初二上学期角平分线常见辅助线做法完整版

合集下载

角平分线四大辅助线模型 总结+习题+解析

角平分线四大辅助线模型 总结+习题+解析

角平分线四大辅助线模型角平分线的性质为证明线段或角相等开辟了新的途径,同时也是全等三角形知识的延续,又为后面角平分线的判定定理的学习奠定了基础.涉及到角平分线的考点主要是性质、判定以及四大辅助线模型,在初二上期中、期末考试中都是经常考察的方向。

角平分线性质:角平分线上的点到角两边的距离相等.角平分线判定:到角的两边距离相等的点在角的角平分线上.四大模型1、角平分线+平行线,等腰三角形必出现已知:OC平分∠AOB,CD∥OB交OA于D.则△ODC为等腰三角形,OD=CD.2、角平分线+两垂线,线等全等必出现已知:OC平分∠AOB.辅助线:过点C作CD⊥OA,CE⊥OB.则CD=CE,△ODC ≌△OEC.3、角平分线+一垂线,中点全等必出现已知:OC平分∠AOB,DC垂直OC于点C.辅助线:延长DC交OB于点E.则C是DE的中点,△ODC ≌△OEC.4、角平分线+截长补短线,对称全等必出现已知:OC平分∠AOB,截取OE=OD,连接CD、CE.则△ODC和△OCE关于OC对称,即△ODC ≌△OEC.【核心考点一】角平分线的性质与判定1.(2016•张家界模拟)如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上一个动点,若3PA =,则PQ 的最小值为( )A B .2 C .3 D .【分析】首先过点P 作PB OM ⊥于B ,由OP 平分MON ∠,PA ON ⊥,3PA =,根据角平分线的性质,即可求得PB 的值,又由垂线段最短,可求得PQ 的最小值.2.(2016秋•抚宁县期末)如图,在ABC ∆中,AD 是它的角平分线,8AB cm =,6AC cm =,则:(ABD ACD S S ∆∆= )A .3:4B .4:3C .16:9D .9:16【分析】利用角平分线的性质,可得出ABD ∆的边AB 上的高与ACD ∆的AC 上的高相等,估计三角 形的面积公式,即可得出ABD ∆与ACD ∆的面积之比等于对应边之比.3.(2017春•崇仁县校级月考)如图,在ABC ∆中,90ACB ∠=︒,BE 平分ABC ∠,DE AB ⊥于点D ,如果3AC cm =,那么AE DE +等于( )。

八年级上册三角形常见构造辅助线方法

八年级上册三角形常见构造辅助线方法

八年级常见构造辅助线方法一、倍长中线类看见中点、中线——倍长中线解读:凡是与中点连线的线段都可看作是中线,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的,构成八字全等. 常见模型:1. 如图,CE ,CB 分别是△ABC ,△ADC 的中线,且∠ACB =∠ABC 。

求证:CD =2CE.3. 如图:四边形ABCD 中,AD ∥BC ,AB=AD+BC ,E 是CD 的中点,求证:AE ⊥BE 。

二、角平分线类(一)向角两边作垂线解读:过角平分线上的点向角两边作垂线,这是常用辅助线,可以利用边角边构造全等. 常见模型:2. 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F.求证:AF=EFADC BEEF CDB A1.如图,△ABC中,∠C =90o,BC=10,BD=6,AD平分∠BAC,求点D到AB的距离.2.如图,OC 平分∠AOB,∠DOE +∠DPE =180°。

求证: PD=PE(二)在角两边截取相等的线段看见线段间的数量关系——截长补短解读:在角两边截取相等的线段,常用于解决线段和差问题.只要出现类似EF+的线段关系,AB=CD就可以采取截长补短的方法来做辅助线,注意这个方法可以说是四个方法,由于方向性的不同,所以截长两种,补短两种.常见模型:1.如图,AB∥CD,CE,BE分别平分∠BCD和∠CBA,点E在AD上,求证:BC=AB+CD.2.如图,已知△ABC中,AD是∠BAC的角平分线,AB=AC+CD,求证:∠C=2∠B3.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .(三)过角平分线上的点作角平分线的垂线解读:过角平分线上的点作角平分线的垂线,常用于构造“三线合一”,构造等腰三角形. 常见模型:1.如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E ,BD 平分∠ABC 。

角平分线的几种辅助线作法与三种模型教学文案

角平分线的几种辅助线作法与三种模型教学文案

、角平分线的三种“模型”模型一:角平分线+平行线T 等腰三角形如图1,过/ AOB 平分线 OC 上的一点P ,作PE // 0B ,交OA 于点E ,贝U EO=EP.例3 如图6,点P 是厶ABC 的外角/ CAD 的平分线上的一点 •求证:PB+POAB+AC.、角平分线定理使用中的几种辅助线作法、已知角平分线,构造三角形 分线,BE 丄AD 于F 。

