2021高中物理二轮复习计算题标准练十含解析

合集下载

2021高考物理二轮十一月课外优选11含解析202111161175

2021高考物理二轮十一月课外优选11含解析202111161175

2021高考物理二轮十一月课外优选11含解析202111161175李仕才一、选择题1、汽车在平直公路上做初速度为零的匀加速直线运动,途中用了6 s 时刻先后通过A 、B 两根电线杆,已知A 、B 间的距离为60 m ,车通过B 时的速度为15 m/s ,则( )A .车通过A 杆时速度为5 m/sB .车的加速度为15 m/s 2C .车从动身到B 杆所用时刻为10 sD .从动身点到A 杆的距离是7.5 m解析:依照v =x t 求得汽车在A 、B 之间的平均速度v =10 m/s 则v =v A +v B 2得v A =5 m/s ,故选项A 正确;汽车的加速度a =v B -v A t=1.66 m/s 2,故选项B 错误;汽车从动身到B 杆的时刻t =v B a=9 s ,故选项C 错误;依照v 2A =2ax ,得x =7.5 m ,故选项D 正确. 答案:AD2、(2020·黑龙江哈三中模拟)(多选)如图所示,竖直轴位于水平转台中心,质量为m 的小球由三根伸直的轻绳连接,和水平转台一起以角速度ω匀速转动,倾斜绳与竖直轴夹角为θ,竖直绳对小球的拉力为F 1,水平绳对小球的拉力为F 2,小球到竖直轴的距离为r ,以下说法可能正确的是( )A .mgtan θ=m ω2rB .mgtan θ-F 2=m ω2rC .(mg +F 1)tan θ=m ω2rD .(mg -F 1)tan θ=m ω2r解析:依照向心力公式可知,F 合=mrω2,对小球进行受力分析可知,小球受重力、倾斜绳的拉力、水平绳的拉力和竖直绳的拉力,竖直方向处于平稳状态,则有mg +F 1=Fcosθ,Fsinθ-F 2=mrω2,当F 1和F 2均为零时,则有mgtanθ=mω2r ;当F 1恰好为零时,则有mgtanθ-F 2=mω2r ;当F 2恰好为零时,则有(mg +F 1)tanθ=mω2r ,故A 、B 、C 正确,D 错误. 答案:ABC3、下列说法正确的是( )A .动能为零时,物体一定处于平稳状态B .物体受到恒力的冲量也可能做曲线运动C .物体所受合外力不变时,其动量一定不变D .动能不变,物体的动量一定不变解析:动能为零时,速度为零,而加速度不一定等于零,物体不一定处于平稳状态,选项A 错误;物体受恒力,也可能做曲线运动,如平抛运动,选项B 正确;合外力不变,加速度不变,速度平均变化,动量一定变化,C 项错误;动能不变,若速度的方向变化,动量就变化,选项D 错误.答案:B4、下列关于电源电动势的说法,正确的是( )A .在某电池的电路中,每通过2 C 的电荷量,电池提供的电能是4 J ,那么那个电池的电动势是0.5 VB .电源的路端电压增大时,其电源提供的电能一定也增大C .不管内电压和外电压如何变化,其电源的电动势一定不变D .电源的电动势越大,电源所能提供的电能就越多解析:依照电动势定义,由E =W q得E =2 V ,选项A 错误;电源的电动势与外电路无关,只由电源自身的性质决定,选项B 错误,选项C 正确;电源的电动势大,所提供的能量不一定大,电源提供的电能等于通过电源的电荷量与电动势之积,选项D 错误.答案:C5、(2020·长沙模拟)磁悬浮高速列车在我国上海已投入运行数年.如图所示确实是磁悬浮的原理,图中A 是圆柱形磁铁,B 是用高温超导材料制成的超导圆环.将超导圆环B 水平放在磁铁A 上,它就能在磁力的作用下悬浮在磁铁A 的上方空中,则( )A .在B 放入磁场的过程中,B 中将产生感应电流;当稳固后,感应电流消逝B .在B 放入磁场的过程中,B 中将产生感应电流;当稳固后,感应电流仍存在C .若A 的N 极朝上,B 中感应电流的方向为顺时针方向(从上往下看)D .若A 的N 极朝上,B 中感应电流的方向为逆时针方向(从上往下看)解析:在B 放入磁场的过程中,穿过B 的磁通量增加,B 中将产生感应电流,因为B 是超导体,没有电阻,因此感应电流可不能消逝,故A 错误、B 正确;若A 的N 极朝上,在B放入磁场的过程中,磁通量增加,依照楞次定律可判定B 中感应电流的方向为顺时针,C 正确、D 错误.答案:BC6、(2020·江西省五校高考模拟考试)如图所示,有一矩形线圈的面积为S ,匝数为N ,电阻不计,绕OO′轴在水平方向的磁感应强度为B 的匀强磁场中以角速度ω做匀速转动,从图示位置开始计时.矩形线圈通过铜滑环接理想变压器原线圈,副线圈接有固定电阻R 0和滑动变阻器R ,下列判定正确的是( )A .矩形线圈产生的感应电动势的瞬时值表达式为e =NBSωsinωtB .矩形线圈从图示位置通过π2ω时刻内,通过电流表A 1的电荷量为0 C .当滑动变阻器的滑片向上滑动过程中,电流表A 1和A 2示数都变小D .当滑动变阻器的滑片向上滑动过程中,电压表V 1示数不变,V 2和V 3的示数都变小 解析:初始位置是与中性面垂直的平面,则矩形线圈产生的感应电动势的瞬时值表达式为e =NBSωcosωt,选项A 错误;π2ω是四分之一个周期,由Q =ΔΦR可得,通过电流表A 1的电荷量不为零,选项B 错误;当滑动变阻器的滑片向上滑动过程中,滑动变阻器的阻值变大.电路总电阻变大,电流表A 2示数变小,结合I 1I 2=n 2n 1可得,电流表A 1示数也变小,选项C 正确;当滑动变阻器的滑片向上滑动过程中,电压表V 1示数不变,结合U 1U 2=n 1n 2,V 2示数也不变,电压表V 3示数变大,选项D 错误.答案:C二、非选择题1、春节放假期间,全国高速公路免费通行,小轿车能够不停车通过收费站,但要求小轿车通过收费站窗口前x 0=9 m 区间的速度不超过v 0=6 m/s.现有甲、乙两小轿车在收费站前平直公路上分别以v 甲=20 m/s 和v 乙=34 m/s 的速度匀速行驶,甲车在前,乙车在后,甲车司机发觉正前方收费站,开始以大小为a 甲=2 m/s 2的加速度匀减速刹车.(1)甲车司机需在离收费站窗口至少多远处开始刹车才不违章.(2)若甲车司机经刹车到达离收费站窗口前9 m 处的速度恰好为6 m/s ,乙车司机在发觉甲车刹车时经t 0=0.5 s 的反应时刻后开始以大小为a 乙=4 m/s 2的加速度匀减速刹车,为幸免两车相撞,且乙车在收费站窗口前9 m 区不超速,则在甲车司机开始刹车时,甲、乙两车至少相距多远?解析:(1)对甲车速度由20 m/s 减速至6 m/s 过程中的位移x 1=v 2甲-v 202a 甲=91 m x 2=x 0+x 1=100 m即甲车司机需在离收费站窗口至少100 m 处开始刹车.(2)设甲刹车后经时刻t ,甲、乙两车速度相同,由运动学公式得: v 乙-a 乙(t -t 0)=v 甲-a 甲t解得t =8 s相同速度v =v 甲-a 甲t =4 m/s<6 m/s ,即v =6 m/s 的共同速度为不相撞的临界条件 乙车从34 m/s 减速至6 m/s 的过程中的位移为x 3=v 乙t 0+v 2乙-v 202a 乙=157 m 因此要满足条件甲、乙的距离至少为x =x 3-x 1=66 m.答案:(1)100 m (2)66 m。

2021年高考物理二轮复习 核心考点专项突破 力学综合计算题练习(含解析)

2021年高考物理二轮复习 核心考点专项突破 力学综合计算题练习(含解析)

力学综合计算题1.如下图所示,两个完全相同的质量为m 的木板A 、B 置于水平地面上,它们的间距s =2.88 m .质量为2m ,大小可忽略的物块C 置于A 板的左端.C 与A 之间的动摩擦因数μ1=0.22,A 、B 与水平地面之间的动摩擦因数为μ2=0.10,最大静摩擦力可以认为等于滑动摩擦力.开始时,三个物体处于静止状态.现给C 施加一个水平向右、大小为25mg 的恒力F ,假定木板A 、B 碰撞时间极短且碰撞后粘连在一起,要使C 最终不脱离木板,每块木板的长度至少应为多少?【解析】第一阶段拉力F 小于C 、A 间最大静摩擦力,因此C 、A 共同加速到与B 相碰.该过程对C 、A 用动能定理有(F -μ2·3mg )s =32mv 21 解得v 1=80.3 m/s.A 、B 相碰瞬间,A 、B 系统动量守恒mv 1=(m +m )v 2碰后共同速度v 2=40.3m/s.C 在AB 上滑行全过程,A 、B 、C 系统所受合外力为零,动量守恒,C 到B 右端时恰好达到共同速度,即2mv 1+2mv 2=4mv因此共同速度v =60.3m/s.C 在A 、B 上滑行全过程用能量守恒得F ·2L =12×4mv 2-(12×2mv 21+12×2mv 22)+μ1·2mg ·2L 代入数据解得L =0.3 m.【答案】0.3 m2.如图所示,竖直平面内轨道ABCD 的质量M =0.4 kg ,放在光滑水平面上,其中AB 段是半径R =0.4 m 的光滑14圆弧,在B 点与水平轨道BD 相切,水平轨道的BC 段粗糙,动摩擦因数μ=0.4,长L =3.5 m ,C 点右侧轨道光滑,轨道的右端连一轻弹簧.现有一质量m =0.1 kg 的小物体(可视为质点)在距A 点高为H =3.6 m 处由静止自由落下,恰沿A 点滑入圆弧轨道(g =10 m/s 2).求:(1)ABCD 轨道在水平面上运动的最大速率;(2)小物体第一次沿轨道返回到A 点时的速度大小.【解析】(1)由题意分析可知,当小物体运动到圆弧最低点B 时轨道的速率最大,设为v m ,假设此时小物体的速度大小为v ,则小物体和轨道组成的系统水平方向动量守恒:以初速度的方向为正方向;由动量守恒定律可得:Mv m =mv由机械能守恒得:mg (H +R )=12Mv 2m +12mv 2 解得:v m =2.0 m/s(2)由题意分析可知,小物体第一次沿轨道返回到A 点时小物体与轨道在水平方向的分速度相同,设为v x ,假设此时小物体在竖直方向的分速度为v y ,则对小物体和轨道组成的系统,由水平方向动量守恒得:(M +m )v x =0由能量守恒得:mgH =12(M +m )v 2x +12mv 2y +μmg 2L 解得v x =0;v y =4.0 m/s故小物体第一次沿轨道返回到A 点时的速度大小v A =v 2x +v 2y =16 m/s =4 m/s【答案】(1)2.0 m/s (2)4 m/s如图所示,AB 是倾角为θ=30°的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切.圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上的P 点由静止释放,结果它能在两轨道上做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ,重力加速度为g ,求:(1)物体对圆弧轨道的最大压力大小;(2)物体滑回到轨道AB 上距B 点的最大距离;(3)释放点距B 点的距离L ′应满足什么条件,为能使物体能顺利通过圆弧轨道的最高点D .【解析】(1)根据几何关系:PB =R tan θ=3R 从P 点到E 点根据动能定理,有: mgR -μmg cos θ·PB =12mv 2E -0代入数据:mgR -μmg ·32·3R =12mv 2E 解得:v E =2-3μgR在E 点,根据向心力公式有:F N -mg =m v 2E R解得:F N =3mg -3μmg(2)物体滑回到轨道AB 上距B 点的最大距离x ,根据动能定理,有mg (BP -x )·sin θ-μmg cos θ(BP +x )=0-0代入数据:mg (3R -x )·12-μmg ·32(3R +x )=0 解得:x =3-3μ3μ+1R(3)刚好到达最高点时,有mg =m v 2R解得:v =gR根据动能定理,有mg (L ′sin θ-R -R cos θ)-μmg cos θ·L ′=12mv 2-0代入数据:mg (12L ′-R -32R )-μmg ·32 L ′=12mgR 解得:L ′=3R +3R 1-3μ 所以L ′≥3R +3R 1-3μ,物体才能顺利通过圆弧轨道的最高点D 【答案】(1)3mg -3μmg (2)3-3μ3μ+1R(3)L ′≥3R +3R 1-3μ4.如图甲所示,滑块与足够长的木板叠放在光滑水平面上,开始时均处于静止状态.作用于滑块的水平力F 随时间t 变化图象如图乙所示,t =2.0 s 时撤去力F ,最终滑块与木板间无相对运动.已知滑块质量m =2 kg ,木板质量M = 1 kg ,滑块与木板间的动摩擦因数μ=0.2,取g =10 m/s 2.求:(1)t =0.5 s 时滑块的速度大小;(2)0~2.0 s 内木板的位移大小;(3)整个过程中因摩擦而产生的热量.【解析】(1)木板M 的最大加速度a m =μmg M=4 m/s 2 滑块与木板保持相对静止时的最大拉力F m =(M +m )a m =12 N即F 为6 N 时,M 与m 一起向右做匀加速运动对整体分析有:F =(M +m )a 1v 1=a 1t 1代入数据得:v 1=1 m/s(2)对M :0~0.5 s ,x 1=12a 1t 21 0.5~2 s ,μmg =Ma 2x 2=v 1t 2+12a 2t 22则0~2 s 内木板的位移x =x 1+x 2=6.25 m(3)对滑块:0.5~2 s ,F -μmg =ma 2′0~2 s 时滑块的位移x ′=x 1+(v 1t 2+12a 2′t 22) 在0~2 s 内m 与M 相对位移Δx 1=x ′-x =2.25 m t =2 s 时木板速度v 2=v 1+a 2t 2=7 m/s滑块速度v 2′=v 1+a 2′t 2=10 m/s撤去F 后,对M :μmg =Ma 3对m :-μmg =ma 3′当滑块与木板速度相同时保持相对静止,即v 2+a 3t 3=v 2′+a 3′t 3解得t 3=0.5 s该段时间内,M 位移x 3=v 2t 3+12a 3t 23 m 位移x 3′=v 2′t 3+12a 3′t 23相对位移Δx 2=x 3′-x 3=0.75 m整个过程中滑块在木板上滑行的相对位移Δx =Δx 1+Δx 2=3 m系统因摩擦产生的热量Q =μmg ·Δx =12 J.【答案】见解析5如图所示,质量为M 的平板车P 高h ,质量为m 的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R ,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无能量损失,已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,M ∶m =4∶1,重力加速度为g .求:(1)小物块Q 离开平板车时速度为多大?(2)平板车P 的长度为多少?【解析】(1)小球由静止摆到最低点的过程中,有:mgR (1-cos 60°)=12mv 20 解得v 0=gR小球与小物块Q 相撞时,动量守恒,机械能守恒,则有:mv 0=mv 1+mv Q12mv 20=12mv 21+12mv 2Q 解得:v 1=0,v Q =v 0=gR二者交换速度,即小球静止下来.Q 在平板车上滑行的过程中,系统的动量守恒,则有mv Q =Mv +m (2v )解得,v =16v Q =gR 6小物块Q 离开平板车时,速度为:2v =gR 3 (2)由能量守恒定律,知F f L =12mv 2Q -12Mv 2-12m (2v )2 又F f =μmg解得,平板车P 的长度为L =7R 18μ. 【答案】(1)gR3 (2)7R 18μ6.2018年10月23日,港珠澳大桥开通,这是建筑史上里程最长、投资最多、施工难度最大的跨海大桥。

新教材高中物理二轮复习精品 专题一 第3课时 动力学两类基本问题 板块模型和传送带模型中的动力学问题

新教材高中物理二轮复习精品 专题一 第3课时 动力学两类基本问题 板块模型和传送带模型中的动力学问题
123
3.(2021·江苏南京市、盐城市二模)如图7所示,电动传送带以恒定速度v0 =1.2 m/s顺时针运行,传送带与水平面的夹角α=37°,现将质量m=20
kg的箱子轻放到传送带底端,经过一段时间后,
箱子被送到h=1.8 m的平台上.已知箱子与传送带
间的动摩擦因数μ=0.85,不计其他损耗(g=10 m/s2,
第3课时 动力学两类基本问题 板块模型和 传送带模型中的动力学问题
命题规律
1.命题角度:(1)动力学的两类基本问题; (2)板块模型中的动力学问题; (3)传送带模型中的动力学问题.
2.常考题型:计算题.
内容索引
NEIRONGSUOYIN
高考题型1 动力学两类基本问题 高考题型2 板块模型中的动力学问题 高考题型3 传送带模型中的动力学问题 高考预测 专题强化练

