折叠问题专题练

合集下载

折叠问题练习题(含答案)

折叠问题练习题(含答案)

折叠问题练习题1.点O 是边长为4的正方形ABCD 的中心,点E ,F 分别是AD ,BC 的中点.沿对角线AC 把正方形ABCD 折成直二面角D -AC -B . (Ⅰ)求EOF ∠的大小;(Ⅱ)求二面角E OF A --的大小. 解法一:(Ⅰ)如图,过点E 作EG ⊥AC ,垂足为G ,过点F 作FH ⊥AC ,垂足为H ,则2EG FH ==,22GH =.因为二面角D -AC -B 为直二面角, 22222cos90EF GH EG FH EG FH ∴=++-⋅222(22)(2)(2)012.=++-=又在EOF ∆中,2OE OF ==,22222222(23)1cos 22222OE OF EF EOF OE OF +-+-∴∠===-⋅⨯⨯.120EOF ∴∠= .(Ⅱ)过点G 作GM 垂直于FO 的延长线于点M ,连EM .∵二面角D -AC -B 为直二面角,∴平面DAC ⊥平面BAC ,交线为AC ,又∵EG ⊥AC ,∴EG ⊥平面BAC .∵GM ⊥OF ,由三垂线定理,得EM ⊥OF .∴EMG ∠就是二面角E OF A --的平面角. 在Rt ∆EGM 中,90EGM ∠=,2EG =,112GM OE ==, ∴tan 2EGEMG GM∠==.∴arctan 2EMG ∠=. 所以,二面角E OF A --的大小为arctan 2. 2.(2009福建卷文)(本小题满分12分)如图,平行四边形ABCD 中,60DAB ︒∠=,2,4AB AD ==将CBD ∆沿BD 折起到EBD ∆的位置,使平面EDB ⊥平面ABD(I )求证:AB DE ⊥(Ⅱ)求三棱锥E ABD -的侧面积。

(I )证明:在ABD ∆中,2,4,60AB AD DAB ︒==∠=2222222cos 23,BD AB AD AB AD DAB AB BD AD AB DE∴=+-⋅∠=∴+=∴⊥又 平面EBD ⊥平面ABD平面EBD 平面,ABD BD AB =⊂平面ABD AB ∴⊥平面EBDDF ⊂ 平面,EBD AB DE ∴⊥ (Ⅱ)解:由(I )知,//,,AB BD CD AB CD BD ⊥∴⊥从而DE D ⊥在Rt DBE ∆中,23,2DB DE DC AB ====ABCDEFOOFABCDEC DMHGO FA BEGHMABCDEFO1232ABE S DB DE ∆∴=⋅=又AB ⊥ 平面,EBD BE ⊂平面,EBD AB BE ∴⊥ 14,42ABE BE BC AD S AB BE ∆===∴=⋅= ,DE BD ⊥ 平面EBD ⊥平面ABD ED ∴⊥,平面ABD 而AD ⊂平面1,,42ADE ABD ED AD S AD DE ∆∴⊥∴=⋅=综上,三棱锥E ABD -的侧面积,823S =+3.如图,在正三棱柱ABC-A 1B 1C 1中,AB=3,AA 1=4,M 为AA 1的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC 1到M 点的最短路线长为29,设这条最短路线与C 1C 的交点为N 。

矩形的折叠问题(专题)

矩形的折叠问题(专题)

→ Bx
D
,故OE= 。
练习8 如图,在直角三角形ABC中, C ∠C=90º ,沿着B点的一条直线BE折 叠这个三角形,使C点与AB边上的 一点D重合。当∠A满足什么条件时, 点D恰好是AB的中点?写出一个你 B 认为适当的条件,并利用此条件证 明D为AB中点。 条件:∠A=30º
E D A
证明:由轴对称可得,△BCE≌△BDE,∴ BC=BD , 在△ABC中,∵ ∠C=90º,∠A=30º, ∴ BC= ∴ BD =
答案:矩形的长为10,宽为8。
D F E A
C
B
4、求线段与面积间的变化关系
例5 已知一三角形纸片ABC,面积为25,BC的长为 10,B和C都为锐角,M为AB上的一动点(M与A、B 不重合),过点M作MN∥BC,交AC于点N,设MN=x. (1)用x表示△AMN的面积SΔ AMN。 (2)Δ AMN沿MN折叠,设点A关于Δ AMN对称的点为A¹ , Δ A¹ MN与四边形BCMN重叠部分的面积为y.①试求出 y与x的函数关系式,并写出自变量X的取值范围; ②当x为何值时,重叠部分的面积y最大,最大为多 少?
矩形的折叠问题
(复习课)
练习1 如图,有一块直角三角形纸片,两 直角边AC=6,BC=8,现将直角边AC沿 直线AD折叠,使它落在斜边AB上,且与AE 重合,求CD
A E C B D
如图,折叠矩形的一边AD,点D 落在BC边上点F处,已知AB=8, BC=10,求EC的长 D A
E B F C
练习2 如图,在梯形ABCD中, DCAB,将梯形对折,使点D、 C分别落在AB上的D¹ 、C¹ 处, 折痕为EF。若CD=3,EF=4, 则AD¹ +BC¹ = 。

第2章 三角形折叠问题专题练习(答案)

第2章 三角形折叠问题专题练习(答案)

三角形折叠问题专题练习一、选择题1.如图所示,在△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC 边上的点E处,如果∠A=26°,那么∠CDE度数为()A.71°B.64°C.80°D.45°【答案】A2.将一张正方形纸片,按如图所示步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()【答案】B3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余部分展开后的平面图形是()【答案】A4.学剪五角星:如图,先将一张长方形纸片按图①的虚线对折,得到图②,然后将图②沿虚线折叠得到图③,再将图③沿虚BC剪下△ABC,展开即可得到一个五角星.如果想得到一个正五角星(如图④),那垂直A.B.C.D.A.126°B.108°C.100°D.90°【答案】A5.如图所示,在Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上的点A′处,折痕为CD,则∠A′DB等于()A.40°B.30°C.20°D.10°【答案】C6.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果=6,那么线段BE的长度为().6 B.6 2 C.2 3 D.32【答案】D【解析】根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=2BD=2×3=32,故选D.7.如图,把等腰直角△ABC沿BD折叠,使点A落在边BC上的点E处.下面结论错误的是()A.AB=BE B.AD=DC C.AD=DE D.AD=EC【答案】B【解析】由折叠知△BAD≌△BED,∴AB=BE,AD=DE.ABC是等腰直角三角形,∴∠C=45°.DEC=90°,∴∠EDC=∠C=45°,∴DE=EC,∴AD=EC.∵CD>DE,∴CD>AD,故选B.8.如图所示,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A.1B.2C.3D.4【答案】D9. 有一张直角三角形纸片,两直角边长AC =6 cm ,BC =8 cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE (如图),则CD 等于( )A .254cmB .223cmC .74cmD .53cm【答案】C【解析】设CD =x cm ,则AD =BD =(8-x )cm ,又AC =6 cm ,在Rt △ACD 中,根据勾股定理,得62+x 2=(8-x )2,∴x =74.二、填空题10.把一张纸按图中那样折叠后,若得到∠AOB ′=70°,则∠BOG =__________.【答案】55°11.如图所示,将△ABC 沿着DE 翻折,B 点落到了B'点处.若∠1+∠2=80°,则∠B'=__________.【答案】40°【解析】由外角定理可得∠1+∠2=2∠B',∴∠B'=40°.12.如图所示,已知等边三角形纸片ABC ,点E 在AC 边上,点F 在AB 边上,沿EF 折叠,使点A 落在BC 边上的点D 的位置,且ED ⊥BC ,则∠EFD =__________.【答案】45°【解析】由翻折的性质可知∠AFE =∠EFD .∵△ABC 为等边三角形,∴∠B =60°,∠C =60°,∠A =∠EDF =60°. ∵ED ⊥BC ,∴△EDC 为直角三角形.∴∠FDB =30°.∴∠AFE +∠EFD =60°+30°=90°. ∴∠EFD =45°.13.如图所示,在等腰三角形ABC 中,AB =AC ,沿直线MN 折叠,使点A 与点B 重合,折痕MN 与AC 交于点D ,已知∠DBC =15°,则∠A 的度数是__________.【答案】50°14.如图所示,在Rt △ABC 中,∠ACB =90°,将边BC 沿斜边上的中线CD 折叠到CB ′,如果∠B =50°,那么∠ACB ′=__________.【答案】10°15.如图所示,把△ABC 沿EF 翻折,折叠后的图形如图所示.如果∠A =60°,∠1=95°,那么∠2=__________.【答案】25°【解析】∵把△ABC 沿EF 翻折, ∴∠BEF =∠B ′EF ,∠CFE =∠C ′FE . ∴180°-∠AEF =∠1+∠AEF , 180°-∠AFE =∠2+∠AFE .∵∠1=95°,∴∠AEF =12×(180°-95°)=42.5°.∴∠AFE =180°-60°-42.5°=77.5°. ∴180°-77.5°=∠2+77.5°.∴∠2=25°.16.如图所示,已知△ABC 中,DE ∥BC ,将△ADE 沿DE 翻折,点A 落在平面内的点A ′处,若∠B =50°,则∠BDA ′的度数是__________.【答案】80°【解析】∵DE∥BC,∴∠ADE=∠B=50°.∵∠ADE=∠A′DE,∴∠A′DA=2∠B.∴∠BDA′=180°-2∠B=80°.17.如图所示,在等腰三角形纸片ABC中,AB=AC,∠A=50°,折叠该纸片,使点A落在点B处,折痕为DE,则∠CBE=__________.【答案】15°18.如图,△ABC中,D是边AB上的一点,过D作DE∥BC交边AC于点E,过点A作关于直线DE的对称点A',连结A'D交AC于点O,A'D与AC互相平分.若△DOE的面积为1,则△ABC的面积为__________.A'OEDCBA【答案】1819.如图,在Rt△ABC中,∠C=90°,沿过点B的一条直线BE折叠△ABC,使点C恰好落在AB边的中点D处,则∠A的度数等于__________.【答案】30°【解析】由题意得,BC=BD=AD,∴在Rt△ABC中,BC=12AB,∴∠A=30°.20.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上的F处,若∠B=50°,则∠BDF=__________.【答案】80°【解析】由折叠得AD=DF,又AD=BD,∴BD=DF,又∠B=50°,∴∠BDF=180°-50°×2=80°..如图,一副三角板拼在一起,O为AD的中点,AB=a.将△ABO沿BO对折于△A′BO,M为BC上一动点,则A′M的最小值为__________.【答案】6-24a22.如图,等边△ABC的边长为1cm,D、E分别是AB、AC上的点,将△ADE沿直线DE折叠,点A落在点A'处,且点A'在△ABC外部,则阴影部分图形的周长为__________cm.A'CABDE【答案】3【解析】折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.将△ADE沿直线DE折叠,点A落在点A'处,所以AD=A'D,AE=A'E,则阴影部分图形的周长等于BC+BD+CE+A'D+A'E=BC+BD+CE+AD+AE=BC+AB+AC=3cm.45︒60︒A′BMAODC。

2023年中考数学二轮专题复习《折叠问题》培优练习(含答案)

2023年中考数学二轮专题复习《折叠问题》培优练习(含答案)