2、在厶 ABC 中, AD 平分/ BAC , CE 丄 AD 于E .求证:/ ACE= / B+ / ECD .精品文档精品文档例1 如图2,/ ABC ,/ ACB 的平分线相交于点 F ,过F 作DE // BC ,交AB 于 点D ,交AC于点E.求证:BD+EC=DE.模型二:角平分线+垂线T 等腰三角形如图3,过/ AOB 平分线 0C 上的一点P ,作EF 丄0C ,交0A 于点E ,交0B 于点F , 贝U OE=OF , PE=PF.例2 如图4, BD 是/ ABC 的平分线,AD 丄BD ,垂足为D ,求证:/ BAD= / DAC+ / C.模型三:角平分线+翻折T 全等三角形在厶ABC 中,AD 是/ BAC 的平分线,沿角平分线 AD 将厶ABD 往右边折叠就得到如图 5的图形•此时有:△ ABD ◎△ AB /D.此翻折相当于在三角形的一边截取线段等于另一边,或延长一边等于另一边构造出相等的线段 此方法可解决一些不相等的线段和差类问题 •图51、如图所示,在△ ABC 中,/ ABC=3 / C , AD 是/ BAC 的平求证:BE 1(AC AB)OB 图1CA DB / 图6。

角的平分线作辅助线的方法

角的平分线作辅助线的方法

角的平分线作辅助线的方法角的平分线是指将一个角分成两个相等的角的直线。

在几何学中,角的平分线是一个重要的概念,它可以帮助我们解决一些与角度有关的问题。

本文将介绍一种以角的平分线作为辅助线的方法,以帮助读者更好地理解和运用这一概念。

我们来看一个简单的例子。

假设有一个角ABC,我们想要找到角的平分线。

通过这个例子,我们可以总结出以角的平分线作为辅助线的一般步骤。

首先,选择角的两边上的两个点,记为D和E。

然后,通过点D 和E画出两条直线,分别与角的两边相交,交点分别记为F和G。

最后,连接点F和G,就得到了角的平分线。

当然,要想正确地画出角的平分线,我们还需要一些条件。

首先,角的两边必须在同一平面内。

其次,角的两边不能平行。

如果角的两边平行,那么它们永远不会相交,也就无法画出角的平分线。

此外,角的两边也不能重合,否则平分线就无法确定。

除了以上的基本方法,还有一些特殊情况下的辅助线方法。

例如,当角的两边垂直时,我们可以通过角的顶点引一条垂直平分线,将角分成两个相等的直角。

又如当角的两边相等时,我们可以通过角的顶点引一条垂直平分线,将角分成两个相等的锐角或钝角。

通过角的平分线,我们可以解决一些与角度有关的问题。

例如,我们可以利用角的平分线证明两个角相等。

具体方法是,通过角的平分线将角分成两个相等的角,然后利用两个相等的角的性质,证明原来的两个角相等。

又如我们可以利用角的平分线证明两条直线平行。

具体方法是,假设角的平分线与另一条直线相交于点H,通过证明角AHG和角HGB相等,从而证明直线AB与直线GH平行。

总结起来,角的平分线是一个重要的概念,在几何学中有着广泛的应用。

通过选择角的两边上的两个点,我们可以画出角的平分线,从而解决与角度有关的问题。

在实际应用中,我们还可以根据特殊情况选择不同的辅助线方法。

通过熟练掌握角的平分线的概念和方法,我们可以更好地理解和运用几何学中的相关知识。

初二上学期角平分线常见辅助线做法

初二上学期角平分线常见辅助线做法

全等三角形几种常有辅助线的做法教学目标全等三角形几种常有辅助线的做法重难点导航总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角均分线,可向两边作垂线。

也可将图对折看,对称此后关系现。

角均分线平行线,等腰三角形来添。

角均分线加垂线,三线合一试一试看。

线段垂直均分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角均分线在三种添辅助线4.垂直均分线联系线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为 60 度或 120 度的把该角添线后构成等边三角形7. 角度数为 30、 60 度的作垂线法:遇到三角形中的一个角为30 度或 60 度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特别直角三角形,而后计算边的长度与角的度数,这样可以获得在数值上相等的二条边或二个角。

从而为证明全等三角形创建边、角之间的相等条件。

8. 计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特别直角三角形,或 40-60-80 的特别直角三角形, 常计算边的长度与角的度数,这样可以获得在数值上相等的二条边或二个角,从而为证明全等三角形创建边、角之间的相等条件。

