输电线路的防雷措施

合集下载

输电线路防雷措施

输电线路防雷措施

输电线路防雷措施在输电线路遭受雷击时,雷电会对输电线路造成过电压冲击,破坏输电线路的绝缘层使其出现闪络或产生涉漏电弧的现象,严重时可能会导致输电线路发生相间短路或者对地短路的故障,进而导致事故跳闸,如果不能在受到雷击的输电线路进行有效的处理措施,则会导致电力系统的供电中断,影响人们的日常生产和生活。

输电线路的防雷措施有:(1)避雷线(架空地线):沿全线装设避雷线是目前为止110KV及其以上架空线最重要和最有效的防雷措施。

35KV及以下一般不全线架设避雷器,因为其绝缘水平较低,即使增加绝缘水平仍很难防止直击雷,可以靠增加绝缘水平使线路在短时间故障情况运行,主要靠消弧线圈和自动重合闸装置。

(2)降低杆塔接地电阻:这是提高线路耐雷水平和减少反击概率的主要措施,措施有采用多根放射状水平接地体、降阻模块等。

反击是当雷电击到避雷针时,雷电流经过接地装置通入大地。

若接地装置的接地电阻过大,它通过雷电流时电位将升的很高,作用在线路或设备的绝缘体,可使绝缘发生击穿。

接地导体由于地电位升高可以反过来向带电导体放电的这种现象叫“雷电反击”。

(3)加强线路的绝缘:如增加绝缘子的片数、改用大爬距悬式绝缘子、增大塔头空气距离。

在实施上有很大的难度,一般为提高线路的耐雷水平,均优先采用降低杆塔接地电阻的方法。

(4)耦合地线:在导线的下方加装一条耦合地线,具有一定的分流作用和增大导地线之间的耦合系数,可提高线路的耐雷水平和降低雷击跳闸率。

(5)消弧线圈:能使雷电过电压所引起的单相对地冲击闪络不转变为稳定的工频电弧,即大大减少建弧率和断路器的跳闸次数。

(6)避雷器:不作密集安装,仅用作线路上雷电过电压特别大或绝缘薄弱的防雷保护。

能免除线路的冲击闪络,使建弧率降为零。

(7)不平和绝缘:为了避免线路落雷时双回路同事闪络跳闸而造成的完全停电的严重局面,当采用通常的防雷措施都不能满足要求时,在雷击线路时绝缘水平较低的线路首先跳闸,保护了其他线路。

高压输电线路防雷措施分析及改进方法

高压输电线路防雷措施分析及改进方法

高压输电线路防雷措施分析及改进方法在高压输电线路的运行过程之中,雷击问题难以避免,且极易对输电线路的安全性及供电的稳定性产生影响,此时只有采取合理的措施,做好防雷工作,才能够确保人们的用电安全性及稳定性。

但就高压输电线路防雷措施而言,其仍存在一定的不足,应对之良好的分析,并通过一系列的方法,实现对高压输电线路防雷方面的良好改进。

标签:高压输电线路;防雷措施;改进方法1雷击问题给高压输电线路的影响1.1雷击问题分析改进并优化现有防雷技术方法时,必须优先考虑高压输电线路受到的雷击现象的具体情况,确定防雷工作的侧重点。

现分析线路雷击事件的具体情况,高压线路在雷雨天气中比较容易受到雷击影响,雷电可直接在线路导线处发挥作用;电路导线被雷电绕过后,可能受到雷电反击影响;雷电影响了线路附近的道路之后,输电线路系统受到间接影响,会形成感应过电压。

无论出现哪一种雷击事件,雷电波都会使输电线路的导线上生成大量的新电荷,破坏电路的平衡性,雷击现象之后,线路还会形成绝缘子闪络现象,线路跳闸问题生成,绝缘子断线与击穿事故给输电线路造成的影响更严重。

