2.8.16进制转换

合集下载

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换

二进制、十进制、八进制、十六进制四种进制之间相互的转换一.在计算机应用中,二进制使用后缀b表示;十进制使用后缀d表示八制使用后缀Q表示,十六制使用后缀H表示。

二.二进制,十六进制与十进制的计算转换1.二进制转换为十进制计算公式:二进制数据X位数字乘以2的X-1次方的积的总和例:b=( )d相应的十进制值即为:27 +25+23+21+20=128+32+8+2+1=1712.十六进制转换十进制计算公式:二进制数据X位数字乘以16的X-1次方的积的总和(与二进制转换十制进同理的,将底数换为16)注意:在十六进制中,10-15依次用A,B,C,D,E,F表示例:1F3E H=()d计算:1*16的3次方+15*16的2次方+3*16的1次方+14*16的0次方=1*4096+15*256+3*16+14=7998三.十进制与二进制,十六制的计算转换1.十进制转换为二进制十进制数据数字除以2的余数的逆序组合例:404d=( )b2|404余02|202余02|101余02|50余12|25余02|12余12|6余02|3余12|1计算结果便是:02.十进制转换十六进制。

与上面同理,注意的是10以上的数字用字母表示,除数是16十六进制与二进制的转换,建议通过十进制来进行中转。

带小数点的十进制转换为二进制时同理,小数店后的数位指数为负指数================================================================= =====================关于“进制之间的转换”问题的分析指导在计算机文化一书中,在其中一个章节里面详细介绍了进制之间的转换,而且在考试中进制转换也占了一定的比例,虽然分数不是很多,但是因为平时大家接触的不多,并且有点繁复,所以很多学员在做这种题目,要么选择猜答案,要么选择放弃。

笔者觉得只要掌握了方法,其实这些题目也很简单的,下面我就对进制的转换进行具体的分析和讲解,以供大家参考。

2,8,10,16进制相互转换

2,8,10,16进制相互转换

2,8,10,16进制相互转换进制转换1正数我们以(25.625)(⼗)为例讲解⼀下进制之间的转化问题。

⼗进制--->⼆进制对于整数部分,⽤被除数反复除以2,除第⼀次外,每次除以2均取前⼀次商的整数部分作被除数并依次记下每次的余数。

另外,所得到的商的最后⼀位余数是所求⼆进制数的最⾼位。

⼗进制转,N进制。

对于⼩数部分,采⽤连续乘以基数2,并依次取出的整数部分,直⾄结果的⼩数部分为0为⽌。

故该法称“乘基取整法”。

给你⼀个⼗进制,⽐如:6,如果将它转换成⼆进制数呢?10进制数转换成⼆进制数,这是⼀个连续除以2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?结合例⼦来说明。

⽐如要转换6为⼆进制数。

“把要转换的数,除以2,得到商和余数”。

那么:⼗转⼆⽰意图要转换的数是6,6 ÷ 2,得到商是3,余数是0。

“将商继续除以2,直到商为0……”现在商是3,还不是0,所以继续除以2。

那就:3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。

那就:1 ÷ 2, 得到商是0,余数是1“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成⼆进制,结果是110。

把上⾯的⼀段改成⽤表格来表⽰,则为:被除数计算过程商余数66/23033/21111/201(在计算机中,÷⽤/ 来表⽰)⼆进制数转换为⼗进制数⼆进制数第0位的权值是2的0次⽅,第1位的权值是2的1次⽅……所以,设有⼀个⼆进制数:0110 0100,转换为10进制为:下⾯是竖式:0110 0100 换算成⼗进制第0位0 * 20 = 0第1位0 * 21 = 0第2位1 * 22 = 4第3位0 * 23 = 0第4位0 * 24 = 0第5位1 * 25 = 32第6位1 * 26 = 64第7位0 * 27 = 0公式:第N位2(N)---------------------------36⽤横式计算为:0 * 20 + 0 * 21 + 1 * 22 + 0 * 23 + 0 * 24 + 1 * 25 + 1* 26 + 0 * 27 = 100 0乘以多少都是0,所以我们也可以直接跳过值为0的位:1 * 22 + 1 * 25 +1*26 = 10010进制数转换成8进制的⽅法,和转换为2进制的⽅法类似,唯⼀变化:除数由2变成8。

二进制八进制十进制十六进制之间的转换

二进制八进制十进制十六进制之间的转换

1、二、八、十六进制数转换为十进制数• 乘权求和例1 : (10101)2=1×2 4 + 0×23 +1×22 + 0×21 + 1×20 =(21)10例2: (3215)8= 3×83 + 2×82 + 1×81 + 5×80 =(1677)102、十进制数转换为二、八、十六进制数• 整数转换:除二(八或十六)反向取余⏹ 小数转换:乘二(八或十六)取整例:(0.625)10= (0.101)20 .625× 21 .250 高位 0. 25× 20. 500. 5× 21. 0 低位3、二进制数与八、十六进制数的转换⏹ ⑴二进制数与八进制数转换① 二进制数 → 八进制数:三位合一位例 将二进制数 1011010100 转换为八进制数1,011,010,100↓ ↓ ↓ ↓1 32 4∴ (1011010100)2=(1324)8② 八进制数 → 二进制数:一位变三位 例(12345)8=(001,010,011,100,101)2⏹ (2)二进制数与十六进制数转换① 二进制数 → 十六进制数:四位合一位(23)10= (10111)2 2┈┈1 2 ┈┈1 2 ┈┈1 2 ┈┈02 0 ┈┈1低位 高位 23 1152 1例:(23)10 → 二进制例将二进制数1011010100转换为十六进制数10, 1101, 0100↓↓↓2 D 4∴(1011010100)2=(2D4)16②十六进制数→二进制数:一位变四位例(AB01)16=(1010,1011,0000,0001)2。