一、倍长中线(线段)造全等遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思想模式是全等变换中的“旋转”.例 1、已知,如图△ ABC中, AB=5,AC=3,则中线 AD的取值范围是 _________.A例 2、如图,△ABC中,E、F 分别在 AB、AC上,DE⊥DF,D是中点,试比较BE+CF与 EF的大小 .AB E D C例 3、如图,△ ABC中, BD=DC=AC,E 是 DC的中点,求证: AD均分∠ BAE.F二、截长补短 BD C截长法与补短法,详尽做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这类作法,合适于证明线段的和、差、倍、分等类的题目.1、如图,ABC 中,AB=2AC,AD均分BAC ,且AD=BD,求证:CD⊥ AC2、如图,AD∥ BC,EA,EB 分别均分∠DAB, ∠CBA, CD 过点E,求A D证 ;AB=AD+BC3、如图,已知在VABC内,BAC 0 E P,Q 分别在BC,60 , C 400,CA上,而且 AP, BQ分别是ABAC , ABC 的角均分线。

角平分线中常用的作辅助线的方法

角平分线中常用的作辅助线的方法

角平分线中常用的作辅助线的方法角平分线是天然的涉及对称的模型,通常有下列四种作辅助线的方法:(1)角平分线+平行线→必有等腰三角形①OP是平分线,②AB//ON,则③△OAB是等腰三角形;可知二⇒一。

(2)角平分线+两边垂线→线等全等必出现角平分线的性质定理:角平分线上的点到角的两边距离相等;(3)角平分线+垂线延长→等腰三角形必呈现(4)角平分线+截取相等线段→必有对称全等图1 图2 图3 图4方法1:角平分线+平行线1.△ABC的两条角平分线OB、OC相交于点O,MN经过点O,且 MN∥BC交AB、 A C分别于点M、N;求证:△AMN的周长是AB+AC;方法2:作一边的垂线段2.如图,已知△ABC的周长是20cm,BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=1.8cm,求△ABC的面积。

方法3:作两边的垂线段3.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D,求证:PC=PD。

方法4:延长作对称图形法4.如图,在△AOB中,AO=OB,∠AOB=90°,BD平分∠ABO交AO于点D,AE⊥BD交BD的延长线于点E,求证:BD=2AE方法5:截取作对称图形法5.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线,求证:BE+CF>EF。

综合演练题1.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.(1)如图1,当∠B=∠D时,求证:AB+AD=AC;(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变并说明理由.八年级《数素》之练习(13) 1、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上一个动点,若PA=3,求PQ 的最小值.2、已知△ABC 中,AB =AC ,∠A =100°,∠B 的平分线交AC 于D ,求证:AD +BD =BC3、如图,AB >AC ,∠A 的平分线与BC 的垂直平分线相交于D ,过D 作DE ⊥AB 于E ,作DF ⊥AC 于F .求证:BE=CF .A CB D。

全等三角形辅助线系列之一---与角平分线有关的辅助线作法大全

全等三角形辅助线系列之一---与角平分线有关的辅助线作法大全

全等三角形辅助线系列之一---与角平分线有关的辅助线作法大全本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March全等三角形辅助线系列之一与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a、对称性;b、角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线作法,一般有以下四种:1.角平分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题;2.截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形;3.延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形;4.做平行线:以角平分线上一点作教的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形。

或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形。

通常情况下,出现了直角或者是垂直等条件时,一般考虑作垂线;其他情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

图一图二图三 图四典型例题精讲【例1】如图,AD 是BAC ∠的平分线,DE AB ⊥于E ,DF AC ⊥于F ,且DB DC =。

求证:BE CF =【例2】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,求证:BD AD BC +=.【例3】在梯形ABCD 中,AD BC ∥, DB 是ABC ∠的平分线,求证:AD AB =。

DCBA AB CDF CDABE 第6题图【例4】如图,180A D ∠+∠=︒,BE 平分ABC ∠,CE 平分BCD ∠,点E 在AD 上.a) 探讨线段AB 、CD 和BC 之间的等量关系. b) 探讨线段BE 与CE 之间的位置关系.【例5】 如图,在△ABC 中,∠B =60°,∠A 、∠C 的角平分线AE 、CF 相交于O .求证:OE =OF .【例6】如图1,OP 是MON ∠的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