1.2输电线路防雷工作影响因素改进防雷措施,需要确定防雷保护工作的正确展开方向,找出影响线路防雷效果的主要影响因素。

杆塔的绕击数与其高度呈现出正比的关系,杆塔的高度数值增加后,地面屏蔽效果随之减弱,绕击区范围扩大,雷击事件形成概率增大,因此可调整杆塔高度。

高压输电线路所处区域的地形与雷击事故出现概率之间也有关联,设置在山区中的输电线路的实际绕击率偏高,因此有更大概率出现雷击的现象。

电流从地面的一处位置流向另一处位置时形成电阻值被称为接地电阻,接地电阻也是影响线路防雷效果的重要因素之一。

另外線路绝缘水平与波阻抗以及绕击数存在关联,共同影响输电线路的安全性。

2可行的防雷保护措施在既有的高压输电线路防雷保护系统的基础上,工作人员还可以利用以下几种技术手段来增强防雷工作工作的开设力度,更全面地完成防雷保护相关的工作。

高压输电线路防雷技术措施分析

高压输电线路防雷技术措施分析
科技毒
高压输 电线路 防雷技术措施分析
汤志 军
江苏省 电力公司检修分公司
者避 雷器 的安 装, 往 往 忽略 了重要 的环节 , 那就 是 对防 雷保 护角 的设 置。 防雷保护角不但可以有效的降低高压输 电线路 中出现的 闪络现象 , 而且还 可以有 效的降低 电网中的安全 隐患 。 因此 , 对防雷保护 角的设置 就 显的至 关重要 。 在对 山区进行 线路的绕行 时, 应该要采用有 效的计算 方法来 对杆塔有 效保护角进行校 正, 并且对其进行设计 的过程 中, 要充 分的考虑保护 角过大 的现象 , 尽可能 地将雷击现象 降到最低。 避雷线的 1 、 前言 众所周知 , 雷 电属于 自 然 现象 , 而且雷 电对 于电力系统的危 害性 较 主要作用 就是 引流 , 所 以在每一 个杆塔 接地 的地方设 置在具 有双 避雷 大, 范 围也较 广泛 , 因此 , 对于 雷电 的防治就 显得至 关 重要 。 就目 前 来 线 的高压输 电线路 中, 这样 就能够 有效 的降低 避雷线 在 电路 回路 中的 说, 人们对 于雷 电的具体情况并 没有 比较全面的掌 握 , 这 样对雷 电的有 功率损耗 。 与此 同时, 将避雷 线通过一个较小 的空隙和大地 之间保持一 效防御措施 就不 到位。 如 果不能够 有效的降低雷 电的危险性 , 就会对人 种绝 缘的状 态 , 这 样在雷 电发生时, 空 隙就会被击穿 , 从而使避雷 线和 们 的人身和 财产安 全造 成极 大的威 胁 尤其是 对于高 压输 电线 路的 防 大地 相接 因此可以知 道, 如果将 避雷线 的保护角适 当的减小 , 就可以 雷技术而言 , 其科 学性和全面性 就变得至关重要。 一 有效 的减少雷击现象 , 进 而有效的降低 了损失。

架空输电线路的防雷(标准版)

架空输电线路的防雷(标准版)

( 安全技术 )单位:_________________________姓名:_________________________日期:_________________________精品文档 / Word文档 / 文字可改架空输电线路的防雷(标准版)Technical safety means that the pursuit of technology should also include ensuring that peoplemake mistakes架空输电线路的防雷(标准版)1架设避雷线架设避雷线是输电线路防雷保护的最基本和最有效的措施。

避雷线的主要作用是防止雷直击导线,同时还具有以下作用:①分流作用,以减小流经杆塔的雷电流,从而降低塔顶电位;②通过对导线的耦合作用可以减小线路绝缘子的电压;③对导线的屏蔽作用还可以降低导线上的感应过电压。

通常来说,线路电压愈高,采用避雷线的效果愈好,而且避雷线在线路造价中所占的比重也愈低。

因此规程规定,220kV及以上电压等级的输电线路应全线架设避雷线,110kV线路一般也应全线架设避雷线。

同时,为了提高避雷线对导线的屏蔽效果,减小绕击率。

避雷线对边导线的保护角应做得小一些,一般采用20°~30°。

220kV及330kV双避雷线线路应做到20°左右,500kV及以上的超高压、特高压线路都架设双避雷线,保护角在15°及以下。

为了起到保护作用,避雷线应在每基杆塔处接地。

在双避雷线的超高压输电线路上,正常的工作电流将在每个档距中两根避雷线所组成的闭合回路里感应出电流并引起功率损耗。

为了减小这一损耗,同时为了把避雷线兼作通讯及继电保护的通道,可将避雷线经过一个小间隙对地(杆塔)绝缘起来。

雷击时,间隙被击穿,使避雷线接地。

2降低杆塔接地电阻降低杆塔接地电阻可以减小雷击杆塔时的电位升高,这是配合架设避雷线所采取的一项有效措施。

输电线路防雷设计具体措施要点分析

输电线路防雷设计具体措施要点分析

输电线路防雷设计具体措施要点分析摘要:近年来,国家加强和规范了输电线路工程的质量要求,因而对输电线路的设计也提出了更高的要求。

而输电线路多架设在户外,经常受到雷电侵袭,导致输电线路运行故障,造成大范围停电事故,因此要重视输电线路的防雷设计。

从设计阶段开始,就要合理选择合适的设计方案,考虑线路防雷问题,合理选择线路路径;架设避雷线;降低杆塔接地电阻,提高线路整体绝缘水平,提升安全运行率和供电可靠性。

本文在此从输电线路雷击的成因出发,对如何做好输电线路防雷设计提出了几个关键措施。

关键词:输电线路;防雷;设计措施;避雷针;避雷线前言:目前,我国仍然有许多地方的输配电线路的杆搭高度严重超过超准,更有些地方的输配电线路没有进行防雷措施设计,不仅增大了输配电线路故障的可能性,还可能对周围的居民带来人身安全的威胁,因此,输配电线路的防雷设计尤为重要。