中考数学二轮专题复习《折叠问题》培优练习一、选择题1.如图,有一条直的宽纸带,按图折叠,则∠α的度数等于 ( )A.50°B.60°C.75°D.85°2.如图,将长方形ABCD纸片沿对角线BD折叠,使点C落在点C/处,BC/交人D于点E,若∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°角(虚线也视为角的边)共有( )A.3个B.4个C.5个D.6个3.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为( )A.28B.26C.25D.224.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△C EF的面积为( )A.12B.98C.2D.4 5.如图,在矩形ABCD 中,AB =8.将矩形的一角折叠,使点B 落在边AD 上的B ´点处,若AB /=4,则折痕EF 的长度为( )A.8B.4 5C.5 5D.106.将矩形ABCD 按如图所示的方式折叠,BE ,EG ,FG 为折痕,若顶点A ,C ,D 都落在点O 处,且点B ,O ,G 在同一条直线上,同时点E ,O ,F 在另一条直线上,则AD :AB 的值为( )A.65B. 2C.32 D. 37.如图矩形ABCD 中,AB =3,BC =33,点P 是BC 边上的动点,现将△PCD 沿直线PD 折叠,使点C 落在点C 1处,则点B 到点C 1的最短距离为( )A.5B.4C.3D.28.将一张宽为4cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是( )A.833cm 2B.8cm 2C.1633cm 2 D.16cm 2二、填空题9.如图,在平面直角坐标系中,已知点A(0,4),B(3,0),连结AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在的直线交y轴的正半轴于点C,则直线BC所对应的函数表达式为.10.将正方形纸片ABCD按如图所示对折,使边AD与BC重合,折痕为EF,连接AE,将AE折叠到AB上,折痕为AH,则BH:BC的值是.11.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG =32S△FGH;④AG+DF=FG.其中正确的是.(把所有正确结论的序号都选上)12.如图,在矩形ABCD中,AB=1,BC=a,点E在边BC上,且BE=35a.连接AE,将△ABE沿AE折叠,若点B的对应点B′落在矩形ABCD的边上,则a的值为.13.一张直角三角形纸片ABC,∠ACB=90°,AB=10,AC=6,点D为BC边上的任一点,沿过点D的直线折叠,使直角顶点C落在斜边AB上的点E处,当△BDE是直角三角形时,则CD的长为.14.如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y 轴上,连接OB,将纸片OABC沿AC折叠,使点B落在D的位置上.若AC=5,OC=2BC,则点D的坐标 .三、解答题15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE折叠至△AFE,延长EF交BC于点G,连结AG.(1)求证:△ABG≌△AFG;(2)求BG的长.16.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.17.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由.18.小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合,折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为;(2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为;操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.19.矩形AOBC中,OB=8,OA=4.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF、AB,求证:EF∥AB;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.20.将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).(1)如果M为CD边的中点,求证:DE∶DM∶EM=3∶4∶5;(2)如果M为CD边上的任意一点,设AB=2a,问△CMG的周长是否与点M的位置有关?若有关,请把△CMG的周长用含DM的长x的代数式表示;若无关,请说明理由.21.如图,抛物线L:y=﹣x2+bx+c经过点A(1,0)和点B(5,0),已知直线l的解析1式为y=kx﹣5.的解析式、对称轴和顶点坐标.(1)求抛物线L1(2)若直线l将线段AB分成1:3两部分,求k的值;(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线(4)将抛物线L1剩余的部分组成的新图象记为L2①直接写出y随x的增大而增大时x的取值范围;有四个交点时k的取值范围.②直接写出直线l与图象L2答案1.C2.D3.A.4.C.5.C.6.B.7.C.8.B9.答案为:y=﹣12x+32.10.答案为:52﹣12.11.答案为:①③④.12.答案为:53或53.13.答案为:3或24 7.14.答案为:(﹣0.6,0.8)15.证明:(1)∵四边形ABCD是正方形,∴∠B=∠D=90°,AD=AB.由折叠可知,AD=AF,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.∴∠B=∠AFG=90°.又∵AG=AG,∴Rt△ABG≌Rt△AFG(H.L.).(2)解:∵△ABG≌△AFG,∴BG=FG.设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴EG=x+3,在Rt△CEG中,由勾股定理,得32+(6﹣x)2=(x+3)2,解得x=2,∴BG=2.16.证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,∴OA=OC,EF⊥AC,EA=EC,∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,∴△AOF≌△COE,∴OF=OE,∵OA=OC,AC⊥EF,∴四边形AECF为菱形;(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中,∵BE2+AB2=AE2,∴(8﹣x)2+42=x2,解得x=5,即菱形的边长为5;②在Rt△ABC中,AC=45,∴OA=12AC=25,在Rt△AOE中,AE=5,OE=5,∴EF=2OE=25.17.解:(1)△AED≌△CEB′证明:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°,又∵∠B′EC=∠DEA,∴△AED≌△CEB′;(2)由折叠的性质可知,∠EAC=∠CAB,∵CD∥AB,∴∠CAB=∠ECA,∴∠EAC=∠ECA,∴AE=EC=8﹣3=5.在△ADE中,AD=4,延长HP交AB于M,则PM⊥AB,∴PG=PM.∴PG+PH=PM+PH=HM=AD=4.18.解:操作一:(1)14 (2)35º操作二:∵AC=9cm,BC=12cm,∴AB=15(cm),根据折叠性质可得AC=AE=9cm,∴BE=AB﹣AE=6cm,设CD=x,则BD=12﹣x,DE=x,在Rt△BDE中,由题意可得方程x2+62=(12﹣x)2,解得x=4.5,∴CD=4.5cm.19.解:(1)∵四边形OACB是矩形,OB=8,OA=4,∴C(8,4),∵AE=EC,∴E(4,4),∵点E在y=kx上,∴E(4,4).(2)连接AB,设点F(8,a),∴k=8a,∴E(2a,4),∴CF=4﹣a,EC=8﹣2a,在Rt△ECF中,tan∠EFC===2,在Rt△ACB中,tan∠ABC==2,∴tan∠EFC=tan∠ABC,∴∠EFC=∠ABC,∴EF∥AB.(3)如图,设将△CEF沿EF折叠后,点C恰好落在OB上的G点处,∴∠EGF=∠C=90°,EC=EG,CF=GF,∴∠MGE+∠FGB=90°,过点E作EM⊥OB,∴∠MGE+∠MEG=90°,∴∠MEG=∠FGB,∴Rt△MEG∽Rt△BGF,∵点E(,4),F(8,),∴EC=AC﹣AE=8﹣,CF=BC﹣BF=4﹣,∴EG=EC=8﹣,GF=CF=4﹣,∵EM =4,∴=,∴GB =2,在Rt △GBF 中,GF 2=GB 2+BF 2,即:(4﹣)2=(2)2+()2,∴k =12,∴反比例函数表达式为y =12x . 20.证明:(1)DE 为x ,则DM =1,EM =EA =2﹣x ,在Rt △DEM 中,∠D =90°,∴DE 2+DM 2=EM 2x 2+12=(2﹣x)2x =34,∴EM =54. (2)设正方形的边长为2,由(1)知,DE =34,DM =1,EM =54∴DE :DM :EM =3:4:5;(3)△CMG 的周长与点M 的位置无关.证明:设DM =x ,DE =y ,则CM =2a ﹣x ,EM =2a ﹣y ,∵∠EMG =90°,∴∠DME +∠CMG =90°.∵∠DME +∠DEM =90°,∴∠DEM =∠CMG ,又∵∠D =∠C =90°△DEM ∽△CMG ,∴△CMG 的周长为CM +CG +MG =. 在Rt △DEM 中,DM 2+DE 2=EM 2即x 2+y 2=(2a ﹣y)2整理得4a 2﹣x 2=4ay ,∴CM+MG+CG==4a.所以△CMG的周长为4a,与点M的位置无关.21.解:(1)∵抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)∴y=﹣(x﹣1)(x﹣5)=﹣(x﹣3)2+4,∴抛物线L1的解析式为y=﹣x2+6x﹣5对称轴:直线x=3顶点坐标(3,4);(2)∵直线l将线段AB分成1:3两部分,则l经过点(2,0)或(4,0),∴0=2k﹣5或0=4 k﹣5∴k=52或k=54.(3)如图1,设P(x,﹣x2+6x﹣5)是抛物线位于直线上方的一点,解方程组,解得或不妨设M(0,﹣5)、N(4,3)∴0<x<4过P做PH⊥x轴交直线l于点H,则H(x,2x﹣5),PH=﹣x2+6x﹣5﹣(2x﹣5)=﹣x2+4x,S△PMN =12PH•x N=(﹣x2+4x)×4=﹣2(x﹣2)2+8∵0<x<4∴当x=2时,SPMN最大,最大值为8,此时P(2,3) (4)如图2,A(1,0),B(5,0).由翻折,得D(3,﹣4), ①当x ≤1或3≤x ≤5时y 随x 的增大而增大②当y=kx ﹣5过D 点时,3k ﹣5=﹣4,解得k=13, 当y=kx ﹣5过B 点时,5k ﹣5=0,解得k=1,直线与抛物线的交点在BD 之间时有四个交点,即13<k <1, 当13<k <1时,直线l 与图象L 2有四个交点.。

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)