人教版八年级上 册第十二章全等三角形辅助线系列之一---角平分线类辅助线作法大全

全等三角形辅助线系列之一 与角平分线有关的辅助线作法大全一、角平分线类辅助线作法角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等.对于有角平分线的辅助线的作法,一般有以下四种.1、角分线上点向角两边作垂线构全等:过角平分线上一点向角两边作垂线,利用角平分线上的点到两边距离相等的性质来证明问题; 2、截取构全等利用对称性,在角的两边截取相等的线段,构造全等三角形; 3、延长垂线段题目中有垂直于角平分线的线段,则延长该线段与角的另一边相交,构成等腰三角形; 4、做平行线:以角分线上一点做角的另一边的平行线,构造等腰三角形有角平分线时,常过角平分线上的一点作角的一边的平行线,从而构造等腰三角形.或通过一边上的点作角平分线的平行线与另外一边的反向延长线相交,从而也构造等腰三角形.通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形.至于选取哪种方法,要结合题目图形和已知条件.图四图三图二图一QPONMPONM BAAB MNOP PONM BA典型例题精讲【例1】 如图所示,BN 平分∠ABC ,P 为BN 上的一点,并且PD ⊥BC 于D ,2AB BC BD =+.求证:180BAP BCP ∠∠=︒+.【解析】过点P 作PE ⊥AB 于点E .∵PE ⊥AB ,PD ⊥BC ,BN 平分∠ABC ,∴PE PD =. 在Rt △PBE 和Rt △PBC 中, BP BPPE PD =⎧⎨=⎩, ∴Rt △PBE ≌Rt △PBC (HL ),∴BE BD =.∵2AB BC BD +=,BC CD BD =+,AB BE AE =-,∴AE CD =. ∵PE ⊥AB ,PD ⊥BC ,∴90PEB PDB ∠=∠=︒. 在△P AE 和Rt △PCD 中, ∵PE PD PEB PDC AE DC =⎧⎪∠=∠⎨⎪=⎩, ∴△P AE ≌Rt △PCD ,∴PCB EAP ∠=∠.∵180BAP EAP ∠+∠=︒,∴180BAP BCP ∠+∠=︒.【答案】见解析.【例2】 如图,已知:90A ∠=︒,AD ∥BC ,P 是AB 的中点,PD 平分∠ADC ,求证:CP 平分∠DCB .【解析】因为已知PD 平分∠ADC ,所以我们过P 点作PE ⊥CD ,垂足为E ,则PA PE =,由P 是AB的中点,得PB PE =,即CP 平分∠DCB .【答案】作PE ⊥CD ,垂足为E ,∴90PEC A ∠=∠=︒,∵PD 平分∠ADC ,∴PA PE =, 又∵90B PEC ∠=∠=︒,∴PB PE =, ∴点P 在∠DCB 的平分线上, ∴CP 平分∠DCB .【例3】 已知:90AOB ∠=︒,OM 是∠AOB 的平分线,将三角板的直角顶点P 在射线OM 上滑动,两直角边分别与OA 、OB 交于C 、D .(1)PC 和PD 有怎样的数量关系是__________. (2)请你证明(1)得出的结论.PDCBA A BCDPE【解析】(1)PC PD =.(2)过P 分别作PE ⊥OB 于E ,PF ⊥OA 于F , ∴90CFP DEP ∠=∠=︒,∵OM 是∠AOB 的平分线,∴PE PF =,∵190FPD ∠+∠=︒,且90AOB ∠=︒,∴90FPE ∠=︒, ∴290FPD ∠+∠=︒,∴12∠=∠, 在△CFP 和△DEP 中12CPF DEPPF PE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CFP ≌△DEP ,∴PC PD =. 【答案】见解析.【例4】 如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,60B ∠=︒,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ,请你判断并写出FE 与FD 之间的数量关系(不需证明); (2)如图③,在△ABC 中,60B ∠=︒,请问,在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.【解析】如图①所示;(1)FE FD =.(2)如图,过点F 作FG ⊥AB 于G ,作FH ⊥BC 于H ,作FK ⊥AC 于K , ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴FG FH FK ==, 在四边形BGFH 中,36060902120GFH ∠=︒-︒-︒⨯=︒, ∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,60B ∠=︒, ∴()118060602FAC FCA ∠+∠=︒-︒=︒. 在△AFC 中, ()180********AFC FAC FCA ∠=︒-∠+∠=︒-︒=︒, ∴120EFD AFC ∠=∠=︒,∴EFG DFH ∠=∠, 在△EFG 和△DFH 中,EFG DFH EGF DHF FG FH ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EFG ≌△DFH ,∴FE FD = 【答案】见解析.【例5】 已知120MAN ∠=︒,AC 平分∠MAN ,点B 、D 分别在AN 、AM 上.(1)如图1,若90ABC ADC ∠=∠=︒,请你探索线段AD 、AB 、AC 之间的数量关系,并证明之;(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,给出证明;若不成立,请说明理由.【解析】(1)得到30ACD ACB ∠=∠=︒后再可以证得12AD AB AC ==,从而,证得结论; (2)过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ,证得△CED ≌△CFB后即可得到AD AB AE ED AF FB AE AF +=-++=+,从而证得结论.【答案】(1)关系是:AD AB AC +=.