一、输电线路防雷概述输电线路雷击时产生的过电压可达400kV,极易对35kV以下的线路造成致命性的伤害。

同时,雷电直击也是造成110kV以上输电线路故障的重要因素之一。

直击雷可划分为绕击和反击两种形式,均能严重威胁线路的安全运行。

经调查数据显示,绕击多发生于山区线路中,反击多发生于平原和丘陵地区线路中。

所以,在设计输电线路之前,应对雷击的性质进行充分研究,从而运用针对性较强的防雷技术,以提高防雷效果。

针对山区线路,应当选择防雷走廊,减小避雷线保护角,增强绝缘性能;对于丘陵和平原地区线路,应当采用有效措施降低电阻,以达到防雷的作用。

据统计,输电线路的雷害事故占有很大的比例。

由于输电线路保“网”的重要地位,如何减少输电线路的雷害事故成为电力系统安全稳定运行的一项重要课题。

所以加强架空输电线路的耐雷水平,减少输电线路雷害事故引起的跳闸是防雷设计的首要任务。

二、输电线路雷击成因分析在雷击杆顶时,由于塔角接地电阻 R很小,于是就出现反射现象。

如 R=0,则杆顶部不会出现对地电压。

输电线路的防雷措施

输电线路的防雷措施

输电线路的防雷措施输电线路防雷设计的目的是提高线路的防雷性能,降低线路的雷击跳闸率。

在确定线路防雷的方式时,应综合考虑系统的运行方式、线路电压等级和重要程度、线路经过地区雷电活动的强弱、地形地貌特点、土壤电阻率等自然条件,并参考当地原有线路的运行阅历,经过技术经济比较,实行合理的爱护措施。

除架设避雷线措施之外,还应留意做好以下几项措施。

1.接地装置的处理(1)高压输电线路耐雷水平随杆塔接地电阻的增加而降低。

电压等级越高,降低杆塔接地电阻的作用将变得更加重要。

对土壤电阻率较高地区,应选择更换接地网形式和置换土壤的方法,达到降阻。

在雷击多发区域,主网线路杆塔接地电阻应保证小于10Ω,山区也应小于15Ω。

在雷雨季节前,对雷击多发区域线路应按规程要求的方法,进行杆塔接地电阻测量。

(2)接地装置埋深,要求大干0.6 m,采纳增大截面的接地引下线,引下线(热镀锌)表面要进行防腐处理。

严格根据规程执行接地装置的开挖检查制度。

重点检查接地装置的埋深、接头和截面的测量,对不合格的准时进行处理。

(3)降低杆塔接地电阻,还需要确保架空地线、接地引下线、地网相互之间的良好连接。

2.减小外边相避雷线的爱护角或者采纳负角爱护在以往进行防雷设计时,只要求遵照规程规定满意杆塔避雷线爱护角的要求就行了,忽视了山坡对防雷爱护角的影响,则造成了杆塔防雷爱护角不能满意防雷设计的实际要求,增加了线路闪络次数,影响了电网平安运行。

针对山区运行线路简单受绕击的状况,建议采纳有效屏蔽角公式计算校验杆塔有效爱护角,以便设计时针对爱护角偏大状况实行相应措施削减雷电绕击概率。

3.加强绝缘和采纳不平衡绝缘方式在雷电活动剧烈地段、大跨越高杆塔及进线段,应增加绝缘子片数。

由于这些地方落雷机会较多,塔顶电位高,感应过电压大,受绕击的概率也较大,通过适当增加绝缘子片数,增大导线和避雷线间的距离,达到加强绝缘的目的。

规程规定:全超群过40m的有地线杆塔,每增高10m应增加一片绝缘子。

线路防雷四原则和具体措施

线路防雷四原则和具体措施

线路防雷四原则和具体措施
线路防雷的四原则如下:
1. 保护导线不受或少受雷直击。

2. 雷击塔顶或避雷线时不使或少使绝缘发生闪络。

3. 当绝缘发生冲击闪络时,尽量减小由冲击闪络转变为稳定电力电弧的概率,从而减少雷击跳闸率次数。

4. 即使跳闸也不中断电力的供应。

具体措施如下:
1. 合理选择输电线路路径,避开易遭受雷击的地段,如雷暴走廊、潮湿盆地、土壤电阻率突变地带等。

2. 降低杆塔接地电阻、提高耦合系数、减小分流系数、加强高压输电线路绝缘等,以提高高压输电线路的耐雷水平。

3. 根据地区的地貌、地形、地质以及土壤状况与接地电阻的合理水平,找出可能存在薄弱环节或缺陷,因地制宜地采取措施。

请注意,上述措施并不能保证线路完全不受雷击,雷电活动具有复杂性和随机性,因此应综合考虑各种因素,采取多种措施,以最大程度地减少雷击对线路的危害。

输电线路的防雷保护措施与方法

输电线路的防雷保护措施与方法

输电线路的防雷保护措施与方法摘要:在规划建设输电线时,铺设输电线路是整个电力工程中的重要作业,输电线大多数都是裸露于外部环境,会受到太阳光照射,风吹雨淋的影响,进而受到外界环境恶劣影响,就可能会造成线路断裂,出现输电故障,影响到电力工程的日常供电,甚至也会出现区域的停电事故。