二进制_八进制_十进制_十六进制之间的相互转换

二进制_八进制_十进制_十六进制之间的相互转换

二进制,八进制,十进制,十六进制之间的相互转换和相关概念二进制:计算机只认识0或1,也就是高电平和低电平.所以所有的数据格式最终会转化为2进制形式,计算机硬件才能识别。

二进制逢二进一,八进制逢八进一,十进制逢十进一,十六进制逢十六进一。

下边是各进制之间的转换公式.二进制转十进制0110 0100(2) 换算成十进制第0位0 * 2^0 = 0第1位0 * 2^1 = 0第2位1 * 2^2 = 4第3位0 * 2^3 = 0第4位0 * 2^4 = 0第5位1 * 2^5 = 32第6位1 * 2^6 = 64第7位0 * 2^7 = 0 +---------------------------100二进制转八进制可采用8421法1010011(2)首先每三位分割即: 001,010,011不足三位采用0补位.然后采用8421法: 001=1010=2011=3所以转换成8进制是123二进制转十六进制1101011010100(2)首先每四位分割即: 0001,1010,1101,0100不足四位采用0补位.然后采用8421法: 0001:11010:A1101:D0100:4所以转换成十六进制是1AD4十六进制当数字超过9后将采用A代替10,B代替11,C代替12,D代替13,E代替14,F代替15;下边是十进制的各种转换:十进制转二进制6(10)10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

商余数6/2 3 03/2 1 11/2 0 1最后把余数从下向上排列写出110即是转换后的二进制.十进制转换八进制10进制数转换成八进制数,这是一个连续除8的过程:把要转换的数,除以8,得到商和余数,将商继续除以8,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

120(10)商余数120/8 15 015/8 1 71/8 0 1最后把余数从下向上排列写出170即是转换后的八进制.十进制转换十六进制10进制数转换成十六进制数,这是一个连续除16的过程:把要转换的数,除以16,得到商和余数,将商继续除以16,直到商为0。

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧

2进制8进制16进制之间快速转换的技巧在计算机科学和编程中,经常需要进行二进制、八进制和十六进制数
之间的转换。

这些转换的技巧可以帮助我们在不同进制之间快速转换数值。

下面是一些常用的技巧和方法:
一、二进制与八进制之间的转换:
二、二进制与十六进制之间的转换:
三、八进制与十六进制之间的转换:
1.从八进制到十六进制:先将八进制数转换为二进制数,然后将二进
制数转换为对应的十六进制数。

2.从十六进制到八进制:先将十六进制数转换为二进制数,然后将二
进制数转换为对应的八进制数。

上述方法是最基本也最直接的转换方法。

除了这些方法外,还有一些
进一步简化转换的技巧:
这些简化方法在转换大量数值时可以极大地提高转换速度和准确性。

总结起来,对于二进制、八进制和十六进制之间的转换,我们可以采
用分组的方式,将数值从一个进制转换到另一个进制。

同时,可以应用数
字与对应进制数的直接对应关系,将多位二进制数直接转换为对应的八进
制或十六进制数,以提高转换的速度和效率。

再者,熟悉几个特殊的数值
对应关系,也可以帮助在不同进制之间快速转换。

2、8、16、10进制转换

2、8、16、10进制转换

进制及进制间的互相转换二进制:数码(0、1)逢二进一十进制:数码(0、1、2、3、4、5、6、7、8、9)逢十进一八进制:数码:(0、1、2、3、4、5、6、7)逢八进一十六进制(0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F)逢十六进一各个进制之间对应关系:转换规则:任何进制转换成十进制:按权展开Exp(例子):(10110101)2=1*27+0*26+1*25+1*24+0*23+1*22+0*21+1*20=(181)10(367)8=3*82+6*81+7*80=(247)10十进制转二进制:除二取余法Exp:(25)10=(?)2思考题:1.你会八进制转十进制么?2.您能将十六进制数6A转换成十进制数么?3.既然上面的都会,那八转二,十六转二呢?有没有什么简便的方法呢?练习:(一位变多位,不足左边添零)1. (367)8=()22. (456)8=()23. (87)10=()24. (165)10=()25. (3E)16=( )26. (F6)16=( )2将以下二进制数转换成八进制(三位变一位,不足三位高位添零)10101001=1101011=将以下二进制转换成十六进制(四位变一位,不足四位高位添零)1001011101=101101100=1Byte(字节)=8bit(位)1KB=1024Byte1MB=1024KB1G=1024MB1T=1024G一个英文字母=1Byte(字节)一个汉字=2Byte(字节)请同学们打开电脑中已经存储的歌曲文件或电影文件,看看他们有多大。

一首歌的大小大约是3( )?一部高清电影的大小一般是1-3()?以上完成的同学请将该文档上传至教师机(专业+姓名)。

2进制、8进制、10进制以及16进制间的相互换算

2进制、8进制、10进制以及16进制间的相互换算

进位制转换目录进位制转换 (1)一:简述: (1)二:进制转换的理论 (4)1、二进制数、八进制、十六进制数转换为十进制数:用按权展开法 (4)2:十进制转化成R进制(除R取余法) (4)3:十六进制转化成二进制 (5)4:二进制转化成十六进制 (5)5:八进制转化成二进制 (5)6:二进制转化为八进制 (5)三:具体实现 (6)1:二进制转换成十进制 (6)2:十进制整理转换成二进制 (6)3:十进制小数转换成二进制小数 (7)4:十六进制转为二进制 (7)5:二进制数转为十六进制 (7)一:简述:一:简述:进位计数制:是人们利用符号来计数的方法。