证明:∵AC 平分∠MAN ,120MAN ∠=︒ ∴60CAD CAB ∠=∠=︒ 又90ADC ABC ∠=∠=︒, ∴30ACD ACB ∠=∠=︒ 则12AD AB AC ==(直角三角形一锐角为30°,则它所对直角边为斜边一半) ∴AD AB AC +=; (2)仍成立.证明:过点C 分别作AM 、AN 的垂线,垂足分别为E 、F ∵AC 平分∠MAN∴CE CF =(角平分线上点到角两边距离相等) ∵180ABC ADC ∠+∠=︒,180ADC CDE ∠+∠=︒ ∴CDE ABC ∠=∠ 又90CED CFB ∠=∠=︒, ∴△CED ≌△CFB (AAS ) ∵ED FB =,∴AD AB AE ED AF FB AE AF +=-++=+ 由(1)知AE AF AC +=, ∴AD AB AC +=.【例6】 如图,在△ABC 中,2C B ∠=∠,AD 平分∠BAC ,求证:AB AC CD -=.【解析】在AB 上截取点E ,使得AE AC =.∵AD 平分∠BAC ,∴EAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ).∴AED C ∠=∠,ED CD =. ∵2C B ∠=∠,∴=2AED B ∠∠.∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠,∴BE DE =. ∴CD BE AB AE AB AC ==-=-.【答案】见解析.【例7】 如图,△ABC 中,AB AC =,108A ∠=︒,BD 平分ABC ∠交AC 于D 点.求证:BC AC CD =+.【解析】在BC 上截取E 点使BE BA =,连结DE .∵BD 平分ABC ∠,∴ABD EBD ∠=∠. 在ABD ∆与EBD ∆中∵AB EB =,ABD EBD ∠=∠,BD BD = ∴ABD EBD ∆∆≌,∴A DEB ∠=∠∵AB AE =, ∴BAD BED ∠=∠,∴72DEC ∠=︒. 又∵361854ADB ∠=︒+︒=︒,∴72CDE ∠=︒ABCDE DCBAAB CD∴CDE DEC ∠=∠,∴CD CE = ∵BC BE EC =+,∴BC AC CD =+【答案】见解析.【例8】 已知ABC ∆中,60A ∠=︒,BD 、CE 分别平分ABC ∠和ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.【解析】在BC 上截取一点F 使得BF BE =,易证BOE BOF ∆∆≌,在根据120BOC ∠=︒推出60BOE COF ∠=∠=︒,再证明OCF OCD ∆∆≌即可.【答案】BC BE CD =+.【例9】 如图:已知AD 为△ABC 的中线,且12∠=∠,34∠=∠,求证:BE CF EF +>.【解析】在DA 上截取DN DB =,连接NE ,NF ,则DN DC =,在△DBE 和△DNE 中:E DCB AOED CBAFOED CBA∵12DN DB ED ED =⎧⎪∠=∠⎨⎪=⎩∴△DBE ≌△DNE (SAS ),∴BE NE = 同理可得:CF NF =在△EFN 中,EN FN EF +>(三角形两边之和大于第三边) ∴BE CF EF +>.【答案】见解析.【例10】 已知:在四边形ABCD 中,BC BA >,180A C ∠+∠=︒,且60C ∠=︒,BD 平分∠ABC ,求证:BC AB DC =+.【解析】在BC 上截取BE BA =,∵BD 平分∠ABC ,∴ABD EBD ∠=∠, 在△BAD 和△BED 中, BA BE ABD EBD BD BD =⎧⎪∠=∠⎨⎪=⎩, ∴△BAD ≌△BED ,∴AD DE =,A BED ∠=∠. ∵180BED DEC ∠+∠=︒,180A C ∠+∠=︒. ∴C DEC ∠=∠,∴DE DC =.∴DC AD =.∵60∠=︒,∴△CDE是等边三角形,C∴DE CD CE=+=+.==,∴BC BE CE AB CD【答案】见解析.【例11】观察、猜想、探究:在△ABC中,2∠=∠.ACB B(1)如图①,当90=+;C∠=︒,AD为∠BAC的角平分线时,求证:AB AC CD (2)如图②,当90∠≠︒,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量C关系?不需要证明,请直接写出你的猜想;(3)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.【解析】(1)过D作DE⊥AB,交AB于点E,理由角平分线性质得到ED=CD,利用HL得到直角三角形AED与直角三角形ACD全等,由全等三角形的对应边相等,对应角相等,得到AE AC=,A CB B∠=∠,利用等量代换及外角性质得到一对角相等,利用等角对等∠=∠,由2AED ACB边得到BE DE=+,等量代换即可得证;=,由AB AE EB(2)AB CD AC=+,理由为:在AB上截取AG AC=,如图2所示,由角平分线定义得到=,利用SAS得到三角形AGD与三角形ACD全等,接下来同(1)一对角相等,再由AD AD即可得证;(3)AB CD AC=,如图3所示,同(2)即可得证.=-,理由为:在AF上截取AG AC【答案】(1)过D作DE⊥AB,交AB于点E,如图1所示,∵AD为∠BAC的平分线,DC⊥AC,DE⊥AB,∴DE DC=,在Rt △ACD 和Rt △AED 中,AD AD =,DE DC =, ∴Rt △ACD ≌Rt △AED (HL ),∴AC AE =,ACB AED ∠=∠, ∵2ACB B ∠=∠,∴2AED B ∠=∠, 又∵AED B EDB ∠=∠+∠,∴B EDB ∠=∠, ∴BE DE DC ==,则AB BE AE CD AC =+=+; (2)AB CD AC =+,理由为: 在AB 上截取AG AC =,如图2所示, ∵AD 为∠BAC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG ACGAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴△ADG ≌△ADC (SAS ),∴CD CG =,AGD ACB ∠=∠, ∵2ACB B ∠=∠,∴2AGD B ∠=∠, 又∵AGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BE DG DC ==,则AB BG AG CD AC =+=+; (3)AB CD AC =-,理由为: 在AF 上截取AG AC =,如图3所示, ∵AD 为∠F AC 的平分线,∴GAD CAD ∠=∠, ∵在△ADG 和△ADC 中,AG AC GAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△ADC (SAS ), ∴CD GD =,AGD ACD ∠=∠,即ACB FGD ∠=∠,∵2ACB B ∠=∠,∴2FGD B ∠=∠,又∵FGD B GDB ∠=∠+∠,∴B GDB ∠=∠, ∴BG DG DC ==,则AB BG AG CD AC =-=-.【例12】 如图所示,在△ABC 中,3ABC C ∠=∠,AD 是∠BAC 的平分线,BE ⊥AD 于F .求证:()12BE AC AB =-.【解析】延长BE 交AC 于点F .则AD 为∠BAC 的对称轴,∵BE ⊥AD 于F ,∴点B 和点F 关于AD 对称, ∴12BE EF BF ==,AB AF =,ABF AFB ∠=∠. ∵3ABF FBC ABC C ∠∠=∠=∠+,ABF AFB FBC C ∠=∠=∠∠+, ∴3FBC C FBC C ∠∠∠=∠++, ∴FBC C ∠=∠,∴FB FC =,∴()()111222BE FC AC AF AC AB ==-=-,∴()12BE AC AB =-. 【答案】见解析.【例13】 如图,已知:△ABC 中AD 垂直于∠C 的平分线于D ,DE ∥BC 交AB 于E .求证:EA EB =.【解析】由AD 垂直于∠C 的平分线于D ,可以想到等腰三角形中的三线合一,于是延长AD 交BC 与点F ,得D 是AF 的中点,又因为DE ∥BC ,由三角形中位线定理得EA EB =.【答案】延长AD 交BC 与点F ,∵CD 平分∠ACF ,∴12∠=∠,又AD ⊥CD , ∴ΔADC ≌ΔFDC ,∴AD FD =, 又∵DE ∥BC ,∴EA EB =.【例14】 已知:如图,在△ABC 中,3ABC C ∠=∠,12∠=∠,BE ⊥AE .求证:2AC AB BE -=.【解析】延长BE 交AC 于M ,∵BE ⊥AE ,∴90AEB AEM ∠=∠=︒ 在△ABE 中,∵13180AEB ∠+∠+∠=︒, ∴3901∠=︒-∠ 同理,4902∠=︒-∠∵12∠=∠,∴34∠=∠,∴AB AM =∵BE ⊥AE ,∴2BM BE =, ∴AC AB AC AM CM -=-=, ∵∠4是△BCM 的外角,∴45C ∠=∠+∠ ∵3ABC C ∠=∠,∴3545ABC ∠=∠+∠=∠+∠ ∴34525C C ∠=∠+∠=∠+∠,∴5C ∠=∠ ∴CM BM =,∴2AC AB BM BE -==【答案】见解析.【例15】 如图,已知AB AC =,90BAC ∠=︒,BD 为∠ABC 的平分线,CE ⊥BE ,求证:2BD CE =.【解析】延长CE ,交BA 的延长线于点F .∵BD 为∠ABC 的平分线,CE ⊥BE , ∴△BEF ≌△BEC ,∴BC BF =,CE FE =. ∵90BAC ∠=︒,CE ⊥BE ,∴ABD ACF ∠=∠,又∵AB AC =,∴△ABD ≌△ACF ,∴BD CF =.∴2BD CE =.【答案】见解析.EDCBAFEDCBA课后复习【作业1】如图所示,在△ABC 中,BP 、CP 分别是∠ABC 的外角的平分线,求证:点P 在∠A 的平分线上.【解析】过点P 作PE ⊥AB 于点E ,PG ⊥AC 于点G ,PF ⊥BC 于点F .因为P 在∠EBC 的平分线上,PE ⊥AB ,PH ⊥BC ,所以PE PF =. 同理可证PF PG =. 所以PG PE =,又PE ⊥AB ,PG ⊥AC ,所以P 在∠A 的平分线上,【答案】见解析.【作业2】已知:如图,2AB AC =,BAD CAD ∠=∠,DA DB =,求证:DC ⊥AC .PCBAPABCD【解析】在AB 上取中点E ,连接DE ,则12AE BE AB ==. ∵DA DB =,∴DE ⊥AB ,90AED ∠=︒. 又∵2AB AC =,∴AE AC =.∵BAD CAD ∠=∠,∴△ADE ≌△ADC (SAS ). ∴90AED ACD ∠=∠=︒,即DC ⊥AC .【答案】见解析.【作业3】已知等腰ABC ∆,100A ∠=︒,ABC ∠的平分线交AC 于D ,则BD AD BC +=.【解析】如图,在BC 上截取BE BD =,连接DE ,过D 作DF BC ∥,交AB 于F ,于是32∠=∠,ADF ECD ∠=∠. 又∵12∠=∠,∴13∠=∠,故DF BF =.显然FBCD 是等腰梯形. ∴BF DC =,DF DC =.∵()111218010020222ABC ∠=∠=⨯︒-︒=︒,()11802802BED BDE ∠=∠=︒-∠=︒, ∴180100DEC BED ∠=︒-∠=︒,∴100FAD DEC ∠=∠=︒,∴AFD EDC ∆∆≌,AD EC =. 又∵BE BD =,∴BC BD EC BD AD =+=+.【答案】见解析.EDCBAABCD【作业4】如图,已知在△ABC 中,AD 、AE 分别为△ABC 的内、外角平分线,过顶点B 作BF ⊥AD ,交AD 的延长线于F ,连接FC 并延长交AE 于M .求证:AM ME =.【解析】延长AC ,交BF 的延长线于点N .∵AD 平分∠BAC ,BF ⊥AD ,∴△AFB ≌△AFN ,∴BF NF =. ∵AD 、AE 分别为△ABC 的内、外角平分线,∴EA ⊥F A . ∵BF ⊥AF ,∴BF ∥AE .∴::BF ME CF CM =,::FN AM CF CM =. ∵BF NF =,∴AM ME =.【答案】见解析.ECMF EDCBAN MFEDCBA。

