天大物理化学第五版
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对一般多组分体系: G f (T , p, nB , nC )
当系统作表面功时,G 还是面积A的函数,若系统内只 有一个相界面,且两相T、p相同 ,
QG f (T , p, As , n B , nC L )
dG S dT V d p
B( )d n B( ) dA s
B
G
第十章 界面现象
1
自然界中物质的存在状态:
气—液界面
气
液—液界面
液
固—液界面
固
固—气界面
固—固界面
界面:所有两相的接触面
界面现象
2
界面并不是两相接触的几何 面,它有一定的厚度,一般约几 个分子厚,故有时又将界面称为 “界面相”。
界面的结构和性质与相邻两 侧的体相都不相同。
例:水滴分散成微小水滴
分为1018个
14
弯曲液面附加压力Δp 与液面曲率半径之间关系的推导:
水平分力相互平衡, 垂直分力指向液体内部,
其单位周长的垂直分力为cos
球缺底面圆周长为2r1 ,得垂直分力在圆周上的合力为: F=2r1 cos
因cos = r1/ r ,球缺底面面积为 r12 ,
2r1 r1 / r
故弯曲液面对于单位水平面上的附加压力 p r12
5
§10.1 界面张力 1. 液体的表面张力,表面功及表面吉布斯函数
的由来:
表面分子受力不对称
所以液体表面有自动收缩的倾向,扩展表面要作功。
6
(1) 液体的表面张力 实验:
l
若使膜维持不变,需在金属丝上加一力F,其大小与金
属丝长度 l 成正比,比例系数 。因膜有两个表面,故有:
F 2l
即: F / 2l
dT ,pG s < 0
10
3. 表面张力及其影响因素:
(1)与物质的本性有关——分子间相互作用力越大, 越大。
例:气-液界面: (金属键) > (离子键) > (极性键) > (非极性键)
(2) 与接触相的性质有关。
(3) 温度的影响:温度升高,界面张力下降。
极限情况:T→Tc时, →0。
12
§10.2 弯曲液面的附加压力及其后果
1. 弯曲液面的附加压力——Laplace方程
pg
一般情况下,液体表面是水平的,
pl
水平液面下液体所受压力即为外界压力。
弯曲液面的附加压力
图中为球形液滴的某一球缺,凸液面
上方为气相,压力pg ;下方为液相,压力 pl ,底面与球形液滴相交处为一圆周。圆周
外液体对球缺表面张力 作用在圆周线上,
U
H
A
A s
T , p,n B( )
A s
S,V ,n B( )
A s
S, p,n B( )
A s
T ,V ,n B( )
恒T、p、 、恒组分 下积分,有: G s A s
全微分得:
dG
s T
,p
dA s
A sd
可知自发降低表面自由焓有两种途径——降低表面积 降低表面张力
整理后得:
p 2
r
——Laplace方程
15
p
2
r
——Laplace方程
讨论:① 该形式的Laplace公式只适用于球形液面。 ②曲面内(凹)的压力大于曲面外(凸)的压力, Δp>0。 ③ r 越小,Δp越大;r越大,Δp越小。
平液面:r →∞,Δp→0,(并不是 = 0)
④ Δp永远指向球心。
这样定义的p总是一个正值,方向指向凹面曲率半径中心。
表面张力的方向是和液面相切的,并和两部分的分界线垂直。如果 液面是平面,表面张力就在这个平面上。如果液面是曲面,表面张力则 在这个曲面的切面上。
需要说明的一点是,如果在液体表面上任意划一条分界线把液面分 成a、b两部分,则 a 部分表面层中的分子对 b 部分的吸引力,一定等于 b 部分对 a 部分的吸引力,这两部分的吸引力大小相等、方向相反。这 种表面层中任意两部分间的相互吸引力,造成了液体表面收缩的趋势。 由于表面张力的存在,液体表面总是趋于尽可能缩小,微小液滴往往呈 圆球形,正是因为相同体积下球形面积最小。
:引起表面收缩的单位长度上的力,单位:N·m-1。
7
(2)表面功
当用外力F 使皂膜 面积增大dA时,需克 服表面张力作可逆表 面功。
W Fdx 2ldx dA
即:
W r 源自文库
dA s
:使系统增加单位表面所需的可逆功 ,称为表面功。
单位:J·m-2。 (IUPAC以此来定义表面张力) 8
垂直于圆周线,而且与液滴表面相切。圆 周线上表面张力合力对凸液面下液体造成 额外压力。将凹液面一侧压力以p内表示, 凸液面一侧压力用p外表示,附加压力
Δp = p内-p外
13
球形液滴(凸液面),附加压力为: p p内 p外 pl pg
液体中的气泡(凹液面),附加压力: p p内 p外 pg pl
气相中分子密度↑
T↑
液相中分子距离↑
↓ (有例外)
0 1 T / Tc n 其中:0与n为经验常数。
11
(4)压力的影响。
a.表面分子受力不对称的程度 ↓
P↑
b.气体分子可被表面吸附,改变, ↓
↓
c.气体分子溶于液相
一般:p↑10atm, ↓1mN/m,例:
1atm 10atm
H2O = 72.8 mN/m H2O = 71.8 mN/m
直径:1cm 表面积:3.1416 cm2
直径:10nm 表面积:314.16 m2
表面积是原来的106倍
界面相示意图
一些多孔物质如:硅胶、活性炭等,也具有很大的比表面积。
3
物质的分散度可用比表面积as来表示,其定义为 as = As/m
单位为m2kg-1。
小颗粒的分散系统往往具有很大的比表面积,因此 由界面特殊性引起的系统特殊性十分突出。
(3)表面吉布斯函数:
恒温、恒压下的可逆非体积功等于系统的吉布斯函数变
W r dGT ,p dA s
G
即:
A s
T ,p,N
:恒温恒压下,增加单位表面时系统所增加的Gibbs函数。
单位:J·m-2。
三者物理意义不同,但量值和量纲等同,单位均 可化为: N·m-1
9
2. 热力学公式
人们把粒径在1~1000nm的粒子组成的分散系统称为 胶体(见第十二章),由于其具有极高的分散度和很大的 比表面积,会产生特有的界面现象,所以经常把胶体与 界面现象一起来研究,称为胶体表面化学。
4
我们身边的胶体界面现象
曙光晚霞
碧海蓝天
雨滴
露珠
在界面现象这一章中,将应用物理化学的基本原理,对界面的特殊 性质及现象进行讨论和分析。