由①②④⑤式知,aA=aB;再由⑦⑧式知,B与木板达到共同速度时,A
的速度大的速度相同,设其大小为v2,设A的速度大小从v1变到v2所用的时
间为t2,则由运动学公式,对木板有
v2=v1-a2t2

对A有:v2=-v1+aAt2

在t2时间内,B(以及木板)相对地面移动的距离为
水平面内,二者之间用传送带相接.传送带向右匀速运动,其速度的大小
v可以由驱动系统根据需要设定.质量m=10 kg的载物箱(可视为质点),以
初速度v0=5.0 m/s自左侧平台滑上传送带. 载物箱与传送带间的动摩擦因数μ=0.10,
重力加速度取g=10 m/s2.
(1)若v=4.0 m/s,求载物箱通过传送带所需的时间;
速度最小,设为v1;当载物箱滑上传送带后一直做匀加速运动时,到达
右侧平台时的速度最大,设为v2,

2021高中物理二轮复习计算题标准练八含解析

2021高中物理二轮复习计算题标准练八含解析

高中物理二轮复习:计算题标准练(八)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(14分)一个平板小车置于光滑水平面上,其右端恰好和一个光滑圆弧轨道AB的底端等高连接,如图所示。

已知小车质量M=3.0kg,长L=2.06m,圆弧轨道的半径R=0.8m,现将一质量m=1.0kg的小滑块由轨道顶端A点无初速释放,滑块滑到B端后冲上小车。

滑块与小车上表面间的动摩擦因数μ=0.3,g=10m/s2。

(1)滑块到达B端,轨道对它支持力的大小。

(2)小车运动1.5s时,车右端距轨道B端的距离。

(3)滑块与车面间由于摩擦而产生的内能。

【解析】(1)根据动能定理得,mgR=mv2解得v2=2gR,v==4m/s在B端有:N-mg=m,解得N=3mg=30N。

故滑块到达B端,轨道对它支持力的大小为30N。

(2)小车的加速度a1==m/s2=1 m/s2。

滑块的加速度a2==μg=3m/s2当两者速度相等时有:a1t0=v-a2t0解得t0==s=1 s知小车在1.5s内先做匀加速直线运动,然后做匀速直线运动。

匀加速直线运动的位移x1=a1=×1×1m=0.5 m匀速直线运动的速度v′=a1t0=1×1m/s=1 m/s,t′=1.5s-1 s=0.5 s则匀速直线运动的位移x2=v′t′=0.5m所以x=x1+x2=1m故小车运动1.5s时,车右端距轨道B端的距离为1m。

(3)两者共同做匀速直线运动的速度v′=1m/s,滑块与车面间由于摩擦而产生的内能设为Q, 根据能量守恒得,Q=mv2-(M+m)v′2=6J故滑块与车面间由于摩擦而产生的内能为6J。

答案:(1)30N (2)1 m (3)6 J2.(18分)如图甲,两个绝缘的足够大的挡板M、N竖直放置,两板间存在一个竖直向上的匀强电场,另外有一个垂直纸面的匀强磁场,磁场的磁感应强度随时间变化的图象如图乙所示(以垂直纸面向外的方向为正,B0和T0为已知量)。

高中物理计算题专项训练附答案解析

高中物理计算题专项训练附答案解析

1.道路千万条,安全第一条.行车不规范,亲人两行泪.近日,道路上某酒驾人员驾乘汽车A以v A=4 m/s的速度向右做匀速直线运动,同时后方相距x0=24 m处正以v B=2 m/s 的速度同向运动的警车B开始做a=2 m/s2的匀加速直线运动,从此时开始计时,求:(1)B追上A之前,A、B之间的最远距离是多少?(2)经多长时间,警车B才能追上A车?2.舰载机着舰被称为“在刀尖上跳舞”,指的是舰载机着舰有很大的风险,一旦着舰不成功,飞行员必须迅速实施“逃逸复飞”,“逃逸复飞”是指制动挂钩挂拦阻索失败后飞机的复飞.若航母跑道长为280 m,某飞行员在一次训练“逃逸复飞”科目时,战斗机在跑道一端着舰时的速度为55 m/s,着舰后以10 m/s2的加速度做匀减速直线运动,3 s后制动挂钩挂拦阻索失败,于是战斗机立即以6.25 m/s2的加速度复飞,起飞需要的最小速度为50 m/s.求:(1)战斗机着舰3 s时的速度大小;(2)本次“逃逸复飞”能否成功?若不能,请说明理由;若能,达到起飞速度时战斗机离跑道终端的距离.3.如图所示,在水平地面上有一高h=4.2 m的竖直墙,现将一小球以v0=6 m/s的速度,从离地面高为H=6 m的A点水平抛出,小球撞到墙上B点时的速度与竖直墙成37°角,不计空气阻力和墙的厚度,重力加速度g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小球从A到B所用的时间t;(2)抛出点A到墙的水平距离s;(3)若仍将小球从原位置沿原方向抛出,为使小球能越过竖直墙,小球抛出时的初速度大小应满足什么条件?4.当地时间2021年7月30日,东京奥运会女子蹦床决赛,整套动作完美发挥的朱雪莹,以56.635分夺得金牌,帮助中国蹦床队时隔13年重获该项目冠军.队友刘灵玲收获一枚银牌.已知朱雪莹的体重为45 kg,在比赛中,朱雪莹从离水平网面3.2 m高处自由下落,着网后沿竖直方向蹦回离水平网面 5.0 m高处.已知朱雪莹与网接触的时间为0.15 s,g 取10 m/s2,求:(1)朱雪莹下落接触网面前瞬间的速率v1和上升离开网面瞬间的速率v2;(2)网面对朱雪莹的平均作用力F.5.如图所示,半径R =0.40 m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A .一质量m =0.10 kg 的小球,以初速度v 0=7.0 m/s 在水平地面上向左做加速度a =3.0 m/s 2的匀减速直线运动,运动4.0 m 后,冲上竖直半圆环.(取重力加速度g =10 m/s 2).(1)求小球在A 点的速度大小; (2)通过计算得出小球能否通过B 点;(3)若能通过B 点,最后小球落在C 点,求A 、C 间的距离.6.如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道 AB 、圆心为O 1的半圆形光滑轨道 BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值.7.如图所示,质量为M=4 kg的木板静止在光滑的水平面上,在木板的右端放置一个质量为m=1 kg,大小可以忽略的铁块,铁块与木板之间的动摩擦因数μ=0.4,在铁块上加一个水平向左的恒力F=8 N,铁块在长L=6 m的木板上滑动.取g=10 m/s2.求:(1)经过多长时间铁块运动到木板的左端;(2)在铁块到达木板左端的过程中,恒力F对铁块所做的功;(3)在铁块到达木板左端时,铁块和木板的总动能.8.如图所示,光滑固定斜面上有一个质量为10 kg的小球被轻绳拴住悬挂在天花板上,已知绳子与竖直方向的夹角为45°,斜面倾角为30°,整个装置处于静止状态,取g=10 m/s2,结果中可保留根号.求:(1)绳中拉力的大小和斜面对小球支持力的大小;(2)若另外用一个外力拉小球,能够把小球拉离斜面,其最小拉力的大小.9.如图所示,倾角为θ=37°的足够长光滑斜面AB与长L BC=2 m的粗糙水平面BC用一小段光滑圆弧(长度不计)平滑连接,半径R=1.5 m的光滑圆弧轨道CD与水平面相切于C 点,OD与水平方向的夹角也为θ=37°.质量为m的小滑块从斜面上距B点L0=2 m的位置由静止开始下滑,恰好运动到C点.已知重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)求小滑块与粗糙水平面BC间的动摩擦因数μ;(2)改变小滑块从斜面上开始释放的位置,小滑块能够通过D点,求小滑块的释放位置与B点的最小距离.10.如图所示,在半径为a、圆心角为90°的扇形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,圆弧部分为绝缘弹性挡板.一带电量为+q、质量为m的粒子以某一速度垂直OM边界射入匀强磁场,进入磁场后仅与挡板碰撞(电荷不发生转移)一次后又垂直ON边界射出,已知粒子与挡板碰撞后速度大小不变、方向反向.不计粒子重力,求:(1)粒子入射点到O点距离;(2)粒子的入射速度.11.如图,一对长平行栅极板水平放置,极板外存在方向垂直纸面向外、磁感应强度大小为B 的匀强磁场,极板与可调电源相连.正极板上O 点处的粒子源垂直极板向上发射速度为v 0、带正电的粒子束,单个粒子的质量为m 、电荷量为q .一足够长的挡板OM 与正极板成37°倾斜放置,用于吸收打在其上的粒子.C 、P 是负极板上的两点,C 点位于O 点的正上方,P 点处放置一粒子靶(忽略靶的大小),用于接收从上方打入的粒子,CP 长度为L 0.忽略栅极的电场边缘效应、粒子间的相互作用及粒子所受重力,sin 37°=35.(1)若粒子经电场一次加速后正好打在P 点处的粒子靶上,求可调电源电压U 0的大小; (2)调整电压的大小,使粒子不能打在挡板OM 上,求电压的最小值U min ;(3)若粒子靶在负极板上的位置P 点左右可调,则负极板上存在H 、S 两点(CH ≤CP <CS ,H 、S 两点未在图中标出),对于粒子靶在HS 区域内的每一点,当电压从零开始连续缓慢增加时,粒子靶均只能接收到n (n ≥2)种能量的粒子,求CH 和CS 的长度(假定在每个粒子的整个运动过程中电压恒定).12.一名潜水员在夜间进行深水作业,其头盔上的照明灯可看做是点光源向各个方向发射光线,在平静的水面上可看到该光源发出的光只从一个半径r =1.8 m 的圆形区域内射出水面,若水的折射率n =53.求:(1)此时潜水员的头部在水面下方的深度h ;(2)若在8 s 的时间内,我们发现透光的圆形水域半径从1.8 m 扩大到6 m ,试根据光学知识求出潜水员在水下竖直方向匀速运动的速度v y .13.如图所示,一导热性能良好的球形容器内部不规则,某兴趣小组为了测量它的容积,在容器上插入一根两端开口的长玻璃管,接口密封.玻璃管内部横截面积为S=0.2 cm2,一长为h =15 cm的静止水银柱封闭了一定质量的气体,其下方玻璃管内空气柱长度为l1=10 cm,此时外界温度为t1=27 ℃.现把容器浸在100 ℃的沸水中,水银柱缓慢上升29.2 cm后稳定.实验过程中认为大气压强没有变化,大气压强p=1.0×105 Pa(相当于75 cm高汞柱压强).(结果保留两位有效数字)(1)容器的容积为多少?(2)若实验过程中管内气体内能增加了 1.3 J,请判断气体是从外界吸收热量还是向外界放出热量,并计算热量的多少.14.如图所示,水平地面与一半径为L的竖直光滑圆弧轨道相接于B点,轨道上的C 点位置处于圆心O的正下方.质量为m的小球在距离地面高度也为L的水平平台边缘上的A 点以2gL的初速度水平抛出,小球在空中运动至B点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g.求:(1)B点与抛出点A正下方的水平距离x;(2)圆弧BC段所对的圆心角θ;(3)小球经B点时,对圆轨道的压力大小.15.如图所示,足够长,间距为L的平行光滑金属导轨ab、de构成倾角为θ的斜面,上端接有阻值为R的定值电阻,足够长的平行光滑金属导轨bc、ef处于同一水平面内,倾斜导轨与水平导轨在b、e处平滑连接,且b、e处装有感应开关;倾斜导轨处于垂直导轨平面向上的匀强磁场中,水平导轨处于竖直向上的匀强磁场中,磁感应强度大小均为B;距离b足够远处接有未闭合的开关S,在开关S右侧垂直导轨放置导体棒N,在倾斜导轨上距b、e足够远的位置放置导体棒M,现将导体棒M由静止释放,当导体棒M通过b、e处后瞬间感应开关自动断开.已知导体棒M的质量为m,电阻为R,导体棒N的质量为2m,电阻为2R,两导体棒运动过程中始终与导轨接触良好且与导轨垂直,重力加速度为g,不计导轨电阻及空气阻力.(1)保持开关S断开,求导体棒M通过感应开关前瞬间的速度大小;(2)若固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒M在水平导轨上运动的位移;(3)若不固定导体棒N,导体棒M通过感应开关后瞬间闭合开关S,求导体棒N上产生的焦耳热.16.如图所示,足够长的平行金属导轨在水平面上,间距为L,一端连接有阻值为R的电阻;导轨上放质量为m的金属杆,金属杆与导轨的电阻忽略不计;均匀磁场竖直向下.用与导轨平行的恒定拉力F作用在金属杆上,杆最终将做匀速运动.当改变拉力大小时,相对应的匀速运动速度v也会变化,v和F的关系如图所示.若m=0.5 kg,L=0.5 m,R=0.5 Ω;(取重力加速度g=10 m/s2)求:(1)磁感应强度B为多大?(2)金属杆与导轨间的摩擦力.17.如图所示,位于竖直平面内的坐标系xOy,在其第三象限空间有垂直于纸面向外的匀强磁场,磁感应强度大小为B=0.5 T,还有沿x轴负方向的匀强电场,场强大小为E=2 N/C.在其第一象限空间有沿y轴负方向的、场强大小也为E的匀强电场,并在y>h=0.4 m的区域有磁感应强度也为B的垂直于纸面向里的匀强磁场.一个带电荷量为q的油滴从图中第三象限的P点得到一初速度,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限.已知重力加速度g=10 m/s2,问:(1)油滴在第三象限运动时受到的重力、电场力、洛伦兹力三力的大小之比;(2)油滴在第一象限运动的时间.18.如图所示,y轴左侧有沿x轴正方向的匀强电场,电场强度为E,屏CD与y轴垂直,OACD为一矩形,OA边长为L,OD边长为2L,矩形OACD内某区域存在磁感应强度为B的匀强磁场.质量为m、电荷量为q、重力不计的正粒子从x轴负半轴上的P点由静止释放,从O点进入磁场后最终垂直于屏打到C点,且从x轴PO段上任意位置由静止释放的同种正粒子最终都能垂直打到屏CD上,求:(1)PO之间的距离x;(2)上述由P点释放的粒子,从P到C经历的时间t;(3)磁场区域的最小面积S.19.如图,容积均为V0、缸壁可导热的A、B两汽缸放置在压强为p0、温度为T0的环境中;两汽缸的底部通过细管连通,A汽缸的顶部通过开口C与外界相通;汽缸内的两活塞将缸内气体分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四部分,其中第Ⅱ、Ⅲ部分的体积分别为18V0和14V0.环境压强保持不变,不计活塞的质量和体积,忽略摩擦.(1)将环境温度缓慢升高,求B汽缸中的活塞刚到达汽缸底部时的温度;(2)将环境温度缓慢改变至2T0,然后用气泵从开口C向汽缸内缓慢注入气体,求A汽缸中的活塞到达汽缸底部后,B汽缸内第Ⅳ部分气体的压强.20.如图所示,一种光学传感器是通过接收器Q接收到光的强度变化而触发工作的.光从挡风玻璃内侧P点射向外侧M点再折射到空气中,测得入射角为α,折射角为β;光从P 点射向外侧N点,刚好发生全反射并被Q接收,求光从玻璃射向空气时临界角θ的正弦值表达式.答案及解析1.(1)25 m (2)6 s 解析:追及和相遇问题(1)两车速度相等时,相距最远,则由有v A =v B +at 1 解得t 1=1 s ,此段时间内A 车的位移x A =v A t 1 B 车的位移x B =v B t 1+12at 21A 、B 之间的最远距离Δx =x A +x 0-x B以上各式联立解得最远距离Δx =25 m.(2)设经过时间t B 车追上A 车,则通过的位移关系有x ′B =x ′A +x 0 即v B t +12at 2=v A t +x 0代入数据解得t =6 s .2.(1)25 m/s (2)能成功,起飞时离跑道终端的距离为10 m 解析:匀变速直线运动规律的应用 (1)战斗机着舰减速过程,根据速度公式得v 1=v 0+a 1t 1代入数据解得v 1=25 m/s(2)战斗机减速过程,根据位移公式得x 1=v 0t 1+12a 1t 21代入数据解得x 1=120 m.假设战斗机能“逃逸复飞”成功,根据速度-位移关系式得v 22 -v 21 =2a 2x2 代入数据得战斗机复飞过程的最小位移x 2=150 m , 飞机的总位移x =x 1+x 2=270 m<L =280 m , 因此本次“逃逸复飞”训练能成功. 离跑道终端的距离Δx =L -x =10 m .3.(1)0.8 s (2)4.8 s (3)v ′0≥8 m/s 解析:抛体运动(1)将B 点的速度分解到水平和竖直方向,有tan 37°=v 0v y竖直方向上是自由落体运动v y =gt 代入数据解得t =0.8 s(2)平抛运动在水平方向上是匀速直线运动,s =v 0t 代入数据解得s =4.8 m(3)恰好从墙上越过时,由平抛运动规律得H -h =12gt ′2s =v ′0t ′解得v ′0=8 m/s.均使小球能越过竖直墙,抛出时的初速度应满足v ′0≥8 m/s.4.(1)8 m/s ,10 m/s (2)5 850 N 解析:动量和动量定理(1)运动员下落接触网面前瞬间的速度大小为v 1=2gh 1=2×10×3.2 m/s =8 m/s运动员上升离开网面瞬间的速度大小为v 2=2gh 2=2×10×5.0 m/s =10 m/s(2)取竖直向上为正方向,运动员和网接触过程中,由动量定理知 (F -mg )t =mv 2-mv 1 可解得F =mv 2-m (-v 1)t+mg=45×10-45×(-8)0.15N +45×10 N =5 850 N5.(1)5 m/s (2)见解析 (3)1.2 m 解析:机械守恒定律 (1)匀减速运动过程中,有:v 2A -v 20 =-2as ,解得v A =5 m/s(2)假设物体能到达圆环的最高点B ,由机械能守恒: 12mv 2A =2mgR +12mv 2B 解得:v B =3 m/s恰好通过最高点B 满足:mg =m v 2B 1 R.解得:v B 1=2 m/s因为v B >v B 1,所以小球能通过最高点B . (3)小球从B 点做平抛运动,有: 2R =12gt 2s AC =v B ·t解得:s AC =1.2 m6.(1)7 N (2)v =12l x -0.96(m/s)(0.85 m ≤l x ≤3 m) (3)1315 m 或95 m 或4115 m解析:能量守恒定律(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12mv 2C C 点时F N =mg +m v 2CR=7 N(2)要使得滑块到达F 点,则必过圆弧轨道DEF 的最高点,即有mgl x sin 37 °-mg (3R cos 37 °+R )=12mv 20 ≥0即l x ≥0.85 m滑块运动到F 的过程中,由机械能守恒定律有mgl x sin 37 °-4mgR cos 37 °=12mv 2解得v =12l x -9.6(m/s)(0.85 m ≤l x ≤3 m)(3)设摩擦力做的功为滑块第一次到达FG 中点时的n 倍 由动能定理得mgl x sin 37°-mgl FG2sin 37°-n μmgl FG2cos 37°=0l x =7n +615m 将0.85 m ≤l x ≤3 m 代入上式可得2728≤n ≤397,由运动过程可知,n 只能取1、3、5 当n =1时l x =1315m当n =3时l x =95m当n =5时l x =4115m.7.(1)2 s (2)64 J (3)40 J解析:传送带模型和滑块—木板模型中的能量问题(1)铁块与木板间的滑动摩擦力F f =μmg =0.4×1×10 N =4 N 铁块的加速度a 1=F -F f m =4 m/s 2木板的加速度a 2=F f M=1 m/s 2设铁块滑到木板左端的时间为t ,则12a 1t 2-12a 2t 2=L解得t =2 s(2)铁块位移x 1=12a 1t 2=12×4×22m =8 mF 对铁块做的功W =Fx 1=8×8 J =64 J(3)由功能关系可知E k 总=W -μmgL =(64-24) J =40 J8.(1)51.8 N 73.2 N (2)70.7 N解析:平衡中的临界和极值问题(1)如图,沿水平方向和竖直方向建立直角坐标系,对小球受力分析,把不在坐标轴上的力沿轴分解,则水平方向上有F T sin 45°-F N sin 30°=0竖直方向上有F T cos 45°+F N cos 30°-mg=0由以上两式得F N=100(3-1) N≈73.2 NF T=50(6-2) N≈51.8 N(2)外力方向与绳子垂直时,拉力最小.拉力的最小值为F min=mg sin 45°代入数据,解得F min=50 2 N≈70.7 N9.(1)0.6 (2)6.75 m解析:动能和动能原理(1)滑块恰好运动到C点,由动能定理得mgL0sin 37°-μmgL BC=0-0解得:μ=0.6(2)滑块能够通过D点,在D点的最小速度,由mg sin θ=m v 2DR解得:v D =3 m/s设滑块在斜面上运动的距离为L ,由动能定理得mgL sin θ-μmgL BC -mgR (1+sin θ)=12mv 2D -0解得:L =6.75 m10.(1)(2-1)a (2)qaB m解析:带电粒子在有界匀强磁场中的运动(1)根据题意可知,粒子与挡板碰撞为弹性碰撞,碰撞后速度大小不变,根据运动的对称性可知,粒子在碰撞挡板前的运动轨迹与碰撞后的轨迹完全对称,由此可作运动轨迹如图所示.设半径为r ,由图几何关系可得r =a 由入射点到O 的距离为d =2r -r 即d =(2-1)a(2)由洛伦兹力提供向心力可得qvB =mv 2r即v =qaB m11.(1)qB 2L 20 8m -mv 20 2q (2)7mv 218q(3)见解析解析:磁场对运动电荷的作用 (1)根据动能定理得qU 0=12mv 2-12mv 20 ,带电粒子进入磁场,由洛伦兹力提供向心力得qvB =m v 2r,又有r =L 02,联立解得U 0=qB 2L 20 8m -mv 22q.(2)使粒子不能打在挡板OM 上,则加速电压最小时,粒子的运动轨迹恰好与挡板OM 相切,如图甲所示,设此时粒子加速后的速度大小为v 1,在上方磁场中运动的轨迹半径为r 1,在下方磁场中运动的轨迹半径为r 2,由几何关系得 2r 1=r 2+r 2sin 37°, 解得r 1=43r 2,由题意知,粒子在下方磁场中运动的速度为v 0,由洛伦兹力提供向心力得qv 1B =m v 21r 1,qv 0B =mv 20 r 2,由动能定理得 qU min =12mv 21 -12mv 20 ,解得U min =7mv 218q.(3)画出粒子的运动轨迹,由几何关系可知P 点的位置满足k (2r P -2r 2)+2r P =x CP (k =1,2,3…).当k =1时,轨迹如图乙所示;当k =5时,轨迹如图丙所示.由题意可知,每个粒子的整个运动过程中电压恒定,粒子在下面的磁场中运动时,根据洛伦兹力提供向心力,有qv 0B =m v 20 r 2,解得r 2=mv 0qB ,为定值,由第(2)问可知,r P ≥43r 2,所以当k 取1,r P =43r 2时,x CP 取最小值,即CH =x CP min =103·mv 0qB,CS →无穷远.12.(1)2.4 m (2)0.7 m/s ,方向竖直向下 解析:光的反射、折射、全反射(1)由题意可知潜水员头盔上照明灯发出的光线在透光区域边缘恰好发生全反射,则根据几何关系可知sin C =r r 2+h2=1n解得h =2.4 m(2)当透光的圆形水域半径扩大到r ′=6 m 时,设潜水员的深度为h ′,由于全反射临界角不变,则根据几何关系可得r h =r ′h ′解得h ′=8 m潜水员在水下竖直方向匀速运动的速度为v y =h ′-ht=0.7 m/s ,方向竖直向下.13.(1)22 cm 3(2)吸热 2.0 J 解析:热力学定律(1)设容器的容积为V ,封闭气体等压膨胀T 1=300 K ,T 2=373 K由盖—吕萨克定律V +l 1S T 1=V +l 2ST 2l 2=l 1+29.2 cm =39.2 cm得V =(T 1l 2-T 2l 1)S T 2-T 1=22 cm 3(2)气体压强为p =1.2×105Pa因为气体膨胀,对外做功W =-p (l 2-l 1)S 得W =-0.70 J根据热力学第一定律ΔU =W +Q 可得Q =2.0 J ,气体从外界吸收热量14.(1)2L (2)45° (3)(4+22)mg 解析:圆周运动(1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得x =v 0t L =12gt 2联立解得x =2L(2)小球到达B 点时竖直分速度为v y ,由运动学规律得v 2y =2gL 由运动分解得tan θ=v y v 0解得θ=45°(3)设小球到B 点时速度大小为v B ,则有v B =2v 0由牛顿第二定律得F -mg cos θ=mv 2BL解得F =(4+22)mg 根据牛顿第三定律小球对圆轨道的压力大小为F ′=F =(4+22)mg15.(1)2mgR sin θB 2L 2 (2)6m 2gR 2sin θB 4L 4 (3)8m 3g 2R 2sin 2θ9B 4L 4解析:电磁感应中能量和动量问题(1)由题意可知导体棒M 到达b 、e 前已做匀速直线运动,由法拉第电磁感应定律得E =BLv由闭合电路欧姆定律得I =E2R由平衡条件得mg sin θ=BIL 解得:v =2mgR sin θB 2L2(2)若固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 构成回路,最终导体棒M 静止,由法拉第电磁感应定律得E -=BL Δx Δt由闭合电路欧姆定律得I -=E -3R对导体棒M ,由动量定理得-B I -L Δt =0-mv解得:Δx =6m 2gR 2sin θB 4L 4 (3)若不固定导体棒N ,导体棒M 通过感应开关后瞬间闭合开关S ,导体棒M 、N 组成的系统动量守恒,最终它们共速,则mv =3mv 共由能量守恒定律得12mv 2=12×3mv 2共 +Q 导体棒N 上产生的焦耳热为Q N =2R R +2RQ 解得:Q N =8m 3g 2R 2sin 2θ9B 4L 4.16.(1)1 T (2)2 N 解析:电磁感应中的动力学问题 设摩擦力为F f ,平衡时有F =F f +F 安=F f +B 2L 2v R由图像可知,如当F =4 N 时v =4 m/s当F =10 N 时v =16 m/s代入F =F f +B 2L 2v R,解得B =1 T ,F f =2 N .17.(1)1∶1∶ 2 (2)0.828 s解析:带电粒子在叠加场中的运动(1)恰好能沿PO 做匀速直线运动,受力分析如图所示则qvB cos 45°=Eq ,qvB sin 45°=mg因此mg ∶qE ∶qvB =1∶1∶ 2(2)因为qvB =2Eq可知,粒子速度v =4 2 m/s粒子从O 到A ,受重力和电场力,二力合力为0,因此粒子匀速直线运动,运动时间t 1=x 1v =hsin 45°v=0.1 s 粒子在磁场部分做匀速圆周运动qvB =m v 2r周期T =2πr v =2πm Bq磁场中运动时间t 2=α2πT =14T =0.628 s 由对称性可知,粒子从C 到N 与O 到A 时间相同,因此运动总时间t =2t 1+t 2=0.828 s .18.(1)qB 2L 22mE (2)BL E +m (π+2)2qB (3)π-24L 2 解析:带电粒子在组合场中的运动(1)如图所示,由几何关系得垂直于屏打在C 点的粒子在磁场中的运动半径为L ,根据带电粒子在磁场中的运动规律qBv =mv 2r 得R =mv qB=L 由P 到O 运用动能定理得 qEx =12mv 2得x =qB 2L 22mE (2)第一阶段由P 到O 粒子做匀加速直线运动由x =v 2t 1 解得t 1=BL E第二阶段在磁场中粒子经历1/4圆周,故 t 2=14·2πm qB =πm 2qB第三阶段粒子做匀速直线运动x =2L -R v =m qB故总时间t =t 1+t 2+t 3=BL E +m (π+2)2qB (3)磁场下边界为半径为L 的1/4圆弧,磁场的上边界上任意一点坐标x 、y 始终满足y =x ,故磁场的上边界是一条y =x 的直线,如(1)中图所示,月牙部分即为磁场区域面积,故S =14πR 2-12L 2=π-24L 2.19.(1)43T 0 (2)94p 0 解析:热学(1) 选第Ⅳ部分气体为研究对象,在B 汽缸中的活塞到达汽缸底部的过程中发生等压变化:V 0-14V 0T 0=V 0T 1,解得T 1=43T 0. (2) (2)以第Ⅱ、Ⅲ部分气体整体为研究对象,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫18V 0+14V 0T 0=p 1V 12T 0.对第Ⅳ部分气体,温度由T 0升至2T 0过程,由理想气体状态方程:p 0⎝⎛⎭⎪⎫V 0-14V 0T 0=p 1(V 0-V 1)2T 0,解得p 1=94p 0.20.sin αsin β 解析:光学根据光的折射定律有n =sin βsin α. 根据光的全反射可得sin θ=1n. 联立解得sin θ=sin αsin β.。

