶比尔电模块的应用领域
4.史陶比尔电模块的发展前景
正文
史陶比尔电模块是一种高效、可靠的电力电子器件,广泛应用于各种工业控制、能源转换和电力传输系统中。

作为一种先进的电力电子技术,史陶比尔电模块在全球范围内得到了广泛的应用和认可。

首先,让我们了解一下史陶比尔电模块的概述。

史陶比尔电模块,又称为 IGBT 模块,是绝缘栅双极晶体管的缩写。

它是一种具有开关速度快、电流容量大、导通阻抗低等特点的电力电子器件,可以实现直流电和交流电之间的高效转换,也可以实现交流电之间的变频控制。

接下来,我们来看看史陶比尔电模块的特点与优势。

首先,史陶比尔电模块的开关速度快,可以在高频率下稳定工作,大大提高了系统的工作效率。

其次,史陶比尔电模块的电流容量大,可以承受高电流的冲击,提高了系统的稳定性和可靠性。

最后,史陶比尔电模块的导通阻抗低,可以降低系统的损耗,提高系统的效率。

再来看看史陶比尔电模块的应用领域。

由于史陶比尔电模块具有上述的优点,它被广泛应用于各种工业控制、能源转换和电力传输系统中,如电力系统、工业电机、家用电器、新能源汽车等。

最后,我们来谈谈史陶比尔电模块的发展前景。

随着全球经济的发展和电力电子技术的进步,史陶比尔电模块的市场需求将持续增长。

预计在
未来几年内,史陶比尔电模块的市场规模将保持稳定的增长。

总的来说,史陶比尔电模块是一种高效、可靠的电力电子器件,具有广泛的应用前景。

笔记

笔记

简史 早在1810年汉佛莱?戴维(Humphry Davy)利用木炭制成通电后能产生电弧的炭质电极,开辟了使用炭素材料作为高温导电电极的广阔前景,1846年斯泰特(Stair)和爱德华(Edwards)用焦炭粉及蔗糖混合后加压成型,并在高温下焙烧从而制造出另一种炭质电极,再将这种炭质电极浸在浓糖水中以提高其体积密度,他们获得了生产这种电极的专利权。1877年美国克利夫兰(Cleveland)的勃洛希(C.F.Brush)和劳伦斯(wrence)采用煅烧过的石油焦研制低灰分的炭质电极获得成功。1899年普利查德(O.G.Pritchard)首先报道了用锡兰天然石墨为原料制造天然石墨电极的方法。1896年卡斯特纳(H.Y.Gastner)获得了使用电力将炭质电极直接通电加热到高温,而生产出比天然石墨电极使用性能更好的人造石墨电极的专利权。1897年美国金刚砂公司(Carborundum Co.)的艾奇逊(E.G.Acheson)在生产金刚砂的电阻炉中制造了第一批以石油焦为原料的人造石墨电极,产品规格为22mm×32mmX380mm,这种人造石墨电极当时用于电化学工业生产烧碱,在此基础上设计的“艾奇逊”石墨化炉将由石油焦生产的炭质电极及少量电阻料(冶金焦粒)构成“炉芯电阻”,通电后产生高温,使由石油焦制成的炭质电极在高温下“石墨化”而获得人造石墨电极。19世纪末法国人埃鲁(P.L.T.Heroult)发明了直接电弧炉,开始用于冶炼电石和铁合金生产,1899年首次用于炼钢,电弧炉需要一定数量耐高温的导电电极。虽然1900年前后艾奇逊石墨公司(Acheson Graphite Co.)就出售可连接的电极,但这时只能生产小规格石墨电极,20世纪初期电炉炼钢主要使用以无烟煤为原料的炭质电极或以天然石墨为原料的天然石墨电极。生产炭质电极或天然石墨电极的工艺比较简单,1910年已经向市场供应直径达610mm的炭质电极。但是石墨电极的优良性能以及制造工艺的不断改进,大规格石墨电极的大批量生产及售价不断下降,电炉炼钢工业逐渐改用石墨电极,使用炭质电极或天然石墨电极逐渐减少,20世纪60年代以后绝大多数电弧炼钢炉都使用石墨电极。1914~1918年制成的石墨电极最大直径只有356mm,1924年开始生产直径为406mm的石墨电极,1930年已扩大到457mm,1937年又增加到508mm,不久又生产了直径559mm、610mm、660mm、711mm、762mm的大规格石墨电极。20世纪80年代世界上最大的电弧炼钢炉使用的石墨电极直径为813mm。第二次世界大战以后生产石墨电极的原料质量、设备和制造工艺不断改进,随着电炉炼钢输入电功率不断提高的需要,于20世纪60~70年代又研制成功了高功率及超高功率石墨电极。由于石墨电极质量不断提高及电炉炼钢工艺的改进,每吨电炉钢的石墨电极消耗已由70年代的6~8kg降低到80年代的4~6kg(普通功率电炉),采用超高功率石墨电极的大型电炉每吨钢的电极消耗已降低到2.5kg左右,而超高功率直流电弧炉(只用1根石墨电极)每吨钢的石墨电极消耗可降低到1.5kg左右。80年代末世界上工业发达国家电炉炼钢工业多数电炉的吨位已提高到80~200t,因此大量使用的是直径550~750mm的高功率或超高功率石墨电极。