本篇文章就重点论述分析了雷电产生的原因和危害,进而讨论了输电线路和电气设备防雷措施及安全综合预防策略。

关键词:输电线路;雷电;避雷装置;安全引言:雷电击中输电线路就会出现线路断裂产生短路的事故,自然界中的雷电瞬时电压超过8位数时,瞬时的电流可以达到10万安。

强大的电流,高压就会给电力设备带来巨大冲击,瞬时电压冲击线缆就会击破绝缘层,而使线路出现供电中断问题发生,雷电会引发线路断路而出现停电。

通过调查发现,近30%的输电线产生故障都是在双输电线路上。

一、雷电的危害自然界中的雷电给电力设备带来的损伤,会危及到整个电网运行的安全,雷电产生危害就是每天放电给输电线路带来巨大的电流电压,直接与建筑上的设备接触,产生电磁感应或者静电感应,也会出现热效应和电效应。

(一)电效应雷电高压高电流就会在瞬时放射出近百万伏的电压电流,直接击穿了电气设备中的绝缘层,烧断电线,出现区域的停电事故。

绝缘层被损坏,会引起设备内部的短路,而引发火灾事故。

强大电流穿透的防雷设备,使电位数值上升,高电位作用于电缆电线,电气设备类和其他的金属管上之间设备作用会产生放电。

由于雷电流出现了电磁效应,在其周边空间就会形成巨大磁场,在这种磁场中的导体就会感应出更高的电动势,有强大的电动势也会使得闭合金属导体出现感应电流,进而诱发设备产生发热或者其他的损坏事故。

当电流接入地面,地面上可出现跨步电压,也发生人身伤亡的事故[1]。

(二)热效应雷电高压会产生上千安的大电流,这些电流进入到输电线路上穿过导体,在较短时间也生成巨大热量。

雷电雷击点产生热量值比较高,发热量会达到近2000焦,容易出现易爆,融化线缆,而诱发更大的爆炸事故。

35kV架空输电线路与防雷措施

35kV架空输电线路与防雷措施

35kV架空输电线路与防雷措施摘要:本文笔者主要针对35kV架空输电线与防雷措施开展分析,希望通过笔者的分析可以提升架空输电线路的防雷能力,确保输电线路的有效运行。

关键词:35kV;输电线;防雷;措施在电力系统中架空输电线发挥着重要的作用,它会受各种因素的影响,造成输电线的出现运行安全问题,因此想要保护电力系统,做好35kV架空输电线的防雷工作是非常重要的。

因此,笔者认为开展35kV架空输电线路与防雷措施方面的分析是非常必要的。

一、雷击的含义分析雷击的形式主要分为绕击雷和直击雷。

当架空输电线没有采取避雷措施时会造成雷过电压的情况,从而影响输电线路的运行。

电线杆塔是输电线设施的重要部分,在输配电的过程中具有重大的作用。

随着我国经济发展,输电线路不断增多,输电线线路的防雷保护也是电力建设施工、运行的重中之重。

同时电线杆塔也会直接影响到输电线路,一旦遇到雷击杆塔的事件就会将电感直接传输至架空输电线,导致输电线路的电位升高,从而影响到电力系统的运行。

二、35kV架空输电线路雷击原因(一)输电线路自身原因35kV架空输电线路受雷击的主要原因大部分是由于输电线路的自身原因。

由于架空输电线路周边也会有其他线路,在这种情况下很容易受到雷击的影响。

另外,其他线路的防雷技术存在不同,如果不对架空输电线路进行深度的研究,不采取有效的防雷措施,也无法达到防雷效果,从而受到雷击的影响。

虽然部分架空输电线路已经使用绝缘子,但仍然存在很多问题,当绝缘子被雷击中很难找出故障,尤其是后期维修工作,延长了维修的时间,也加大了维修的难度。

(二)外部环境原因架空输电线被雷击也会受到外部原因的影响。

尤其是在一些乡镇地区,架空输电线路受到雷击是一种常见现象,也存在当地居民对接地线偷盗情况,由于输电线路长期暴露在外部的环境下,经常会受到一些外部的因素造成一些安全事故,例如在雷雨天气,架空输电线路就会受到雷击,从而导致输电线路的运行失常,甚至出现失灵的情况。

35kV输电线路雷击及防雷建议-最新文档

35kV输电线路雷击及防雷建议-最新文档

35kV输电线路雷击及防雷建议在我国电力系统各类事故、障碍中,输、配电线路的雷害事故占有很大的比例.由于输电线路对于保“网”的重要地位,如何减少输电线路雷害事故引起的跳闸,不但影响电力系统正常供电,增加输电线路及开关设备的维修工作量,而且由于输电线路上落雷,雷电波还会沿线路侵入变电所甚至用户,影响人身财产安全。

而在电力系统中,线路的绝缘最强,变电所次之发电机最弱,若发电厂、变电所的设备保护不完善,往往会引起其设备绝缘损坏,影响安全供电。

1输电线路遭受雷击的原因输电线路雷击闪电由雷云放电造成的过电压通过线路杆塔建立放电通道,导致线路绝缘击穿,这种过电压也称为大气过电压,可分为直击雷过电压和感应过电压。