2021高中物理二轮复习计算题标准练四含解析

2021高中物理二轮复习计算题标准练四含解析

高中物理二轮复习:计算题标准练(四)满分32分,实战模拟,20分钟拿下高考计算题高分!1.(14分)磁悬浮列车的运行原理可简化为如图所示的模型,在水平面上,两根平行直导轨间有竖直方向且等距离分布的匀强磁场B1和B2,导轨上有金属框abcd,金属框宽度ab与磁场B1、B2宽度相同。

当匀强磁场B1和B2同时以速度v0沿直导轨向右做匀速运动时,金属框也会沿直导轨运动,设直导轨间距为L,B1=B2=B,金属框的电阻为R,金属框运动时受到的阻力恒为F,则(1)金属框受到磁场的总安培力多大?(2)金属框运动的最大速度为多少?(3)金属框内的焦耳热功率多大?磁场提供能量的功率多大?【解析】(1)金属框匀速运动处于平衡状态,由平衡条件得:F安培=F。

(2)当磁场B1、B2同时以速度v0向右匀速运动时,线框必然同时有两条边切割磁感线而产生感应电动势。

线框以最大速度运动时切割磁感线的速度为v=v0-v m,当线框以最大速度v m匀速行驶时,线框产生的感应电动势为:E=2BLv,线框中产生的感应电流为I=,线框所受的安培力为:F安=2BIL,线框匀速运动时,由平衡条件得:F安=F,解得:v m=v0-。

(3)克服安培力做功转化为焦耳热,焦耳热的功率:P Q=F安(v0-v m)=,金属框匀速运动,金属框的动能不变,磁场提供能量的功率:P=Fv0+P Q=Fv0+。

答案:(1)F(2)v0-(3)Fv0+2.(18分)如图所示,长直水平轨道PC与光滑圆弧轨道CDE平滑连接。

轻质弹簧一端系于固定立柱上,另一端系住物块B,与圆弧末端E相距R处的一挡板N平行于OE放置。

开始时,向右压B使弹簧缩短x0后锁定,光滑弹性小球A紧贴B静置。

现解除锁定,A、B一起运动至位置Q分离,然后小球A继续沿轨道运动并恰能通过最高点D。

已知:小球A、物块B均视为质点,质量均为m,圆弧半径为R,弹簧劲度系数为k,物块与水平轨道的动摩擦因数为μ,OE 连线与竖直方向的夹角为θ=60°。

2021新高考物理二轮总复习高考题型打包9份(计算题+实验题+选择题,付,86)

2021新高考物理二轮总复习高考题型打包9份(计算题+实验题+选择题,付,86)
电流表a读数变小二多选题2020浙江高三模拟固定的半圆形玻璃砖的横截面如图o点为圆心oo?为直径mn的垂线足够大的光屏pq在mn正下方平行于mn放置由ab两种单色光组成的一束光沿半径方向射向o点入射光线与oo?夹角较小时光屏pq区域出现两个光斑逐渐增大角光屏pq区域a光的光斑先消失继续增大aa光在玻璃砖内的传播速度比b光能让锌板发生光电效应则b光一定也能c
A.t=t0 时刻,金属杆 ab 的速度大小为 -v B.从 t=0 到 t=t0 时间内,流过金属杆 ab 的电荷量为 C.最终两金属杆的间距为 s0+
Earlybird
晨鸟教育
D.最终两金属杆的间距为 s0+
参考答案
专项练 1
1.B 解析气体体积减为原来的一半,外界对气体做正功,故 A 错误;根据 =C 可知,气体体 积减小到原来的一半,但是根据实际情况,气体的温度不可能减小到原来的一半,故气体的 压强一定增加,选项 B 正确;温度降低,所以气体的气体分子的平均动能减小,故 C 错误;温 度降低,内能减小,外界对气体做正功,根据热力学第一定律 Δ U=W+Q,封闭气体向外界传 递热量,故 D 错误。 2.A 解析由图可知,从 n=4 能级跃迁到 n=3 能级比从 n=3 能级跃迁到 n=2 能级辐射出 的光子的能量小,则辐射的光子的频率小,所以辐射的电磁波的波长长,故 A 正确;大量处 于 n=4 能级的电子向低能级跃迁时可放出 6 种频率的光子,故 B 错误;从 n=4 能级跃迁到 n=3 能级,氢原子向外发射光子,总能量减小,电子的运动半径减小,则电子的电势能减小, 故 C 错误;从 n=3 能级跃迁到 n=2 能级时辐射的光子的能量 E32=E3-E2=1.89eV<2.5eV 可, 知不能使逸出功为 2.5eV 的金属发生光电效应,故 D 错误。

二轮复习高中物理计算题专题复习(含答案)

二轮复习高中物理计算题专题复习(含答案)