工业机器人人与机器-Stubli

工业机器人人与机器-Stubli

快速运动技术关于史陶比尔史陶比尔集团是工业连接器、工业机器人和纺织机械这三大领域机电一体化解决方案的全球专业供应商。

作为一个跨国集团公司,史陶比尔在29个国家及地区设立分公司,代理商遍及四大洲50个国家及地区。

我们全球4500多名员工都致力于与几乎是所有行业的客户通力合作,以提供全面的解决方案和长期的支持。

史陶比尔工业机器人史陶比尔机器人是能够完整提供工业机器人从齿轮减速系统到嵌入式软件的所有部件的唯一制造商。

得益于此,史陶比尔工业机器人事业部为客户提供无与伦比的卓越性能。

越来越高效和智能的机器人将在生产线上与人类协同工作。

独有的全系列四轴和六轴机器人,满足所有机器人应用。

无论何时您的公司自动化需求速度、重复精度或可靠性,史陶比尔工业机器人为您提供最合适的解决方案。

为了满足所有的客户需求,史陶比尔工业机器人开发了特殊环境的解决方案,适用于包括电子、医疗、汽车、食品、塑料、机械及喷涂等所有行业。

史陶比尔机器人专为在最恶劣环境下工作设计,在满足最严苛的洁净等级的情况下,仍能保持高效率运作。

优质服务突显高品质机器人。

正确选择机器人型号和配置,并模预测设备集成状况,是发挥机器人最大效益的关键。

对操作人员的培训和对疑难问题的及时解答同样起到优化产能的作用。

正因如此,史陶比尔团队在机器人使用期限内的各个阶段,都能对其自身产品以及您的业务需求了如指掌。

不论是售前服务、现场支持还是远程协助,我们的团队始终触手可及,随时为您服务。

史陶比尔相信:在服务领域,机器人能够展示出对人类的真正价值。

在机器人的整个生命周期中,从一个项目的规划阶段到完结阶段,史陶比尔团队始终伴您左右。

为此,史陶比尔已经开拓出三大专业领域,以确保您的机器人辅助生产系统可靠、安全以及最优效率,进而满足您的需求。

我们的销售、应用及售前工程师协同工作,通过仿真和测试来验证您的项目。

售前服务可以与您指定的集成商合作完成,为您推荐意向合作伙伴。

具备专业能力的团队将指导您完成整个机器人项目开发过程。

史陶比尔 辅助气路选型

史陶比尔 辅助气路选型

通经 8*12mm,工作半径 8 米,两端内螺纹 G3/8 通经 8*12mm,工作半径 6 米,两端内螺纹 G3/8 通经 8,mm 外螺纹 R3/8,表面涂胶,专用于总装车间 通经 8,mm 外螺纹 R3/8
快速接头插座 (公头) 13151G014P
序号 1 2 3 4 5 6 品牌 史陶比尔 史陶比尔 史陶比尔 史陶比尔 史陶比尔 史陶比尔 名称
这一段需要跟工具包内的螺 旋管联接,需要按螺纹来配合
13149G014P
型号 通经 8,mm 外螺纹 R1/2 通经 8,mm 外螺纹 R3/8
规格
快速接头插座 (母头) 13148G014S 快速接头插头 (公头) 13149G014P 8 米螺旋气管 6 米螺旋气管 PUB 08128/DVK81238I*2 PUB 08126/DVK81238I*2
北汽广州工厂总装车间方案
13149G014P
三 联 件
PUB 08128/DVK81238I*2
13150G014S
13151G014P
13148G014S
三联件的接口是 G1/2 或者 RC1/2
快速接头的接口一定要是 R1/2 (管螺纹无法密封) 。R1/2 可以 联 G1/2 或者 RC1/2 并且可以起 到密封的作用

Shaft torque in scraped-surface heat exchanger for making ice-slurry

Shaft torque in scraped-surface heat exchanger for making ice-slurry
2007 Curtin University of Technology and John Wiley & Sons, Ltd.
Avalanche Ice Harvest system uses a simple shell-andtube heat exchanger to produce ice slurries from 7 wt% ethylene glycol aqueous solution (Paul Mueller Company (U.S.), 2005). However, using the sub-cooled SSHE still remains an interesting method because of its reliability and safety (Inada et al ., 2000; Ishikawa et al ., 2002; Yamada et al ., 2002). A variety of SSHE configurations are currently available. The scraper can be constructed simply as a straight-blade wiper or as a helical-blade auger (Bel and Lallemand, 1999a,b). The processing surface can be the exterior of the cooling tube or the interior of a cooling jacket (Trommelen and Beek, 1971b; Ishikawa et al ., 2002; Yamada et al ., 2002). The shaft torque of the scraper is influenced by the increasing ice fraction in the process fluid. The torque may also be affected by the temperature of the cooling surface. The power consumption can be very high compared to a stirred tank without a scraper (Trommelen and Beek, 1971b). This makes the design and operation of an SSHE used for freezing very different from an SSHE used for heating or cooling (without phase change). A number of studies regarding the design and performance of SSHE have been reported; however, the data regarding the torque variation, especially when phase change occurs on the scraped cooling surface, is still inadequate (Trommelen and Boerema, 1966; Leung, 1967; Trommelen, 1967; Trommelen and Beek, 1971a; Trommelen et al ., 1971; Ben Lakhdar et al ., 2005). In a previous study, we reported the characteristics of the heat transfer and power consumption of a lab-scale SSHE used for freezing aqueous solutions (Qin et al ., 2005). The current study will further investigate in more