人教版八年级数学下册《利用勾股定理解决折叠问题的技巧》练习题(附带答案)类型一 利用勾股定理解决三角形的折叠问题1.如图 △ABC 中 ∠ACB =90° AC =8 BC =6 将△ADE 沿DE 翻折使点A 与点B 重合 则CE 的长为 .思路引领:设CE =x 则AE =BE =8﹣x 在Rt △BCE 中 由勾股定理可得62+x 2=(8﹣x )2 即可解得答案.解:设CE =x 则AE =BE =8﹣x在Rt △BCE 中 BC 2+CE 2=BE 2∴62+x 2=(8﹣x )2解得x =74故答案为:74. 总结提升:本题考查直角三角形中的折叠问题 解题的关键是掌握折叠的性质 熟练应用勾股定理列方程解决问题.2.(2021秋•介休市期中)如图所示 有一块直角三角形纸片 ∠C =90° AC =8cm BC =6cm 将斜边AB 翻折 使点B 落在直角边AC 的延长线上的点E 处 折痕为AD 则CE 的长为 cm .思路引领:根据勾股定理可将斜边AB 的长求出 根据折叠的性质知 AE =AB 已知AC 的长 可将CE 的长求出.解:在Rt △ABC 中∵∠C=90°AC=8cm BC=6cm∴AB=√AC2+BC2=10cm根据折叠的性质可知:AE=AB=10cm∵AC=8cm∴CE=AE﹣AC=2cm即CE的长为2cm故答案为:2.总结提升:此题考查翻折问题将图形进行折叠后两个图形全等是解决折叠问题的突破口.3.(2020秋•金台区校级期末)如图在△ABC中∠ACB=90°点E F在边AB上将边AC沿CE翻折使点A落在AB上的点D处再将边BC沿CF翻折使点B落在CD的延长线上的点B′处(1)求∠ECF的度数;(2)若CE=4 B′F=1 求线段BC的长和△ABC的面积.思路引领:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB' 再根据∠ACB=90°即可得出∠ECF=45°;(2)在Rt△BCE中根据勾股定理可得BC=√41设AE=x则AB=x+5 根据勾股定理可得AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41 求得x=165得出AE的长和AB的长再由三角形面积公式即可得出S△ABC.解:(1)由折叠可得∠ACE=∠DCE=12∠ACD∠BCF=∠B'CF=12∠BCB'又∵∠ACB=90°∴∠ACD+∠BCB'=90°∴∠ECD+∠FCD=12×90°=45°即∠ECF=45°;(2)由折叠可得:∠DEC=∠AEC=90°BF=B'F=1 ∴∠EFC=45°=∠ECF∴CE=EF=4∴BE=4+1=5在Rt△BCE中由勾股定理得:BC=√BE2+CE2=√52+42=√41设AE=x则AB=x+5∵Rt△ACE中AC2=AE2+CE2Rt△ABC中AC2=AB2﹣BC2∴AE2+CE2=AB2﹣BC2即x2+42=(x+5)2﹣41解得:x=16 5∴AE=165AB=AE+BE=165+5=415∴S△ABC=12AB×CE=12×415×4=825.总结提升:本题主要考查了折叠变换的性质、勾股定理、三角形面积等知识;熟练掌握折叠变换的性质由勾股定理得出方程是解题的关键.4.(2022秋•安岳县期末)如图在△ABC中∠C=90°把△ABC沿直线DE折叠使△ADE与△BDE 重合.(1)若∠A=34°则∠CBD的度数为;(2)当AB=m(m>0)△ABC的面积为2m+4时△BCD的周长为(用含m的代数式表示);(3)若AC=8 BC=6 求AD的长.思路引领:(1)根据折叠可得∠1=∠A=34°根据三角形内角和定理可以计算出∠ABC=56°进而得到∠CBD=22°;(2)根据三角形ACB的面积可得12AC•BC=2m+4 进而得到AC•BC=4m+8 再在Rt△CAB中CA2+CB2=BA2再把左边配成完全平方可得CA+CB的长进而得到△BCD的周长;(3)根据折叠可得AD=DB设CD=x则AD=BD=8﹣x再在Rt△CDB中利用勾股定理可得x2+62=(8﹣x)2再解方程可得x的值进而得到AD的长.解:(1)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴∠ABD =∠A =34°∵∠C =90°∴∠ABC =180°﹣90°﹣34°=56°∴∠CBD =56°﹣34°=22°故答案为:22°;(2)∵△ABC 的面积为2m +4∴12AC •BC =2m +4 ∴AC •BC =4m +8∵在Rt △CAB 中 CA 2+CB 2=BA 2 AB =m∴CA 2+CB 2+2AC •BC =BA 2+2AC •BC∴(CA +BC )2=m 2+8m +16=(m +4)2∴CA +CB =m +4∵AD =DB∴CD +DB +BC =m +4.即△BCD 的周长为m +4故答案为:m +4;(3)∵把△ABC 沿直线DE 折叠 使△ADE 与△BDE 重合∴AD =DB设CD =x 则AD =BD =8﹣x在Rt △CDB 中 CD 2+CB 2=BD 2x 2+62=(8﹣x )2解得:x =74AD =8−74=254.总结提升:此题主要考查了图形的翻折变换 以及勾股定理 完全平方公式 关键是掌握勾股定理 以及折叠后哪些是对应角和对应线段.5.(2021秋•章丘区期中)(1)如图① Rt △ABC 的斜边AC 比直角边AB 长2cm 另一直角边BC 长为6cm 求AC 的长.(2)拓展:如图②在图①的△ABC的边AB上取一点D连接CD将△ABC沿CD翻折使点B的对称点E落在边AC上.①AE的长.②求DE的长.思路引领:(1)在Rt△ABC中由勾股定理可求AB的长即可求解;(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm于是得到答案;②在Rt△ADE中由勾股定理可求DE的长.解:(1)设AB=xcm则AC=(x+2)cm∵AC2=AB2+BC2∴(x+2)2=x2+62解得x=8∴AB=8cm∴AC=8+2=10(cm);(2)①由折叠的性质可得∠DEC=∠DBC=90°DE=DB EC=BC=6cm∴∠AED=90°AE=AC﹣EC=4(cm);②设DE=DB=ycm则AD=AB﹣BD=(8﹣y)cm在Rt△ADE中AD2=AE2+DE2∴(8﹣y)2=42+y2解得:y=3∴DE=3(cm).总结提升:本题考查了翻折变换折叠的性质勾股定理利用勾股定理列出方程是本题的关键.类型二利用勾股定理解决长方形的折叠问题6.(2022•纳溪区模拟)如图在矩形ABCD中AB=5 AD=3 点E为BC上一点把△CDE沿DE翻折 点C 恰好落在AB 边上的F 处 则CE 的长为 .思路引领:利用勾股定理得出AF 的长度 再利用折叠的性质 在△BEF 中求解BE 的长 即可得出CE 的长度.解:在矩形ABCD 中 AB =5 AD =3 由折叠的性质可得:DF =DC =AB =5∴AF =√DF 2−AD 2=√52−32=4∴BF =AB ﹣AF =5﹣4=1设CE =x 则:EF =CE =x BE =BC ﹣CE =3﹣x在Rt △BEF 中 由勾股定理可得:12+(3﹣x )2=x 2解得:x =53∴CE =53故答案为:53. 总结提升:本题考查了折叠的性质、矩形的性质和勾股定理等知识点 解题的关键是利用AF 求出BF 的长度.7.(2021•郯城县校级模拟)如图 在长方形ABCD 中 AB =3cm AD =9cm 将此长方形折叠 使点D 与点B 重合 折痕为EF 则△ABE 的面积为( )cm 2.A .12B .10C .6D .15思路引领:由长方形的性质得BAE =90° 再由折叠的性质得BE =ED 然后在Rt △ABE 中 由勾股定理得32+AE2=(9﹣AE)2解得AE=4(cm)即可求解.解:∵四边形ABCD是长方形∴∠BAE=90°∵将此长方形折叠使点B与点D重合∴BE=ED∵AD=9=AE+DE=AE+BE∴BE=9﹣AE在Rt△ABE中由勾股定理得:AB2+AE2=BE2∴32+AE2=(9﹣AE)2解得:AE=4(cm)∴S△ABE=12AB•AE=12×3×4=6(cm2)故选:C.总结提升:本题考查了翻折变换的性质、矩形的性质以及勾股定理等知识;熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.8.(2020春•余干县校级期末)如图把长方形纸片ABCD沿EF折叠使点B落在边AD上的点B'处点A落在点A'处.(1)试说明B'E=BF;(2)设AE=a AB=b BF=c试猜想a b c之间的关系并说明理由.思路引领:(1)根据折叠的性质、平行的性质及等角对等边即可说明;(2)根据折叠的性质将AE、AB、BF都转化到直角三角形△A'B'E中由勾股定理可得a b c之间的关系.(1)证明:由折叠的性质得:B'F=BF∠B'FE=∠BFE在长方形纸片ABCD中AD∥BC∴∠B'EF=∠BFE∴∠B'FE=∠B'EF∴B'F=B'E∴B'E=BF.(2)解:a b c之间的关系是a2+b2=c2.理由如下:由(1)知B'E=BF=c由折叠的性质得:∠A'=∠A=90°A'E=AE=a A'B'=AB=b.在△A'B'E中∵∠A'=90°∴A'E2+A'B'2=B'E2∴a2+b2=c2.总结提升:本题考查了翻折变换的性质、矩形的性质、等腰三角形的判定、勾股定理等知识;灵活利用折叠的性质进行线段间的转化是解题的关键.9.(2020秋•罗湖区校级期末)如图把一张长方形纸片ABCD折叠起来使其对角顶点A与C重合D 与G重合若长方形的长BC为8 宽AB为4 求:(1)DE的长;(2)求阴影部分△GED的面积.思路引领:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中根据AG2+EG2=AE2构建方程即可解决问题;(2)过G点作GM⊥AD于M根据三角形面积不变性AG×GE=AE×GM求出GM的长根据三角形面积公式计算即可.解:(1)设DE=EG=x则AE=8﹣x在Rt△AEG中AG2+EG2=AE2∴16+x2=(8﹣x)2解得x=3∴DE=3.(2)过G 点作GM ⊥AD 于M则12•AG ×GE =12•AE ×GM AG =AB =4 AE =CF =5 GE =DE =3 ∴GM =125∴S △GED =12GM ×DE =185.总结提升:本题主要考查了折叠的性质、勾股定理以及三角形面积不变性 灵活运用折叠的性质、勾股定理等几何知识点来分析、判断、推理是解题的关键.类型三 利用勾股定理解决正方形的折叠问题10.(2019•黔东南州一模)如图 将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处 点C 落在点Q 处 折痕为FH 则线段AF 的长为( )A .32B .3C .94D .154思路引领:由正方形的性质和折叠的性质可得EF =DE AB =AD =6cm ∠A =90° 由勾股定理可求AF 的长.解:∵将边长为6cm 的正方形纸片ABCD 折叠 使点D 落在AB 边中点E 处∴EF =DE AB =AD =6cm ∠A =90°∵点E 是AB 的中点∴AE =BE =3cm在Rt △AEF 中 EF 2=AF 2+AE 2∴(6﹣AF )2=AF 2+9∴AF=9 4故选:C.总结提升:本题考查了翻折变换正方形的性质勾股定理利用勾股定理求线段的长度是本题的关键.11.如图将边长为8cm的正方形纸片ABCD折叠使点D落在BC边的中点E处点A落在点F处折痕为MN则线段CN的长是()A.3cm B.4cm C.5cm D.6cm思路引领:由折叠的性质可得DN=NE由中点的性质可得EC=4cm结合正方形的性质可得∠BCD=90°;设CN的长度为xcm则EN=DN=(8﹣x)cm接下来在直角△CEN中运用勾股定理就可以求出CN的长度.