二轮复习计算题专题训练1、航模兴趣小组设计出一架遥控飞行器,其质量m=1kg,动力系统提供的恒定升力F=14N,试飞时,飞行器从地面由静止开始竖直上升,设飞行器飞行时所受的阻力大小不变,g取10m/s2.(1)第一次试飞,飞行器飞行t1=8s时到达高度S m=64m,求飞行器阻力f的大小;(2)第二次试飞,飞行器飞行t2=6s时遥控器出现故障,飞行器立即失去升力,求飞行器能达到的最大高度.2、如图所示,滑块b静止在光滑水平面上,滑块a右端与一轻弹簧相连后以某一速度冲向滑块b,与b碰撞后弹簧不与b相粘连,b在与弹簧分离后,冲上半径为R的竖直光滑固定半圆轨道,且恰好能从轨道顶端水平飞出。

已知a、b两个滑块的质量分别为2m和m,重力加速度为g,求:(滑块a、b可视为质点,弹簧始终处在弹性限度内),求:(1)滑块b与弹簧分离时的速度大小;(2)滑块a碰撞前的速度大小;(3)a、b在碰撞过程中弹簧获得的最大弹性势能。

3、如图所示,半径R=0.4m的光滑圆弧轨道BC固定在竖直平面内,轨道的上端点B和圆心O的连线与水平方向的夹角θ=30°,下端点C为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上。

质量m=0.1kg的小物块(可视为质点)从空中的A点以v0=2m/s的速度被水平拋出,恰好从B点沿轨道切线方向进入轨道,经过C点后沿水平面向右运动至D点时,弹簧被压缩至最短,此时弹簧的弹性势能E pm=0.8J,已知小物块与水平面间的动摩擦因数μ=0.5,g取10m/s2。

求:(1)小物块从A点运动至B点的时间。

(2)小物块经过圆弧轨道上的C点时,对轨道的压力大小。

(3)C、D两点间的水平距离L。

4、如图所示,装置的左边AB部分是长为L1=1m的水平面,一水平放置的轻质弹簧左端固定并处于原长状态。

装置的中间BC部分是长为L2=2m的水平传送带,它与左右两边的台面等高,并能平滑对接,传送带始终以v=2m/s的速度顺时针转动。

2021届新高考物理二轮复习阶段训练(一) 力与运动 含解析

2021届新高考物理二轮复习阶段训练(一) 力与运动 含解析

2.(2019·全国卷Ⅲ)用卡车运输质量为 m 的匀质圆筒状工件,为使工件保持固定,将其 置于两光滑斜面之间,如图所示。两斜面Ⅰ、Ⅱ固定在车上,倾角分别为 30°和 60°。 重力加速度为 g。当卡车沿平直公路匀速行驶时,圆筒对斜面Ⅰ、Ⅱ压力的大小分 别为 F1、F2,则( )
A.F1= 33mg,F2= 23mg
解析:由万有引力提供向心力得,

2
=ma=
2
。由 a=
Ὠ2 可知,a∝ 12,可判断 A 正确,B
错误;由 v= Ὠ可知,半径增加,速度减小,可判断 C、D 错误。
7.三角形传送带以 1 m/s 的速度逆时针匀速转动,两边的传送带长都是 2 m,且与水平 方向的夹角均为 37°。现有两个小物块 A、B 从传送带顶端均以 1 m/s 的初速度沿 传送带下滑,物块与传送带间的动摩擦因数均为 0.5。下列说法正确的是( )
-2-
解析:在 CD 段,整体的加速度 a=(
+
) +
sin
=gsinθ,隔离对 A 分析,有
mAgsinθ+FfA=mAa,解得 FfA=0,可知 A 受重力和支持力两个力作用,故 A 错误。设 DE 段物块与斜面间的动摩擦因数为μ,在 DE 段,整体的加速度
a=(
+
) sin - ( +
+
) sin =gsinθ-μgcosθ,隔离对 A 分析,有 mAgsinθ+FfA=mAa,解得
4.如图所示,固定斜面的 CD 段光滑,DE 段粗糙,A、B 两物体叠放在一起从 C 点由静 止下滑,下滑过程中 A、B 保持相对静止,则( )
A.在 CD 段时,A 受三个力作用 B.在 DE 段时,A 可能受三个力作用 C.在 DE 段时,A 受摩擦力方向一定沿斜面向上 D.整个下滑过程中,A、B 均处于失重状态 答案:C

【高三】2021届高考物理第二轮计算题专项训练(含答案)

【高三】2021届高考物理第二轮计算题专项训练(含答案)

【高三】2021届高考物理第二轮计算题专项训练(含答案)训练(1)1.如图所示,水平输送带的速度为4.0/s,其右端与等高的光滑水平平台接触,工件(可视为颗粒)轻轻松开输送带的左端,工件与输送带之间的动态摩擦系数。

一段时间后,工件滑出光滑的水平平台,刚好落在小车的左端。

已知平台与小车高差h=0.8,小车左端与平台右端水平距离s=1.2,取g=10/S2,计算:(1)工件水平抛出的初速度是多少?(2)传送带的长度L是多少?2、如图所示,质量=6.0kg物块(可视为质点)从斜面上的a点由静止开始下滑,滑到斜面底端b后沿水平桌面再滑行一段距离后从c点飞出,最后落在水平面上的e点。

已知物块与斜面、水平桌面间的动摩擦因数都为μ=0.50,斜坡的倾角θ=37°,cd高h=0.45,bc长l=2.0,de长s=1.2。

假设斜坡与水平桌面间是平滑连接的,整个运动过程中空气阻力忽略不计。

试求:(1)物块经过c点的速度大小;(2)物体在b点的速度大小;(3)物体在斜面上滑行的时间。

3.如图a所示,垂直面上的轨道由粗糙斜面AD和光滑圆形轨道DCE组成。

AD和DCE与点D相切,C是圆形轨迹的最低点。

在距地面h的轨道ADC上放置一个小块,然后静态释放。

当力传感器通过C点时,测量轨道上的压力n,改变H的大小,可以测量n的相应大小,n与H的变化关系如图B中的折线PQI所示(PQ和Qi在q点连接),Qi在点F(0,5.8n)处反向延伸交叉纵轴,重力加速度g取10/S2计算:(1)图线上的pq段是对应物块在哪段轨道上由静止释放(无需说明理由)?并求出小物块的质量;(2)圆轨道半径r和轨道DCθ对应的中心角(3)小物块与斜面ad间的动摩擦因数μ。