一种进位计数制包含一组数码符号和两个基本因素。

(二进制B,Binary;八进制O原是字母O,Octal,避免与数字0混淆改用Q;十进制D,Decimal;十六进制H,Hexadecimal。

)(1)数码:用不同的数字符号来表示一种数制的数值,这些数字符号称为数码。

(2)基:数制所使用的数码个数称为基。

(3)权:某数制每一位所具有的值称为权。

表格1 BCD码(用四位权为8421—<即2^*次方>的二进制数来表示等值的一位十进制数)表格2制数的对应关系二:进制转换的理论1、二进制数、八进制、十六进制数转换为十进制数:用按权展开法把一个任意R进制数an an-1 ...a1a0 . a-1 a-2...a-m转换成十进制数,其十进制数值为每一位数字与其位权之积的和。

an×R n + an-1×R n-1 +…+ a1×R 1 + a0×R 0 + a-1 ×R-1+ a-2×R-2+ …+ a-m×R-m2:十进制转化成R进制(除R取余法)十进制数轮换成R进制数要分两个部分:①整数部分:除R取余数,直到商为0,得到的余数即为二进数各位的数码,余数从右到左排列(反序排列)。

②小数部分:乘R取整数,得到的整数即为二进数各位的数码,整数从左到右排列(顺序排列)。

二进制、 八进制、十进制和十六进制转化方法

二进制、 八进制、十进制和十六进制转化方法

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换(1)十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数。

下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,(10101000)2分析:第一步,将168除以2,商84,余数为0。

第二步,将商84除以2,商42余数为0。

第三步,将商42除以2,商21余数为0。

第四步,将商21除以2,商10余数为1。

第五步,将商10除以2,商5余数为0。

第六步,将商5除以2,商2余数为1。

第七步,将商2除以2,商1余数为0。

第八步,将商1除以2,商0余数为1。

第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即10101000(2)小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止。

如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位。

换句话说就是0舍1入。

读数要从前面的整数读到后面的整数,下面举例:例1:将0.125换算为二进制得出结果:将0.125换算为二进制(0.001)2分析:第一步,将0.125乘以2,得0.25,则整数部分为0,小数部分为0.25;第二步, 将小数部分0.25乘以2,得0.5,则整数部分为0,小数部分为0.5;第三步, 将小数部分0.5乘以2,得1.0,则整数部分为1,小数部分为0.0;第四步,读数,从第一位读起,读到最后一位,即为0.001。

例2,将0.45转换为二进制(保留到小数点第四位)大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是0.4,那么小数部分继续乘以2,得0.8,0.8又乘以2的,到1.6这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入。