解:∵四边形MNEF是由四边形ADMN折叠而成的∴DN=NE.∵E是BC的中点且BC=8cm∴EC=4cm.∵四边形ABCD是正方形∴∠BCD=90°.设CN的长度为xcm则EN=DN=(8﹣x)cm由勾股定理NC2+EC2=NE2得x2+42=(8﹣x)2解得x=3.故选:A.总结提升:本题考查翻折变换的问题折叠问题其实质是轴对称对应线段相等对应角相等找到相应的直角三角形利用勾股定理求解是解决本题的关键.第二部分专题提优训练1.(2022秋•慈溪市校级期中)在Rt△ABC中∠B=90°AB=4 BC=8 D、E分别是边AC、BC上的点将△ABC沿着DE进行翻折点A和点C重合则EC=.思路引领:设EC =x 在Rt △ABE 中 由勾股定理得42+(8﹣x )2=x 2 即可解得答案.解:设EC =x 则BE =8﹣x∵将△ABC 沿着DE 进行翻折 点A 和点C 重合∴AE =EC =x在Rt △ABE 中 AB 2+BE 2=AE 242+(8﹣x )2=x 2解得x =5∴EC =5故答案为:5.总结提升:本题考查直角三角形中的翻折问题 解题的关键是掌握翻折的性质 能应用勾股定理列方程解决问题.2.(2021秋•靖江市期中)如图 在Rt △ABC 中 ∠C =90° D 是AB 的中点 AD =5 BC =8 E 是直线BC 上一动点 把△BDE 沿直线ED 翻折后 点B 落在点F 处 当FD ⊥BC 时 线段BE 的长为 .思路引领:分点F 在BC 下方 点F 在BC 上方两种情况讨论 由勾股定理可BC =4 由平行线分线段成比例可得BD AD =BP BC =DP AC =12 求出FP 由勾股定理可求BE 的长. 解:若点F 在BC 下方时 DF 与BC 交于点P 如图1所示:∵D 是AB 的中点∴BD =AD =5∴AB =2AD =10∵∠C =90° BC =8∴AC =√AB 2−BC 2=√102−82=6∵点D 是AB 的中点∵FD ⊥BC ∠C =90°∴FD ∥AC∴BD AD =BP BC =DP AC =12 ∴BP =PC =12BC =4 DP =12AC =3∵△BDE 沿直线ED 翻折∴FD =BD =5 FE =BE∴FP =FD ﹣DP =5﹣3=2在Rt △FPE 中 EF 2=FP 2+PE 2∴BE 2=22+(4﹣BE )2解得:BE =52;若点F 在BC 上方时 FD 的延长线交BC 于点P 如图2所示:FP =DP +FD =3+5=8在Rt △EFP 中 EF 2=FP 2+EP 2∴BE 2=64+(BE ﹣4)2解得:BE =10故答案为:52或10.总结提升:此题考查了折叠的性质、平行线的性质、直角三角形的性质以及勾股定理等知识 熟练掌握翻折变换的性质是解题的关键.3.如图 在Rt △ABC 中 AC =6 BC =8 D 为BC 上一点 将Rt △ABC 沿AD 折磨 点C 恰好落在AB 边上的E 点 求BD 的长.思路引领:由勾股定理求出AB=10 由折叠的性质得出CD=DE∠C=∠AED=90°AE=AC=6 得出BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得出方程解方程即可.解:∵Rt△ABC中AC=6 BC=8∴AB=√62+82=10由折叠的性质得:CD=DE∠C=∠AED=90°AE=AC=6∴BE=AB﹣AE=4 ∠BED=90°设CD=ED=x则BD=8﹣x在Rt△BDE中由勾股定理得:x2+42=(8﹣x)2解得:x=3∴BD=8﹣3=5.总结提升:本题考查了翻折变换的性质、勾股定理等知识;熟练掌握翻折变换的性质由勾股定理得出方程是解题的关键.4.(2018秋•襄汾县校级月考)如图在Rt△ABC中∠C=90°AC=8 BC=6 按图中所示方法将△BCD沿BD折叠使点C落在边AB上的点C'处求AD的长及四边形BCDC′的面积.思路引领:利用勾股定理列式求出AB根据翻折变换的性质可得BC′=BC C′D=CD然后求出AC′设AD=x表示出C′D、AC′然后利用勾股定理列方程求解即可求出AD;然后根据三角形的面积公式计算即可求出四边形BCDC′的面积.解:∵∠C=90°AC=8 BC=6∴AB=√AC2+BC2=10由翻折变换的性质得BC′=BC=6 C′D=CD∴AC′=AB﹣BC′=10﹣6=4设CD=x则C′D=x AD=8﹣x在Rt△AC′D中由勾股定理得AC′2+C′D2=AD2即42+x2=(8﹣x)2解得x=3即CD=3∴AD=8﹣x=5;由折叠可知:S△BCD=S△BC′D∴四边形BCDC′的面积=2S△BCD=2×12×CD•BC=3×6=18.总结提升:本题考查了翻折变换的性质勾股定理此类题目熟记性质并利用勾股定理列出方程是解题的关键.5.(2021春•厦门期中)在矩形ABCD中AB=3 BC=4 E是AB上一个定点点F是BC上一个动点把矩形ABCD沿直线EF折叠点B的对应点B′落在矩形内部.若DB′的最小值为3 则AE=53.思路引领:连接DE则DB′+EB′≥DE由EB′=EB为定值故当D E B′三点共线时DB′最小利用勾股定理建立方程即可求解.解:如图1 连接DE由折叠性质可得:EB′=EB∵DB′+EB′≥DE∴DB′≥DE﹣EB′=DE﹣EB∵点E为定点∴EB为定值∴当D E B′三点共线时DB′最小且最小值为3∴DB′=3如图2∵四边形ABCD 为矩形∴∠A =90° AD =BC =4设AE =x 则:EB ′=EB =AB ﹣AE =3﹣x∴ED =EB ′+DB ′=3﹣x +3=6﹣x在Rt △AED 中 由勾股定理可得:x 2+42=(6﹣x )2解得:x =53∴AE =53故答案为:53. 总结提升:本题考查折叠的性质、矩形的性质、勾股定理等知识点 解题的关键是运用方程思想.6.(2021秋•城阳区校级月考)把一张矩形纸片(矩形ABCD )按如图方式折叠 使顶点B 和点D 重合 折痕为EF .若AB =3cm BC =5cm 则重叠部分△DEF 的面积是( )cm 2.A .2B .3.4C .4D .5.1思路引领:由矩形的性质得AD =BC =5cm CD =AB =3cm ∠A =90° 再由折叠的性质得A 'D =AB =3cm ∠A '=∠A =90° AE '=AE 设AE =xcm 则A ′E =xcm DE =(5﹣x )cm 然后在Rt △A 'DE 中 由勾股定理得出方程 解方程 进而得出DE 的长 即可解决问题.解:∵四边形ABCD 是矩形 AB =3cm BC =5cm∴AD=BC=5cm CD=AB=3cm∠A=90°由折叠的性质得:A'D=AB=3cm∠A'=∠A=90°AE'=AE 设AE=xcm则A′E=xcm DE=(5﹣x)cm在Rt△A'DE中由勾股定理得:A′E2+A′D2=ED2即x2+32=(5﹣x)2解得:x=1.6∴DE=5﹣1.6=3.4(cm)∴△DEF的面积=12DE•CD=12×3.4×3=5.1(cm2)故选:D.总结提升:此题考查了翻折变换的性质、矩形的性质、勾股定理以及三角形面积等知识熟练掌握翻折变换的性质和矩形的性质由勾股定理得出方程是解题的关键.7.(2017秋•金牛区校级月考)如图在矩形ABCD中E是AD的中点将△ABE沿BE折叠后得到△GBE 延长BG交CD于点F结果发现F点恰好是DC的中点若BC=2√6则AB的长为?思路引领:连接EF由折叠性质得AE=EG∠A=∠EGB=90°BG=AB则∠EGF=90°易证EG=DE由矩形的性质得AB=CD∠C=∠D=90°推出∠EGF=∠D=90°由HL证得Rt△EGF≌Rt△EDF得出FG=FD求得CF=DF=FG=12CD=12AB BF=BG+FG=32AB由勾股定理得出BC2+CF2=BF2即可得出结果.解:连接EF如图所示:由折叠性质得:AE=EG∠A=∠EGB=90°BG=AB ∴∠EGF=90°∵点E是AD的中点∴AE=DE∴EG=DE∵四边形ABCD是矩形∴AB=CD∠C=∠D=90°∴∠EGF =∠D =90°在Rt △EGF 与Rt △EDF 中 {EG =ED EF =EF∴Rt △EGF ≌Rt △EDF (HL )∴FG =FD∵F 点恰好是DC 的中点∴CF =DF =FG =12CD =12AB∴BF =BG +FG =AB +12AB =32AB在Rt △BCF 中 BC 2+CF 2=BF 2即:(2√6)2+(12AB )2=(32AB )2 解得:AB =2√3.总结提升:本题考查了折叠的性质、矩形的性质、全等三角形的判定与性质、勾股定理等知识 熟练掌握折叠的性质 证明三角形全等是解题的关键.8.(2018春•新抚区校级期中)如图 在矩形ABCD 中 已知AD =10 AB =8 将矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处 求CE 的长.思路引领:先根据矩形的性质得AD =BC =10 AB =CD =8 再根据折叠的性质得AF =AD =10 EF =DE 在Rt △ABF 中 利用勾股定理计算出BF =6 则CF =BC ﹣BF =4 设CE =x 则DE =EF =8﹣x 然后在Rt △ECF 中根据勾股定理得到x 2+42=(8﹣x )2 再解方程即可得到CE 的长.解:∵四边形ABCD 为矩形∴AD =BC =10 AB =CD =8∵矩形ABCD 沿直线AE 折叠 顶点D 恰好落在BC 边上的F 处∴AF=AD=10 EF=DE在Rt△ABF中∵BF=√AF2−AB2=6∴CF=BC﹣BF=10﹣6=4设CE=x则DE=EF=8﹣x在Rt△ECF中∵CE2+FC2=EF2∴x2+42=(8﹣x)2解得x=3即CE=3.总结提升:本题考查了折叠的性质:折叠是一种对称变换它属于轴对称折叠前后图形的形状和大小不变位置变化对应边和对应角相等.也考查了矩形的性质和勾股定理.9.(2018秋•通川区校级期中)将一张边长为2的正方形纸片ABCD对折设折痕为EF(如图(1));再沿过点D的折痕将∠A翻折使得点A落在线段EF上的点H处(如图(2))折痕交AE于点G则EG 的长度是()A.8﹣4√3B.4√3−6C.4﹣2√3D.2√3−3思路引领:由于正方形纸片ABCD的边长为2 所以将正方形ABCD对折后AF=DF=1 由折叠的性质得出AD=DH=2 AG=GH在Rt△DFH中利用勾股定理可求出HF的长进而求出EH的长再设EG=x在Rt△EGH中利用勾股定理即可求解.解:∵正方形纸片ABCD的边长为2∴将正方形ABCD对折后AE=DF=1∵△GDH是△GDA沿直线DG翻折而成∴AD=DH=2 AG=GH在Rt△DFH中HF=√HD2−DF2=√22−12=√3∴EH=2−√3在Rt△EGH中设EG=x则GH=AG=1﹣x∴GH2=EH2+EG2即(1﹣x)2=(2−√3)2+x2解得x=2√3−3.∴EG=2√3−3.故选:D.总结提升:本题考查了正方形的性质折叠的性质勾股定理关键是学会用方程的思想方法解题.10.(2020秋•新都区校级月考)如图AD是△ABC的中线∠ADC=45°把△ADC沿着直线AD对折点C落在点E的位置.如果BC=6 那么以线段BE为边长的正方形的面积为()A.6B.72C.12D.18思路引领:由题意易得BD=CD=DE=3 再求出∠BDE=90°然后根据勾股定理求出BE最后由正方形的面积进行求解即可.解:∵D是BC中点BC=6∴BD=CD=3由折叠的性质得:CD=DE=3 ∠ADC=∠ADE=45°即∠CDE=90°∴BD=DE=3 ∠BDE=90°在Rt△BDE中由勾股定理得:BE=√BD2+DE2=√32+32=3√2∴以BE为边的正方形面积为:(3√2)2=18故选:D.总结提升:本题考查了折叠的性质、勾股定理、正方形的面积计算等知识熟练掌握勾股定理及折叠的性质是解题的关键.。