按雷击的性质可分为直击雷和感应雷:1)直击雷。

当带电的雷云接近输电线路时雷电流沿空中通道注入雷击点,如避雷线、杆(塔)顶部导线等产生直击雷过电压。

雷云放电时,引起很大的雷电流,可达几十甚至几百kA,从而产生极大的破坏作用;2)感应雷。

当雷击于输电线路附近的大地或物品时,导致产生静电感应,致使先导路径附近的导线上积累了大量的异号束缚电荷,雷击后,主放电开始,导线中感应电压就会很大。

根据实测,感应雷电压幅值一般为300~400kV,击穿60~80cm的空气间隙,对于35kV及以下水泥杆线引起一定的闪络事故.雷电主要危害有以下几种:1)电流高压效应会产生高达数万伏甚至十万伏的冲击电压,如此巨大的电压瞬间冲击电力设备,足以击穿绝缘体,使设备发生短路,导致燃烧、爆炸等直接灾害。

2)电流高热效应会放出几十至上百千安的强大电流,并产生大量热能,在雷击点温度会很高,可导致金属熔化,引起火灾和爆炸。

3)雷电流机械效应主要表现为被雷击物体发生爆炸、扭曲、崩溃、撕裂等现象,导致财产损失和人员伤亡。

输电线路是电力系统的大动脉,它将巨大的电能输送到四面八方,是连接各个变电站、各重要用户的纽带.输电线路的安全运行,直接影响到了电网的稳定和向用户可靠供电。

第9章 输电线路的防雷保护

第9章 输电线路的防雷保护

2. 输电线路的直击雷过电压和耐雷水平
若雷电流取为斜角波头,即 iL=at,可得雷击点的最高电
位:
uA
= iZ
⋅ Zb 2
= iL
Z0Zb 2Z0 + Zb
iL = at
UA
=

l vb
×
Z0Zb 2Z0 + Zb
l
2. 输电线路的直击雷过电压和耐雷水平
由于避雷线与导线间的耦合作用,在导线上将产生耦合
输电线路防雷的原则和措施
做好输电线路的防雷工作,不仅可以提高输电线路 本身的供电可靠性,而且还可以使变电所安全运行。
输电线路的防雷保护
架空线路遭受雷击的可能性 10kV、35kV线路
主要是110kV、 220kV,部分 500kV线路
雷击线路附近地面 雷击塔顶及塔顶附近避雷线 雷击档距中央的避雷线 雷击导线
110kV、 220kV、 500kV线路
1、输电线路的感应雷过电压
感应过电压 当雷击线路附近大地时,由于电磁感应,在线路上的
导线会产生感应过电压。
1、输电线路的感应雷过电压
(一)、雷击线路附近大地时,线路上的感应过电压
主放电前 在雷云放电的起始阶段,存在着向大地发展的先导放
电过程,线路正处于雷云与先导通道的电场中,由于静电 感应,沿导线方向的电场强度分量Ex将导线两端与雷云异 号的正电荷吸引到靠近先导通道的一段导线上来成为束缚 电荷,导线上的负电荷则由于Ex的排斥作用而使其向两端 运动,经线路的泄露电导和系统的中性点而流入大地。
(二)、雷击线路杆塔时,导线上的感应过电压
雷击线路杆塔时,由于雷电通道所产生的电磁场迅速变 化,将在导线上感应出与雷电流极性相反的过电压,其计算问 题至今尚有争论,不同方法计算的结果差别很大,也缺乏实践 数据。目前,《规程》建议对一般高度(约40M以下)无避雷 线的线路,此感应过电压最大值可用下式计算

35kV输电线路防雷措施

35kV输电线路防雷措施

35kV输电线路防雷措施发布时间:2022-12-06T03:18:28.784Z 来源:《福光技术》2022年23期作者:何璇[导读] 如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。

雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。

因此,我们应该采取有效的措施,避免输电线路遭受雷击。

遵义供电局贵州省遵义市 563000摘要:如今,随着我国气候的不断变化,输电线路遭受雷电灾害时有发生,严重威胁着我国电网运行的安全性和可靠性。

雷击是导致线路跳闸并引起灾害的主要原因,甚至严重的时候会顺着电线传播而破坏变电所。

因此,我们应该采取有效的措施,避免输电线路遭受雷击。

为了避免上述的现象发生,我们通常采用的主要防雷措施有:有效的降低杆塔接地电阻;在输电线路上增设避雷线;加装一定数量的耦合地线;进一步提高输电线路的绝缘水平等。

但是有些问题还是未能找到有效的解决办法,例如遇到土壤电阻率较高时或绕击雷对输电线路的影响等。

为此,这就需要我们采取更加有效的方法来提高输电线路的耐雷水平,减少可能出现的雷击跳闸率。

如今,在输电系统中应用范围最广的是在输电线路的两端或易雷击段安装避雷器,这种防雷技术在我国已经开始日趋完善。

关键词:输电线路;防雷;措施1输电线路遭受雷击的原因及所造成的损坏 1.1输电线路遭受雷击的原因输电线路遭受雷击是由于大气的过电压通过输电线路的杆塔形成一定的放电通道,最终导致输电线路的绝缘层被雷电击穿,该过电压又称大气过电压,可以分为两类,即感应过电压和直接过电压。