史陶比尔机器人TX200电路手册D28086204A

史陶比尔机器人TX200电路手册D28086204A

CS8C HP Controller Electrical diagrams manualD2*******A –27/08/2012MasterCS8C HP © Stäubli 20122 / 52© Stäubli 2012 - D2*******A CS8C HPTABLE OF CONTENTS1 -INTRODUCTION (5)1.1.Foreword (7)1.2.Definition of the elements around the machine (8)2 -WIRING DIAGRAMS (9)2.1.Glossary (11)2.2.Connector and component names (12)2.3.Connector pin outs (15)2.4.PSM (18)2.5.Cooling (20)2.6.RPS (21)2.7.ARPS (22)2.8.Digital power supplies (23)2.9.Solenoid valves (25)2.10.Brakes (26)2.11.Motors (28)2.12.Encoders (30)2.13.Thermal sensors (34)2.14.Auxiliary systems (35)puter (37)2.16.Starc (38)2.17.Starc connections (40)2.18.Cell (41)2.19.MCP (47)2.20.BIO (48)2.21.Field bus (50)CS8C HP© Stäubli 2012 - D2*******A3/ 524 / 52© Stäubli 2012 - D2*******A CS8C HPChapter 1 - IntroductionCHAPTER1 - INTRODUCTIONCS8C HP 5 / 52© Stäubli 2012 - D2*******A6 / 52© Stäubli 2012 - D2*******A CS8C HPChapter 1 - Introduction1.1.FOREWORDThe information contained in the present document is the property of STÄUBLI and itcannot be reproduced, in full or in part, without our prior written approval.The specifications contained in the present document can be modified without notice.Although all necessary precautions have been taken to ensure that the informationcontained in this document is correct, STÄUBLI cannot be held responsible for any errorsor omissions found in the illustrations, drawings and specifications contained in the saiddocument.If any difficulties are met with during operation or servicing of the robot that are not referredto in this document, or if further information is required, please contact the STÄUBLI AfterSales Department, "Robot Division".STÄUBLI, UNIMATION, VALare brands registered by STÄUBLI INTERNATIONAL AG.1.1.1.OBJECTIVE OF THIS MANUALThe objective of this manual is to provide some reference information concerning theinstallation, operation and maintenance of STÄUBLI robots. It provides help for the personsworking on the equipment, for reference purposes only. Indeed, in order to understand thepresent document and the use of STÄUBLI robots, it is necessary for staff to acquire thecorresponding knowledge by following a "robots" training course as provided by STÄUBLI.The photos are used to make the document easier to understand, they cannot beconstrued as being of a contractual nature.1.1.2.SPECIAL MESSAGES CONCERNING WARNINGS, ALERTS, AND INFORMATIONIn this document, there are two formats for warnings and alerts. The messages containedin the boxes inform staff of the potential risks involved in carrying out an action.These boxes are as follows (they are shown in decreasing order of importance):Danger messagetype of indication describes the potential danger, its possible effects and the stepsnecessary to reduce the danger. It is essential to comply with the instructions toensure personal safety.Warning messageto ensure equipment reliability and performance levels.CS8C HP7 / 52© Stäubli 2012 - D2*******AInformation messageNotes of the "information" type provide very important information to help the reader tounderstand a description or a procedure.sequencing of the operations described.1.2.DEFINITION OF THE ELEMENTS AROUND THE MACHINEPerson: general term identifying all individuals likely to come close to the STÄUBLImachine.Staff: identifies the persons specifically employed and trained to install, operate, andservice the STÄUBLI machine.User: refers to the persons or the company responsible for operating the STÄUBLImachine.Operator: refers to the person who starts or stops the robot, or controls its operation.•For UL robots: When arm is powered-on, a light on the arm is on to indicate there is apotential danger.This light is also on when manual brake release is performed(on axis 1on RX and TX robots, on axis 3 on Scara robots).•Do not connect or disconnect components while the unit is under power. The connectionbetween the controller and the robot arm can only be made if the controller has beenswitched off.•Remove part or tool loaded on robot during maintenance operations.•If unusual sounds or vibrations are noted on the robot arm, especially following a shock orsome other incident, it is necessary to inspect the tool and gripper fastenings carefully andmake diagnoses at low speed.8 / 52© Stäubli 2012 - D2*******A CS8C HPChapter 2 - Wiring diagramsCHAPTER2 - WIRING DIAGRAMSCS8C HP9 / 52© Stäubli 2012 - D2*******A10 / 52© Stäubli 2012 - D2*******A CS8C HPChapter 2 - Wiring diagrams2.1.GLOSSARYConnectornameComponentJ3xx ABZ Dual ABZ Encoder board Dual ABZ Encoder boardJ11xx ARPS Auxiliary Robot Power Supply Auxiliary Robot Power Supply J6xx BIO Basic Inputs Outputs Basic Inputs OutputsJ7xx BRB Brake Release Board Brake Release BoardJxM BRK Brake BrakeJCod COD Arm Encoder Arm EncoderJ2xx CPT Computer ComputerJ9xx DIG Digital part of the amplifier Digital part of the amplifierJ4xx DSI Dual Sensor Interface board inArm Dual Sensor Interface board in ArmJ7x EV Solenoid valve Solenoid valveJ12xx IC Interconnect Cable Interconnect CableJxM MOT Motor MotorXxx PSM Power Supply Module Power Supply ModuleJ8xx PWR Power part of the amplifier Power part of the amplifierJ10xx RPS Robot Power Supply Robot Power SupplyJ1xx RSI Robot Safety Interface Robot Safety InterfaceJ3xx STARC Stäubli Advanced Robot Control Stäubli Advanced Robot ControlJ1xx WMS Working Modes Selection frontpanel Working Modes Selection front panel2.2.CONNECTOR AND COMPONENT NAMESChapter 2 - Wiring diagramsChapter 2 - Wiring diagrams2.3.CONNECTOR PIN OUTS1 23121812124571113141516Chapter 2 - Wiring diagrams2.4.PSMChapter 2 - Wiring diagrams2.5.COOLINGT o p f a n s f o r T X 300 o n l yChapter 2 - Wiring diagrams 2.6.RPS2.7.ARPSChapter 2 - Wiring diagrams2.8.DIGITAL POWER SUPPLIESChapter 2 - Wiring diagrams2.9.SOLENOID VALVES2.10.BRAKESChapter 2 - Wiring diagrams2.11.MOTORS2.11.1.FOR TX200 FAMILYChapter 2 - Wiring diagrams2.11.2.FOR TX200 FAMILY2.12.ENCODERS2.12.1.FOR TX200 FAMILYChapter 2 - Wiring diagrams2.12.2.FOR TX300 FAMILYChapter 2 - Wiring diagrams2.13.THERMAL SENSORSChapter 2 - Wiring diagrams2.14.AUXILIARY SYSTEMS 2.14.1.FOR TX200 FAMILY2.14.2.FOR TX300 FAMILYChapter 2 - Wiring diagrams PUTER2.16.STARCChapter 2 - Wiring diagrams2.17.STARC CONNECTIONSChapter 2 - Wiring diagrams 2.18.CELLChapter 2 - Wiring diagramsChapter 2 - Wiring diagramsChapter 2 - Wiring diagrams 2.19.MCP2.20.BIOChapter 2 - Wiring diagrams2.21.FIELD BUSDeviceNet :Field bus boardCPTDeviceNet boardPhoënix MSTB 2.5/5Shield CAN V+ CAN V-CAN H CAN L 3 5 1 42。

史陶比尔 机器人 (产品系列)

史陶比尔 机器人 (产品系列)
l l
±180° ±120° ±145°
±270° +120°/-105° ±270° (4) 142°/s 278°/s 130°/s 278°/s 175°/s 356°/s 280°/s 409°/s 224°/s 480°/s 406°/s 1125°/s 245
±270° +130°/-110° ±270° (4) 130°/s 155°/s 115°/s 130°/s 135°/s 205°/s 190°/s 237°/s 200°/s 243°/s 297°/s 562°/s 721
RX160 34 20 1710 6 ±0.05 IP65 (67)
l l
±160° ±137.5° ±150°
±270° +120°/-105° ±270° (4) 165°/s 200°/s 150°/s 200°/s 190°/s 255°/s 295°/s 315°/s 260°/s 360°/s 440°/s 870°/s 248
480°/s 659°/s 480°/s 659°/s 360°/s 415°/s 287°/s 475°/s
1600 mm/s 1923 mm/s 1600 mm/s 1923 mm/s 1600 mm/s 1923 mm/s 430°/s 585°/s
1200°/s 2020°/s 1200°/s 2020°/s 1200°/s 2020°/s 410°/s 1035°/s
10 6 2185 1.8 m/s l/l/l
Group II Category 2,3 Zone 1,2,21,22 Class I, II, III Div 1&2
Group II Category 3 Zone 2,22