四年级数学上册第八单元:折叠图形中的角度问题专项练习(原卷版)苏教版

四年级数学上册第八单元:折叠图形中的角度问题专项练习(原卷版)苏教版

2022-2023学年四年级数学上册典型例题系列之第八单元:折叠图形中的角度问题专项练习(原卷版)一、填空题。

1.一张长方形纸如图那样折起,已知130∠=︒,那么2∠=( )︒。

2.把长方形纸折叠后(如图),∠2=75°,则∠1等于( )°。

3.下图长方形的每个角的度数都是( )。

如果将这个长方形从一条边上的点A折叠,出现两个角(如下图),已知∠1=110°,那么∠2=( )°。

4.下图是一张长方形纸折起一个角。

已知130,23∠∠∠∠=( )==,2度。

5.如图,一张长方形纸折起一个角,已知∠1=52°,那么∠2=( )°。

6.如图是一张长方形纸折起来形成的图形,∠1=40°,那么∠2=( )°。

7.如图,一个长方形和一个正方形如图叠放,∠1=( )°。

8.一个长方形和一个正方形如图叠放,∠1=∠2,则∠1=( )°。

9.如图,∠1+∠2+∠3=110°,∠l=( )°,∠3=( )°。

10.如图是一张长方形纸折起来以后的图形,已知∠2是65°,∠1是( )度。

二、解答题。

11.下图是一张长方形纸折起来以后得到的图形。

如果∠1=36°,那么∠2是多少度?如果∠2=36°,那么∠1是多少度?12.如图,把一张长方形的一个角折过来,已知∠1=70°,求∠2。

13.将一张长方形的纸按如图所示的方法折叠.∠1是多少度?14.将一张长方形的纸按如图所示的方法折叠.∠1是多少度?15.下图表示一张长方形纸折起一个角。

已知∠2=60°,∠1是多少度?请你写出计算过程。

七年级数学下册平行线【折叠问题】专项练习题+答案

七年级数学下册平行线【折叠问题】专项练习题+答案

七年级数学下册平行线【折叠问题】专项练习题+答案1、把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若∠CDF=38°,则∠EFD的度数是( B )A.72°B.64°C.48°D.52°ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为18,△ECF的周长为6,四边形纸片ABCD的周长为( B )A.20B.24C.32D.48解:由折叠的(电子版关注微信公众号:初一数学语文英语)性质知,AF=AB,EF=BE. 所以四边形纸片ABCD的周长等于△AFD和△ECF的周长和为18+6=24. 故四边形纸片ABCD的周长为24.3.将正方形纸片ABCD折叠,使得点A落在CD边上的点E处,折痕为MN.则下列说法错误的是( D )A.AE⊥MNB.AM=EMC.∠BNO=∠FNOD.∠OEF=90°解:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.∠BAM和∠FEM是对应角,所以∠BNO=∠FNO,∠BAM=∠FEM=90°,4.如图,先将正方形ABCD对折,折痕为EF,将这个正方形展平后,再分别将A,B 折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则下列说法错误的是( B )A.∠MGD=90°B.∠DGF=∠MGEC.DG=CGD.∠BCN=∠GCN解:将A,B折叠到折痕EF,使点A,B都与折痕EF上的点G重合,则直线MD,NC 分别是对称轴,根据轴对称图形中,(电子版关注微信公众号:初一数学语文英语)对应线段相等,对应角相等,5.图1的长方形ABCD中,点E在AD边上,AD∥BC,∠A=∠D=90°,∠BEA=60°.(电子版关注微信公众号:初一数学语文英语)现分别以BE,CE为折线,将A,D向BC的方向折过去,图2为对折后A,B,C,D,E五点在同一平面上的位置图.若,则∠BCE的度数为( D )A.30°B.32.5°C.35°D.37.5°解:分别以BE,CE为折线,将A,D向BC的方向翻折,则直线BE,CE分别是对称轴,6.如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC于D,交AC于E,连接AD,若AE=4cm,则△ABD的周长是多少cm.( D )A.26B.16C.18D.22由轴对称图形的性质,(电子版关注微信公众号:初一数学语文英语)得AD=CD,AE=CE.7.如图,在△ABC中,AB=AC=20cm,将△ABC对折,使A与B重合,折痕为DE,(电子版关注微信公众号:初一数学语文英语)若△BCD的周长为27cm,则BC的长为多少cm.( C )A.10B.9C.7D.138.在Rt△ABC中,CD=3cm,现将直角边BC沿直线BD折叠,使它落在斜边AB上,且与BE重合,△ABD的面积是12cm²,则AB的长是多少cm( A )A.8B.4C.9D.3。

中考数学复习《折叠问题》真题练习(含答案)

中考数学复习《折叠问题》真题练习(含答案)

中考数学复习《折叠问题》真题练习(含答案)(2017贵州安顺第7题)如图,矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( )A .6cmB .7cmC .8cmD .9cm【答案】C .(2017江苏无锡第10题)如图,△ABC 中,∠BAC =90°,AB =3,AC =4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( D )A .2B .54 C .53 D .75(2017新疆乌鲁木齐第9题)如图,在矩形ABCD 中,点F 在AD 上,点E 在BC 上,把这个矩形沿EF 折叠后,使点D 恰好落在BC 边上的G 点处,若矩形面积为43且60,2AFG GE BG ∠==,则折痕EF 的长为( C )A .1B .3 C. 2 D .23(2017重庆A 卷第18题)如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ⊥ED ,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG 沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是 .(2017河南第15题)如图,在Rt ABC ∆中,90A ∠=︒,AB AC =,21BC =+,点M ,N 分别是边BC ,AB 上的动点,沿MN 所在的直线折叠B ∠,使点B 的对应点'B 始终落在边AC 上.若'MBC∆为直角三角形,则BM 的长为 .【答案】1或212+. (2017江苏苏州第18题)如图,在矩形CD AB 中,将C ∠AB 绕点A 按逆时针方向旋转一定角度后,C B 的对应边C ''B 交CD 边于点G .连接'BB 、CC ',若D 7A =,CG 4=,G ''AB =B ,则CC '='BB (结果保留根号).【答案】745. (2017海南第17题)如图,在矩形ABCD 中,AB =3,AD =5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是 .【答案】35.(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1.(2016·吉林·3分)在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则△DEF的周长为3a(用含a的式子表示).(2016河南)如图,已知AD∥BC,AB⊥BC,AB=3,点E为射线BC上一个动点,连接AE,将△ABE沿AE 折叠,点B落在点B′处,过点B′作AD的垂线,分别交AD,BC于点M,N.当点B′为线段MN的三等分点时,BE的长为或.(2017甘肃兰州第26题)如图,1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:BDF△是等腰三角形;(2)如图2,过点D作DG BE∥,交BC于点G,连结FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若6AB,8AD,求FG的长.【答案】(1)证明见解析;(2) 152.【解析】试题分析: (1)根据两直线平行内错角相等及折叠特性判断;(2)①根据已知矩形性质及第一问证得邻边相等判断;②根据折叠特性设未知边,构造勾股定理列方程求解.试题解析:(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF,∴△BDF是等腰三角形;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵FD∥BG,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB =6,AD =8, ∴BD =10. ∴OB =12BD =5. 假设DF =BF =x ,∴AF =AD ﹣DF =8﹣x .∴在直角△ABF 中,AB 2+A 2=BF 2,即62+(8﹣x )2=x 2, 解得x =254, 即BF =254, ∴FO =222522()54BF OB -=-=154,∴FG =2FO =152.(2017浙江金华第23题)如图1,将ABC ∆纸片沿中位线EH 折叠,使点A 的对称点D 落在BC 边上,再将纸片分别沿等腰BED ∆和等腰DHC ∆的底边上的高线EF ,HG 折叠,折叠后的三个三角形拼合形成一个矩形,类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.(1)将ABCD 纸片按图2的方式折叠成一个叠合矩形AEFG ,则操作形成的折痕分别是线段_____,_____;:ABCDAEFG S S=矩形 ______.(2)ABCD 纸片还可以按图3的方式折叠成一个叠合矩形EFGH ,若5EF =,12EH =,求AD 的长.(3)如图4,四边形ABCD 纸片满足,,,8,10AD BC AD BC AB BC AB CD <⊥==.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出,AD BC 的长.【答案】(1)(1)AE ;GF ;1:2;(2)13;(3)按图1的折法,则AD =1,BC =7;按图2的折法,则AD =134 ,BC =374. 【解析】试题分析:(1)由图2观察可得出答案为AE ,GF ,由折叠的轴对称性质可得出答案为1:2;(2)由EF 和EH 的长度根据勾股定理可求出FH 的长度,再由折叠的轴对称性质易证△AEH ≌△CGF ;再根据全等三角形的性质可得出AD 的长度;(3)由折叠的图可分别求出AD 和BC 的长度.(3)解:本题有以下两种基本折法,如图1,图2所示.按图1的折法,则AD =1,BC =7. 按图2的折法,则AD =134 ,BC =374.(2015年河南3分)如图,正方形ABCD 的边长是16,点E 在边AB 上,AE =3,点F 是边BC 上不与点B 、C 重合的一个动点,把△EBF 沿EF 折叠,点B 落在B ′处,若△CDB ′恰为等腰三角形,则DB ′的长为 ▲ .【答案】16或45.(2015年江苏泰州3分)如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为 ▲ .【答案】245. (2015湖北鄂州第8题3分)如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则sin ∠ECF =( )A .B .C .D .【答案】D .(2015•四川自贡,第10题4分) 如图,在矩形ABCD 中,AB 4AD 6==,,E 是AB 边的中点,F 是线段BC边上的动点,将△EBF 沿EF 所在直线折叠得到△'EB F ,连接'B D ‘,则'B D ‘的最小值是 ( A )B 'EDA BCFA . 2102-B .6C .2132-D .4(2015•绵阳第12题,3分)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( B )A .B .C .D .(2015•四川省内江市,第14题,5分)如图,在四边形ABCD 中,AD ∥BC ,∠C =90°,E 为CD 上一点,分别以EA ,EB 为折痕将两个角(∠D ,∠C )向内折叠,点C ,D 恰好落在AB 边的点F 处.若AD =2,BC =3,则EF 的长为.(2015•浙江滨州,第17题4分)如图,在平面直角坐标系中,将矩形AOCD 沿直线AE 折叠(点E 在边DC 上),折叠后顶点D 恰好落在边OC 上的点F 处.若点D 的坐标为(10,8),则点E 的坐标为 .【答案】(10,3)。

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)