感应过电压是由于雷击能量较大,当大气中的雷电击到输电线路附近的地面上,线路中的三根导线因感应而产生较高的电压,该类过电压的电压幅值通常为300~400kA,可以有效的击穿空气间隙大概60~80cm,容易使一些线杆出现闪络事故。

直接过电压是由于输电线路直接遭受雷击,并且危害到设备绝缘的电压,该类过电压会引起很大的雷电流,有时可以达到几十甚至几百千安,对输电设备产生较大的破坏。

输电线路的防雷保护

输电线路的防雷保护

§9-1 输电线路的感应雷过电压
一、雷击线路附近大地时,线路上的感应过电压 1.基本原理
感应雷过电压形 成示意图
(a)主放电前 (b)主放电后 hd-导线高度;
S-雷击点与导线 间的距离
1)主放电前
在雷云放电的起始阶段,存在着向大地发展的先导放 电过程,线路处于雷云与先导通道的电场中,由于静电 感应,沿导线方向的电场强度分量Ex将导线两端与雷云 异号的正电荷吸引到靠近先导通道的一段导线上来成为 束缚电荷,导线上的负电荷则由于Ex的排斥作用而使其 向两端运动,经线路的泄漏电导和系统的中性点而流入 大地。
4.5 E
0.75
14%
E为绝缘子串的平均运行电压梯度【KV(有效值)/m】
对中性点直接接地系统有:
E
u
c
3l j
当为铁横担时,其为线路额定电压 【KV(有效值)】 为绝缘子串闪络距离(m)
对中性点非直接接地系统有:E
u 2l
c j
对于中性点不接地系统,单相闪络不会引起跳 闸,只有当第二相导线再闪络后才会造成相间闪 络而跳闸,因此,式中应是线电压和相间绝缘长 度。 实践证明,当E≤6【KV(有效值)/m】时,建 弧率很小,可以近似地认为建弧率为0。 二、有避雷线线路雷击跳闸率的计算 1.雷击杆塔时的跳闸率
因先导通道发展速度不大,所以导线上电荷 的运动也很缓慢,由此而引起的导线中电流很 小,同时由于导线对地泄漏电导的存在,导线 电位将与远离雷云处的导线电位相同。
2)主放电后 当雷云对线路附近的地面放电时,先导通道中 的负电荷被迅速中和,先导通道所产生的电场迅 速降低,使导线上的束缚正电荷得到释放,沿导 线向两侧运动形成感应雷过电压,该感应电压称 为感应过电压的静电分量。 同时,雷电通道中的雷电流在通道周围空间 建立强大的磁场,此磁场的变化也将是导线感 应出很高的电压,该电压称为感应过电压的电 磁分量。

架空输电线路的防雷及接地措施

架空输电线路的防雷及接地措施
避免雷电对人身和财产的危害
雷电具有极大的破坏力,可能导致人身伤亡和财产损失。通 过采取有效的防雷措施,可以降低雷电对架空输电线路及其 周边环境的危害,从而避免因雷电灾害引发的人身和财产损 失。
架空输电线路防雷的现状
防雷设施建设不足
部分地区的架空输电线路防雷设施建设不足,缺乏必要的避雷线、避雷器等防 雷设备,导致线路在遭受雷电袭击时容易发生故障。
架空输电线路分布广泛,穿越的地理环境复杂多变,包括山区、丘陵、平原等地 形。这些不同的地理环境对防雷设施的建设和维护提出了更高的要求。
02
架空输电线路的防雷措施
安装避雷线
避雷线是架空输电线路最基本的防雷措施之一,通过在导线上方安装避雷线,当雷电击中线路时,避雷线将雷电电流引入地 下,以保护线路免受雷击。
避雷器的选择应考虑其额定电压、电 流和安装位置等因素。
架设耦合地线
耦合地线是一种通过增加一条地线来提高线路防雷能力的措施,通过耦合地线与导线之间的耦合作用 ,提高线路的耐雷水平。
耦合地线的架设方式应根据线路的具体情况来确定,包括耦合地线的截面积、位置和架设方式等。
03
架空输电线路的接地措施
杆塔接地装置
培训
对架空输电线路的维护人员进行防雷知识培 训,提高其防雷技能和意识。
宣传
通过宣传栏、宣传册等方式,向公众普及架 空输电线路的防雷知识和应对方法,提高公 众的防雷意识和自我保护能力。
05
结论与展望
架空输电线路防雷及接地措施的重要性
保障电力系统的稳定运行
架空输电线路是电力系统的重要组成部分,其稳定运行对于保障电力系统的供电可靠性至 关重要。防雷及接地措施可以有效地减少雷击对线路稳定运行的影响,避免因雷击导致的 大规模停电事故。