二进制八进制十进制十六进制之间转换详解

二进制八进制十进制十六进制之间转换详解

二进制、八进制、十进制、十六进制之间转换一、十进制与二进制之间的转换1 十进制转换为二进制,分为整数部分和小数部分①整数部分方法:除2取余法,即每次将整数部分除以2,余数为该位权上的数,而商继续除以2,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数读起,一直到最前面的一个余数.下面举例:例:将十进制的168转换为二进制得出结果将十进制的168转换为二进制,2分析:第一步,将168除以2,商84,余数为0.第二步,将商84除以2,商42余数为0.第三步,将商42除以2,商21余数为0.第四步,将商21除以2,商10余数为1.第五步,将商10除以2,商5余数为0.第六步,将商5除以2,商2余数为1.第七步,将商2除以2,商1余数为0.第八步,将商1除以2,商0余数为1.第九步,读数,因为最后一位是经过多次除以2才得到的,因此它是最高位,读数字从最后的余数向前读,即2 小数部分方法:乘2取整法,即将小数部分乘以2,然后取整数部分,剩下的小数部分继续乘以2,然后取整数部分,剩下的小数部分又乘以2,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,按照要求保留多少位小数时,就根据后面一位是0还是1,取舍,如果是零,舍掉,如果是1,向入一位.换句话说就是0舍1入.读数要从前面的整数读到后面的整数,下面举例:例1:将换算为二进制得出结果:将换算为二进制2分析:第一步,将乘以2,得,则整数部分为0,小数部分为;第二步, 将小数部分乘以2,得,则整数部分为0,小数部分为;第三步, 将小数部分乘以2,得,则整数部分为1,小数部分为;第四步,读数,从第一位读起,读到最后一位,即为.例2,将转换为二进制保留到小数点第四位大家从上面步骤可以看出,当第五次做乘法时候,得到的结果是,那么小数部分继续乘以2,得,又乘以2的,到这样一直乘下去,最后不可能得到小数部分为零,因此,这个时候只好学习十进制的方法进行四舍五入了,但是二进制只有0和1两个,于是就出现0舍1入.这个也是计算机在转换中会产生误差,但是由于保留位数很多,精度很高,所以可以忽略不计.那么,我们可以得出结果将转换为二进制约等于上面介绍的方法是十进制转换为为二进制的方法,需要大家注意的是:1 十进制转换为二进制,需要分成整数和小数两个部分分别转换2 当转换整数时,用的除2取余法,而转换小数时候,用的是乘2取整法3 注意他们的读数方向因此,我们从上面的方法,我们可以得出十进制数转换为二进制为.001,或者十进制数转换为二进制数约等于.0111.3 二进制转换为十进制不分整数和小数部分方法:按权相加法,即将二进制每位上的数乘以权,然后相加之和即是十进制数.例将二进制数转换为十进制数.得出结果:2=10大家在做二进制转换成十进制需要注意的是1 要知道二进制每位的权值2 要能求出每位的值二、二进制与八进制之间的转换首先,我们需要了解一个数学关系,即2^3=8,2^4=16,而八进制和十六进制是用这关系衍生而来的,即用三位二进制表示一位八进制,用四位二进制表示一位十六进制数.接着,记住4个数字8、4、2、12^3=8、2^2=4、2^1=2、2^0=1.现在我们来练习二进制与八进制之间的转换.1 二进制转换为八进制方法:取三合一法,即从二进制的小数点为分界点,向左向右每三位取成一位,接着将这三位二进制按权相加,得到的数就是一位八位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的八进制数.如果向左向右取三位后,取到最高最低位时候,如果无法凑足三位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足三位.例①将二进制数转换为八进制得到结果:将转换为八进制为②将二进制数转换为八进制得到结果:将转换为八进制为2 将八进制转换为二进制方法:取一分三法,即将一位八进制数分解成三位二进制数,用三位二进制按权相加去凑这位八进制数,小数点位置照旧.例:①将八进制数转换为二进制因此,将八进制数转换为二进制数为,即大家从上面这道题可以看出,计算八进制转换为二进制首先,将八进制按照从左到右,每位展开为三位,小数点位置不变然后,按每位展开为22,21,20即4、2、1三位去做凑数,即a×22+ b×21 +c ×20=该位上的数a=1或者a=0,b=1或者b=0,c=1或者c=0,将abc排列就是该位的二进制数接着,将每位上转换成二进制数按顺序排列最后,就得到了八进制转换成二进制的数字.以上的方法就是二进制与八进制的互换,大家在做题的时候需要注意的是1 他们之间的互换是以一位与三位转换,这个有别于二进制与十进制转换2 大家在做添0和去0的时候要注意,是在小数点最左边或者小数点的最右边即整数的最高位和小数的最低位才能添0或者去0,否则将产生错误三、二进制与十六进制的转换方法:与二进制与八进制转换相似,只不过是一位十六与四位二进制的转换,下面具体讲解1 二进制转换为十六进制方法:取四合一法,即从二进制的小数点为分界点,向左向右每四位取成一位,接着将这四位二进制按权相加,得到的数就是一位十六位二进制数,然后,按顺序进行排列,小数点的位置不变,得到的数字就是我们所求的十六进制数.如果向左向右取四位后,取到最高最低位时候,如果无法凑足四位,可以在小数点最左边最右边,即整数的最高位最低位添0,凑足四位.①例:将二进制.1011转换为十六进制得到结果:将二进制.1011转换为十六进制为②例:将转换为十六进制因此得到结果:将二进制转换为十六进制为2将十六进制转换为二进制方法:取一分四法,即将一位十六进制数分解成四位二进制数,用四位二进制按权相加去凑这位十六进制数,小数点位置照旧.①将十六进制转换为二进制数因此得到结果:将十六进制转换为二进制为即四、八进制与十六进制的转换方法:一般不能互相直接转换,一般是将八进制或十六进制转换为二进制,然后再将二进制转换为十六进制或八进制,小数点位置不变.那么相应的转换请参照上面二进制与八进制的转换和二进制与十六进制的转五、八进制与十进制的转换1八进制转换为十进制方法:按权相加法,即将八进制每位上的数乘以位权,然后相加之和即是十进制数.例:①将八进制数转换为十进制2十进制转换为八进制十进制转换成八进制有两种方法:1间接法:先将十进制转换成二进制,然后将二进制又转换成八进制2直接法:前面我们讲过,八进制是由二进制衍生而来的,因此我们可以采用与十进制转换为二进制相类似的方法,还是整数部分的转换和小数部分的转换,下面来具体讲解一下:①整数部分方法:除8取余法,即每次将整数部分除以8,余数为该位权上的数,而商继续除以8,余数又为上一个位权上的数,这个步骤一直持续下去,直到商为0为止,最后读数时候,从最后一个余数起,一直到最前面的一个余数.②小数部分方法:乘8取整法,即将小数部分乘以8,然后取整数部分,剩下的小数部分继续乘以8,然后取整数部分,剩下的小数部分又乘以8,一直取到小数部分为零为止.如果永远不能为零,就同十进制数的四舍五入一样,暂取个名字叫3舍4入.例:将十进制数转换为八进制数解:先将这个数字分为整数部分796和小数部分整数部分小数部分因此,得到结果十进制转换八进制为上面的方法大家可以验证一下,你可以先将十进制转换,然后在转换为八进制,这样看得到的结果是否一样六、十六进制与十进制的转换十六进制与八进制有很多相似之处,大家可以参照上面八进制与十进制的转换自己试试这两个进制之间的转换.通过上面对各种进制之间的转换,我们可以将前面的转换图重新完善一下:本文介绍了二进制、十进制、八进制、十六进制四种进制之间相互的转换,大家在转换的时候要注意转换的方法,以及步骤,特别是十进制转换为期于三种进制之间,要分为整数部分和小数部分,最后就是小数点的位置.但是要保证考试中不出现错误还是需要大家经常练习,这样才能熟能生巧.二进制,八进制,十进制,十六进制转换99 :二进制是1100011 八进制是143 十六进制是63113: 110001 161 71127: 1 447 127192: 300 C0324: 0 504 144算法:十进制与二进制转换之相互算法十进制转二进制:用2辗转相除至结果为1将余数和最后的1从下向上倒序写就是结果例如302302/2 = 151 余0151/2 = 75 余175/2 = 37 余137/2 = 18 余118/2 = 9 余09/2 = 4 余14/2 = 2 余02/2 = 1 余0故二进制为0二进制转十进制从最后一位开始算,依次列为第0、1、2...位第n位的数0或1乘以2的n次方得到的结果相加就是答案例如:01101011.转十进制:第0位:1乘2的0次方=11乘2的1次方=20乘2的2次方=01乘2的3次方=80乘2的4次方=01乘2的5次方=321乘2的6次方=640乘2的7次方=0然后:1+2+0+8+0+32+64+0=107.二进制01101011=十进制107.一、二进制数转换成十进制数由二进制数转换成十进制数的基本做法是,把二进制数首先写成加权系数展开式,然后按十进制加法规则求和.这种做法称为"按权相加"法.二、十进制数转换为二进制数十进制数转换为二进制数时,由于整数和小数的转换方法不同,所以先将十进制数的整数部分和小数部分分别转换后,再加以合并.1. 十进制整数转换为二进制整数十进制整数转换为二进制整数采用"除2取余,逆序排列"法.具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来.2.十进制小数转换为二进制小数十进制小数转换成二进制小数采用"乘2取整,顺序排列"法.具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止.然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位.回答者:HackerKinsn - 试用期一级 2-24 13:311.二进制与十进制的转换1二进制转十进制<BR>方法:"按权展开求和"例:2 =1×23+0×22+1×21+1×20+0×2-1+1×2-210 =8+0+2+1+0+10=102十进制转二进制·十进制整数转二进制数:"除以2取余,逆序输出" 例: 8910=101100122 892 44 (1)2 22 02 11 02 5 (1)2 2 (1)2 1 00 (1)·十进制小数转二进制数:"乘以2取整,顺序输出"例:0.62510= 0.10120.625X 21.25X 20.5X 21.02.八进制与二进制的转换例:将八进制的转换成二进制数:37 . 4 1 6011 111 .100 001 110即:8 =11111.2例:将二进制的转换成八进制:0 1 0 1 1 0 . 0 0 1 1 0 02 6 . 1 4即:2 =83.十六进制与二进制的转换<BR>例:将十六进制数转换成二进制:5 D F . 90101 1101 1111.1001即:16 =.10012例:将二进制数转换成十六进制:0110 0001 . 11106 1 . E即:2 =16。