八年级数学下册《图形的折叠问题》练习题与答案(人教版)一、选择题1.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为( )A.20°B.30°C.35°D.55°2.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=( )A.4cmB.6cmC.8cmD.10cm3.如图,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.若BE平分∠ABC,且AB=5,BE=4,则AE=( )A.2B.3C.4D.54.在△ABC中,AB=10,AC=12,BC=9,AD是BC边上的高,将△ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则△DEF的周长为( )A.9.5B.10.5C.11D.15.55.如图,将三角形纸片ABC沿直线DE折叠后,使得点B与点A重合,折痕分别交BC,AB于点D,E.如果AC=5cm,△ADC的周长为17cm,那么BC的长为( )A.7cmB.10cmC.12cmD.22cm6.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )A.8 cmB.5 2 cmC.5.5 cmD.1 cm二、填空题7.如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.8.如图,将菱形ABCD折叠,使点A恰好落在菱形的对角线交点O处,折痕为EF.若菱形的边长为2 cm,∠BAD=120°,则EF的长为 .9.如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后端点D恰好落在边OC 上的点F处.若点D的坐标为(10,8),则点E的坐标为10.把一张矩形ABCD纸片按如图方式折叠,使点A与点E重合,点C与点F重合(E、F两点均在BD上),折痕分别为BH、DG.若AB=6cm,BC=8cm,则线段FG的长为11.如图,有一块矩形纸片ABCD,AB=8,AD=6,将纸片折叠,使得AD边落在AB边上,折痕为AE,再将△AED沿DE向右翻折,AE与BC的交点为F,则△CEF面积为________.12.把图一的矩形纸片ABCD折叠,B、C两点恰好重合落在AD边上的点P处(如图二).已知∠MPN=90°,PM=3,PN=4,那么矩形纸片ABCD的面积为______.三、解答题13.如图,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已AB=32cm,BC=40cm,求CE的长.14.如图,在矩形ABCD中,AB=6,BC=8.将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F 处.(1)求EF的长;(2)求四边形ABCE的面积.15.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.16.如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.(1)当m=3时,点B的坐标为_________,点E的坐标为_________;(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.17.如图,在△ABC中,∠BAC=45°,AD⊥BC于D,将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H.(1)求证:四边形AFHG为正方形;(2)若BD=6,CD=4,求AB的长.18.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.19.在正方形ABCD中,E、F分别为BC、CD的中点,AE与BF相交于点G.(1)如图1,求证:AE⊥BF;(2)如图2,将△BCF沿BF折叠,得到△BPF,延长FP交BA的延长线于点Q,若AB=4求QF的值.20.如图1,在△OAB中,∠OAB=90º,∠AOB=30º,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.(1)求点B的坐标;(2)求证:四边形ABCE是平行四边形;(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.如图1,在矩形纸片ABCD中,AB=12 cm,AD=20 cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P,Q也随之移动;①当点Q与点C重合时(如图2),求菱形BFEP的边长;②若限定P,Q分别在边BA,BC上移动,求出点E在边AD上移动的最大距离.图1 图2参考答案1.A.2.A3.B.4.D.5.C.6.A7.答案为:36°.8.答案为:3(cm).10.答案为:3cm.11.答案为:2.12.答案为:28.8.13.解:∵四边形ABCD是矩形∴AD=BC=40cm,DC=AB=32cm;∠B=90°由题意得:AF=AD=40cm;DE=EF(设为x),EC=40﹣x;由勾股定理得:BF2=402﹣322=576∴BF=24,CF=40﹣24=16;由勾股定理得:x2=162+(40﹣x)2,解得:x=23.2∴EC=32﹣23.2=8.8.14.解:(1)设EF=x依题意知:△CDE≌△CFE∴DE=EF=x,CF=CD=6.∵在Rt△ACD中,AC=10∴AF=AC﹣CF=4,AE=AD﹣DE=8﹣x.在Rt△AEF中,有AE2=AF2+EF2即(8﹣x)2=42+x2解得x=3,即:EF=3.(2)由(1)知:AE=8﹣3=5∴S梯形ABCE=(5+8)×6÷2=39.15.解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE∵AE=A′E=BC,∠AEF=∠BCE∴△AEF≌△BCE∴△GEF≌△HCE∴EG=CH;(2)∵AF=FG=2,∠FDG=45°∴FD=2,AD=2+2;∵AF=FG=HE=EB=2,AE=AD=2+ 2∴AB=AE+EB=2+2+2=2+2 2.16.解:(1)(3,4);(0,1)(2)点E能恰好落在x轴上.理由如下:∵四边形OABC为长方形∴BC=OA=4,∠AOC=∠DCE=90°由折叠的性质可得DE=BD=BC﹣CD=4﹣1=3,AE=AB=OC=m.如图,假设点E恰好落在x轴上.在Rt△CDE中,由勾股定理可得EC=22,则有OE=OC﹣CE=m﹣2 2.在Rt△AOE中,OA2+OE2=AE2,即42+(m﹣22)2=m2,解得m=3 2.17.证明:(1)∵AD⊥BC∴∠ADB=∠ADC=90°;由折叠可知,AG=AF=AD,∠AGH=∠AFH=90°∠BAG=∠BAD,∠CAF=∠CAD∴∠BAG+∠CAF=∠BAD+∠CAD=∠BAC=45°;∴∠GAF=∠BAG+∠CAF+∠BAC=90°;∴四边形AFHG是正方形解:(2)∵四边形AFHG是正方形∴∠BHC=90°又GH=HF=AD,GB=BD=6,CF=CD=4;设AD的长为x则BH=GH﹣GB=x﹣6,CH=HF﹣CF=x﹣4.在Rt△BCH中,BH2+CH2=BC2∴(x﹣6)2+(x﹣4)2=102,解得x1=12,x2=﹣2(不合题意,舍去) ∴AD=12∴AB=6 5.18.证明:(1)由题意可得,△BCE≌△BFE∴∠BEC=∠BEF,FE=CE∵FG∥CE∴∠FGE=∠CEB∴∠FGE=∠FEG∴FG=FE∴FG=EC∴四边形CEFG是平行四边形又∵CE=FE∴四边形CEFG是菱形;(2)∵矩形ABCD中,AB=6,AD=10,BC=BF∴∠BAF=90°,AD=BC=BF=10∴AF=8∴DF=2设EF=x,则CE=x,DE=6﹣x∵∠FDE=90°∴22+(6﹣x)2=x 2,解得,x =103 ∴CE =103∴四边形CEFG 的面积是:CE •DF =103×2=203. 19.证明:(1)∵E ,F 分别是正方形ABCD 边BC ,CD 的中点 ∴CF =BE在△ABE 和△BCF 中∴Rt △ABE ≌Rt △BCF(SAS)∴∠BAE =∠CBF又∵∠BAE +∠BEA =90°∴∠CBF +∠BEA =90°∴∠BGE =90°∴AE ⊥BF ;(2)解:∵将△BCF 沿BF 折叠,得到△BPF∴FP =FC ,∠PFB =∠BFC ,∠FPB =90°∵CD ∥AB∴∠CFB =∠ABF∴∠ABF =∠PFB∴QF =QB设QF =x ,PB =BC =AB =4,CF =PF =2∴QB =x ,PQ =x ﹣2在Rt △BPQ 中∴x 2=(x ﹣2)2+42解得:x =5,即QF =5.20.解:(1)∵在△OAB 中,∠OAB =90º,∠AOB =30º,OB =8 ∴OA =43,AB =4.∴点B 的坐标为(43,4).(2)∵∠OAB =90º∴AB ⊥x 轴∴AB ∥EC.又∵△OBC 是等边三角形∴OC =OB =8.又∵D 是OB 的中点,即AD 是Rt △OAB 斜边上的中线∴AD =OD∴∠OAD =∠AOD =30º∴OE =4.∴EC =OC -OE =4.∴AB =EC.∴四边形ABCE 是平行四边形.(3)设OG =x ,则由折叠对称的性质,得GA =GC =8-x. 在Rt △OAG 中,由勾股定理,得GA 2=OA 2+OG2 即,解得,x =1. ∴OG 的长为1.21. (1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ∴点B 与点E 关于PQ 对称∴PB =PE ,BF =EF ,∠BPF =∠EPF.又∵EF ∥AB∴∠BPF =∠EFP ,∴∠EPF =∠EFP∴EP =EF ,∴BP =BF =EF =EP ∴四边形BFEP 为菱形.(2)解:①∵四边形ABCD 是矩形∴BC =AD =20,CD =AB =12,∠A =∠D =90°.∵点B 与点E 关于PQ 对称∴CE =BC =20.在Rt △CDE 中,DE =CE 2-CD 2=16∴AE =AD -DE =20-16=4.在Rt △APE 中,AE =4,AP =12-PB =12-PE∴EP 2=42+(12-EP)2.解得EP =203∴菱形BFEP 的边长为203cm. ②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =4. 当点P 与点A 重合时,如图点E离点A最远,此时四边形ABQE为正方形,AE=AB=12 ∴点E在边AD上移动的最大距离为8 cm.。

一次函数中的折叠、翻折、对称问题专题(专项练习)

一次函数中的折叠、翻折、对称问题专题(专项练习)