浅析输电线路防雷措施

浅析输电线路防雷措施
不 当、 电阻率 偏 高 、 工不 良等 。有些 输 电线 路接 地 装置 存 在很 多 施 问题 , 如接 地装 置残 缺 不全 、 久 失修 、 例 年 电阻不 断增 加 、 接地 体 被
1 输 电 线 路 防 雷 常 出 现 的 问 题
11 客 观 存 在 .
降阻 剂严 重腐 蚀等 , 正是 由于 这些 原 因 , 得输 电线 路耐 雷 水平 逐 使 大 气雷 电活 动具 有 很强 的随 机性 和 复杂 性 , 因此 , 类 对 输 电 渐 下 降 。 实证 明 , 人 事 雷击 跳 闸率 升 高在很 大 程度 上都 是 由接 地装 置 线 路雷 害 的认 识 还不 够 深 刻 , 外 , 电 线路 在 大 自然环 境 中 , 另 输 经 不 良引起 的 。
常会 受 到大 自然 的灾 害 。 目前 , 观测 技术 还存 在 很大 的 局 限性 , 线 路遭 受 的每 一次 雷击 的 技术 参数 根本 无 法准 确测 量 和捕 捉 ,甚 至
对每 次线 路 雷击 故障 的 闪络类 型 都很 难进 行 准确 区分 。
12 设 计 方 面 .
2 输 电 线 路 防 雷 措 施
2- 避 雷 线 的 使 用 1
在 雷 雨季 节到 来之 前 , 需加 强 避雷 线 的运 行与 检修 , 于 地 线 对
我 国很 多地 区在 2 世 纪 8 0 0年代建 造 的 2 0 V及 以下 线路 设 锈 蚀 等情 况要 重 点进 行检 查 , 2 k 对接 地装 置 电阻 值进 行测 试 , 时处 及 计时 基本 没有 提 供土壤 电阻 率 , 地 电阻 设计 值 没有 一定 的 规律 。 理 那 些电 阻值 偏大 的装 置 。在 雷雨 季节 做 好被 雷击 线 路 的检 查工 接 这些 传统 的 因素从 源 头上 直接 使 输 电线路 的 耐雷 水平 降 低 ; 另外 , 作 , 时更 换和 补修 损 坏 的设 备 , 打 开检 查发 生 闪络 的绝 缘 子 串 及 要

输电线路防雷施工方案

输电线路防雷施工方案

输电线路防雷施工方案1. 简介防雷施工方案是为了确保输电线路在雷电活动过程中能够安全运行,减少雷击灾害对输电线路设备的损害,保障电力供应的连续稳定。

本文将介绍输电线路防雷施工方案的主要内容和具体操作步骤。

2. 施工前准备在进行输电线路防雷施工之前,需要进行以下准备工作:2.1. 雷电活动调查在施工前,可以通过查阅当地的雷电活动资料、气象报告等途径,了解当地的雷电活动情况。