2进制,8进制,16进制之间快速转换的技巧

2进制,8进制,16进制之间快速转换的技巧

2进制,8进制,16进制之间快速转换的技巧一)、数制计算机中采用的是二进制,因为二进制具有运算简单,易实现且可靠,为逻辑设计提供了有利的途径、节省设备等优点,为了便于描述,又常用八、十六进制作为二进制的缩写。

一般计数都采用进位计数,其特点是:(1)逢N进一,N是每种进位计数制表示一位数所需要的符号数目为基数。

(2)采用位置表示法,处在不同位置的数字所代表的值不同,而在固定位置上单位数字表示的值是确定的,这个固定位上的值称为权。

在计算机中:D7 D6 D5 D4 D3 D2 D1 D0 只有两种0和18 4 2 1二)、数制转换不同进位计数制之间的转换原则:不同进位计数制之间的转换是根据两个有理数如相等,则两数的整数和分数部分一定分别相等的原则进行的。

也就是说,若转换前两数相等,转换后仍必须相等。

有四进制十进制:有10个基数:0 ~~ 9 ,逢十进一二进制:有2 个基数:0 ~~ 1 ,逢二进一八进制:有8个基数:0 ~~ 7 ,逢八进一十六进制:有16个基数:0 ~~ 9,A,B,C,D,E,F (A=10,B=11,C=12,D=13,E=14,F=15) ,逢十六进一1、数的进位记数法N=a n-1*p n-1+a n-2*p n-2+…+a2*p2+a1*p1+a0*p02、十进制数与P进制数之间的转换①十进制转换成二进制:十进制整数转换成二进制整数通常采用除2取余法,小数部分乘2取整法。

例如,将(30)10转换成二进制数。

将(30)10转换成二进制数2| 30 ….0 ----最右位2 15 (1)2 7 (1)2 3 (1)1 ….1 ----最左位∴ (30)10=(11110)2将(30)10转换成八、十六进制数8| 30 ……6 ------最右位3 ------最左位∴ (30)10 =(36)816| 30 …14(E)----最右位1 ----最左位∴(30)10 =(1E)163、将P进制数转换为十进制数把一个二进制转换成十进制采用方法:把这个二进制的最后一位乘上20,倒数第二位乘上21,……,一直到最高位乘上2n,然后将各项乘积相加的结果就它的十进制表达式。

二进制八进十六进制转换表

二进制八进十六进制转换表

二进制八进十六进制转换表在计算机科学和电子工程领域,二进制、八进制和十六进制是常用的数制。

通过将数值转换成不同的进制,我们可以更好地理解和表示数字。

下面是一个二进制、八进制和十六进制的转换表,可作为参考使用。

1. 二进制转八进制和十六进制将二进制数转换为八进制和十六进制相对简单,只需要将二进制数按照位数分组。

- 八进制:每三个二进制位为一组,从低位向高位对应地分组,再将每组转换成相应的八进制数。

下表是常用的二进制转八进制的对应关系。

二进制八进制000 0001 1010 2011 3100 4101 5110 6111 7- 十六进制:每四个二进制位为一组,从低位向高位对应地分组,再将每组转换成相应的十六进制数。

下表是常用的二进制转十六进制的对应关系。

二进制十六进制0000 00001 10010 20011 30100 40101 50110 60111 71000 81001 91010 A1011 B1100 C1101 D1110 E2. 八进制和十六进制转二进制将八进制和十六进制数转换为二进制也很简单,只需要将八进制数每一位对应转换为对应的三个二进制位,将十六进制数每一位对应转换为对应的四个二进制位即可。

- 八进制转二进制:下表是常用的八进制转二进制的对应关系。

八进制二进制0 0001 0012 0103 0114 1005 1016 1107 111- 十六进制转二进制:下表是常用的十六进制转二进制的对应关系。

十六进制二进制0 00001 00013 00114 01005 01016 01107 01118 10009 1001A 1010B 1011C 1100D 1101E 1110F 1111通过以上转换表,我们可以方便地将不同进制的数值进行转换。

这对于计算机科学和电子工程领域的学习和应用是非常重要的。

总结:本文提供了一个二进制、八进制和十六进制的转换表,可帮助读者快速而准确地进行数值转换。

二进制、八进制、十进制、十六进制互相转换方法

二进制、八进制、十进制、十六进制互相转换方法

二进制、八进制、十进制、十六进制互相转换方法有一个公式:二进制数、八进制数、十六进制数的各位数字分别乖以各自的基数的(N-1)次方,其和相加之和便是相应的十进制数。

个位,N=1;十位,N=2...举例:110B=1*2的2次方+1*2的1次方+0*2的0次方=0+4+2+0=6D110Q=1*8的2次方+1*8的1次方+0*8的0次方=64+8+0=72D110H=1*16的2次方+1*16的1次方+0*16的0次方=256+16+0=272D2、十进制数转二进制数、八进制数、十六进制数方法是相同的,即整数部分用除基取余的算法,小数部分用乘基取整的方法,然后将整数与小数部分拼接成一个数作为转换的最后结果。