4.如图a所示,垂直放置两条足够长度的光滑平行金属导轨,导轨之间的距离为L=1。

在两个导轨的上端有一个间接电阻,电阻值为r=2Ω,虚线OO'下方是垂直于导轨平面的均匀磁场,磁感应强度B=2T。

统考版2021高考物理二轮复习规范练含解析打包12套

统考版2021高考物理二轮复习规范练含解析打包12套

规范练1 8+2实验(时间:30分钟,满分63分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)14.[2020·安徽省宣城市第二次调研]下图中四幅图涉及不同的物理知识,其中说法正确的是( )A.图甲:卢瑟福通过分析α粒子散射实验结果,发现了质子和中子B.图乙:用中子轰击铀核使其发生聚变,链式反应会释放出巨大的核能C.图丙:玻尔理论指出氢原子能级是分立的,所以原子发射光子的频率也是不连续的D.图丁:汤姆孙通过电子的发现揭示了原子核内还有复杂结构15.在平直公路上行驶的a车和b车的位移—时间图象分别为图中的直线A和曲线B.t=3 s 时,直线A和曲线B刚好相切.下列说法正确的是( )A .t =3 s 时,两车具有共同的加速度B .a 车做匀速运动,b 车做加速运动C .在运动过程中,b 车始终没有超过a 车D .在0~3 s 内,a 车的平均速度比b 车的大 16.如图所示,偏转电场的极板水平放置,偏转电场右边的挡板竖直放置,氕、氘、氚三粒子同时从同一位置沿水平方向进入偏转电场,最终均打在右边的竖直挡板上.不计氕、氘、氚的重力,不考虑三者之间的相互影响,下列说法正确的是( )A .若三者进入偏转电场时的初动能相同,则一定到达挡板上同一点B .若三者进入偏转电场时的初动量相同,则到达挡板的时间一定相同C .若三者进入偏转电场时的初速度相同,则一定到达挡板上同一点D .若三者进入偏转电场时的初动能相同,则到达挡板的时间一定相同17.位于贵州的“中国天眼”(FAST)是目前世界上口径最大的单天线射电望远镜,通过FAST 可以测量地球与木星之间的距离.当FAST 接收到来自木星的光线传播方向恰好与地球公转线速度方向相同时,测得地球与木星的距离是地球与太阳距离的k 倍.若地球和木星绕太阳的运动均视为匀速圆周运动且轨道共面,则可知木星的公转周期为( )A .(1+k 2)34年B .(1+k 2)23年C .(1+k )32年D .k 32年 18.如图所示,水平虚线下方存在大小为B 、方向水平向里的匀强磁场.正方形金属线框abcd 边长为L ,质量为m ,电阻为R .将线框在虚线上方一定高度处由静止释放,运动过程中ab 边始终水平,线框始终在竖直面内,所受空气阻力恒为f .线框进入磁场的过程做匀速直线运动.重力加速度为g .则线框释放时ab 边与水平虚线间的高度差为( )A.m mg -f R 2B 2L 4B.m mg -f R 22B 4L4C.m mg -f R 2B 2L 4D.m mg -f R 2B 4L4 19.如图所示,一小物块被夹子夹紧,夹子通过轻绳悬挂在小环上,小环套在水平光滑细杆上.物块质量为M ,到小环的距离为L ,其两侧面与夹子间的最大静摩擦力均为f m .小环和物块以速度v 向右匀速运动,小环碰到杆上的钉子P 后立刻停止,物块向上摆动,整个过程中,物块在夹子中没有滑动.小环和夹子的质量均不计,重力加速度为g .下列说法正确的是( )A .物块向右匀速运动时,绳中的张力等于MgB .小环碰到钉子P 后瞬间,绳中的张力大于2f mC .物块上升的最大高度为v 2gD .速度v 不能超过2f m -Mg L M20.如图所示,边长为L 的正三角形abc 区域内存在垂直于纸面向里的匀强磁场,质量为m 、电荷量均为q 的三个粒子A 、B 、C 以大小不等的速度从a 点沿与ab 边成30°角的方向垂直射入磁场后从ac 边界穿出,穿出ac 边界时与a 点的距离分别为L 3、2L 3、L .不计粒子的重力及粒子间的相互作用,则下列说法正确的是( )A .粒子C 在磁场中做圆周运动的半径为2 LB .A 、B 、C 三个粒子的初速度大小之比为3:2:1C .A 、B 、C 三个粒子从磁场中射出的方向均与ab 边垂直D .仅将磁场的磁感应强度减小13,则粒子B 从c 点射出 21.如图所示,一竖直放置的轻弹簧一端固定于地面,另一端与质量为3 kg的物体B固定在一起,质量为1 kg的物体A放于物体B上.现A和B一起竖直向上运动,当A、B分离后,A上升0.2 m到达最高点,此时B的速度方向向下,弹簧处于原长.从A、B分离起至A到达最高点的这一过程中,下列说法正确的是(g取10 m/s2)( )A.A、B分离时B的加速度为2 gB.弹簧的弹力对B做功为零C.弹簧的弹力对B的冲量大小为6 N·sD.B的动量变化量为零二、非选择题(第22题、23题为必考实验题,考生根据要求作答)22.(5分)某同学在“探究弹力和弹簧伸长的关系”实验中,把弹簧放置在水平桌面上,测出其自然长度,然后竖直悬挂让弹簧自然下垂,如图甲所示,在其下端挂上钩码.(1)实验时逐渐增加弹簧下端钩码个数并记录所挂钩码的重力F与其对应弹簧的形变量x,作出的F­ x图象如图乙所示.图线不过原点的原因是________________________________________________________________________ ________________________________________________________________________.(2)该同学又找来与弹簧性质相同的橡皮筋,橡皮筋在弹性限度内弹力F0与伸长量x0成正比,即F0=kx0,查阅资料后发现式中k值与橡皮筋的原长L0和横截面积S有关.理论与实验都表明k=Y SL0,其中Y是由材料本身决定的常数,在材料力学中称为杨氏模量.①杨氏模量Y的单位是________(填选项前的字母).A.N B.mC.N/m D.N/m2②若该橡皮筋的k值与(1)中弹簧的劲度系数相同,该橡皮筋的原长为10.0 cm,横截面积为1.0 mm2,则可知该橡皮筋的杨氏模量Y的大小为________(结果保留两位有效数字).23.(10分)导体或半导体材料在外力作用下产生机械形变时,其电阻值发生相应变化,这种现象称为应变电阻效应.如图甲所示的用来称重的电子吊秤就是利用了这个应变效应.电子吊秤实现称重的关键元件是拉力传感器.其工作原理是:挂钩上挂上重物,传感器中拉力敏感电阻丝在拉力作用下发生微小形变(宏观上可认为形状不变),拉力敏感电阻丝的电阻也随之发生变化,再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成将所称物体重量变换为电信号.物理小组找到一根拉力敏感电阻丝R L,其阻值随拉力F变化的图象如图乙所示,小组按如图丙所示的电路制作了一个简易“吊秤”.电路中电源电动势E=3 V,内阻r=1 Ω;灵敏毫安表量程为0~10 mA,内阻R g=50 Ω;R1是可变电阻;A、B两接线柱等高且固定.现将这根拉力敏感电阻丝套上轻质光滑绝缘环,将其两端分别接A、B两接线柱固定不动,通过光滑绝缘滑环可将重物吊起,不计敏感电阻丝重力.现完成下列操作步骤:步骤a.滑环下不吊重物时,闭合开关,调节可变电阻R1,使毫安表指针满偏;步骤b.滑环下吊上已知重力的重物,测出电阻丝与竖直方向的夹角为θ;步骤c.保持可变电阻R1接入电路的电阻不变,读出此时毫安表示数I;步骤d.换用已知重力的不同重物挂在滑环上,记录每一个重力值对应的电流值;步骤e.将毫安表刻度盘改装为重力刻度盘.(1)试写出敏感电阻丝上的拉力F与重物重力G的关系式:F=________.(2)设R L­ F图象的斜率为k,试写出毫安表示数I与待测重物重力G的表达式:I=________(用E、r、R1、R g、R0、k、θ表示).(3)若R L­ F图象中R0=100 Ω,k=0.5 Ω/N,测得θ=60°,毫安表指针半偏,则待测重物的重力G=________ N.(4)关于改装后的重力刻度盘,下列说法正确的是________(填选项前的字母).A.重力零刻度线在毫安表满刻度处,刻度线均匀B.重力零刻度线在毫安表零刻度处,刻度线均匀C.重力零刻度线在毫安表满刻度处,刻度线不均匀D.重力零刻度线在毫安表零刻度处,刻度线不均匀(5)若电源电动势不变,内阻变大,其他条件不变,用这台“简易吊秤”称重前,进行了步骤a的操作,则测量结果________(选填“偏大”“偏小”或“不变”).规范练2 8+2实验(时间:30分钟,满分63分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)14.据悉我国第四代反应堆——钍基熔盐堆能源系统(TMSR)研究已获重要突破.该反应堆以钍为核燃料,钍俘获一个中子后经过若干次β衰变转化成铀;铀的一种典型裂变产物是钡和氪,同时释放巨大能量.下列说法正确的是( )A.钍核232 90Th有90个中子,142个质子B.铀核裂变的核反应方程为233 92U+10n→142 56Ba+8936Kr+310nC.放射性元素衰变的快慢与核内部自身因素无关,由原子所处的化学状态和外部条件决定D.重核分裂成中等大小的核,核子的比结合能减小15.如图为跳水运动员从起跳到落水过程的示意图.运动员从最高点到入水前的运动过程记为Ⅰ,运动员入水后到最低点的运动过程记为Ⅱ,忽略空气阻力,则运动员( )A.在过程Ⅰ中的动量改变量等于零B.在过程Ⅱ中的动量改变量等于零C.在过程Ⅰ中的动量改变量等于重力的冲量D.在过程Ⅱ中的动量改变量等于重力的冲量16.流量计示意图如图所示,测量管由绝缘材料制成,其长为L、直径为D,左右两端开口,在前后两个内侧面a、c固定有金属板作为电极,匀强磁场方向竖直向下.污水(含有大量的正负离子)充满管口从左向右流经该测量管时,a 、c 两端的电压为U ,显示仪器显示污水流量为Q (单位时间内排出的污水体积),则( )A .a 侧电势比c 侧电势低B .污水中离子浓度越高,显示仪器的示数越大C .污水流量Q 与U 成正比,与L 、D 无关D .匀强磁场的磁感应强度B =πDU 4Q17.2018年11月20日,国内首颗商业低轨卫星“嘉定一号”在酒泉卫星发射中心成功升空,随后卫星进入预定匀速圆周运动的轨道.它也是中国首个全球低轨通信卫星星座“翔云”的首发星,开启了中国天基物联探测新时代.下列说法正确的是( )A .该卫星的发射速度小于7.9 km/sB .据了解该卫星在距离地面约400 km 的近地轨道运行,则可以估算卫星所受的万有引力C .该卫星在预定轨道上的周期等于同步卫星的周期D .该卫星接到地面指令需要变轨至更高轨道,则卫星应向后喷气加速18.如图所示,一物体以初速度v 0冲上粗糙的固定斜面,经过2t 0时间返回斜面底端,则物体运动的速度v (以初速度方向为正)随时间t 的变化关系可能正确的是图中的( )19.由光滑细管组成的轨道如图所示,其中AB 段和BC 段都是半径为R 的四分之一圆弧,A 、C 处切线均沿水平方向,轨道固定在竖直平面内.一质量为m 的小球从距离水平地面高为H 的管口D 处由静止释放,最后能够从A 端水平抛出落到地面上.下列说法正确的是( )A .小球落到地面时相对于A 点的水平位移为2RH -2R 2B .小球落到地面时相对于A 点的水平位移为22RH -4R 2C .小球能从细管A 端水平抛出的条件是H >2RD .小球能从细管A 端水平抛出的条件是H >52R 20.某空间内有高度为d 、宽度足够大、方向水平向左的匀强电场,当在该空间内建立如图所示的坐标系,从x 轴上的P 点沿y 轴正方向连续射入相同的带电粒子(粒子重力不计),由于粒子的入射速度v 不同,有的粒子将在电场中直接通过y 轴,有的将穿出电场后再通过y 轴.设粒子通过y 轴时,离坐标原点的距离为h ,从P 到y 轴所需的时间为t ,则( )A .由题中条件不能判断出粒子的带电性质B .对于h ≤d 的粒子,h 不同,但时间t 相同C .对于h >d 的粒子,h 不同,在时间t 内,电场力对粒子做的功不相等D .不同h 对应的粒子进入电场时的速度v 可能相同21.如图所示,足够长的U 形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN 与PQ 平行且间距为L ,导轨平面与磁感应强度为B 的匀强磁场垂直,导轨电阻不计.金属棒ab 由静止开始沿导轨下滑,并与两导轨始终保持垂直且接触良好,ab 棒接入电路的电阻为R ,当流过ab 棒某一横截面的电荷量为q 时,ab 棒的速度为v ,则金属棒ab 在这一过程中( )A .运动的平均速度为v 2B .下滑的位移为qR BLC .产生的焦耳热小于qBLvD .受到的最大安培力为B 2L 2v sin θR二、非选择题(第22题、23题为必考实验题,考生根据要求作答)22.(5分)利用如图甲所示的装置探究物体的加速度与所受合外力的关系,小车的质量约为300 g ,另配置质量为20 g 的钩码5个,质量为500 g 的砝码1个.(1)实验中,平衡摩擦力的具体做法是:________(选填“挂上”或“移去”)钩码,长木板右端用垫块抬高,调至适当高度,接通电源,轻推小车,使纸带上打出的点间距相等.(2)实验中通过添加钩码改变小车的受力.关于小车,下列说法中正确的是________(填选项前的字母).A .当钩码质量远小于小车总质量时,可认为小车所受的合外力与钩码重力大小相等B .开始实验时,应将砝码放入小车C .小车内放入砝码后需重新平衡摩擦力D .实验中不需要测出小车的质量(3)实验中打出一条纸带如图乙所示,从某清晰点开始取计数点,分别标为0、1、2、3、4、5、6,测量点0到点3的距离为d 1,点0到点6的距离为d 2,已知相邻计数点间的时间间隔均为T ,则加速度a =________.(4)实验小组由小车受到的拉力F 和对应的加速度a ,作出a ­ F 图线如图丙中实线所示,下列对实验图线偏离直线的原因分析正确的是________(填选项前的字母).A.测量不准确引起的,属于偶然误差B.实验原理方法引起的,属于系统误差C.加速度大,空气阻力作用更加明显D.滑轮与轴间有摩擦23.(10分)某研究性学习小组利用如图甲所示的电路测量某电池的电动势E和内阻r.由于该电池的内阻r较小,因此在电路中接入了一阻值为2.00 Ω的定值电阻R0.闭合开关S,调整电阻箱的阻值R,读出电压表相应的示数U,得到了如下数据(R和U分别表示电阻箱读数和电压表读数):R/Ω40.0020.0012.008.00 6.00 5.00U/V 1.89 1.78 1.66 1.57 1.43 1.35图象的纵坐标表示电压表读数U,则图象的横坐标表示的物理量应该是________________________________________.在图乙中根据给定的坐标点作图,利用作出的图象得到E=________ V,r=________ Ω.电动势的测量值________(选填“大于”“等于”或“小于”)真实值.规范练3 8+2实验(时间:30分钟,满分63分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分) 14.氢原子的能级公式为E n =1n 2E 1(n =1,2,3,…),其中基态能量E 1=-13.6 eV ,能级图如图所示.大量氢原子处于量子数为n 的激发态,这些氢原子可能发出的所有光子中,频率最大的光子能量为-0.96E 1,则n 和可能发出的频率最小的光子能量分别为( )A .n =5,0.54 eVB .n =5,0.31 eVC .n =4,0.85 eVD .n =4,0.66 eV15.一个质点做匀变速直线运动,依次经过a 、b 、c 、d 四点.已知经过ab 、bc 和cd 段的时间分别为t 、2t 、4t ,ac 和bd 段的长度分别为x 1和x 2,则质点运动的加速度为( )A.x 2-x 115t 2 B.x 2-x 142t 2 C.x 2-2x 142t 2 D.x 2-2x 115t2 16.如图所示,一根长为L 的金属细杆通有电流I 时,水平静止在倾角为θ的光滑绝缘固定斜面上,斜面处于方向竖直向上、磁感应强度大小为B 的匀强磁场中.若电流和磁场的方向均不变,电流大小变为12I ,磁感应强度大小变为4B ,重力加速度为g ,则此时金属细杆( )A .中的电流方向垂直于纸面向外B .受到的安培力大小为2BIL sin θC .对斜面的压力大小变为原来的2倍D .将沿斜面加速向上运动,加速度大小为g sin θ17.如图所示,有一个物块恰好能静止在固定的斜面上.若再对物体施加一个力,使物块能沿着斜面下滑,则该力可能是(设最大静摩擦力等于滑动摩擦力)( )A .竖直向下的恒力B .沿斜面向下的恒力C .垂直于斜面向下的恒力D .竖直向上的恒力18.如图所示,宽为L 的两固定光滑金属导轨水平放置,空间存在竖直向上的匀强磁场,磁感应强度大小为B .质量均为m 、电阻值均为r 的两导体棒ab 和cd 静止置于导轨上,其间距也为L ,现给cd 一向右的初速度v 0,对它们之后的运动过程说法不正确的是( )A .ab 的加速度越来越大,cd 的加速度越来越小B .回路产生的焦耳热为14mv 20C .通过ab 的电荷量为mv 02BLD .两导体棒间的距离最终变为L +mv 0r B 2L 219.如图所示,在磁感应强度B = 2 T 的匀强磁场中,矩形线框绕垂直于磁场的轴以恒定角速度ω=10 rad/s 转动,线框电阻不计,匝数为10,面积为0.4 m 2,线框通过滑环与一理想自耦变压器的原线圈相连,副线圈接有一只灯泡L(规格为“4W 100 Ω”)和滑动变阻器,电流表视为理想交流电表.下列说法正确的是( )A .若从图示位置开始计时,则线框中感应电动势的瞬时值表达式为e =402cos 10t (V)B .若灯泡正常发光,则原、副线圈的匝数比为1:2C .若将滑动变阻器滑片向上移动,则电流表示数增大D .若将自耦变压器触头向下滑动,则灯泡会变暗20.如图所示,匀强电场的方向与长方形abcd 所在的平面平行,ab =3ad .电子从a 点运动到b 点的过程中,电场力做的功为4.5 eV ;电子从a 点运动到d 点的过程中,克服电场力做的功为4.5 eV.以a 点的电势为电势零点,下列说法正确的是( )A .b 点的电势为4.5 VB .c 点的电势为332V C .该匀强电场的方向是由b 点指向a 点D .该匀强电场的方向是由b 点垂直指向直线ac21.小球甲从斜面顶端以初速度v 沿水平方向飞出,最终落在该斜面上.已知小球甲在空中运动的时间为t ,落在斜面上时的位移为s ,落在斜面上时的动能为E k ,离斜面最远时的动量为p .现将与小球甲质量相同的小球乙从斜面顶端以初速度v n (n >1)沿水平方向抛出,忽略空气阻力,则下列说法正确的是( )A .小球乙落在斜面上时的位移为s nB .小球乙在空中运动的时间为t nC .小球乙落在斜面上时的动能为E k n 2D .小球乙离斜面最远时的动量为p n2二、非选择题(第22题、23题为必考实验题,考生根据要求作答)22.(5分)某同学利用如图所示的装置验证机械能守恒定律,已知当地重力加速度为g .主要实验步骤如下:①用游标卡尺测量挡光片的宽度d ,用量角器测出气垫导轨的倾角θ;②测量挡光片到光电门的距离x ;③由静止释放滑块,记录数字计时器显示挡光片的挡光时间t ;④改变x ,测出不同x 所对应的挡光时间t .根据上述实验步骤请回答:(1)用游标卡尺测量挡光片的宽度时的结果如图所示,则挡光片的宽度d=________ mm.(2)滑块通过光电门时速度的表达式v=________(用实验中所测物理量符号表示).(3)根据实验测得的多组x、t数据,可绘制x­ 1t2图象,图象的纵坐标为x,横坐标为1t2,如果滑块下滑过程符合机械能守恒定律,则图象应为过原点的一条倾斜直线,其斜率为________(用d、θ、g表示).23.(10分)测量电源的电动势和内阻,提供的器材如下:A.待测电源(电动势约为8 V,内阻约为2 Ω)B.电压表V(0~3 V,内阻约为3 kΩ)C.电流表A(0~1 A)D.电阻箱R(0~99 999.9 Ω)E.滑动变阻器(0~20 Ω)F.滑动变阻器(0~100 Ω)G.开关、导线若干(1)采用图甲所示电路测量电压表的内阻R V.调节电阻箱R,使电压表指针满偏,此时电阻箱示数为R1;再调节电阻箱R,使电压表指针指在满刻度的一半处,此时电阻箱示数为R2.①电压表内阻R V=________.②关于上述实验,下列说法中正确的有________.A.实验中电源可使用待测电源B.闭合开关S前,应将电阻箱阻值调到最小C.调节电压表满偏时,电阻箱的阻值是逐渐增大的D.实验中忽略了电源的内阻,会使测量值偏大(2)若测得电压表内阻R V=3 010 Ω,与之串联R=________ Ω的电阻,将电压表的量程变为9 V.(3)为测量电源的电动势和内阻,请用笔画线代替导线,将图乙电路连接完整.实验中,滑动变阻器应选择________(选填“E”或“F”),并指出产生实验误差的一个原因:________________________________________________________________________ ________________________________________________________________________.规范练4 8+2实验(时间:30分钟,满分63分)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)14.如图所示,滑块放在水平地面上,左边受一个弹簧拉力作用,弹簧原长小于悬挂点的高度,水平向右的拉力F拉动滑块,使滑块向右缓慢移动,并且滑块始终没有离开地面,则在上述过程中,下列说法正确的是( )A.弹簧弹力在竖直方向的分量增大,滑块受到的摩擦力变小B.弹簧弹力在竖直方向的分量增大,滑块受到的摩擦力不变C.弹簧弹力在竖直方向的分量不变,滑块受到的摩擦力不变D.弹簧弹力在竖直方向的分量不变,滑块受到的摩擦力变小15.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一段管道,其中空部分的长、宽、高分别为图中的a、b、c.流量计的两端与输送流体的管道相连接(图中虚线).图中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度为B的匀强磁场,磁场方向垂直于前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一电压表(内阻很大)的两端连接,U表示测得的电压值.则可求得流量为( )A.bUBB.cUBC.c2UbBD.b2UcB16.[2020·福建泉州市第一次质量检查]如图所示,虚线Ⅰ、Ⅱ、Ⅲ分别表示地球卫星的三条轨道,其中轨道Ⅰ为与第一宇宙速度7.9 km/s对应的近地环绕圆轨道,轨道Ⅱ为椭圆轨道,轨道Ⅲ为与第二宇宙速度11.2 km/s对应的脱离轨道,a、b、c三点分别位于三条轨道上,b点为轨道Ⅱ的远地点,b、c点与地心的距离均为轨道Ⅰ半径的2倍,则( ) A.卫星在轨道Ⅱ的运行周期为轨道Ⅰ的2倍B.卫星经过a点的速率为经过b点的2倍C.卫星在a点的加速度大小为在c点的2倍D.质量相同的卫星在b点的机械能小于在c点的机械能17.如图所示,光滑绝缘的水平桌面上有一直角三角形导线框ABC,其中AB=L,BC=2L,两平行虚线间有一垂直于桌面向下的匀强磁场,磁场宽度为L,导线框BC边与虚线边界垂直.现让导线框从图示位置开始沿BC方向匀速穿过磁场区域.设线框中产生顺时针方向的感应电流为正,则在线框穿过磁场的过程中,产生的感应电流与线框运动距离x的函数关系图象正确的是( )18.如图所示,木块静止在光滑水平面上,两颗不同的子弹A、B从木块两侧同时射入木块,最终都停在木块内,这一过程中木块始终保持静止.若子弹A 射入的深度大于子弹B 射入的深度,则( )A .子弹A 的质量一定比子弹B 的质量大B .入射过程中子弹A 受到的阻力比子弹B 受到的阻力大C .子弹A 在木块中运动的时间比子弹B 在木块中运动的时间长D .子弹A 射入木块时的初动能一定比子弹B 射入木块时的初动能大19.如图是通过变压器降压给用户供电的示意图.负载变化时变压器输入电压保持不变.输出电压通过输电线输送给用户,输电线的电阻用R 0表示,开关S 闭合后,相当于接入电路中工作的用电器增加.变压器可视为理想变压器,则开关S 闭合后,以下说法正确的是( )A .变压器的输入功率减小B .电表V 1示数与V 2示数的比值不变C .输电线的电阻R 0消耗的功率增大D .流过电阻R 1的电流增大20.水平面上的三点A 、O 、B 在一条直线上,OB =2OA ,OO ′是竖直的分界线,其左边区域内有水平向右的匀强电场,场强大小为E 1,其右边区域内有水平向左的匀强电场,场强大小为E 2,现将一带电小球从A 点以初速度v 0竖直向上抛出,小球在空中越过分界线后,竖直向下落在B 点,不计阻力,重力加速度大小为g ,则下列说法正确的是( )A .小球落在B 点时的速度大小等于v 0B .左右两区域电场强度大小的比值为E 1E 2=1 2C .小球经过分界线时离水平面的高度为4v 209gD .小球在B 点的电势能大于在A 点的电势能21.如图所示,在水平面上有一传送带以速率v 1沿顺时针方向运动,传送带速度保持不变,传送带左右两端各有一个与传送带等高的光滑水平面和传送带相连(紧靠但不接触),现有一物块在右端水平面上以速度v 2向左运动,物块速度随时间变化的图象可能的是( )。