根据不同地区的雷电频率和强度,采取相应的防雷措施。

2.2. 防雷施工方案制定根据实际情况,制定针对性的防雷施工方案。

方案中应包括针对不同部位的防雷措施、具体的操作步骤、所需的材料和工具等内容。

2.3. 防雷工作人员培训为确保防雷施工的质量和安全,需要对防雷工作人员进行专业培训,使其了解和掌握相关防雷知识和技能。

3. 防雷施工步骤3.1. 清理工作在施工前,需要对输电线路的周围环境进行清理,清除可能影响施工的障碍物,确保施工区域的整洁。

3.2. 行走道搭设根据防雷施工方案,确定施工区域的行走道的位置和布置。

行走道可采用钢板搭设,确保施工人员的安全。

3.3. 设备绝缘根据防雷施工方案,对输电线路的设备进行绝缘处理。

绝缘材料可以采用绝缘胶带、绝缘垫片等。

3.4. 防雷设施安装根据防雷施工方案,对输电线路的防雷设施进行安装。

防雷设施包括避雷针、避雷线、引雷装置等。

3.5. 检查和测试在施工完成后,进行设备的检查和测试工作,确保防雷设施的正常运行和有效性。

4. 安全注意事项在进行输电线路防雷施工时,需要注意以下安全事项:•确保防雷工作人员已经接受专业培训,掌握相关安全知识和技能。

•在施工现场设置明显的警示标志,提醒其他人员注意。

•使用符合安全标准的工具和材料,避免使用损坏或过期的设备。

•在施工过程中,严禁随意碰触输电线路设备,以免触电事故发生。

•如果遇到恶劣的天气条件(如大风、雷暴等),应立即停工,并采取相应的撤离措施。

5. 总结通过对输电线路防雷施工方案的制定和实施,可以有效预防雷击灾害对输电线路设备的损害,确保电力供应的连续稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分流作用 耦合作用
5
• 避雷线的假设原则: 1). 3~10kV线路防雷保护
• 不架设避雷线,为提高供电可靠性可投入自动重合闸。 • 在雷电特强烈地区可采用高一电压等级的绝缘子,或
顶相用针式两边改用两片悬式绝缘子(不平衡绝缘)。 • 对特殊用户应用环形供电或不同杆双回路供电,必要时
改为电缆供电。
7.采用不平衡绝缘方式:
针对同杆并架的线路, 按三角形布置,在上面的线 上加间隙或管型避雷器,对 其他线起到保护作用。
8、安装线路避雷器:
把避雷器并联在线路上, 当作用电压超过避雷器的 放电电压时,避雷器先放 电,限制了过电压的发展。
习题
7.1 说明避雷线在输电线路防雷保护中的作用。对有避雷 线的线路应采取什么措施来提高耐雷水平?
根据前面对雷电产生、发展的分析,在确 定不同电压等级的输电线路防雷保护方式时, 主要应从线路的重要程度、系统的运行方式、 输电线路经过地区雷电活动的强弱、地形地 貌的特点、土壤电阻率等条件,结合当地原 有线路的运行经验,根据技术经济比较的结 果,因地制宜、全面考虑。
输电线路防雷的措施(“四道防线”):
2
输电线路防雷的措施“四道防线”的图 示
输电线路防雷的具体措施
• 架设避雷线 • 降低杆塔接地电阻 • 架设耦合地线 • 采用不平衡绝缘方式 • 装设自动重合闸 • 采用消弧线圈接地方式 • 加强绝缘 • 装设避雷器
4
1.架设避雷线
避雷线,处于导线的上方,架空的接地线。 避雷线的作用:
对导线有遮蔽作用,可避免雷直击导线。 对雷电流有分流作用,使塔顶电位下降; 对导线有耦合作用,降低雷击杆塔时绝缘子串上电压;
(1)防止雷直击导线 沿线架设避雷线,有时还要装避雷针与其配合
(2)防止雷击塔顶或避雷线后引起绝缘闪络 降低杆塔的接地电阻,增大耦合系数,适当加强线路绝
缘,在个别杆塔上采用避雷器等 (3)防止雷击闪络后转化为稳定的工频电弧
适当增加绝缘子片数,减少绝缘子串上工频电场强度, 电网中采用不接地或经消弧线圈接地方式 (4)防止线路中断供电 采用自动重合闸,或双回路、环网供电等措施
7.2 试述建弧率的含义及其在线路防雷中的作用。 7.3 对35kV及以下线路为什么一般不采用全线架设避雷线
的措施?
14
5.加强绝缘
为降低线路跳闸率,可以增加绝缘子串片数,加大大 档距跨越避雷线与导线之间的距离,以加强线路绝缘。 在35kV以下线路可采用磁横担等冲击闪络电压较高的绝 缘子串来降低雷击跳闸。
6.装设自动重合闸
由于雷击造成的闪络大多数能在跳闸后自动恢复绝缘 性能,在此重合闸成功率较高。据统计,我国110kV及 以上高压线路重合成功率为75%~95%,35kV及以下线 路约为50%~80%。因此各电压等级线路应尽量装设自 动重合闸。
8
2.降低杆塔的接地电阻
作用原理:前面分析的公式
U
j
I L Rcj
Lgt 2.6
hd 2.6
1
k
公式可见,杆塔接地电阻越小,绝缘子串上的第一越低。
对于一般高度的杆塔,降低杆塔接地电阻是提高线路耐 雷水平、防止反击的有效措施。《规程》规定,有避雷线 的线路,每基杆塔的工频接地电阻,在雷雨季节干燥时不 宜超过下表 :
220kV线路应全线装设避雷线,山区应全线装设双避雷线, 保护角一般取20˚左右 ;
110kV线路一般应全线装设避雷线,强雷区可以双线,保 护角一般取25˚—30˚。但在不全线架设避雷线;
60kV线路视线路负荷的重要程度决定是否装设全线避 雷线,如果线路的负荷重要且年雷日在30日以上时应全线装 设单避雷线,保护角一般取25˚—30˚,在雷电活动较少地区, 不必沿全程装设避雷线。
6
• 2). 35kV线路防雷保护 • 一般不装设避雷线,只在变电站线路进出口设置
1~2km避雷线,为变电所的进线段保护。 • 采用小接地系统运行,若线路长电容电流大则 经消
弧线圈接地。 • 装设自动重合闸。 • 环网供电。
7
3).500kV的线路应双避雷线,保护角ɑ一般小于15˚; 330kV的线路应全线装设双避雷线 ,保护角一般取20˚左右;
3.架设耦合地线
在降低杆塔接地电阻有困难时,可以采用在导 线下方架设地线的措施,其作用是增加避雷线与导 线间的耦合作用,以降低绝缘子串上的电压。此外, 耦合地线还可增加对雷电流的分流作用。运行经验 证明,耦合地线对降低雷击跳闸率的作用是很显著 的。
4.采用消弧线圈接地方式
适用110kV及以下电压等级电网。采用消弧线圈 接地方式为小接地电流系统,单相接地是不立刻跳闸, 而雷电大多造成单相闪络,因此,此方法可使大多数 雷击单相闪络接地故障被消弧线圈消除,不至发展为 持续工频电弧。我国的运行经验表明,该措施可使雷 击跳闸率降低1/3左右。
相关文档
最新文档