3、二进制数转换成其它数据类型3-1二进制转八进制:从小数点位置开始,整数部分向左,小数部分向右,每三位二进制为一组用一位八进制的数字来表示,不足三位的用0补足,就是一个相应八进制数的表示。

010110.001100B=26.14Q八进制转二进制反之则可。

3-2二进制转十进制:见13-3二进制转十六进制:从小数点位置开始,整数部分向左,小数部分向右,每四位二进制为一组用一位十六进制的数字来表示,不足四位的用0补足,就是一个相应十六进制数的表示。

00100110.00010100B=26.14H十进制转各进制要将十进制转为各进制的方式,只需除以各进制的权值,取得其余数,第一次的余数当个位数,第二次余数当十位数,其余依此类推,直到被除数小于权值,最后的被除数当最高位数。

一、十进制转二进制如:55转为二进制2|5527――1 个位13――1 第二位6――1 第三位3――0 第四位1――1 第五位最后被除数1为第七位,即得110111二、十进制转八进制如:5621转为八进制8|5621702 ――5 第一位(个位)87 ――6 第二位10 ――7 第三位1 ――2 第四位最后得八进制数:127658三、十进制数十六进制如:76521转为十六进制16|765214726 ――5 第一位(个位)295 ――6 第二位18 ――6 第三位1 ――2 第四位最后得1276516二进制与十六进制的关系2进制0000 0001 0010 0011 0100 0101 0110 011116进制0 1 2 3 4 5 6 72进制1000 1001 1010 1011 1100 1101 1110 111116进制8 9 a(10) b(11) c(12) d(13) e(14) f(15)可以用四位数的二进制数来代表一个16进制,如3A16 转为二进制为:3为0011,A为1010,合并起来为00111010。

二八十十六进制之间的转换关系

二八十十六进制之间的转换关系

二八十十六进制之间的转换关系二进制、八进制、十进制和十六进制是计算机中常用的进制表示方式。

它们之间存在一定的转换关系,下面将详细介绍这四种进制之间的转换关系。

一、二进制与八进制的转换关系二进制是计算机中最基本的进制,它由0和1两个数字组成。

八进制是以8为基数的进制,它由0~7这8个数字组成。

二进制与八进制之间的转换关系如下:1. 从二进制转换为八进制:将二进制数按照从右到左每3位分组,并在最左边不足3位的组前面补0。

然后将每个3位二进制数转换为对应的八进制数即可。

2. 从八进制转换为二进制:将八进制数的每一位转换为对应的3位二进制数即可。

二、二进制与十进制的转换关系十进制是我们日常生活中最常用的进制,它由0~9这10个数字组成。

二进制与十进制之间的转换关系如下:1. 从二进制转换为十进制:将二进制数从右到左每一位与2的幂相乘,然后将结果相加即可得到对应的十进制数。

2. 从十进制转换为二进制:将十进制数不断除以2,直到商为0为止,然后将每一步的余数倒序排列即可得到对应的二进制数。

三、二进制与十六进制的转换关系十六进制是一种常用的进制,它由0~9以及A~F这16个数字/字母组成。

二进制与十六进制之间的转换关系如下:1. 从二进制转换为十六进制:将二进制数从右到左每4位分组,并在最左边不足4位的组前面补0。

然后将每个4位二进制数转换为对应的十六进制数即可。

2. 从十六进制转换为二进制:将十六进制数的每一位转换为对应的4位二进制数即可。

四、八进制与十进制的转换关系八进制与十进制之间的转换关系比较简单,因为它们的基数都是10的幂。

八进制中的每一位相当于十进制中的3位二进制数,所以它们之间的转换关系如下:1. 从八进制转换为十进制:将八进制数从左到右每一位与8的幂相乘,然后将结果相加即可得到对应的十进制数。

2. 从十进制转换为八进制:将十进制数不断除以8,直到商为0为止,然后将每一步的余数倒序排列即可得到对应的八进制数。

很完整的2、8、10、16进制转换方法

很完整的2、8、10、16进制转换方法

很完整的2、8、10、16进制转换方法最近在研究C语言,因为要用到各进制间转换,所以收集了一些资料…这是一节“前不着村后不着店”的课。

不同进制之间的转换纯粹是数学上的计算。

不过,你不必担心会有么复杂,无非是乘或除的计算。

生活中其实很多地方的计数方法都多少有点不同进制的影子。

比如我们最常用的10进制,其实起源于人有10个指头。

如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。

至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。

生活中还有:七进制,比如星期。

十六进制,比如小时或“一打”,六十进制,比如分钟或角度……我们找到问号字符(?)的ASCII值是63,那么我们可以把它转换为八进值:77,然后用‘\77′来表示’?'。

由于是八进制,所以本应写成‘\077′,但因为C,C++规定不允许使用斜杠加10进制数来表示字符,所以这里的0可以不写。

事实上我们很少在实际编程中非要用转义符加八进制数来表示一个字符,所以,6.2.4小节的内容,大家仅仅了解就行。

6.2.5 十六进制数转换成十进制数2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于 15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?用竖式计算:2AF5换算成10进制:第0位: 5 * 16^0 = 5第1位: F * 16^1 = 240第2位: A * 16^2 = 2560第3位: 2 * 16^3 = 8192 +————————————-10997直接计算就是:5 * 16^0 + F * 16^1 + A * 16^2 + 2 * 16^3 = 10997(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

二进制、八进制、十六进制转换方式(精灵工作室强烈推荐)

二进制、八进制、十六进制转换方式(精灵工作室强烈推荐)

第六章二进制、八进制、十六进制6.1 为什么需要八进制和十六进制?6.2 二、八、十六进制数转换到十进制数6.2.1 二进制数转换为十进制数6.2.2 八进制数转换为十进制数6.2.3 八进制数的表达方法6.2.4 八进制数在转义符中的使用6.2.5 十六进制数转换成十进制数6.2.6 十六进制数的表达方法6.2.7 十六进制数在转义符中的使用6.3 十进制数转换到二、八、十六进制数6.3.1 10进制数转换为2进制数6.3.2 10进制数转换为8、16进制数6.4 二、十六进制数互相转换6.5 原码、反码、补码6.6 通过调试查看变量的值6.7 本章小结这是一节“前不着村后不着店”的课。