史陶比尔快换接头

史陶比尔快换接头

Code of ethicsMission and visionStäubli is a mechatronics solution provider with three dedicated divisions: textile machinery, connectors and robotics. With a workforce of over 3000, the company generates a yearly turnover surpassing 1 billion Swiss francs. Originally founded in 1892 as a small workshop in Horgen / Zurich, Stäubli today is an interna-tional group with its head office in Pfäffikon, Switzerland.Stäubli is active on all 5 continents and oversees 14 industrial pro-duction sites. Including its Group companies Schönherr, Prevost, Multi-Contact and Deimo, Stäubli maintains a presence in 24 coun-tries through its sales and customer service subsi d iaries. This net-work is completed by agents in 50 countries.Companies of the Stäubli Group:Innovation is the driving forcein the progress of Stäubli. In its constant search for excellence, the Group expands on expertise and experience in mechatronics by designing, producing, selling and providing support for prod-ucts and systems in markets where high productivity levels are essential.The position as a global innova-tor is asserted by:– o ffering customers the best products and services in terms of both quality and performance.– a ctively supporting any initia-tive aiming at further improv-ing products and services.– m aintaining synergy between the needs of customers, sup-pliers, shareholders, staff and the environment.The purpose of this code is to formalise the ethical principles held by the Stäubli Group. These principles, combined with everyone’s common sense, provide guidance for all parties in-volved in the company in conducting their professional activities.Code of ethicsDiversityWe acknowledge and appreci-ate our ethnical, cultural and philosophical diversity as a fun-damental asset of our company. We offer everyone the same chance of integrating and suc-ceeding and we refuse to accept all forms of discrimination.RespectWe must abide by the laws of the countries where we operate. We will also be sensitive to the cultures and customs of the countries and communities where we do business. We support the Universal Declara-tion of Human Rights and the Standards and Fundamental Principles of the International Labour Organisation (ILO). FairnessApart from simply abiding by the law in our actions, our decisions must give preference, in all transparency, to fairness and the company’s interests as well as those of its stakeholders. Personal interests must not interfere with the interests of the company.Health and safetyWe pay great attention to the quality of working conditions and occupational health and safety as these are essential factors for our employee’s professional effectiveness.COMPLIANCE with laws, human rights and diversitySocial and environmental awarenessWe recognize that the key to the company’s longevity and prosperity is a well-managed balance between the interests of the various stakeholders in our company (shareholders, customers, employees and sup-pliers) and the protection of our natural and social environment. We are committed to a respon-sible and efficient use of energy and natural resources in all our operations and when designing our products. We also encour-age our suppliers to do so.Long-term perspectiveOur decisions give preference to long-term investment in human, technical and financial domains. Satisfying our customers, abid-ing by the commitments made to our partners, the health and safety of our employees and protecting our environment take precedence over profit in the short term.SUSTAINABLE performanceDevelopmentThe principle of subsidiarity applied within our Group leads to responsibilities being widely delegated. This principle, com-bined with a determination to promote internally, must enable all our employees to develop their skills and fulfill their profes-sional potential.Risk preventionTo always maintain our opera-tional, financial and reputational integrity, we regularly assess social, environmental and economic risks we are exposed to, allowing for timely preventive action.HonestyAs instigators of management through example we keep to our word and accept full responsi-bility for our actions.LoyaltyWe commit ourselves to our partners and employees infull transparency and with full knowledge of the facts. Hence, we establish honest and loyal professional relations, fully respecting the principle of fair competition and rejecting any form of corruption.ObjectivenessWith the exception of ordinary corporate hospitality we never accept or offer gifts, favours or any advantages liable to com-promise the objectiveness of a decision or which may prejudice the company’s interests and its image.ConfidentialityIn order to optimise concepts, processes, products and ser-vices, we share our knowledge within multi-disciplinary teams while keeping all elements of our activities confidential. Each employee and business partner entrusted with confidential information is responsible for its careful use and protection.RESPONSIBILITY for honest and exemplary behaviourIntellectual propertyAs innovation is the driving force in our progress, we are developing a worldwide policy of dynamic industrial protection while scrupulously respecting others’ intellectual property.DiscretionThe private nature of our shareholding prompts usto a considerable degree of confidentiality with regard to the company’s strategic and financial data, particularly those concerning our assets and our know-how.EthicsAll persons speaking and acting on behalf of Stäubli must do so in consistency with the com-pany’s ethics and values. We would prefer that the company’s reputation be earned through active and practical promotion of our products and services rather than by excessive media coverage.Ethical filterHow can one be sure that a decision complies with the Stäubli Group’s code of ethics? This questionnaire will help you.1. Is this decision legal?2. Is this decision non-discriminatory?3. Does this decision giveprecedence to the com-pany’s interest rather thana personal interest?4. Does this decision protectour strategy in the longterm?5. Does this decision pro-tect the balance of theinterests of the variousstakeholders?6. Does this decision stand upto public scrutiny?7. Is this decision such that itwill compromise the rela-tions you have with who-ever is concerned by it?8. Does this decisionabide by the company’scommitments?9. Does this decision respectthe confidentiality anddiscretion we are bound tohave?10. Would you accept this deci-sion if it had to be takenwith respect to you?。

史陶比尔机械手的资料

史陶比尔机械手的资料

STAUBLI机器人技术---手臂机械结构 STAUBLI机器人技术---手臂机械结构 机器人技术--TX 手腕 TX手腕现在已拥有IP67防护等级。 允许水中和潮湿环境中的使用.
手臂材料 航空铝框架式结构设计,已减轻重 量,增加刚性
内部电缆 接近工具端的电气和气动接口从内 部走
手臂结构 全封闭式结构设计
工业机器人技术应用
张振惠
第一部分
STAUBLI机器人技术特点 机器人技术特点
STAUBLI机器人技术---手臂机械结构 STAUBLI机器人技术---手臂机械结构 机器人技术--马达和传动装置
我们独有的技术使驱动部分完全处于封闭的环境中. 我们设计了高性能,结构紧凑 ,低 发热量的马达. 我们的技术使马达,减速器和轴承一体化并获得了专利。 我 们称它为JCM,(Joint Combined Motor). 此单元具有寿命长并且免维护.
LLI开发环境:tornado C 开发接口,研究机器人控制原理
STAUBLI机器人技术---软件辅助系统功能 STAUBLI机器人技术---软件辅助系统功能 机器人技术---
产品系列
特定应用环境的特制产品
第三部分
机器人应用以及发展方向
实现各种应用
液体搬运
码垛
包装
压铸
切割
测试 等等…. 等等 .
STAUBLI机器人技术---软件开发环境 STAUBLI机器人技术---软件开发环境 机器人技术--VAL3 应用软件层,已开发好的行业应用软件
VAL3 应用层 VAL3 应用开发层,开发机器人应用函数库,全开放平台 VAL3 开发层 基于VAL3 层和LLI之间的开发层,特殊开放函数库
Vxworks 底层
STAUBLI机器人技术---控制器 STAUBLI机器人技术---控制器 机器人技术--1. 2. 3. TX系列机器人和我们的新一代基于STARC (STäubli Advanced Robot Control)技术的CS8C控 制器一同发布, 此单元使用了当前的最新PC控制和光纤通讯、数字和现场总线控制技术。 DSI实现机器人系统绝对编码系统 双路冗余第四类安全级别和紧凑的19寸体积带安装架,集成到其他系统内部非常简单。