2021届高考物理二轮复习提优(江苏专用)19_【答案】

2021届高考物理二轮复习提优(江苏专用)19_【答案】

题组一:力学(一)1. C 解析:桩子受到绳子作用力方向竖直向下,绳OC 拉力的水平重量应当与绳CD 拉力相等,因此绳OC 的拉力F OC =0100sin60N= N,F OA =F OC ,所以F OA= N,故C 正确.2. C 解析: 相等时间内重物下落的距离是工件运动距离的2倍,因此,重物的加速度也是工件加速度的2倍,设绳子上的拉力为F,依据牛顿其次定律-mg Fm =2·2F M ,解得F=4Mmg M m +,工件加速度a=2FM =24mg M m +,所以C 正确.3. A 解析:由于万有引力供应向心力,以行星P 为争辩对象有G 2Mm r =m 224πT r,得M=2324πr GT ,选项A正确;依据万有引力供应向心力只能求得中心天体的质量,因此依据题目所给信息不能求出行星P 的质量,选项B 错误;假如放射探测器到达该系外行星,需要克服太阳对探测器的万有引力,脱离太阳系的束缚,所以需要放射速度大于第三宇宙速度,选项C 、D 错误.4. C 解析:A 点的高度为h=12gt 2=12g 20s v ⎛⎫ ⎪⎝⎭=2202gsv ,因AB 是光滑杆,小球由静止开头从轨道A 端滑下到达轨道B 端,机械能守恒mgh=12mv 2,则v=0gs v ,C 正确;由于小球在运动过程中受到了杆的支持力作用,在水平方向上的速度是变化的,所以ABD 是错的.5. D 解析:物体B 以水平速度冲上A 后,由于摩擦力作用,B 减速运动,A 加速运动,依据能量守恒定律,物体B 动能的削减量等于A 增加的动能和系统产生的热量之和,选项A 错误;依据动能定理,物体B 克服摩擦力做的功等于B 损失的动能,选项B 错误;由能量守恒定律可知,物体B 损失的机械能等于木板A 获得的动能与系统损失的机械能之和,选项C 错误; 摩擦力对物体B 做的功等于B 动能的削减,摩擦力对木板A 做的功等于A 动能的增加,由能量守恒定律,物体B 克服摩擦力做的功等于木板A 获得的动能与系统内能的增加量之和,选项D 正确.6. AC 解析:演员在滑杆上静止时,传感器显示的拉力800 N 等于演员重力和滑杆重力之和,故演员的体重为600 N,选项A 正确; 演员在第1 s 内先静止后加速下滑,加速下滑时处于失重状态,选项B 错误; 演员加速下滑时滑杆所受的拉力最小,加速下滑的加速度a 1=3 m/s 2,对演员,由牛顿其次定律,mg-F 1=ma 1,解得F 1=420 N. 对滑杆,由平衡条件,最小拉力F T1=420 N+200 N=620 N,选项C 正确; 减速下滑时滑杆所受的拉力最大.减速下滑的加速度大小a 2=1.5 m/s 2,对演员,由牛顿其次定律,F 2-mg=ma 2,解得F 2=690 N.对滑杆,由平衡条件,最大拉力F T2=690 N+200 N=890 N,选项D 错误.7. CD 解析: 静止时弹簧的压缩量为x 1=1sin m g k θ,当B 刚要离开C 时,弹簧处于伸长状态,x 2=2sin m g k θ,而d=x 1+x 2,故B 错误;由F-m 1gsin θ-kx 2=m 1a 可得a=1-F kd m ,C 正确;拉力做功的功率P=Fv,A 错误;由能量守恒可得,弹簧弹性势能的增加量ΔE p =Fd-m 1gdsin θ-12m 1v 2,D 正确. 8. AD 解析:两球恰在斜面中点P 相遇,则在水平方向上它们的位移相同,即v 2t=v 1cos 60°t,得v 1∶v 2=2∶1,A 正确,B 错误;若小球b 以2v 2水平抛出,竖直方向上a 球的分速度不变,b 球做自由落体运动不变,若还能相遇,则照旧在P 点相遇,但b 的水平初速度变为2v 2,水平方向相遇点会向左移动,所以两小球不能再相遇,C 错误;小球a 、b 原来在P 点相遇,b 球竖直方向的平均速度等于a 球竖直方向的速度,为v 1sin θ,b 球的水平速度变为2v 2,小球b 会落在P 点上方,在这段时间里,a 球在竖直方向的速度会大于b 球在竖直方向做自由落体运动的平均速度,则b 球落在斜面上时,a 球在b 球的下方,D 正确.9. CD 解析:铝球下沉的速度先增大后不变,选项A 错误;开头释放时,铝球除受重力外,还受到竖直向上的浮力作用,其加速度a 0小于g,选项B 错误;依据通过传感器得到铝球的加速度随下沉速度变化的图象可知,a=a 0-00a vv .设液体浮力为F,刚剪断细线时,v=0,油的阻力f=0,由牛顿其次定律,mg-F=ma 0;铝球下沉过程中,由牛顿其次定律,mg-F-f=ma; 联立解得铝球下沉过程中所受到油的阻力f=00ma vv ,选项C 正确;铝球下沉过程中机械能的削减量等于克服油阻力和浮力所做的功,选项D 正确.题组二:力学(二)1. C 解析:隔离中间层左侧的人受力分析,受到上面人的压力2G,由平衡条件可得他每只脚所受支持力均为34G ;由对称性可知,最底层正中间的人受到中间层两个人的压力为2×34G =32G;由平衡条件可得最底层正中间的人每一只脚受到的地面支持力为54G,由牛顿第三定律可得最底层正中间的人每一只脚对水平地面的压力约为54G,选项C 正确.2. B 解析:由F=μmgcos θ+mgsin θ可解得μ=5,C 错误;撤去F 瞬间,物体仍向上运动,摩擦力的方向不变,此时F 合=F=ma,a=8 m/s 2,B 正确,A 错误;因mgsin θ>μmgcos θ,故撤去F 后,物体上滑到速度为零后,再向下加速下滑,D 错误.3. C 解析:依据题述,乙船恰好能直达正对岸的A 点,则河水流速u=vcos 60°=2v. 甲船渡河时垂直河岸的分速度为v 1=vsin 60°=2,时间t=1L v. 甲船沿水流方向的速度v 2=vcos 60°+u=v,沿水流方向的位移为x=v 2,甲船在A 点上游靠岸,选项A 、B 错误; 由于两船垂直河岸的分速度相等,所以甲、乙两船到达对岸的时间相等,选项C 正确;甲、乙两船不行能在未到达对岸前相遇,选项D 错误.4. C 解析:汽车达到最大速度时,加速度为0,牵引力等于阻力,汽车功率P=Fv=F f v,所以最大速度v=mf P F =20 m/s,对应的动能为4×105 J,A 项正确;汽车以加速度2 m/s 2匀加速启动,牵引力F=F f +ma=8×103 N,所以2 s 末对应的实际功率为P=Fat=32 kW,能够维持匀加速运动的最长时间为t=m P Fa =5 s,对应的摩擦力做功为W f =F f x=F f ·12at 2=105 J,B 项正确,C 项错误;当汽车保持额定功率启动时,有Pv -F f =ma,解得其加速度为a=6 m/s 2,D 项正确.5. D 解析:由静止释放B 后,已知当细绳与竖直方向的夹角为60°时,滑块B 沿细绳方向的分速度为vcos 60°=2v . 此时A 的速度为02cos30v=. B 下滑的高度h=Lcos 60°=2L ,由机械能守恒定律,mgh=12mv 2+12m 2⎝⎭,联立解得L=243v g ,选项D 正确. 6. AD 解析:由于万有引力常量渐渐减小,太阳不断释放能量,太阳质量渐渐减小,由万有引力定律可知,太阳对地球的引力在缓慢减小,A 正确;火星的轨道半径比地球轨道半径大,由天体运行规律可知,火星的线速度比地球的线速度小,B 错误;金星的轨道半径比地球的轨道半径小,由天体运行规律可知,金星的公转周期比地球小,C 错误;由于火星的公转周期比地球的公转周期大,因此每个季节的持续时间要大于地球上每个季节的时间,即大于3个月,D 正确.7. ABD 解析:依据功能关系,阻力对运动员做的功等于运动员机械能的削减量,则有E=E 0-F f x.图线为曲线时阻力是变力,图线为直线时阻力是恒力,可见0~x 1过程中运动员加速下降,阻力不断增大,选项A 、D 正确;x 1~x 2过程中运动员匀速下降,选项B 正确,C 错误.8. CD 解析:竖直上抛时小球恰好击中触发器,则说明小球到达触发器处速度刚好为零.沿图A 中轨道以速率v 抛出小球,小球沿光滑圆弧内表面做圆周运动,到达最高点的速率应大于或等于所以小球不能到达圆弧最高点,即不能击中触发器.沿图B 中轨道以速率v 抛出小球,小球沿光滑斜面上滑后做斜抛运动,最高点具有水平方向的速度,所以也不能击中触发器.图C 及图D 中由机械能守恒定律可知小球在轨道最高点速度均可以为零,小球能够击中触发器. 9. BD 解析:绳断前,a 、b 整体做匀速运动,拉力F 等于整体重力沿斜面对下的分力和滑动摩擦力之和,即F=6mgsin 30°+6μmgcos 30°=152mg,绳断裂时,绳上的拉力瞬间为0,故a 的加速度为gsin 30°+μgcos 30°=54g,方向沿斜面对下;同理可知b 的加速度为14g,方向沿斜面对上,选项A 错误,B 正确.由于μ=>00sin30cos30=,故a 、b 最终都将静止在斜面上,故当a 、b 都静止时,两者间距最大. 绳断开后,a 做匀减速运动,直至静止,b 先做匀加速运动,后做匀减速运动,最终静止,设绳刚断开时,整体的速度为v,则由动能定理可得, 对a,-54mgs a =0-12mv 2;对b,-54·5mgs b =0-211·5542mgx mv ⎛⎫+⎪⎝⎭,联立以上两式可得a 与b 间的最大距离Δs=s b +x-s a =65x,选项C 错误,D 正确.题组三:电磁学(一)1. C 解析:由于正电荷Q 均匀分布在半径为r 的金属球面上,则金属球处于静电平衡状态,金属球内部的电场处处为0,即O 至r 对应的电场强度为0,选项A 、B 错误;又由于处于静电平衡状态的。