不同进制之间的转换纯粹是数学上的计算。

不过,你不必担心会有么复杂,无非是乘或除的计算。

生活中其实很多地方的计数方法都多少有点不同进制的影子。

比如我们最常用的10进制,其实起源于人有10个指头。

如果我们的祖先始终没有摆脱手脚不分的境况,我想我们现在一定是在使用20进制。

至于二进制……没有袜子称为0只袜子,有一只袜子称为1只袜子,但若有两袜子,则我们常说的是:1双袜子。

生活中还有:七进制,比如星期。

十六进制,比如小时或“一打”,六十进制,比如分钟或角度……(该版课程的内容更新及订正均已停止)旧版课程打包下载----------------------------------[想看涵盖“面向对象”、“图形编程”、“泛型编程”……的“最新2008年版白话C++”课程,请点击!] (另有: 博客版)6.1 为什么需要八进制和十六进制?编程中,我们常用的还是10进制……必竟C/C++是高级语言。

比如:int a = 100,b = 99;不过,由于数据在计算机中的表示,最终以二进制的形式存在,所以有时候使用二进制,可以更直观地解决问题。

但,二进制数太长了。

比如int 类型占用4个字节,32位。

比如100,用int类型的二进制数表达将是:0000 0000 0000 0000 0110 0100面对这么长的数进行思考或操作,没有人会喜欢。

进制数转换二进制八进制十进制十六进制之间转换方法

进制数转换二进制八进制十进制十六进制之间转换方法
=2*8 1 +3*8 0
=16+3
=19
返回
*十进制数与十六进制数间的转换
A. “十进制”转“十六进 制”
16
27 余数 低位
16 1 11 01
写成(111)16
高位
行吗?
(27)10=(1B)16
B. “十六进制”转“十进 制”
(1B)16
=1*161 +11*16 0
=16+11 =27
B代表的
返回
*二进制数与十六进制数间的转换
A. “二进制”转“十六进 B. “十六进制”转“二进
制”
制”
关键点(技巧):因为2的4次方等于16,所以 4位二进制数等于1位十六进制数。
(101111) 2=(0010 1111) 2
前面补 0成4位
一组
=( 2
F ) 16
注意不能 写成15
( A F ) 16 =( 1010 1111) 2 =( 10101111) 2
二.八进制→十进制 (按位权乘8的N-1次方)
三.十六进制→十进制 (按位权乘16的N-1次方)
四.二进制→十六进制 (每四位二进制数表示 一位十六进制数)
五.二进制→八进制 (每三位二进制数表示 一位八进制数)
一.十进制→二进制 (整数部分除2取余, 小数部分乘2取整)
二.十进制→八进制 (整数部分除8取余, 小数部分乘8取整)
B. “二进制”转“十进 制”
(10011)2
=1*2 4 +1*2 1
+1*2 0 =16+2+1 =19
注意:2 的0次方 等于1,
不是0
返回
*十进制数与八进制数间的转换
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二进制数转换为十进制数二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……所以,设有一个二进制数:0110 0100,转换为10进制为:下面是竖式:0110 0100 换算成十进制第0位 0 * 20 = 0,第1位 0 * 21 = 0,第2位 1 * 22 = 4,第3位 0 * 23 = 0,第4位 0 * 24 = 0,第5位 1 * 25 = 32,第6位 1 * 26 = 64,第7位 0 * 27 = 0 +--------------------------- 100,用横式计算为:0 * 20 + 0 * 21 + 1 * 22 + 1 * 23 + 0 * 24 + 1 * 25 + 1 * 26 + 0 * 27 = 100,0乘以多少都是0,所以我们也可以直接跳过值为0的位:1 * 22 + 1 * 23 + 1 * 25 +1 * 26 = 100八进制数转换为十进制数.八进制就是逢8进1。

八进制数采用 0~7这八数来表达一个数。

八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……所以,设有一个八进制数:1507,转换为十进制为:用竖式表示:1507换算成十进制。

第0位 7 * 80 = 7,第1位0 * 81 = 0 ,第2位 5 * 82 = 320 ,第3位 1 * 83 = 512 +--------------------------839,同样,我们也可以用横式直接计算:7 * 80 + 0 *81 + 5 * 82 + 1 * 83 = 839.结果是,八进制数 1507 转换成十进制数为 839.十六进制数转换成十进制数,2进制,用两个阿拉伯数字:0、1;8进制,用八个阿拉伯数字:0、1、2、3、4、5、6、7;10进制,用十个阿拉伯数字:0到9;16进制,用十六个阿拉伯数字……等等,阿拉伯人或说是印度人,只发明了10个数字啊?16进制就是逢16进1,但我们只有0~9这十个数字,所以我们用A,B,C,D,E,F这五个字母来分别表示10,11,12,13,14,15。

字母不区分大小写。

十六进制数的第0位的权值为16的0次方,第1位的权值为16的1次方,第2位的权值为16的2次方……所以,在第N(N从0开始)位上,如果是是数 X (X 大于等于0,并且X小于等于15,即:F)表示的大小为 X * 16的N次方。

假设有一个十六进数 2AF5, 那么如何换算成10进制呢?用竖式计算: 2AF5换算成10进制:第0位: 5 * 160 = 5,第1位: F * 161 = 240,第2位: A * 162 = 2560,第3位: 2 * 163 = 8192 + ----10997, 直接计算就是:5 * 160 + F * 161 + A * 162 +2 * 163 = 10997.(别忘了,在上面的计算中,A表示10,而F表示15)现在可以看出,所有进制换算成10进制,关键在于各自的权值不同。