英汉对照_化工材料翻译

英汉对照_化工材料翻译

1 管道组成件Piping component1.1 管子Pipe管子(按照配管标准规格制造的)pipe管子不按配管标准规格制造的其他用管)tube卡冈管steel pipe铸铁管cast iron pipe衬里管lined pipe复合管clad pipe碳钢管carb on steel pipe合金钢管alloy steel pipe不锈钢stainless steel pipe奥氏体不锈钢管austenitic stainless steel pipe铁合金钢管ferritic alloy steel pipe车L制钢管wrought-steel pipe锻铁管wrought-iron pipe无缝钢管seamless (SMLS) steel pipe焊接钢管welded steel pipe电阻焊钢管electric-resistance welded steel pipe电熔(弧)焊钢板卷管electric-fusion (arc)-welded steel-plate pipe螺旋焊接钢管spiral welded steel pipe镀锌钢管galvanized steel pipe热轧无缝钢管hot-rolling seamless pipe冷拔无缝钢管cold-drawing seamless pipe水煤气钢管water-gas steel pipe塑料管plastic pipe玻璃管glass tube橡胶管rubber tube直管run pipe; straight pipe1.2 管件Fitting弯头elbow异径弯头reducing elbow带支座弯头base elbowk 半径弯头long radius elbow短半径弯头short radius elbow长半径180 弯头long radius return短半径180 弯头short radius return带侧向口的弯头(右向或左向)side outlet elbow (right hand or left hand)双支管弯头(形)double branch elbow三通tee异径三通reducing tee等径三通straight tee带侧向口的三通(右向或左向)side outlet tee (right hand or left hand)异径三通(分支口为异径)reducing tee (reducing on outlet)异径三通(一个直通口为异径)reducing tee (reducing on one run)带支座三通base tee异径三通(一个直通口及分支口为异径)reducing tee (reducing on one run and outlet)异径三通(两个直通口为异径,双头式)reducing tee (reducing on both runs, bull head)45 斜三通45 ° lateral45 斜三通(支管为异径)45 ° lateral (reducing on branch)45 斜三通(一个直通口为异径)45 ° lateral (reducing on one run)45 斜三通(一个直通口及支管为异径)45 ° lateral (reduci ng on one run and bran ch)Y型三通(俗称裤衩)true “ Y”四通cross等径四通straight cross异径四通reducing cross异径四通(一个分支口为异径)reducing cross (reducing on one outlet)异径四通(一个直通口及分支口为异径)reducing cross (reducing on one run and outlet)异径四通(两个分支口为异径)reducing cross (reducing on both outlet)异径四通(一个直通口及两个分支口为异径)reducing cross (reducing on one run and both outlet)异径管reducer同心异径管concentric reducer偏心异径管eccentric reducer锻制异径管reducing swage螺纹支管台threadolet焊接支管台weldolet承插支管台sockolet弯头支管台elbolet斜接支管台latrolet镶入式支管嘴sweepolet短管支管台nipolet支管台,插入式支管台boss管接头coupling, full coupling半管接头half coupling异径管接头reducing coupling活接头union内外螺纹缩接(俗称补芯)bushing管帽cap (C)堵头plug短节nipple异径短节reducing nipple; swage nipple1.3 弯管Be nd预制弯管fabricated pipe bend跨越弯管(八形)cross-over bend偏置弯管(〜形)offset bend90 弯管quarter bend环形弯管cirele bend单侧偏置90。

史陶比尔光伏连接器中-ur的解释

史陶比尔光伏连接器中-ur的解释

史陶比尔光伏连接器中-ur的解释1. 介绍在当今社会,随着能源需求的不断增加和环境保护意识的提高,光伏发电作为一种清洁能源备受关注。

而光伏连接器作为光伏发电系统中至关重要的组成部分,起着连接、导电和保护电缆的重要作用。

其中,史陶比尔光伏连接器中的-ur连接器备受推崇,其可靠性和高效性受到广泛认可。

2. 光伏连接器的作用和重要性光伏连接器是连接太阳能电池板和其他设备的关键组件,它们直接影响到整个光伏发电系统的性能。

一个优秀的光伏连接器不仅能够确保电能的传输效率,还能提高系统的安全性和可靠性。

3. 史陶比尔光伏连接器中的-ur系列产品史陶比尔作为一家知名的光伏连接器制造商,推出了-ur系列产品,这一系列产品具有优异的性能和可靠性。

-ur连接器采用了先进的插拔技术和密封设计,确保了连接的稳固性和防水性能,能够在各种恶劣环境下保持良好的工作状态。

4. -ur连接器的特点和优势-ur连接器具有许多突出的特点和优势,例如高温耐久性、耐污染性、防护等级高等。

这些特点使得-ur连接器在光伏发电系统中表现优异,受到了众多客户的青睐。

5. -ur连接器的应用领域史陶比尔的-ur连接器广泛应用于光伏发电系统的组装中,包括光伏组件之间的连接、逆变器与光伏电池板之间的连接等。

其灵活性和可靠性使得-ur 连接器在不同规模的光伏发电项目中均能发挥重要作用。

6. -ur连接器的安装和维护为了确保光伏发电系统的正常运行,-ur连接器的安装和维护至关重要。

在安装过程中,需要确保连接器的正确插接和牢固固定,避免出现接触不良或短路等问题。

同时,定期对连接器进行检查和清洁也是必不可少的,以确保连接器的稳定性和可靠性。

7. 结语总的来说,史陶比尔光伏连接器中的-ur系列产品在光伏发电系统中扮演着重要的角色,其优异的性能和可靠性使其成为众多客户的首选。

随着光伏发电技术的不断发展和普及,相信-ur连接器将会在更广泛的领域展现出其价值和优势。

史陶比尔Multi-Contact焊接机器人焊枪快速电连接器A

史陶比尔Multi-Contact焊接机器人焊枪快速电连接器A

史陶比尔Multi-Contact焊接机器人焊枪快速电连接器
A
至少两页
泰瑞斯·陶比尔(TravisTobler)Multi-Contact(MC)焊接机器人焊枪
快速电连接器A是一款高效率、高精度的电连接器,可用于应用在机器人
等自动焊接系统中。

本文就MC 焊接机器人焊枪快速电连接器A的应用、
特征、性能以及外观及结构等方面进行介绍。

一、应用
MC焊接机器人焊枪快速电连接器A可广泛应用于机器人、自动焊接、精密检测、电子元器件组装、机械制造、实验室电路测试、航空航天、船舶、汽车制造等领域,可替代传统的焊接机器人、电极焊、点焊等技术,
大大提高了生产效率。