一次函数中的折叠、翻折、对称问题专题(专项练习)1.如图,一次函数y kx b =+的图象经过点()0,2-和()2,0,该图象记作直线l .某同学为观察k ,b 对函数图象的影响,将这个一次函数中的k 与b 交换位置后得到一个新的函数,新函数图象记作直线l '.(1) 求直线l 的解析式;(2) 若直线3x =与直线l ,l '分别相交于点A ,B ,求AB 的长;(3) 若直线x m =与直线l ,l '及x 轴有三个不同的交点,当其中两点关于第三点对称时,直接写出m 的值.2.一次函数y 3+2的图象与x 轴、y 轴分别交于点A 、B ,以AB 为边在第二象限内作等边△ABC .(1)求C 点的坐标;(2)在第二象限内有一点M (m ,2),使ABMABCSS=,求M 点的坐标;(3)将△ABC 沿着直线AB 翻折,点C 落在点E 处;再将△ABE 绕点E 顺时针方向旋转15°,点B 落在点F 处,过点F 作FG ⊥y 轴于G .求△EFG 的面积.3.一次函数y =kx +b (k ≠0)的图象与x 轴、y 轴分别相交于点A (﹣8,0)和点B (0,6).点C 在线段AO 上.如图,将△CBO 沿BC 折叠后,点O 恰好落在AB 边上点D 处.(1)求一次函数的解析式; (2)求AC 的长;(3)点P 为x 轴上一点.且以A ,B ,P 为顶点的三角形是等腰三角形,请直接写出P 点坐标.4.如图,一次函数y=-23x+b 的图象与x 轴、y 轴分别交于点A 、B ,线段AB 的中点为D (3,2).将△AOB 沿直线CD 折叠,使点A 与点B 重合,直线CD 与x 轴交于点C .(1)求此一次函数的解析式; (2)求点C 的坐标;(3)在坐标平面内存在点P (除点C 外),使得以A 、D 、P 为顶点的三角形与△ACD 全等,请直接写出点P 的坐标.5.如图1.在平面直角坐标系中,一次函数323y x =-+x 轴,y 轴分别交于点A 和点C ,过点A 作AB x ⊥轴,垂足为点A ;过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AC 的长为______,ACO ∠=______度.(2)将图2中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图②,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC 与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,一次函数3124y x =+的图像分别交x ,y 轴于点A 和B ,与经过点3,02C ⎛⎫⎪⎝⎭,()0,3D -的直线交于点E .(1) 求直线CD 的函数解析式及点E 的坐标; (2) 点P 是线段DE 上的动点,连接BP .① 当BP 分BDE △面积为1:2时,请直接写出点P 的坐标;② 将BPE 沿着直线BP 折叠,点E 对应点E ',当点E '落在坐标轴上时,直接写出点P 的坐标.7.平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0)、A(a,0)、C(0,b),且a、b满足2816210-+++-=;b b a b(1) 矩形的顶点B的坐标是(,);(2) 若D是OC中点,沿AD折叠矩形OABC使O点落在E处,折痕为DA,连CE并延长交AB于F,求直线CE的解析式;(3) 在(2)的条件下,平面内是否存在一点P,使得△OFP是以OF为直角边的等腰直角三角形.若存在,请写出点P的坐标;若不存在,请说明理由.=-+交y轴于点A,交x轴于点B,点C为8.如图,在平面直角坐标系中,直线y x m线段OB的中点,作点C关于直线AB的对称点F,连接BF和OF,OF交AC于点E,交AB于点M.(1) 求点F的坐标.(用m表示)(2) 求证:OF AC⊥.9.如图,将正方形AOBC放在平面直角坐标系中,点O是坐标系原点,A点坐标为(-1,3).(1) 求出点B、C的坐标:(2) 在x轴上有一动点Q,过点Q作PQ⊥x轴,交BC于点P,连接AP,将四边形AOBP 沿AP翻折,当点O刚好落在y轴上点E处时,求点P、D的坐标.10.如图,在平面直角坐标系xOy中,直线y=﹣43x+4与x轴、y轴分别交于点A、点B,点D(0,﹣6)在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处,直线CD交AB于点E.(1) 直接写出点A、B、C的坐标;(2) 求△ADE的面积.11.如图1,一次函数y=34x+3的图象与x轴相交于点A,与y轴相交于点B,点D是直线AB上的一个动点,CD⊥x轴于点C,点P是射线CD上的一个动点.(1)求点A,B的坐标;(2)如图2,当点D在第一象限,且AB=BD时,将ACP沿着AP翻折,当点C的对应点C'落在直线AB上时,求点P的坐标.12.如图1,在矩形OACB中,点A,B分别在x轴、y轴正半轴上,点C在第一象限,OA=8,OB=6.(1) 请直接写出点C的坐标;(2) 如图②,点F在BC上,连接AF,把△ACF沿着AF折叠,点C刚好与线段AB上一点C′重合,求线段CF的长度;(3) 如图3,动点P(x,y)在第一象限,且点P在直线y=2x﹣4上,点D在线段AC 上,是否存在直角顶点为P的等腰直角三角形BDP,若存在,请求出直线PD的的解析式;若不存在,请说明理由.13.如图,在平面直角坐标系xOy中,直线443y x=-+与x轴、y轴分别交于点A、点B ,点D 在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处.(1) 求AB 的长;(2) 求点C 和点D 的坐标; (3) y 轴上是否存在一点P ,使得12PABOCDS S =若存在,直接写出点P 的坐标;若不存在,请说明理由.14.如图,已知一次函数334y x =+的图像与坐标轴交于点A 、B ,点C 在线段AO 上,将△BOC 沿BC 翻折,点O 恰好落在AB 上点D 处.(1)求点A 、点B 的坐标; (2)求点C 的坐标;15.在平面直角坐标系中,一次函数443y x =-+的图象分别与x 轴、y 轴交于点A 、B ,点C 在线段OB 上,将△AOB 沿AC 翻折,点B 恰好落在x 轴上的点D 处,直线DC 交AB 于点E .(1)求点C 的坐标;(2)若点P 在直线DC 上,点Q 是y 轴上一点(不与点B 重合),当△CPQ 和△CBE 全等时,直接写出点P 的坐标 (不包括这两个三角形重合的情况).16.已知一次函数y =-3x +3的图象分别与x 轴,y 轴交于A ,B 两点,点C (3,0). (1) 如图1,点D 与点C 关于y 轴对称,点E 在线段BC 上且到两坐标轴的距离相等,连接DE ,交y 轴于点F .求点E 的坐标;(2) △AOB 与△FOD 是否全等,请说明理由;(3) 如图2,点G 与点B 关于x 轴对称,点P 在直线GC 上,若△ABP 是等腰三角形,直接写出点P 的坐标.17.如图,在平面直角坐标系xOy 中,直线443y x =-+与x 轴、y 轴分别交于点A 、点B ,点()0,6D -在y 轴的负半轴上,若将DAB 沿直线AD 折叠,点B 恰好落在x 轴正半轴上的点C 处,直线CD 交AB 于点E .(1) 直接写出点A 、B 、C 的坐标; (2) 求ADE 的面积.18.已知:如图,一次函数334y x =-的图像分别与x 轴、y 轴相交于点A 、B ,且与经过x 轴负半轴上的点C 的一次函数y =kx +b 的图像相交于点D ,直线CD 与y 轴相交于点E ,E 与B 关于x 轴对称,OA =3OC .(1) 直线CD 的函数表达式为______;点D 的坐标______;(直接写出结果) (2) 点P 为线段DE 上的一个动点,连接BP .① 若直线BP 将△ACD 的面积分为79∶两部分,试求点P 的坐标;② 点P 是否存在某个位置,将△BPD 沿着直线BP 翻折,使得点D 恰好落在直线AB 上方的坐标轴上?若存在,求点P 的坐标;若不存在,请说明理由.19.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将ABC 沿着直线AB 翻折,使点C 落在点()0,18D 上,求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是()0,8,直线AB 上有一点P ,使得PDE △周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.20.将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1) 如果点C 在x 轴上,将ABC 沿着直线AB 翻折,使点C 落在点()0,18D 上,求直线BC 的坐标三角形的面积;(2) 如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3) 在(1)(2)条件下,如果点E 的坐标是()0,8,直线AB 上有一点P ,使得PDE △周长最小,求此时△PBC 的面积.21.如图1,在平面直角坐标系中,一次函数()60y kx k =+<的图象与x 轴,y 轴分别交于点A ,点C ,过点A 作AB x ⊥轴,垂足为点A ,过点C 作CB y ⊥轴,垂足为点C ,两条垂线相交于点B .(1)线段AB 的长为______,用关于k 的代数式表示BC 的长______.(2)折叠图1中的ABC ∆,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2,若CD 平分BCA ∠,①求k 的值和AD 的长度.②在直线AC 上,是否存在点P ,使得APD ∆为等腰三角形?若存在,请直接写出符合条件的所有点P 的坐标;若不存在,请说明理由.22.如图1,在平面直角坐标系中,一次函数y 33x 轴,y 轴分别交于点A .点C ,过点1作AB ⊥x 轴,垂足为点A ,过点C 作CB ⊥y 轴,垂足为点C ,两条垂线相交于点B .(1)线段OC ,OA ,AC 的长分别为OC = ,OA = ,AC = ,∠ACO = 度. (2)将图1中的ABC 折叠,使点A 与点C 重合,再将折叠后的图形展开,折痕DE 交AB 于点D ,交AC 于点E ,连接CD ,如图2,求线段AD 的长;(3)点M 是直线AC 上一个动点(不与点A 、点C 重合).过点M 的另一条直线MN 与y 轴相交于点N .是否存在点M ,使AOC 与MCN △全等?若存在,请求出点M 的坐标;若不存在,请说明理由.23.如图①,在平面直角坐标系中,一次函数334y x =-+分别与x 轴和y 轴交于点A 、点B ,四边形OACB 为矩形.(1)如图②,点F 在BC 上,连接AF ,把ACF △沿着AF 折叠,点C 刚好与线段AB 上一点C '重合.①求点F 的坐标;②请直接写出直线FC '的解析式:______;(2)如图③,动点(),P x y 在一次函数()231.54y x x =-<<的图象上运动,点D 在线段AC 上,是否存在直角顶点为P 的等腰直角BDP △,若存在,请求出点P 的坐标;若不存在,请说明理由.24.如图,在直角坐标系中放入一个矩形纸片ABCO ,将纸片翻折后,点B 恰好落在x 轴上,记为B ',折痕为CE .直线CE 的关系式是182y x =-+,与x 轴相交于点F ,且AE =3.(1)OC = ,OF = ;(2)求点B 的坐标;(3)求矩形ABCO的面积.25.如图,Rt△ABC的顶点A(﹣6,0),B(m,0),AC交y轴正半轴于点E,将Rt△ABC 沿AC翻折得△ADC,点D恰好落在y轴上.(1)若DO平分∠ADC,求m的值;(2)若E(0,3),求C点的坐标;(3)过点E的直线MN分别交x轴,CD于M,N,且M,N分别是AB,CD的中点,求m的值.。

折叠问题练习题(含答案)

折叠问题练习题(含答案)