统考版2021高考物理二轮复习专练含解析打包5套

统考版2021高考物理二轮复习专练含解析打包5套

特色专练一特色专项练专练1 物理学史与研究方法(时间:15分钟)1.在人类对物体运动规律的认识过程中,许多物理学家大胆猜想、勇于质疑,取得了辉煌的成就,下列有关科学家及他们的贡献描述中正确的是( )A.伽利略探究物体下落规律的过程使用的科学方法是:问题→猜想→数学推理→实验验证→合理外推→得出结论B.卡文迪许在牛顿发现万有引力定律后,进行了“月—地检验”,将天体间的力和地球上物体的重力统一起来C.开普勒潜心研究第谷的天文观测数据,提出行星绕太阳做匀速圆周运动D.奥斯特由环形电流和条形磁铁磁场的相似性,提出分子电流假说,解释了磁现象电本质2.关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律3.2018年中国散裂中子源(CSNS)迎来验收,目前已建设的3台质谱仪也将启动首批实验.有关中子的研究,下列说法正确的是( )A.234 90Th核发生一次α衰变,新核与原来的原子核相比,中子数减少4B.一个氘核和一个氚核经过核反应后生成氦核和中子是原子核衰变反应C.卢瑟福通过分析α粒子散射实验结果,发现了质子和中子D.中子和其他微观粒子一样,都具有波粒二象性4.许多科学家在物理学发展过程中做出了重要贡献,下列表述正确的是( )A.牛顿第一定律是通过多次实验总结出来的一条实验定律B.库仑通过著名的扭秤实验测出了引力常量的数值C.亚里士多德发现了力是改变物体运动状态的原因,而不是维持物体运动的原因D.开普勒三大定律揭示了行星的运动规律,为万有引力定律的发现奠定了基础5.在物理学发展的过程中,科学家总结了许多重要的物理学思想与方法.下列有关物理学思想与方法的描述中正确的是( )A.在验证力的合成法则的实验中利用了控制变量法的思想B.库仑在研究电荷间的相互作用时,利用了微小量放大法的思想C.在研究加速度与合外力、质量的关系的实验中,利用了等效替代的思想D.在研究物体的运动时,把物体视为一个有质量的“点”,即质点,利用了假设法的思想6.下列的说法中正确的是( )A.奥斯特最早发现了电流的磁效应现象,并由此而引入了“场”的概念B.伽利略在推导匀变速直线运动位移公式时,应用了“微元法”也就是微积分的基本原理,把整个运动过程划分成了很多的小段,每一小段近似地看作匀速直线运动,然后把各小段的位移相加的方法C.法拉第首先发现了电磁感应现象,变压器就是以这一现象作为其工作原理的D.库仑在发现了库仑定律之后,进一步得出了电场强度E =F q 以及磁感应强度B =F IL定义式,从而总结出了利用比值来定义物理量的方法7.(多选)在物理学的发展进程中,科学的物理思想与方法对物理学的发展起到了重要的作用,下列关于物理思想和方法的说法中正确的是( )A.在推导匀变速直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,再把各小段位移相加,这里运用了理想模型法B.质点和点电荷采用的是同一种思想方法C.合力和分力体现了等效替换的思想D.加速度、电场强度、电势都是采取比值法定义的物理量8.(多选)在物理学发展过程中,观测、实验、假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是( )A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流D.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化9.(多选)如图所示,开口向上的半球壳上均匀分布有正电荷,A 、B 为球壳对称轴上的两点,且这两点还关于开口处直径对称,已知均匀带电球壳内部电场强度处处为零,则关于A 、B 两点场强和电势,下列说法正确的是( )A.A 点场强大于B 点场强B.A点场强和B点场强相同C.A点电势高于B点电势D.A点电势和B点电势相等专练1 物理学史与研究方法1.解析:伽利略探究物体下落规律的过程使用的科学方法是:问题→猜想→数学推理→实验验证→合理外推→得出结论,故A正确.牛顿发现万有引力定律后,进行了“月—地检验”,将天体间的力和地球上物体的重力统一起来,故B错误.开普勒潜心研究第谷的天文观测数据,提出行星绕太阳做椭圆运动,故C错误.安培由环形电流和条形磁铁磁场的相似性,提出分子电流假说,解释了磁现象的电本质,故D错误.答案:A2.解析:开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B正确.答案:B3.解析:α衰变的本质是发生衰变的核中2个质子和2个中子形成氦核并释放出去,所以发生一次α衰变,新核与原来的核相比,中子数减少2,选项A错误;裂变是较重的原子核分裂成较轻的原子核的反应,而氘核和氚核生成氦核和中子的反应是较轻的原子核的聚变反应,选项B错误;卢瑟福通过分析α粒子散射实验结果,提出了原子的核式结构模型,查德威克通过α粒子轰击铍核获得碳核的实验发现了中子,选项C错误;所有粒子都具有波粒二象性,选项D正确.答案:D4.解析:牛顿第一定律是牛顿在伽利略、笛卡儿等人研究的基础上总结出来的,不和下半球壳中电荷在A点的场强等大反向,B点也是如此.根据对称性可知,两个半球壳在B点的分场强大小与A点的相等,去掉上半球壳后,A、B点场强均向上且相等,故A错误,B正确;沿着电场强度的方向电势逐渐降低,因此A点电势比B点电势高,故C正确,D错误.答案:BC专练2 物理学中的STSE问题——联系实际(时间:40分钟)考生在学习高中物理时要注重理论联系实际,注意物理与生产、生活及科技发展的联系,关注物理学的技术在社会中的应用,培养社会参与意识和社会责任感,完成从“解题”向“解决问题”思路的转变.1.蓝牙是一种无线技术标准,可实现各种设备之间的短距离数据交换.某同学用安装有蓝牙设备的玩具车A、B进行实验,如图所示,在距离为d=6 m的两条平直轨道上,O1O2的连线与轨道垂直,A车自O1点从静止开始以加速度a=2 m/s2向右做匀加速直线运动,B车自O2点前方s=3 m处的O3点以速度v0=6 m/s向右做匀速直线运动.已知当两车间的距离超过10 m时,两车无法实现通信,忽略信号传递的时间.若两车同时出发,则两车能通信的时间为( )A.1 s B.5 sC.(25+3) s D.(25-1) s2.来自太阳的带电粒子会在地球的两极引起极光.带电粒子与地球大气层中的原子相遇,原子吸收带电粒子的一部分能量后,立即将能量释放出来就会产生奇异的光芒,形成极光.极光的光谱线波长范围约为310 nm~670 nm.据此推断以下说法错误的是( )A.极光光谱线频率的数量级约为1014 HzB.极光出现在极地附近与带电粒子受到洛伦兹力有关C.原子从高能级向低能级跃迁时会产生极光D.对极光进行光谱分析可以鉴别太阳的组成成分3.(多选)2020年5月5日18时,为我国载人空间站工程研制的长征五号B运载火箭在海南文昌首飞成功,长征五号B以长征五号运载火箭为基础改进研制而成,主要承担着我国空间站舱段等重大航天发射任务,是目前我国近地轨道运载能力最大的火箭.以下判断中正确的是( )A.长征五号B运载火箭选在纬度较低的海南文昌发射场发射,是为了充分利用地球自转的线速度B.长征五号B运载火箭在加速升空时推力大于重力,返回舱减速返回地面时推力将小于重力C.近地卫星运行的加速度小于地球赤道上物体的加速度D.利用长征五号B运载火箭发射载人飞船试验船时,发射速度应大于或等于7.9 km/s,小于11.2 km/s4.2019年5月17日23点48分,长征三号丙运载火箭在西昌卫星发射中心成功发射我国北斗卫星导航系统第45颗卫星(北斗二号GEO­8卫星).该卫星是我国北斗区域导航卫星系统的第4颗备份卫星,属于地球静止同步轨道卫星.至此,北斗二号卫星导航系统圆满收官.则北斗二号GEO­8卫星在轨道运行时,其( )A.线速度大于第一宇宙速度B.角速度大于月球绕地球运行的角速度C.向心加速度大于地面的重力加速度D.每隔24 h都会有两次经过赤道上空5.(多选)如图甲为新能源电动汽车的无线充电原理图,M为匝数n=50匝、电阻r=1.0 Ω的受电线圈,N为送电线圈.当送电线圈N接交变电流后,在受电线圈内产生了与线圈平面垂直的磁场,其磁通量Φ随时间t变化的规律如图乙.下列说法正确的是( )A.受电线圈产生的电动势的有效值为10 2 VB.在t1时刻,受电线圈产生的电动势为20 VC.在t1~t2内,通过受电线圈的电荷量为4×10-2 CD.在t1~t2内,通过受电线圈的电荷量为2×10-2 C6.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d的水流以速度v垂直射到要切割的钢板上,碰到钢板后水的速度可视为零,已知水的密度为ρ,则钢板受到水的冲力大小为( )A.πρd2v B.πρd2v2C.14πρd2v D.14πρd2v27.如图所示是网球发球机,某次室内训练时将发球机放置于某一竖直墙面前,然后向墙面发射网球.假定网球水平射出,某两次射出的网球a、b运动轨迹如图虚线所示,碰到墙面时与水平方向夹角分别为30°和60°、若不考虑网球在空中受到的阻力,则a、b两球( ) A.a球初速度较大B.a球在空中飞行的时间较长C.a球碰到墙面时速度较大D.a球速度变化量较大8.2020年6月25日端午节当天受对流天气的影响,河北省许多地区都遭遇了第二场冰雹,巨大冰雹向河北大地袭击而来,十分急促.出行的人有的被冰雹砸伤.冰雹一般自4 000 m~20 000 m的高空下落,是阵发性的灾害性天气,超过5 cm的冰雹不间断打击头部,就会导致昏迷.若冰雹竖直下落过程中受到的空气作用力与速度平方成正比,比例系数k=0.000 4 kg/m,一块质量m=36 g的冰雹(可认为过程中质量始终保持不变)自4 000 m高空下落,落地前已达到下落的最大速度.求:(1)冰雹下落的最大速率v m;(2)当下落速度v=10 m/s时的加速度a大小;(3)下落过程中克服空气作用力所做的功W f.9.如图所示是某科技小组制作的嫦娥四号模拟装置,用来演示嫦娥四号空中悬停和着陆后的分离过程,它由着陆器和巡视器两部分组成,其中着陆器内部有喷气发动机,底部有喷气孔,在连接巡视器的一侧有弹射器.演示过程:先让发动机竖直向下喷气,使整个装置竖直上升至某个位置处于悬停状态,然后让装置慢慢下落到水平面上,再启动弹射器使着陆器和巡视器瞬间分离,两者向相反方向做减速直线运动.若两者均停止运动时相距为L,着陆器(含弹射器)和巡视器的质量分别为M和m,与水平面间的动摩擦因数均为μ,重力加速度为g,发动机喷气口截面积为S,喷出气体的密度为ρ,不计喷出气体对整体质量的影响.求:(1)装置悬停时喷出气体的速度大小v;(2)弹射器给着陆器和巡视器提供的动能之和.10.如图(a)为一除尘装置在竖直面内的截面示意图,塑料平板M、N的长度及它们间距离均为d.大量均匀分布的带电尘埃以相同的速度v0进入两板间,速度方向与板平行,每颗尘埃的质量均为m,带电荷量均为-q.当两板间同时存在垂直纸面向外的匀强磁场和垂直板向上的匀强电场(图中未画出)时,尘埃恰好匀速穿过两板;若撤去板间电场,并保持板间磁场不变,贴近N板入射的尘埃将打在M板右边缘,尘埃恰好全部被平板吸附,即除尘效率为100%;若撤去两板间电场和磁场,建立如图(b)所示的平面直角坐标系xOy,y轴垂直于板并紧靠板右端,x轴与两板中轴线共线,要把尘埃全部收集到位于P(2.5d,-2d)处的容器中,需在y轴右侧加一垂直于纸面向里的圆形匀强磁场区域.尘埃颗粒重力、颗粒间作用力、尘埃颗粒对板间电场和磁场的影响均不计.(1)求两板间磁场的磁感应强度的大小B1;(2)若撤去板间磁场,保持板间匀强电场不变,求此时除尘效率;(3)求y轴右侧所加圆形匀强磁场区域的磁感应强度大小B2的取值范围.加速度向上,返回舱减速返回地面时加速度向上,推力还是大于重力,B 项错误;卫星运行的角速度ω=GMr3,故近地卫星的角速度大于同步卫星的角速度,地球赤道上物体的角速度与同步卫星的角速度相等,因此近地卫星的角速度大于赤道上物体的角速度,根据a =ω2R 可知,近地卫星运行的加速度大于地球赤道上物体的加速度,C 项错误;利用长征五号B 运载火箭发射载人飞船试验船时,发射速度应大于或等于7.9 km /s ,但小于11.2 km /s ,若超过11.2 km /s ,但小于16.7 km /s ,将会摆脱地球的引力成为环绕太阳运动的“人造行星”,D 项正确.答案:AD解题攻略:天体运动中的STS 类试题通常会结合最新的航天航空技术,以卫星或其他航天器为载体,考查万有引力定律在天体运动中的应用.解答该类试题关键在于剔除干扰因素,正确构建天体运动模型,利用天体运动的基本规律(万有引力定律)进行求解.4.解析:第一宇宙速度是近地飞行的线速度,则可知北斗二号GEO ­8卫星的线速度小于第一宇宙速度,故A 错误;由题意可知北斗二号GEO ­8卫星是地球同步卫星,则其运行周期为24 h ,小于月球绕地球运行的周期,根据ω=2πT 可知其角速度大于月球绕地球运行的角速度,故B 正确,D 错误;在地球表面上的物体重力等于万有引力,即mg =GMmR 2,可得地面的重力加速度为g =GM R 2,对北斗二号GEO ­8卫星有m′a=GMm′R +h 2,得其向心加速度为a =GM R +h2,则可知北斗二号GEO ­8卫星的向心加速度小于地面的重力加速度,故C错误.答案:B5.解析:由图乙可知,T =π×10-3s ,受电线圈的最大磁通量为Φm =2.0×10-4Wb ,所以受电线圈产生的电动势最大值为:E m =nΦm ·2πT =50×2.0×10-4×2ππ×10-3 V =20 V ,所以受电线圈产生的电动势的有效值为E =E m2=10 2 V ,故A 正确;由图乙可知,t 1时刻磁通量变化率为0,由法拉第电磁感应定律可知,此时受电线圈产生的电动势为0 V ,故B 错误;由公式q =n ΔΦr ,代入数据解得:q =n ΔΦr =50×4.0×10-41.0 C =2.0×10-2C ,故C错误,D 正确.答案:AD6.解析:设t 时间内有V 体积的水打在钢板上,则这些水的质量为m =ρV=ρSvt9.解析:(1)悬停时气体对模拟装置的作用力F =(M +m)g取Δt 时间喷出的气体为研究对象,由动量定理得F Δt =ρSv Δt×v 解得v =M +m gρS. (2)弹射过程水平方向动量守恒,则有mv 1=Mv 2 着陆器和巡视器做减速运动的过程中由动能定理得 -μmgL 1=0-12mv 21-μMgL 2=0-12Mv 22又L =L 1+L 2弹射器提供的总动能E k =12mv 21+12Mv 22联立解得E k =μMmgL M +mM 2+m 2.答案:(1)M +m g ρS (2)μMmgL M +mM 2+m2 解题攻略:本题可以构建动量守恒的爆炸模型,即在弹射过程中,系统虽然所受的合外力不为0,但由于此时内力远大于外力,故系统的动量守恒.系统的动能由弹射器提供,再利用能量守恒定律求解.10.解析:(1)贴近N 板入射的尘埃打在M 板右边缘的运动轨迹如图甲所示 由几何如识可知尘埃在磁场中的运动轨迹半径R 1=d 尘埃在磁场中做匀速圆周运动,由洛伦兹力提供向心力得 qv 0B 1=mv 2R 1解得B 1=mv 0qd.(2)电场、磁场同时存在时,尘埃做匀速直线运动,由平衡条件得 qE =qv 0B 1撤去磁场以后,尘埃颗粒在电场力的作用下做类平抛运动,当尘埃颗粒恰好离开电场时,在水平方向有d =v 0t在竖直方向有y =12at 2加速度a =qEm解得y =0.5d所以除尘效率η=yd×100%=50%.(3)设圆形磁场区域的半径为R 0,尘埃颗粒在圆形磁场中做圆周运动的半径为R 2,要把尘埃全部收集到位于P 处的容器中,就必须满足R 2=R 0另有qv 0B 2=m v 2R 2如图乙,当圆形磁场区域过P 点且与M 板的延长线相切时圆形磁场区域的半径R 0最小,磁感应强度B 2最大,则有R 0最小=1.25d解得B 2最大=4mv 05qd如图丙,当圆形磁场区域过P 点且与y 轴在M 板的右端相切时圆形磁场区域的半径R 0最大,磁感应强度B 2最小,则有R 0最大=2.5d解得B 2最小=2mv 05qd所以圆形磁场区域磁感应强度的大小B 2的取值范围为2mv 05qd ≤B 2≤4mv 05qd. 答案:(1)mv 0qd (2)50% (3)2mv 05qd ≤B 2≤4mv 05qd解题攻略:本题是电磁场中带电粒子的运动在科学技术中的应用,解答这类问题的突破口在于构建带电粒子在电场中和磁场中运动时的两种主要偏转模型,而带电粒子与磁场边界相切往往对应着其最值状态.专练3 物理学图象问题(时间:25分钟)1.[2020·湖北鄂南高中、华师一附中等八校第一次联考]A、B两质点在同一平面内同时向同一方向做直线运动,它们的位移—时间图象如图所示,其中甲是顶点过原点的抛物线的一部分,乙是过点(0,3)的一条直线,两图象相交于坐标为(3,9)的P点,则下列说法正确的是( )A.质点A做初速度为零、加速度为3 m/s2的匀加速直线运动B.质点B以4 m/s的速度做匀速直线运动C.在前3 s内,质点A比B向前多前进了9 mD.在3 s前某时刻质点A、B速度相等2.[2020·吉林省名校第一次联合模拟](多选)某做直线运动的质点的位移—时间图象(抛物线)如图所示,P(2,12)为图线上的一点.PQ为过P点的切线,与x轴交于点Q(0,4).已知t=0时质点的速度大小为8 m/s,则下列说法正确的是( )A.质点做匀减速直线运动B.2 s时,质点的速度大小为6 m/sC.质点的加速度大小为2 m/s2D.0~1 s内,质点的位移大小为4 m3.(多选)如图所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上.一质量为m的小球,从距离弹簧上端高h处由静止自由下落,接触弹簧后继续向下运动.小球从开始下落到小球第一次运动到最低点的过程中,下列关于小球的速度v、加速度a随时间t变化的图象中符合实际情况的是( )4.A、B两个物体在水平面上沿同一直线运动,它们的v­ t图象如图所示.在t=0时刻,B在A的前面,两物体相距7 m,B物体做匀减速运动的加速度大小为2 m/s2.则A物体追上B物体所用时间是( )A.5 s B.6.25 sC.7 s D.8 s5.如图所示,一足够长的水平传送带以恒定的速度顺时针转动.将一物体轻轻放在传送带左端,则物体速度大小v、加速度大小a、所受摩擦力的大小F f以及位移大小x随时间t的变化关系正确的是( )6.[2020·陕西榆林市第二次模拟]如图所示,单匝线圈abcd固定于分布均匀的磁场中,磁场方向垂直线圈平面.当磁场的磁感应强度B随时间t变化时,ab边受到的安培力恒定不变,则下列磁感应强度B随时间t变化的图象中可能正确的是( )7.如图甲为倾角θ=30°的足够长的固定光滑斜面,用平行于斜面的轻弹簧拉着质量m=1 kg的物体沿斜面向上运动.已知物体在t=1 s到t=3 s这段时间的v­ t图象如图乙所示,弹簧的劲度系数k=200 N/m,重力加速度g取10 m/s2.则在该段时间内( )A.物体的加速度大小为2 m/s2B.弹簧的伸长量为3 cmC.弹簧的弹力做功为30 JD.物体的重力势能增加36 J8.某正弦交流发电机产生的电动势波形如图所示,已知该发电机线圈匝数n=100匝,线圈面积为S=0.1 m2,线圈内阻为r=1 Ω,用一理想交流电压表接在发电机的两个输出端.由此可知( )A.线圈在匀强磁场中转动的角速度为50π rad/sB.线圈所在处的磁感应强度是B=1 TC.交流电压表的读数为220 VD.T4时间内交变电动势的平均值为E=200 V9.[2020·湖北恩施州教学质量检测](多选)如图所示为某静电场中x轴上各点电势分布图,一个带电粒子在坐标原点O由静止释放,仅在电场力作用下沿x轴正向运动,则下列说法正确的是( )A.粒子一定带正电B.粒子运动到坐标轴上x2处速度最大C.粒子从坐标轴上x1处运动到x3处,电场力的冲量为零D.粒子从坐标轴上x1处运动到x2处,加速度先增大后减小10.[2020·广东深圳市第二次调研]真空中,在x轴上x=0和x=8 m处分别固定两个电性相同的点电荷Q1和Q2.电荷间连线上的电场强度E随x变化的图象如图所示(x轴正方向为场强正方向),其中x=6 m处E=0.将一个正试探电荷在x=2 m处由静止释放(重力不计,取无穷远处电势为零).则( )A.Q1、Q2均为负电荷B.Q1、Q2带电荷量之比为9:1C.在x=6 m处电势为0D.该试探电荷向x轴正方向运动时,电势能一直减小11.如图甲所示,正方形导线框abcd放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t的变化关系如图乙所示,t=0时刻,磁感应强度的方向垂直纸面向里.下列选项中能表示线框的ab边受到的磁场力F随时间t的变化关系的是(规定水平向左为力的正方向)( )12.[2020·广西桂林等六市第一次联合调研](多选)如图甲所示,两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为1 m ,总电阻为1 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行.现使导线框水平向右运动,cd 边于t =0时刻进入磁场,c 、d 两点间电势差随时间变化的图线如图乙所示.下列说法正确的是( )A .磁感应强度的方向垂直纸面向里B .磁感应强度的大小为4 TC .导线框进入磁场和离开磁场时的速度大小之比为3:1D .0~3 s 的过程中导线框产生的焦耳热为48 J专练3 物理学图象问题1.解析:质点A 的运动方程为x =12at 2,则初速度为零,加速度a =2 m /s 2,故A 错误;乙直线的斜率表示速度,故质点B 做匀速直线运动,质点B 的速度为v =Δx Δt =9-33m /s =2 m /s ,故B 错误;在前3 s 内,质点B 的位移为6 m ,质点A 的位移为9 m ,质点A 比B 向前多前进了3 m ,故C 错误;t =1 s 时刻,质点A 的速度为2 m /s ,且质点B 以v =2 m /s 的速度做匀速直线运动,故D 正确.答案:D专练4 对教材细节素材进行改编(时间:25分钟)考向1 源于教材中的习题或例题1.[此题原型为人教版教材选修3-5P12“问题与练习”第6题]甲、乙两位轮滑运动员静止在水平地面上,甲猛推乙一下,结果两人向相反方向滑去.已知停止运动时甲滑行的距离是乙滑行距离的一半,若两人与水平地面间的动摩擦因数相同,则两人的质量之比m 甲m 乙等于( )A. 2B.22 C .2 D.122.[此题原型为教科版教材选修3-1P106“第10题”]如图所示,宽度为d 的区域内有大小为B 、方向与纸面垂直的匀强磁场和大小为E 、沿竖直方向的匀强电场,从区域左边界上的A 点射出的带电粒子垂直于左边界进入该区域后,刚好能够做匀速直线运动.现撤去电场仅保留磁场,当粒子从该区域右边界射出时,其速度方向与水平方向的夹角为30°,不计粒子的重力,则有( )A .粒子必带正电荷B .粒子的初速度大小为B EC .该粒子的比荷为E2B 2dD .粒子在磁场中运动的时间为πEd 3B3.[此题原型为人教版教材必修1P29“问题与练习”第4题][2020·山西晋中第四次月考]某同学利用如图甲所示的实验装置来测定气垫导轨上滑决的加速度,滑块上安装有遮光条.(1)该同学利用10分度的游标卡尺测出滑块上安装的遮光条的宽度d ,测量结果如图乙所示,则d =________ cm ;(2)与光电门配套的数字毫秒计测出了遮光条通过光电门1所用的时间Δt 1=0.025 s ,。