二、特征
1、机械结构:MC焊接机器人焊枪快速电连接器A采用优质的结构材料,性能优越,机械强度大,整体结构简洁,精度高,可靠性强,使用寿
命长。

2、连接效率:MC焊接机器人焊枪快速电连接器A在焊接连接过程中,连接效率高,可达到20秒一接头的连接速度,比传统尖端焊接技术快几
十倍,极大地提高了生产效率。

3、安装简洁:MC焊接机器人焊枪快速电连接器A安装简洁,可根据
工作场所的不同选择配套的固定结构,由机械有限减少安装对部分的空间
占用。

t5.4.O1

t5.4.O1

HEAT LOSSES FROM PIPES CONNECTED TO HOT WATER STORAGE TANKSElsa Andersen, Jianhua Fan, Simon FurboDepartment of Civil EngineeringTechnical University of Denmark2800 Kgs. Lyngby, Denmarkean@byg.dtu.dk, jif@byg.dtu.dk, sf@byg.dtu.dkABSTRACTThe heat loss from pipe connections at the top of hot water storage tanks with and without a heat trap is investigated theoretically and compared to similar experimental investigations. Computational Fluid Dynamics (CFD) is used for the theoretical analysis. The investigations show that the heat loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe, that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tank.1. INTRODUCTIONTo charge or discharge hot water stores, pipe connections to the store are necessary. It is well known that perforation of the insulation material encapsulating a hot water store, leads to a thermal bridge at the perforation. Especially pipe connections can result in large thermal bridges resulting in a low thermal performance of the solar heating systems. Changing the position of pipe connections from the hot part to the cold part of the store, e.g. at the bottom of the store, reduce strongly both the heat loss coefficient and the heat loss of the pipe connections. This result in a strongly increased thermal performance of the solar heating system [1]. It is therefore strongly recommended to locate pipe connections at the lower part of the hot water tank. These recommendations have been known for almost 30 years [2]. However, for different practical reasons, pipe connections are often situated in the upper hot part of the store. The heat losses of pipe connections depend not only on the geometry, the position and the insulation level of the pipe, but also on the temperature level at which the system is operated. The real heat losses from stores are generally much larger than the theoretical once, mainly due to convection of the air in the insulation material, air leakages and thermal bridges [3].A strong hot air flow from an uninsulated circular slit between a vertical pipe connection at the top of a hot water tank and the surrounding insulation material was discovered [4,5]. A hot air flow of 0.5 m/s was recorded. Further it was observed how water cooled in the pipe connected to the side of the tank flows into the tank like a “water-fall” and is replaced by hot water from the tank. It was concluded that careful insulation at pipe connections eliminate heat losses resulting from hot air flows and that the “water-fall” can be avoided by mounting the pipe in a downwards position. Differently designed hot water stores with a well insulated (30 mm insulation) hot water tapping pipe connected to the top of the hot water store were investigated [6]. It was found that the heat loss coefficient of the hot water tapping pipe was 0.6 W/K. The convective brake “Convectrol” from the German company Wagner Co was investigated by means of a 2D simulation program [7]. The storage and the ambient temperatures were 60ºC and 15ºC respectively. The pipe was connected to the side of the hot water tank. The heat loss coefficient of the pipe without the convection brake was calculated to 0.34 W/K5 SOLAR THERMAL SYSTEMS AND APPLICATIONS1999and 0.25 W/K with the convective brake. The impact of a heat trap on the heat losses from hot water tapping pipes connected to the top of a tank was experimentally investigated [8]. Well insulated copper pipes with outer/inner diameter of 22/20 mm were used for the experiments. It was found that a heat trap mounted on a vertical hot water tapping pipe as well as on a horizontal hot water tapping pipe reduced the total heat loss coefficient with 0.2 W/K. The heat loss coefficients of a 5 meter horizontally mounted pipe without and with heat trap were found to 0.5 W/K and 0.3 W/K respectively. The general recommendation for the design of a heat trap is that the height of the heat trap should be ten times the diameter of the pipe [9]. In the following sections the thermal behaviour of differently designed hot water tapping pipes are presented in detail. The application of numerical calculations (CFD – Computational Fluid Dynamics) allows a theoretical prognosis of the thermo-hydraulic behaviour of the pipes. Further the influence of differently sized thermal bridges on the yearly thermal performance ofa solar domestic hot water system is estimated.2. INVESTIGATED PIPE DESIGNSA hot water tapping pipe is investigated by means of Computational Fluid Dynamics (CFD) calculations. CFD-calculations can provide information on flow and temperature distribution in locations where it is difficult to measure. Further, parametric studies can be performed relatively fast and in an inexpensive way compared to parametric studies based on experiments. Regarding reliability, numerical models need to be validated by comparing calculated and measured values. The CFD calculations are compared to the experimental investigations described in [8]. The hot water tapping pipe is made of copper with outer/inner diameter of 22/20 mm. The pipe (WICU-EXTRA) is pre insulated with 12 mm insulation material with a thermal conductivity of 0.026 W/(m·K). The heat loss coefficient is calculated to 0.18 W/(m·K). The pipe is 5 meters long in horizontal direction and connected to the top of a hot water tank through a 90º bending. The vertical part of the pipe is 0.21 m. The tank temperature is held constant at 73.5ºC in accordance with the experimental investigations in [8]. Also, the influence of a heat trap build in to the horizontal part of the hot water tapping pipe is investigated. The heat trap is 0.21 m deep, corresponding to about ten times the diameter of the pipe with a width of 0.1 m. Here, the tank temperature is held constant at 75.5ºC in accordance with the experimental investigations in [8]. In both cases, the ambient temperature is 20ºC. Figure 1 shows the design of the pipes schematically.Fig. 1: Outline of the tank and pipe geometry used in the investigations. Left: Hot water tapping pipe withoutheat trap. Right: Hot water tapping pipe with heattrap build into the horizontal pipe.3. CFD CALCULATIONSTo solve the flow and energy equations, a simulation model of the flow and temperatures in the hot water tapping pipe and in the tank volume close to the pipe connection is developed using the CFD code [10]. The side and bottom tank walls are not modelled. Further, the heat loss from the tank is not modelled since the tank temperature is held constant and the flow in the tank is unimportant. The top 3 mm steel tank wall as well as the copper pipe wall are modelled in order to allow thermal conduction between the tank wall and the pipe wall. The mesh is build with hexahedral elements by the Cooper scheme both in the solid region (pipe wall and top tank wall) and the fluid region (pipe water and tank water) and is thus an unstructured mesh. Figure 2 shows the model outline, the grid distributions and the grid in a cross section of the pipe (I-I) and in a cross section of the tank (II-II). In order to investigate the grid independency, two different grids are used: One fine grid and one coarse grid. The coarse grid is used to verify the calculations with the fine grid.3D numerical solutions are obtained for steady-state laminar flow (Reynolds number < 2300) with the Boussinesq assumption for the buoyancy modelling. The temperature dependent viscosity is modelled with a power law function. The velocity-pressure coupling is treated by using the SIMPLE algorithm and the Second Order Upwind scheme is used for the momentum and energy terms. All theProceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement2000surfaces of the pipe walls are considered to be wall boundaries in Fluent with only convective heat losses considered. The convective heat loss from the pipe surface in the CFD calculations are determined by the heat losscoefficient from the tested pipes.Fig. 2: The grid distribution of the fine and the coarse gridused in the calculations.4. RESULTSThe calculations without heat trap are carried out for two different cases (Fig. 1, left): Well insulated copper pipe with fine grid and well insulated copper pipe with coarse grid. The heat loss coefficients of the insulated copper pipe calculated with the fine and the coarse grid are 0.27 W/K and 0.28 W/K respectively. Hence it is concluded that the calculated results are grid independent and that the fine grid can be used with a good accuracy. When steady-state is reached, about 3 meter of the 5 meter long pipe is kept hot by the hot water from the tank. The calculations show that the natural convection flow in the vertical part of the hot water tapping pipe is a disturbed flow while the fluid in the horizontal part of the pipe flows into the upper part of the pipe and returns at a lower temperature level in the lower part of the pipe. The calculated flow field is shown in Fig. 3.The calculations with heat trap are carried out for three different cases (Fig. 1, right): Well insulated copper pipe with fine grid, well insulated plastic pipe with fine grid and well insulated copper pipe with fine grid and with a thermalFig. 