假设有人问你,十进数 1234 为什么是一千二百三十四?你尽可以给他这么一个算式:1234 = 1 * 103 + 2 * 102 + 3 * 101 + 4 * 100.10进制数转换为2进制数.给你一个十进制,比如:6,如果将它转换成二进制数呢?10进制数转换成二进制数,这是一个连续除2的过程:把要转换的数,除以2,得到商和余数,将商继续除以2,直到商为0。

最后将所有余数倒序排列,得到数就是转换结果。

听起来有些糊涂?我们结合例子来说明。

比如要转换6为二进制数。

“把要转换的数,除以2,得到商和余数”。

那么:要转换的数是6, 6 ÷ 2,得到商是3,余数是0。

(不要告诉我你不会计算6÷3!).“将商继续除以2,直到商为0……”.现在商是3,还不是0,所以继续除以2。

那就: 3 ÷ 2, 得到商是1,余数是1。

“将商继续除以2,直到商为0……”现在商是1,还不是0,所以继续除以2。

那就: 1 ÷ 2, 得到商是0,余数是1(拿笔纸算一下,1÷2是不是商0余1!).“将商继续除以2,直到商为0……最后将所有余数倒序排列”好极!现在商已经是0。

我们三次计算依次得到余数分别是:0、1、1,将所有余数倒序排列,那就是:110了!6转换成二进制,结果是110。

把上面的一段改成用表格来表示,则为:常见的换算过程是使用下图的连除:(图:1)请大家对照图,表,及文字说明,并且自已拿笔计算一遍如何将6转换为二进制数。

说了半天,我们的转换结果对吗?二进制数110是6吗?你已经学会如何将二进制数转换成10进制数了,所以请现在就计算一下110换成10进制是否就是6。

10进制数转换为8、16进制数非常开心,10进制数转换成8进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成8。

来看一个例子,如何将十进制数120转换成八进制数。

用表格表示:120转换为8进制,结果为:170。

非常非常开心,10进制数转换成16进制的方法,和转换为2进制的方法类似,惟一变化:除数由2变成16。

同样是120,转换成16进制则为:120转换为16进制,结果为:78。

请拿笔纸,采用(图:1)的形式,演算上面两个表的过程。

二、十六进制数互相转换.二进制和十六进制的互相转换比较重要。

不过这二者的转换却不用计算,每个C,C++程序员都能做到看见二进制数,直接就能转换为十六进制数,反之亦然。

我们也一样,只要学完这一小节,就能做到。

首先我们来看一个二进制数:1111,它是多少呢?你可能还要这样计算:1 * 20 + 1 * 21 + 1 * 22 + 1 * 23 = 1 * 1 + 1 * 2 + 1 * 4 + 1 * 8 = 15。

然而,由于1111才4位,所以我们必须直接记住它每一位的权值,并且是从高位往低位记,:8、4、2、1。

即,最高位的权值为23 = 8,然后依次是 22= 4,21=2, 20= 1。

记住8421,对于任意一个4位的二进制数,我们都可以很快算出它对应的10进制值。

下面列出四位二进制数 xxxx 所有可能的值(中间略过部分),仅4位的2进制数快速计算方法十进制值十六进值1111 = 8 + 4 + 2 + 1 = 15 F1110 = 8 + 4 + 2 + 0 = 14 E1101 = 8 + 4 + 0 + 1 = 13 D1100 = 8 + 4 + 0 + 0 = 12 C1011 = 8 + 4 + 0 + 1 = 11 B1010 = 8 + 0 + 2 + 0 = 10 A1001 = 8 + 0 + 0 + 1 = 10 9....0001 = 0 + 0 + 0 + 1 = 1 10000 = 0 + 0 + 0 + 0 = 0 0二进制数要转换为十六进制,就是以4位一段,分别转换为十六进制。

如(上行为二制数,下面为对应的十六进制):1111 1101 , 1010 0101 , 1001 1011F D , A 5 , 9 B 反过来,当我们看到 FD时,如何迅速将它转换为二进制数呢?先转换F:看到F,我们需知道它是15(可能你还不熟悉A~F这五个数),然后15如何用8421凑呢?应该是8 + 4 + 2 + 1,所以四位全为1 :1111。

接着转换 D:看到D,知道它是13,13如何用8421凑呢?应该是:8 + 2 + 1,即:1011。

所以,FD转换为二进制数,为:1111 1011,由于十六进制转换成二进制相当直接,所以,我们需要将一个十进制数转换成2进制数时,也可以先转换成16进制,然后再转换成2进制。

比如,十进制数 1234转换成二制数,如果要一直除以2,直接得到2进制数,需要计算较多次数。

所以我们可以先除以16,得到16进制数:结果16进制为: 0x4D2.然后我们可直接写出0x4D2的二进制形式: 0100 1011 0010。

其中对映关系为:0100 – 4,1011 – D,0010 – 2.同样,如果一个二进制数很长,我们需要将它转换成10进制数时,除了前面学过的方法是,我们还可以先将这个二进制转换成16进制,然后再转换为10进制.下面举例一个int类型的二进制数:01101101 11100101 10101111 00011011,我们按四位一组转换为16进制: 6D E5 AF 1B 。

另一个话题:原码、反码、补码。

我们已经知道计算机中,所有数据最终都是使用二进制数表达。

我们也已经学会如何将一个10进制数如何转换为二进制数。

不过,我们仍然没有学习一个负数如何用二进制表达。

比如,假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:0000000000000000 00000000 00000101,5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。

现在想知道,-5在计算机中如何表示?在计算机中,负数以其正值的补码形式表达。

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。

比如 00000000 00000000 00000000 00000101 是 5的原码。

反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。

取反操作指:原为1,得0;原为0,得1。

(1变0; 0变1)比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。

称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。

反码是相互的,所以也可称:11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。

补码:反码加1称为补码。

也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。

比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。

那么,补码为:11111111 11111111 11111111 11111010 + 1 = 11111111 11111111 11111111 11111011,所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。

转换为十六进制:0xFFFFFFFB。

再举一例,我们来看整数-1在计算机中如何表示。

相关文档
最新文档