全等辅助线方法专题——角平分线

全等辅助线方法专题——角平分线

全等三角形辅助线方法---角平分线一、知,为行之始1.角平分线的定义2.角平分线的画法3.角平分线的性质定理4.角平分线的判定定理二、行,为知之成1.角平分线辅助线方法一:作垂线(角平分线的性质与判定定理)作法:过角平分线上一点向角两边作垂线,构造全等【例】如图,在四边形ABCD 中,BC>BA ,AD=CD ,BD 平分∠ABC ,求证:∠A+∠C=180°.2.角平分线辅助线方法二:截长(角平分线的对称性)作法:在角的两边截取相等的线段构造全等CDBA【例】如图,四边形ABCD中,AD∥BC,点E在CD上,EA,EB分别平分∠DAB和∠CBA,设AD=x,BC=y 且(x﹣3)2+|y﹣4|=0.求AB的长.3.角平分线辅助线方法三:延长(三线合一)作法:延长垂直于角平分线的线段与角的另一边相交构成等腰三角形【例】如图,在△ABC中,∠C=90°,CA=CB,AD平分∠BAC,BE⊥AD于点E,求证:AD=2BE.三、知行合一1.如图,Rt ABC ∆中,90C ∠=︒,AD 平分BAC ∠,交BC 于点D ,10AB =,15ABD S ∆=,则CD 的长为( ) A .2 B .3 C .4 D .52.如图,在Rt △ABC 中,∠C =90°,∠BAC 的平分线交BC 于点D ,CD =2,BD=3,Q 为AB 上一动点,则DQ 的最小值为( )A .1B .2C .2.5D .33.如图,△ABC 的三条角平分线交于O 点,已知△ABC 的周长为20,OD ⊥AB ,OD=5,则△ABC 的面积=_________.4.如图,已知△ABC 的周长是16,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D 且OD=2,△ABC 的面积是________________.5.如图,在△ABC中,∠C=90°,以点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交BC于点D.若CD=1,AB=4,则△ABD的面积是_________.6.如图,在△ABC中,以原点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若AC:AB=3:4,△ACD的面积是21,则△ABD的面积是______.7.如图,四边形ABCD中,CA平分∠BAD,CB=CD,CF⊥AD于F. (1)求证:∠ABC+∠ADC=180°;(2)若AF:CF=3:4,CF=8,求四边形ABCD的面积.8.如图,△ABC 中AP 平分∠CAB ,PD 垂直平分BC 交AP 于P ,PE AE ⊥于E . (1)当28PCB ∠=︒时,BPC ∠的度数是__________;(2)求证:2AC AB AE +=.9.四边形ABCD 中,,AB CD DE ∥平分ADC ∠.(1)如图1,若90ABE ∠=︒,E 是BC 的中点,求证:AE 平分BAD ∠;(2)如图2,若AE 平分BAD ∠,求证:E 是BC 的中点;(3)在(2)的条件下,若8,6AE DE ==,求四边形ABCD 的面积.10.如图1,在ABC △中,BD 平分,ABC CE ∠平分,ACB BD ∠与CE 交于点O .(1)如图1,若60A ∠=︒,①求BOC ∠的度数;②作OF AB ⊥于点F ,求证:2AE AD AF +=;(2)如图2,若490,7A OD OB ∠=︒=,则OE OC的值为____________.图1CDB AF E O图2CD B A O E。