3: Calculated flow field [m/s] in the 5 m long wellinsulated copper hot water tapping pipe. bridge of 0.2 W/K on the horizontal part of the pipe before the heat trap. The calculated heat loss coefficients of the insulated pipe made of copper and plastic are 0.15 W/K and 0.08 W/K respectively. The significant difference between the copper pipe and the plastic pipe is the thermal conductivity which is much lower for plastic than for copper. Obviously the low thermal conductivity of the plastic prevents the heat from spreading beyond the heat trap. The calculated heat loss coefficients of the insulated copper pipe with a thermal bridge of 0.2 W/K on the horizontal part of the pipe before the heat trap is 0.31 W/K. The size of the thermal bridge does not contribute fully to the increase of the heat loss coefficient of the pipe. When steady-state is reached in the well insulated copper pipe, heat is still passing the heat trap. When steady-state is reached in the well insulated plastic pipe, heat does no longer pass the heat trap. Finally, when steady state is reached in the insulated copper pipe with an additional thermal bridge of 0.2 W/K, the temperature in the horizontal part of the pipe before the heat trap is reduced due to the thermal bridge. Table 1 shows an overview of the calculated and measured heat loss coefficients. The calculated values are given with two significant digits in order to be able to distinguish between the results. The accuracy of the measured results is estimated to ± 0.1 W/K. Table 1 shows that the calculated heat loss coefficients are lower than the measured heat loss coefficients. In the calculations the insulation is assumed to be ideal with no thermal bridges. Also the properties of the insulation material are like stated by the manufacturer. In reality, it is difficult to insulate ideally, especially at junctions, e.g. where a pipe is connected to a tank or where a pipe is bend. The investigations show that a heat trap can reduce the heat5 SOLAR THERMAL SYSTEMS AND APPLICATIONS2001loss coefficient by 44% and that a heat trap with a pipematerial with low thermal conductivity works better than a heat trap with a pipe material with a high thermal conductivity.TABLE 1: OVERVIEW OF CALCULATED ANDMEASURED HEAT LOSS COEFFICIENTSSystem Calculated heat loss coefficient [W/K] Measured heatloss coefficient [W/K] 5 m insulated copper pipe.0.270.5 (± 0.1) 5 m insulated copper pipe with heat trap.0.150.3 (± 0.1)5 m insulated plastic pipe with heat trap.0.08 - 5 m insulated copper pipe with heat trap and a thermal bridge of 0.2 W/K.0.31 - 5. THE INFLUENCE OF A THERMAL BRIDGE ON THE YEARLY THERMAL PERFORMANCE OF A SOLAR COMBI SYSTEMThe influence of a thermal bridge in the top of a hot water storage tank of a low flow solar domestic hot water system based on a marketed mantle tank is investigated by means of the simulation program Mantlsim developed at the Technical University of Denmark [11,12,13,14]. The tank, manufactured by Nilan A/S, has a tank volume of 0.189 m 3 with an auxiliary volume of 0.075 m 3. The solar collector, type BA22 manufactured by Batec A/S, has a transparent area of 2.19 m 2. Weather data is the Danish Test Reference Year [15]. The daily hot water consumption is 4.6 kWh, corresponding to 100 litres water heated from 10ºC to 50ºC tapped in three equal portions at 7 am, noon and 7 pm. The net utilized solar energy is defined as: Energy tapped from the system - Auxiliary energy supplied to the system. The performance ratio is defined as: Net utilized solar energy of the system in question / Net utilized solar energy of reference system. The reference system is the system without a thermal bridge in the top of the tank.Figure 4 shows the annual net utilized solar energy and theperformance ratio as function of the thermal bridge in the top of the tank. The auxiliary volume is constantly heated to 50.5ºC. From the figure it can be seen that the influence of a thermal bridge in the top of the hot water tank can be significant for tanks where the auxiliary volume is kept at a constant high temperature. Similar investigations with a pre-heating tank show that the influence is much smaller in a pre-heating tank without an auxiliary heated volume.Fig. 4: Annual net utilized solar energy and performanceratio as function of the thermal bridge in the top of the tank. The auxiliary volume is heated to 50.5ºC.6. CONCLUSIONSThe investigations show that the heat loss from an ideally insulated pipe connected to the top of a hot water tank is mainly due to a natural convection flow in the pipe. The investigations also show that the natural convection flow in the vertical part of the hot water tapping pipe is a disturbed flow while the fluid in the horizontal part of the pipe is flowing into the upper part of the pipe and returning with a lower temperature in the lower part of the pipe.Calculations show that the heat loss coefficient of pipes connected to the top of a hot water tank is high, and that a heat trap can reduce the heat loss coefficient significantly. Further, calculations show that the yearly thermal performance of solar domestic hot water systems is strongly reduced if the hot water tank has a thermal bridge located at the top of the tankFinally the investigations show that the calculated heat loss coefficients of ideally insulated hot water tapping pipes are lower than the measured heat loss coefficients.Proceedings of ISES Solar World Congress 2007: Solar Energy and Human Settlement 20027. REFERENCES(1) Furbo, S., 1983. Test Procedures for Heat Storages forSolar Heating Systems. Int. J. Solar Energy, V ol. 1.(2) Furbo, S., 1980. Prøvning af varmelagerunits tilsolvarmeanlæg. Thermal Insulation Laboratory, Technical University of Denmark. Report 97.(3)Vajen, K., 1996. Systemuntersuchungen und Modellierung solarunterstützterWarmwasserbereitungs- systeme in Freibädern, Dissertation, Universität Marburg.(4) Weber, H., Brack, M., Suter, J.-M., 1983. Ein Wildbachunter Wasser/Zur freien Konvektion in Warmwassertanks. In: Proceedings of 4. SymposiumForschung und Entwicklung von Sonnenenergie in derSchweiz.(5) Suter, J.-M., 2003. Heat losses from storage tanks: Upto 5 times higher than calculated. Suter Consulting, P. O.Box 130, CH-3000 Bern 16, Switzerland.(6) Schläpfer, B., Wleeinger, K., 1984. Waermeverluste von6 wassererwaermern unterschiedlicher form undgroesse. c/o E. Schweizer AG, Metallbau, 8908 Hedingen.(7) Schabbach, T., Mandel, H., Drück, H., 1999.CON VEC TROL - Neuentwicklung zur Verminderungder Wärmeverluste an den Rohranschlüssen vonSolarspeichern. In: Proceedings of 9. SymposiumThermische Solarenergie, Kloster Banz, Bad Staffelstein. (8) Furbo, S, 1989. Thermal bridges. EU Solar StorageTesting Group Final Report, V ol. II, Part B, 15, pp.309-318.(9) Hadorn, J-C., et al., 2005. Thermal energy storage forsolar and low energy buildings, State of the art by IEA Solar Heating and Cooling Task 32. Typeset by Servei de Publicacions (UdL). ISBN 84-8409-877-X.(10) Fluent 6.1 User’s Guide, 2003. Fluent Inc. CenterraResource Park 10 Cavendish Court Lebanon, NH 03766.(11) Furbo, S., Berg, P., 1990. Calculation of the thermalperformance of small hot water solar heating systemsusing low flow operation. In: North Sun’90 Proceedings, Reading, England.(12) Shah, L.J., Furbo, S., 1998. Correlation of Experimental and Theoretical Heat Transfer in MantleTanks used in Low Flow SDHW Systems”. Solar Energy, V ol. 64 (4-6), 245-256.(13) Knudsen, S., Furbo, S., 2004. Thermal stratification invertical mantle heat exchangers with application to solar domestic hot water systems. Applied Energy, V ol78/3, 257-272.(14) Furbo, S., Knudsen, S., 2006. Improved design ofmantle tanks for small low flow SDHW systems.International J ournal of Energy Research, V ol: 30, Issue 12, pp. 955-965.(15) Statens Byggeforskningsinstitut, 1982. Vejrdata forVVS og Energi. Dansk referenceår TRY.。