2021届高考物理二轮复习专题四 电路与电磁感应(考点+习题)含解析

2021届高考物理二轮复习专题四 电路与电磁感应(考点+习题)含解析

专题四电路与电磁感应1.恒定电流(1)闭合电路中的电压、电流关系:E=U外+U内,I=,U=E-Ir。

(2)闭合电路中的功率关系:P总=EI,P内=I2r,P出=IU=I2R=P总-P内。

(3)直流电路中的能量关系:电功W=qU=UIt,电热Q=I2Rt。

(4)纯电阻电路中W=Q,非纯电阻电路中W>Q。

2.电磁感应(1)判断感应电流的方向:右手定则和楞次定律(增反减同、来拒去留、增缩减扩)。

(2)求解感应电动势常见情况与方法(3)自感现象与涡流自感电动势与导体中的电流变化率成正比,线圈的自感系数L跟线圈的形状、长短、匝数等因素有关系。

线圈的横截面积越大,线圈越长,匝数越多,它的自感系数就越大。

带有铁芯的线圈其自感系数比没有铁芯时大得多。

3.交变电流(1)交变电流的“四值”①最大值:为U m、I m,即交变电流的峰值。

②瞬时值:反映交变电流每瞬间的值,如e=E m sinωt。

③有效值:正弦式交变电流的有效值与最大值之间的关系为E=、U=、I=;非正弦式交变电流的有效值可以根据电流的热效应来求解。

计算交变电流的电功、电功率和测定交流电路的电压、电流都是指有效值。

④平均值:反映交变电流的某物理量在t时间内的平均大小,如平均电动势E=n。

(2)理想变压器的基本关系式①功率关系:P入=P出;②电压关系:=;③电流关系:=。

(3)远距离输电常用关系式(如图所示)①功率关系:P1=P2,P3=P4,P2=P线+P3。

②电压损失:U损=I2R线=U2-U3。

③输电电流:I线===。

④输电导线上损耗的电功率:P损=I线U损=R线=R线。

高考演练1.(2019江苏单科,1,3分)某理想变压器原、副线圈的匝数之比为1∶10,当输入电压增加20 V时,输出电压()A.降低2 VB.增加2 VC.降低200 VD.增加200 V答案D依据理想变压器原、副线圈的电压比与匝数比关系公式可知,=,则ΔU 2=ΔU1,得ΔU2=200 V,故选项D正确。

2021届新高考物理二轮复习阶段训练(二) 功和能 动量 含解析

2021届新高考物理二轮复习阶段训练(二) 功和能 动量 含解析

阶段训练(二)功和能动量(时间:45分钟满分:100分)专题能力训练第17页一、选择题(本题共8小题,每小题7分,共56分。

在每小题给出的四个选项中,1~5题只有一个选项符合题目要求,6~8题有多个选项符合题目要求。

全部选对的得7分,选对但不全的得4分,有选错的得0分)1.(2018·全国卷Ⅰ)高铁列车在启动阶段的运动可看作初速度为零的匀加速直线运动。

在启动阶段,列车的动能()A.与它所经历的时间成正比B.与它的位移成正比C.与它的速度成正比D.与它的动量成正比答案:B解析:高铁列车启动阶段可看作初速度为零的匀加速运动,则列车所受合外力恒定,由动能定理E k=F·x,E k与位移成正比。

另外,E k=12mv2=12ma2t2= 22 ,故选项B正确,A、C、D错误。

2.如图所示,竖直面内,两段半径均为R的光滑半圆形细杆平滑拼接组成“S”形轨道,一个质量为m的小环套在轨道上,小环从轨道最高点由静止开始下滑,下滑过程中始终受到一个水平恒力F的作用,小环能下滑到最低点,重力加速度大小为g。

则小环从最高点下滑到最低点的过程中()A.小环机械能守恒B.外力F一直做正功C.小环在最低点的速度大小为v=22D.在最低点小环对轨道的压力大小F N=mg答案:C解析:小环下滑过程中受重力、轨道沿半径方向的作用力和水平外力F,重力一直做正功,外力F时而做正功时而做负功,轨道的作用力一直不做功,故小环机械能不守恒,选项A、B错误;小环从最高点下滑到最低点的过程中,在沿水平恒力F方向上的位移为0,则由动能定理可得整个过程中重力做的功等于动能变化量,mg·4R=12mv2,解得v=22 ,选项C正确;小环在最低点,由牛顿第二定律得F N'-mg=m 2 ,得F N'=9mg,由牛顿第三定律可知F N=F N'=9mg,选项D错误。

3.如图所示,水平传送带两端点A、B间的距离为l。

2021届高中物理二轮复习(大题)2 牛顿运动定律的综合应用问题 含解析

2021届高中物理二轮复习(大题)2 牛顿运动定律的综合应用问题 含解析

2 牛顿运动定律的综合应用问题一、典例例1.传送带被广泛应用于各行各业。

如图所示,一倾斜放置的传送带与水平面的夹角θ=37°,在电动机的带动下以v =2 m/s 的速率顺时针方向匀速运行。

M 、N 为传送带的两个端点,M 、N 两点间的距离L =7 m ,N 端有一离传送带很近的挡板P 可将传送带上的物块挡住。

在传送带上的O 处由静止释放质量为m =1 kg 的木块,木块可视为质点,若木块每次与挡板P 发生碰撞时间极短,碰后都以碰前的速率反方向弹回,木块与传送带间的动摩擦因数μ=0.5,O 、M 间距离L 1=3 m ,传送带与轮子间无相对滑动,不计轮轴处的摩擦。

求:(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2)(1)木块轻放上传送带后瞬间的加速度大小;(2)木块第一次反弹后能到达的最高位置与挡板P 的距离;(3)木块做稳定的周期性运动后的周期。

【解析】(1)放上的后瞬间,根据牛顿第二定律:mg sin θ-μmg cos θ=ma 1解得木块轻放上传送带后瞬间的加速度a 1=2 m/s 2。

(2)设木块与挡板P 碰撞前的速度v 1,由运动学知识:v 12=2a 1(L -L 1)解得v 1=4 m/s木块与挡板P 碰后向上减速到共同速度之前:mg sin θ+μmg cos θ=ma 2解得a 2=10m/s 2木块向上的位移x 1=22122v v a =0.6m 共同速度之后,摩擦力反向,加速度为a 1木块向上的位移x 2=212v a =1 m 木块第一次反弹后能到达的最高位置与挡板P 的距离x m =x 1+x 2=1.6 m 。

(3)木块做稳定的周期性运动后,每次与挡板碰前的速度为v =2m/s则稳定后周期为T =21v a =2 s 。

例2.如图所示,在水平地面上建立x 轴,有一个质量m =1 kg 的木块(可视为质点)放在质量M =2 kg 的长木板的左端A 点,木板长L =2 m 。

专题11 电磁感应定律及其应用【测】解析版-2021年高考物理二轮复习讲练测

专题11 电磁感应定律及其应用【测】解析版-2021年高考物理二轮复习讲练测

第四部分电磁感应与电路专题11电磁感应定律及其应用(测)(满分:100分建议用时:60分钟)姓名:_______________________班级:______________________得分:_____________________一.选择题:本题共12小题,每小题6分。

在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。

全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.(2021·云南保山模拟)如图甲所示,在光滑水平面上,一个正方形闭合线框abcd 在水平外力的作用下,从静止开始沿垂直磁场边界方向直线穿过匀强磁场.线框中产生的感应电流i 和运动时间t 的变化关系如图乙中的实线所示,则线框边长与磁场宽度(两边界之间的距离)的比值为()A .1∶2B .1∶3C .3∶5D .3∶8【答案】D.【解析】:由法拉第电磁感应定律和闭合电路欧姆定律有I =BLv R,则题给图象可知,线框的运动为初速度为零的匀加速直线运动,设其加速度a ,则线框刚进入磁场时的速度为2a ,然后以该速度切割磁感线产生感应电流,若设线框边长为L ,磁场宽度为d ,则图象中有电流的时间,即线框的右边刚进入磁场到线框全部进入磁场的过程中有L =2a +4a 2×2,从线框全部进入磁场到线框右边到达磁场右边界的过程,没有电流产生,有d -L =4a +6a 2×2,以上二式联立解得L d =38,选项D 正确.2.(2020·浙江嘉兴一中测试)如图所示为安检门原理图,左边门框中有一通电线圈,右边门框中有一接收线圈.工作过程中某段时间通电线圈中存在顺时针方向均匀增大的电流,则()A.无金属片通过时,接收线圈中的感应电流方向为顺时针B.无金属片通过时,接收线圈中的感应电流增大C.有金属片通过时,接收线圈中的感应电流方向为顺时针D.有金属片通过时,接收线圈中的感应电流大小发生变化【答案】D.【解析】:当左侧通电线圈中存在顺时针方向均匀增大的电流时,通过右侧线圈的磁通量增大,根据楞次定律可以知道,右侧线圈产生的感应电流方向为逆时针,由于磁场是均匀增大,则产生的感应电流为恒定的,故A、B错误;当有金属片通过时,接收线圈中磁通量仍然增大,故产生的感应电流方向仍然为逆时针,但是由于金属片中也要产生感应电流,所以接收线圈中的感应电流大小发生变化,故C错误,D正确.3.(2020·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现()A.先是逆时针方向,然后是顺时针方向的感应电流B.先是顺时针方向,然后是逆时针方向的感应电流C.逆时针方向的持续流动的感应电流D.顺时针方向的持续流动的感应电流【答案】C.【解析】:N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针,因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.4.(2020·江苏南京模拟)如图所示,一个闭合三角形导线框ABC位于竖直平面内,其下方(略靠前)固定一根与导线框平面平行的水平直导线,导线中通以图示方向的恒定电流.释放导线框,它由实线位置下落到虚线位置未发生转动,在此过程中()A.导线框中感应电流的方向依次为ACBA→ABCA→ACBAB.导线框的磁通量为零时,感应电流为零C.导线框所受安培力的合力方向依次为向上→向下→向上D.导线框所受安培力的合力为零,做自由落体运动【答案】A.【解析】:根据右手螺旋定则可知导线上方的磁场方向垂直于纸面向外,下方的磁场方向垂直于纸面向里,而且越靠近导线磁场越强,所以闭合导线框ABC在下降过程中,导线框内垂直于纸面向外的磁通量先增大,当增大到BC边与导线重合时,达到最大,再向下运动,导线框内垂直于纸面向外的磁通量逐渐减小至零,然后随导线框的下降,导线框内垂直于纸面向里的磁通量增大,当增大到A点与导线重合时,达到最大,继续下降时由于导线框逐渐远离导线,使导线框内垂直于纸面向里的磁通量再逐渐减小,所以根据楞次定律可知,感应电流的磁场总是阻碍内部磁通量的变化,所以感应电流的磁场先向里,再向外,最后向里,所以导线框中感应电流的方向依次为ACBA→ABCA→ACBA,A正确;当导线框内的磁通量为零时,内部的磁通量仍然在变化,有感应电动势产生,所以感应电流不为零,B错误;根据对楞次定律的理解,感应电流的效果总是阻碍导体间的相对运动,由于导线框一直向下运动,所以导线框所受安培力的合力方向一直向上,不为零,C、D错误.5.(2020·长兴中学高三模拟)1831年,法拉第在一次会议上展示了他发明的圆盘发电机(图甲).它是利用电磁感应原理制成的,是人类历史上第一台发电机.图乙是这个圆盘发电机的示意图:铜盘安装在水平的铜轴上,它的边缘正好在两磁极之间,两块铜片C、D分别与转动轴和铜盘的边缘良好接触.使铜盘转动,电阻R中就有电流通过.若所加磁场为匀强磁场,回路的总电阻恒定,从左往右看,铜盘沿顺时针方向匀速转动,CRD平面与铜盘平面垂直,下列说法正确的是()A .电阻R 中没有电流流过B .铜片C 的电势高于铜片D 的电势C .保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则铜盘中有电流产生D .保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则CRD 回路中有电流产生【答案】C.【解析】:根据右手定则可知,电流从D 点流出,流向C 点,因此在圆盘中电流方向为从C 向D ,由于圆盘在切割磁感线时相当于电源,所以D 处的电势比C 处高,A 、B 错误;保持铜盘不动,磁场变为方向垂直于铜盘的交变磁场,则穿过铜盘的磁通量发生变化,故铜盘中有感应电流产生,但是此时不再切割磁感线,所以CD 不能当成电源,故CRD 回路中没有电流产生,C 正确,D 错误.6.(2020·山东济南市3月模拟)在如图甲所示的电路中,螺线管匝数n =1000匝,横截面积S =20cm 2.螺线管导线电阻r =1.0Ω,R 1=4.0Ω,R 2=5.0Ω,C =30μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是()A .螺线管中产生的感应电动势为1.2VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2C 【答案】C 【解析】根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt,解得:E =0.8V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极板带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08A ,根据P =I 2R 1,解得:P =2.56×10-2W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4V ,流经R 2的电荷量为:Q =CU =1.2×10-5C ,故D 错误.7.(2020·山东烟台一模)如图甲所示,间距L =0.2m 的水平金属导轨CD 、EF 固定在水平地面上,一质量m =4×10-3kg 的金属棒GH 垂直地放置导轨上,导轨处于沿水平方向、磁感应强度B 1=0.2T 的匀强磁场中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理二轮复习:
计算题标准练(十)
满分32分,实战模拟,20分钟拿下高考计算题高分!
1.(14分)如图所示,有一质量m=1kg的小物块,在平台上以初速度v0=3m/s水平抛出,到达C 点时,恰好沿C点的切线方向进入固定在水平地面上的半径R=0.5m的粗糙圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3kg的长木板,木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑接触,当小物块在木板上相对木板运动l=1m时,与木板有共同速度,小物块与长木板之间的动摩擦因数μ=0.3,C点和圆弧的圆心连线与竖直方向的夹角θ=53°,不计空气阻力,取g=10m/s2,sin 53°=0.8,cos 53°=0.6。

求:
(1)A、C两点的高度差h。

(2)物块刚要到达圆弧轨道末端D点时对轨道的压力。

(3)物块通过圆弧轨道克服摩擦力做的功。

【解析】(1)小物块到C点时的速度竖直分量为
v Cy=v0tan 53°
=3×m/s=4m/s
下落的高度h==m=0.8 m。

(2)小物块在木板上滑行达到共同速度的过程
木板的加速度大小:
a1=
=m/s2
=1m/s2,
物块的加速度大小:
a2==μg=3m/s2,
由题意得:a1t=v D-a2t,
v D t-a2t2-a1t2=l
联立以上各式并代入数据解得
v D=2m/s,
物块在D点时由牛顿第二定律得
F N-mg=m
代入数据解得
F N=26N
由牛顿第三定律得F N′=F N=26N,方向竖直向下。

(3)小物块由A到D的过程中,由动能定理得
mgh+mgR(1-cos 53°)-W
=m-m
代入数据解得
W=10.5J。

答案:(1)0.8m
(2)26N,方向竖直向下
(3)10.5J
2.(18分)1932年,劳伦斯和利文斯设计出了回旋加速器。

回旋加速器的工作原理如图(甲)所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。

磁感应强度为B的匀强磁场与盒面垂直。

A处粒子源产生的粒子,质量为m、电荷量为+q,初速度为0,在加速器中被加速,加速电压为U,加速过程中不考虑相对论效应和重力作用。

(1)求粒子第1次和第2次经过两D形盒间狭缝后轨道半径之比。

(2)求粒子从静止开始加速到出口处所需的时间t。

(3)近年来,大中型粒子加速器往往采用多种加速器的串接组合。

例如由直线加速器作为预加速器,获得中间能量,再注入回旋加速器获得最终能量。

n个长度逐个增大的金属圆筒和一个靶,它们沿轴线排列成一串,如图(乙)所示(图中只画出了六个圆筒,作为示意)。

各筒相间地连接到频率为f、最大电压值为U的正弦交流电源的两端。

整个装置放在高真空容器中。

圆筒的两底面中心开有小孔。

现有一电量为q、质量为m的正离子沿轴线射入圆筒,并将在圆筒间的缝隙处受到电场力的作用而加速(设圆筒内部没有电场)。

缝隙的宽度很小,离子穿过缝隙的时间可以不计。

已知离子进入第一个圆筒左端的速度为v1,且此时第一、二两个圆筒间的电势差φ1-φ2=-U。

为了使离子以最短时间打到靶上且获得最大能量,金属圆筒的长度应满足什么条件?并求出在这种情况下打到靶上的离子的能量。

【解析】(1)设粒子第1次经过狭缝后的速度为v1,半径为r1,则qU=m
qv1B=m
解得:
r1=
同理,粒子第2次经过狭缝后的半径
r2=
则=。

(2)粒子在磁场中运动一周,被电场加速两次。

设粒子到出口处被加速了n次,
nUq=m
qv m B=m
解得n=
带电粒子在磁场中运动的周期
T==
粒子在磁场中运动的总时间
t=T=。

(3)为了使离子以最短时间打到靶上且获得最大能量,要求离子每次穿越缝隙时,前一个圆筒的电势比后一个圆筒的电势高U,穿过每个圆筒的时间恰好等于交流电的半个周期。

由于圆筒内无电场,离子在筒内做匀速运动。

设v n为离子在第n个圆筒内的速度,则第n个圆筒
的长度L n=v n·=
(n-1)qU
=m-m
v n=
第n个圆筒的长度应满足的条件为
L n=(n=1,2,3,…)
离子打到靶上的能量E km=(n-1)qU+m(n=1,2,3,…) 答案:(1)1∶
(2)
(3)L n=(n=1,2,3,…)
E km=(n-1)qU+m(n=1,2,3,…)。

相关文档
最新文档