(完整版)初二数学辅助线常用做法及例题(含答案)

(完整版)初二数学辅助线常用做法及例题(含答案)

DCB A常见的辅助线的作法总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

专题、角平分线四种常见辅助线添加方法

专题、角平分线四种常见辅助线添加方法

角平分线具有两条非常重要的性质:一是对称性;二是角平分线上的点到角两边的距离相等。

对于有角平分线的辅助线的作法,一般有四种:①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形(如作法是在一侧的长边上截取短边);③做角平分线的垂线,与角两边构造等腰三角形;④过角平分线上的点做边的平行线。

方法一、在证明线段的和差倍分问题中,常用到的方法是延长法或截取法来证明,以此来构造三角形全等,延长短的线段,或在长的线段上截取一部分,使之等于短的线段。

但无论延长,还是截取都要证明线段的相等。

延长要证明延长后的线段与某条线段相等,截取要证明截取后剩下的线段与某条线段相等,进而达到所要证明的目的。

例2中,用到了角平分线,用到了做垂直,利用三线合一证明边相等,利用SAS来证明三角形全等。

此题的证明,也可以在AB上截取AE=AC,先证明△ADE≌△ADC,再利用AB=2AC,得出E 是AB的中点,再利用三线合一证明DE⊥AB,所以DC⊥AC.课后专项练习一,就是利用延长或者截取法,来证明的。

题目不难,非常基础,请同学们,认真仿照例题,认真推敲,加强练习。

方法二、角平分线上的点向角两边做垂线。

通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形。

至于选取哪种方法,要结合题目图形和已知条件。

一般来说,出现角平分线,做双垂直,都是非常通用的方法。

要么过角平线上的点做角两边的垂直,要么做角平分线的垂直交两边,都是必出三角形全等。

方法三,过角平分线上的一点,做角平分线的垂线,必然交于角的两边,构造出等腰三角形。

这个方法,在很多题型中,非常实用。

专项练习三,有两个题,需要自行画图。

只要我们一个专题一个专题的突破,把基础扎实起来,那么初中几何还难吗?初中数学还难吗?方法四、过角平分想上一点,做角的另一边的平行线。

因为角平分线有两角相等,平行线则有内错角相等,则必然出现角相等,得等腰三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答.
1、如图5所示,有一块三角形的空地,其三边长分别为20m、30m、40m,现在要把它分成面积比为2:3:4的三部分,分别种植不同的花。请你设计出一个方案,并说明你的理由。
4.垂直平分线联结线段两端
5,
6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形
7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。
1、如图, 中,AB=2AC,AD平分 ,且AD=BD,求证:CD⊥AC
2、如图,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证;AB=AD+BC
3、如图,已知在 内, , ,P,Q分别在BC,CA上,并且AP,BQ分别是 , 的角平分线。求证:BQ+AQ=AB+BP
4、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分 ,
求证:
5、如图在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证;AB-AC>PB-PC
应用:
三、借助角平分线造全等
遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。
例1、已知,如图△ABC中,AB=5,AC=3,则中线AD的取值范围是_________.
例 2、如图,△ABC中,E、F分别在AB、AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小.
例3、如图,△ABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE.
二、截长补短
截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.
8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。
一、 倍长中线(线段)造全等
遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;
(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
初二上学期角平分线常见辅助线做法
教学目标
全等三角形几种常见辅助线的做法
重难点导航
全等三角形几种常见辅助线的做法
总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等
【三角形辅助线做法】
图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。
角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。
线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。
三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。
1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题
2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形
3.角平分线在三种添辅助线
1、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD,CE相交于点O,求证:OE=OD
2、如图所示,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F。
求证:
3、如图,AB>AC,∠1=∠2,求证:AB-AC>BD-CD。
应用:
1、如图①,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形。请你参考这个作全等三角形的方法,解答下列问题:
相关文档
最新文档