史陶比尔——织机开口机械及其编程系统的领先者

史陶比尔——织机开口机械及其编程系统的领先者

史陶比尔——织机开口机械及其编程系统的领先者
孙逸驰
【期刊名称】《纺织导报》
【年(卷),期】1993(000)002
【摘要】对于织机的应用及其性能水平来说,开口机械是起着决定性作用的一个非常重要的部分。

史陶比尔的多臂机系列包括各种标准型号,控制方式有电子式、凸轮式、可变更的齿形花筒或纹钉纹板、穿孔纹板等,其产品系列同样包括踏盘机,以及用于工业织物、重型织物或双层绒织物的特殊开口机械。

对于用户的每一种具体情况,都可以从史陶比尔的产品中筛选出一个既经济、又满足技术要求的最佳方案。

史陶比尔的提花机产品系列同样是品种齐全的,既有电子控制式,又有机械控制式,生产平、绒织物的各种织厂都可以从
【总页数】1页(P38-38)
【作者】孙逸驰
【作者单位】
【正文语种】中文
【中图分类】TS1
【相关文献】
1.史陶比尔(杭州)精密机械电子有限公司确保产品的快速换模 [J],
2.高效而精准史陶比尔机器人——访史陶比尔(杭州)精密机械电子有限公司中国区销售经理曾志青 [J], 宋慧欣
3.史陶比尔携产业用织物织机系列亮相Techtextil2011 [J],
4.德国格赖茨市纺织研究所成功装配最新史陶比尔UNIVAL 100型提花织机 [J],
5.瑞士史陶比尔将携产业用织物织机系列亮相Techtextil2011 [J],
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
AF 151.10/IA
17
AF 151.13/IA
19
AF 152.13/IA
23
AF 153.13/IA
23
AF 153.16/IA
H
PART-NUMBERS
17
AF 151.06/IC
17
AF 151.08/IC
17
AF 151.10/IC
17
AF 151.13/IC
19
AF 152.10/IC
F
Nickel plated brass
FITTINGS
F
HOSE I.D. (mm)
A
G 1/4
8
35
G 1/4
10
35
G 3/8
10
42
G 3/8
12
42
G 1/2
16
44
DIMENSIONS (mm)
B
C
Ø1
23
11
5.5
23
11
7
28
12
7
28
12
10
28
14
12
B A
Ø = hose inside diameter
15
AF 150.06/CN
19
AF 151.06/CN
19
AF 151.10/CN
19
AF 151.13/CN
22
AF 152.10/CN
22
AF 152.13/CN
24
AF 152.16/CN
27
AF 153.13/CN
27
AF 153.16/CN
H
PART-NUMBERS
19
AF 151.06/IC/CN
7
33
12
9
33
12
11
33
14
9
33
14
11
33
16
11
H
PART-NUMBERS
14
AF 150.04
14
AF 150.06
14
AF 150.08
14
AF 150.10
17
AF 151.06
17
AF 151.08
17
AF 151.09
17
AF 151.10
17
AF 151.13
19
AF 152.08
74
G 3/4
19
78
G 3/4
25
80
G1
19
84
G1
25
84
Bright nickel plated steel
FITTINGS
F
HOSE I.D. (mm)
A
G 1/2
19
74
G 3/4
19
78
G1
25
84
AISI 316 L stainless steel
FITTINGS
F
HOSE I.D. (mm)
fixing of the hose.
B
C
A
Zinc plated steel
Ø = hose inside diameter
FITTINGS
F
HOSE I.D. (mm)
A
G 1/8
4
43
G 1/8
6
43
G 1/8
8
43
G 1/8
10
43
G 1/4
6
46
G 1/4
8
46
G 1/4
9
46
G 1/4
10
22
AF 152.10/IC/CN
27
AF 153.13/IC/CN
Hex. H
F
Ø1
Ø
Brass
B
C
A
Ø = hose inside diameter
FITTINGS
F
HOSE I.D.
A
DIMENSIONS (mm)
B
C
Ø1
H
PART-NUMBERS
R 1/4
1/4”
40
20
13
5
14
AF 161.06/CN
R 3/4
3/4”
68
58
19
17.5
27
AF 164.19/CN
90° - BSP CYLINDRICAL WITH INTEGRATED SEALING
■ for self-lock hoses
■ max. working temperatures: - 15 °C to + 90 °C
F Nitrile seal
DIMENSIONS (mm)
B
C
Ø1
53
14
11
53
16
15
53
20
19
H
PART-NUMBERS
23
AF 153.19/G2/IA
29
AF 154.19/G2/IA
35
AF 155.25/G2/IA
DIMENSIONS (mm)
B
C
Ø1
53
14
11
53
16
15
53
16
19
53
20
19
H
PART-NUMBERS
PART-NUMBERS
19
AF 152.10
19
AF 152.13
23
AF 152.16
23
AF 153.13
23
AF 153.16
29
AF 154.16
The max. working pressure depends on the hose type and on the clamp type (2 ear or worm drive clamp) used.
A
B
C
Ø1
37
21
8
4,9
37
21
9
4,9
40,5
24,5
9
7,8
47
29
9
7,8
42
24,5
9,5
7,8
49
29
9,5
10,4
56
36,5
9,5
13,5
50,5
29
11,5
10,4
58
36,5
11,5
13,5
AISI 316 L stainless steel
FITTINGS
F
HOSE I.D.
A
46
G 1/4
13
51
G 3/8
8
47
G 3/8
10
47
G 3/8
13
52
G 3/8
16
52
G 1/2
13
54
G 1/2
16
54
G 3/4
16
58
DIMENSIONS (mm)
B
C
Ø1
28
8
3
28
8
4
28
8
5.5
28
8
5.5
28
11
4
28
11
5.5
28
11
7
28
11
7
33
11
8
28
12
5.5
28
12
SINGLE GROOVE THREADED HOSE TAILS
BSP CYLINDRICAL
■ these zinc plated steel hose tails
do not bend under impact
Hex. H
■ the grooved profile without
sharp corners gives an excellent
23
AF 153.19/G2/IC
29
AF 154.19/G2/IC
35
AF 154.25/G2/IC
41
AF 155.25/G2/IC
23
SELF-LOCK HOSE STEMS
BSP CYLINDRICAL WITH INTEGRATED SEALING ■ for self-lock hoses ■ max. working temperatures: - 15 °C to + 90 °C
12
46
G 3/8
10
47
G 3/8
12
47
DIMENSIONS (mm)
B
C
Ø1
28
8
3
28
8
4
28
8
5.5
28
8
5.5
28
11
4
28
11
5.5
28
11
7
33
11
8
33
12
9
33
14
9
33
14
11
DIMENSIONS (mm)
B
C
Ø1
28
11
4
28
11
5.5
28
11
7
33
11
8
28
12
7
33
12
9
53
14
9
23
53
14
11
23
53
相关文档
最新文档