专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(1)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(2)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片 ABC 使点 C 与点 A 重合,然后展开铺平,得到折痕 DE ;第二步:将△ABC 沿折痕 DE 展开,然后将△DEC 绕点 D 逆时针方向旋转得到△DFG ,点 E ,C 的对应点分别是点 F ,G ,射线 GF 与边 AC 交于点 M(点 M 不与点 A 重合),与边 AB 交于点 N ,线段 DG 与边 AC 交于点 P.数学思考:(1)求 DC 的长;(2)在△DEC 绕点 D 旋转的过程中,试判断 MF 与 ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点 D 旋转的过程中,探究 下列问题:① 如图 2,当 GF ∥BC 时,求 AM 的长;② 如图 3,当 GF 经过点 B 时,AM 的长为③ 当△DEC 绕点 D 旋转至 DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线 GF ,并直接写出 AM 的长(要求:尺规作图 ,不写作法,保留 作图痕迹,标记出所有相应的字母)2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论;②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF 的值.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.4.Rt△ABC中,∠ACB=90°,AC=3,BC=7,点P是边AC上不与点A、C重合的一点,作PD∥BC交AB边于点D.(1)如图1,将△APD沿直线AB翻折,得到△AP'D,作AE∥PD.求证:AE=ED;(2)将△APD绕点A顺时针旋转,得到△AP'D',点P、D的对应点分别为点P'、D',①如图2,当点D'在△ABC内部时,连接P′C和D'B,求证:△AP'C∽△AD'B;②如果AP:PC=5:1,连接DD',且DD'=√2AD,那么请直接写出点D'到直线BC的距离.专题4:折叠问题【典例引领】例:如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.(3)当点F与点C重合时如图(1),易证:DF+BE=AF(不需证明);(4)(2)当点F在DC的延长线上时如图(2),当点F在CD的延长线上时如图(3),线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.【答案】(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明见解答.【分析】(1)由折叠可得AB=AB′,BE=B'E,再根据四边形ABCD是正方形,易证B'E=B'F,即可证明DF+BE=AF;(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.【解答】解:(1)由折叠可得AB=AB′,BE=B'E,∵四边形ABCD是正方形,∴AB=DC=DF,∠CB'E=45°,∴B'E=B'F,∴AF=AB'+B'F,即DF+BE=AF;(5)图(2)的结论:DF+BE=AF;图(3)的结论:BE﹣DF=AF;图(2)的证明:延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,∵CB∥AD,∴∠AEB=∠EAD,∵∠BAE=∠B'AE,∴∠B'AE=∠DAG,∴∠GAF=∠DAE,∴∠AGD=∠GAF,∴GF=AF,∴BE+DF=AF;图(3)的证明:在BC上取点M,使BM=DF,连接AM,需证△ABM≌△ADF,∴∠BAM=∠FAD,AF=AM ∵ΔABE≌AB'E∴∠BAE=∠EAB′,∴∠MAE=∠DAE,∵AD∥BE,∴∠AEM=∠DAE,∴∠MAE=∠AEM,∴ME=MA=AF,∴BE﹣DF=AF.【强化训练】1、数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC 中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC 进行以下操作:第一步:折叠三角形纸片ABC 使点C 与点A 重合,然后展开铺平,得到折痕DE;第二步:将△ABC 沿折痕DE 展开,然后将△DEC 绕点D 逆时针方向旋转得到△DFG,点E,C 的对应点分别是点F,G,射线GF 与边AC 交于点M(点M 不与点A 重合),与边AB交于点N,线段DG 与边AC 交于点P.数学思考:(1)求DC 的长;(2)在△DEC 绕点D 旋转的过程中,试判断MF 与ME 的数量关系,并证明你的结论;问题解决:(3)在△DEC 绕点D 旋转的过程中,探究下列问题:①如图2,当GF∥BC 时,求AM 的长;②如图3,当GF 经过点B 时,AM 的长为③当△DEC 绕点D 旋转至DE 平分∠FDG 的位置时,试在图 4 中作出此时的△DFG 和射线GF,并直接写出AM 的长(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)【答案】(1) DC=5;(2)相等,理由见解析;(3)①AM=3;②AM=74;③AM=10 3√5【分析】(1)理由勾股定理求出BC即可解决问题.(2)结论:MF=ME.证明Rt△DMF≌Rt△DME(HL),即可解决问题.(3)①如图2中,作AH⊥BC于H,交FG于K.由KM∥CH,推出AK AH =AMAC,求出AK,AH即可解决问题.②证明BM=MC,设BM=MC=x,在Rt△ABM中,根据BM2=AB2+AM2,构建方程即可解决问题.③尺规作图如图4-1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4-1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.【解答】解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC=√AB2+BC2=√62+82=10,∴CD=12BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH=AB⋅ACBC =245,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH-KH=95,∵KM∥CH,∴AKAH =AMAC,∴95245=AM8,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C ,∴∠MBC=∠C ,∴BM=MC ,设BM=MC=x ,在Rt △ABM 中,∵BM 2=AB 2+AM 2,∴62+(8-x )2=x 2,∴x=254∴AM=AC-CM=8-254=74.故答案为74.③尺规作图如图4-1所示.作DR 平分∠CDF ,在DR 上截取DG=DC ,分别以D ,G 为圆心,DE ,CE 为半径画弧,两弧交于点F ,△DFG 即为所求.如图4-1中,连接DM ,设DG 交AC 于T ,作TH ⊥CD 于H ,作DK 平分∠CDG 交TH 于K ,作KJ ⊥DG 于J .易证△DEM ≌△DHK (AAS ),推出EM=HK ,只要求出HK 即可.∵TE ⊥DE ,TH ⊥DC ,DG 平分∠CDE ,∴TE=TH ,设TE=TH=x ,在Rt △TCH 中,x 2+22=(4-x )2,∴x=32, ∴DT =√32+(32)2=32√5, ∵DK 平分∠CDT ,KJ ⊥DT ,KH ⊥CD ,∴KJ=KH ,设KJ=KH=y ,在Rt △KTJ 中,y 2+(32√5−3)2=(32−y)2∴y =3√5−6,∴EM=3√5−6∴AM =AE −EM =4−(3√5−6)=10−3√5.2.(2016内蒙古包头市)如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上点,连接EF .(1)图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使M F ∥CA . ①试判断四边形AE M F 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.【答案】(1)52;(2)①四边形AE M F 为菱形;②4√109;(3)32. 【分析】试题分析:(1)先利用折叠的性质得到EF ⊥AB ,△AEF ≌△DEF ,则S △AEF ≌S △DEF ,则易得S △ABC =4S △AEF ,再证明Rt △AEF ∽Rt △ABC ,然后根据相似三角形的性质得到=()2,再利用勾股定理求出AB即可得到AE 的长;(2)①通过证明四条边相等判断四边形AEMF 为菱形;②连结AM 交EF 于点O ,如图②,设AE=x ,则EM=x ,CE=4﹣x ,先证明△CME ∽△CBA 得到==,解出x 后计算出CM=,再利用勾股定理计算出AM ,然后根据菱形的面积公式计算EF ;(3)如图③,作FH ⊥BC 于H ,先证明△NCE ∽△NFH ,利用相似比得到FH :NH=4:7,设FH=4x ,NH=7x ,则CH=7x ﹣1,BH=3﹣(7x ﹣1)=4﹣7x ,再证明△BFH ∽△BAC ,利用相似比可计算出x=,则可计算出FH 和BH ,接着利用勾股定理计算出BF ,从而得到AF 的长,于是可计算出的值.【解答】(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=;(2)①四边形AEMF为菱形.理由如下:如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形;②连结AM交EF于点O,如图②,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM===,∵S菱形AEMF=EF•AM=AE•CM,∴EF=2×=;(6)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=,∴FH=4x=,BH=4﹣7x=,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.3.如图1,四边形的对角线相交于点,,,,.(1)填空:与的数量关系为;(2)求的值;(3)将沿翻折,得到(如图2),连接,与相交于点.若,求的长.【答案】(1)∠BAD+∠ACB=180°;(2);(3)1.【分析】(1)在△ABD中,根据三角形的内角和定理即可得出结论:∠BAD+∠ACB=180°;(2)如图1中,作DE∥AB交AC于E.由△OAB≌△OED,可得AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,由△EAD∽△ABC,推出,可得,可得4y2+2xy﹣x2=0,即,求出的值即可解决问题;(3)如图2中,作DE∥AB交AC于E.想办法证明△PA′D∽△PBC,可得,可得,即,由此即可解决问题;【解答】(1)如图1中,在△ABD中,∵∠BAD+∠ABD+∠ADB=180°,∠ABD+∠ADB=∠ACB,∴∠BAD+∠ACB=180°,故答案为∠BAD+∠ACB=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠OBA=∠ODE,∵OB=OD,∴△OAB≌△OED,∴AB=DE,OA=OE,设AB=DE=CE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠ACB=180°,∴∠EDA=∠ACB,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴,∴,∴4y2+2xy﹣x2=0,∴,∴(负根已经舍弃),∴.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,∵△EAD ∽△ACB ,∴∠DAE=∠ABC=∠DA′C , ∴∠DA′C+∠A′CB=180°,∴A′D ∥BC , ∴△PA′D ∽△PBC ,∴,∴,即∴PC=1.4.Rt △ABC 中,∠ACB =90°,AC =3,BC =7,点P 是边AC 上不与点A 、C 重合的一点,作PD ∥BC 交AB 边于点D .(1)如图1,将△APD 沿直线AB 翻折,得到△AP 'D ,作AE ∥PD .求证:AE =ED ; (2)将△APD 绕点A 顺时针旋转,得到△AP 'D ',点P 、D 的对应点分别为点P '、D ', ①如图2,当点D '在△ABC 内部时,连接P ′C 和D 'B ,求证:△AP 'C ∽△AD 'B ;②如果AP :PC =5:1,连接DD ',且DD '=√2AD ,那么请直接写出点D '到直线BC 的距离.【答案】(1)见解析;(2)①见解析;②点D '到直线BC 的距离为176或536 【分析】(1)由折叠的性质和平行线的性质可得∠EAD =∠ADP =∠ADP ',即可得AE =DE ;(2)①由题意可证△APD ∽△ACB ,可得APAC =ADAB ,由旋转的性质可得AP =AP ',AD =AD ',∠PAD =∠P 'AD ',即∠P 'AC =∠D 'AB ,,则△AP 'C ∽△AD 'B ;②分点D '在直线BC 的下方和点D '在直线BC 的上方AP′AC =AD′AB两种情况讨论,根据平行线分线段成比例,可求PD =356,通过证明△AMD '≌△DPA ,可得AM =PD =356,即可求点D '到直线BC 的距离.【解答】证明:(1)∵将△APD 沿直线AB 翻折,得到△AP 'D , ∴∠ADP '=∠ADP , ∵AE ∥PD , ∴∠EAD =∠ADP , ∴∠EAD =∠ADP ', ∴AE =DE(2)①∵DP ∥BC ,∴△APD∽△ACB,∴APAC =ADAB,∵旋转,∴AP=AP',AD=AD',∠PAD=∠P'AD',∴∠P'AC=∠D'AB,AP′AC =AD′AB,∴△AP'C∽△AD'B②若点D'在直线BC下方,如图,过点A作AF⊥DD',过点D'作D'M⊥AC,交AC的延长线于M,∵AP:PC=5:1,∴AP:AC=5:6,∵PD∥BC,∴APAC =PDBC=56,∵BC=7,∴PD=356,∵旋转,∴AD=AD',且AF⊥DD',∴DF=D'F=12D'D,∠ADF=∠AD'F,∵cos∠ADF=DFAD =12D′DAD=√22ADAD√22,∴∠ADF=45°,∴∠AD'F=45°,∴∠D'AD=90°∴∠D'AM+∠PAD=90°,∵D'M⊥AM,∴∠D'AM+∠AD'M=90°,∴∠PAD=∠AD'M,且AD'=AD,∠AMD'=∠APD,∴△AD'M≌△DAP(AAS)∴PD=AM=356,∵CM=AM﹣AC=356﹣3,∴CM =176,∴点D '到直线BC 的距离为176若点D '在直线BC 的上方,如图,过点D '作D 'M ⊥AC ,交CA 的延长线于点M ,同理可证:△AMD '≌△DPA , ∴AM =PD =356,∵CM =AC +AM , ∴CM =3+356=356,∴点D '到直线BC 的距离为356综上所述:点D '到直线BC 的距离为176或536;。

圆柱体中的折叠问题专项练习题(自选)附答案

圆柱体中的折叠问题专项练习题(自选)附答案

圆柱体中的折叠问题专项练习题(自选)附
答案
考虑一个圆柱体,我们将在此文档中讨论与其折叠有关的问题。

以下是一些专项练题,每个题目后面都附有答案。

希望能帮助大家
加深对圆柱体折叠问题的理解。

练题一
假设一个圆柱体的高度为 h,底面圆的半径为 r。

将这个圆柱
体沿着高度方向折叠,让两个底面圆紧密贴合。

那么折叠后的形状
是否仍然是一个圆柱体?如果不是,请说明折叠后的形状。

答案:折叠后的形状不再是一个圆柱体,而是一个圆锥。

圆柱
体被无限延长的底面圆所转换,变成了一个圆锥。

练题二
继续考虑一个圆柱体的高度为 h,底面圆的半径为 r。

将这个
圆柱体沿着高度方向折叠,使得两个底面圆不仅紧密贴合,而且重合。

那么折叠后的形状是什么?
答案:折叠后的形状是一个圆盘或圆盖。

两个底面圆完全重合,形成了一个平面。

练题三
假设一个圆柱体的高度为 h,底面圆的半径为 r。

将这个圆柱
体沿着底面圆的直径方向折叠,使得两个底面圆紧密贴合。

那么折
叠后的形状是否仍然是一个圆柱体?如果不是,请说明折叠后的形状。

答案:折叠后的形状仍然是一个圆柱体。

底面圆沿着直径方向
折叠,不会改变圆柱体的形状。

...
(继续添加其他练题及其答案)
希望以上练习题能帮助您加深对圆柱体折叠问题的理解。

如果您有任何其他问题,欢迎随时向我提问。

折叠问题专题练知识讲解

折叠问题专题练知识讲解

折叠问题专题练折叠问题1.将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为_____2.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB =65°,则∠AED′等于______3、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=( )A .110°B .115°C .120°D .130°4、如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A´处,若∠A´BC =20°,则∠A´BD 的度数为( )A .15°B .20°C .25°D .30°5、如图,将纸片△ABC 沿DE 折叠,点A 落在点A ′处,已知∠1+∠2=100°,则∠A 的大小等于____________度.1A ED CBABC DM NPQ6 、点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________.7.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度.8. 如图,在平行四边形ABCD 中,∠A =70°,将平行四边形折叠,使点 D 、C 分别落在点F 、E 处(点F 、E 都在AB 所在的直线上),折痕为 MN ,则∠AMF 等于_____________。

9.如图,将一张矩形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C ’,D ’处,C ’E 交AF 于点G .若∠CEF =70°,则∠GFD ’= _____。

折叠练习题

折叠练习题

折叠练习题一、基础折叠概念理解a) 折叠线b) 折叠角度c) 折叠方向d) 折叠顺序a) 正方形纸片b) 长方形纸片c) 圆形纸片d) 等边三角形纸片a) 相邻面b) 对立面c) 相邻的侧面d) 对角面二、二维图形折叠成三维图形4. 将一个正方形纸片折叠成一个小正方体,需要折几次?5. 将一个长方形纸片折叠成一个长方体,需要折几次?6. 将一个等边三角形纸片折叠成一个四面体,需要折几次?a) 矩形b) 正方形c) 平行四边形d) 梯形8. 将一个正方形纸片折叠成一个正方体,请描述折叠的步骤。

9. 将一个长方形纸片折叠成一个圆柱体,请描述折叠的步骤。

10. 将一个等腰三角形纸片折叠成一个圆锥体,请描述折叠的步骤。

三、三维图形的折叠与展开a) 正方体b) 长方体c) 圆柱体d) 球体12. 将一个正方体展开成平面图形,需要几个正方形?13. 将一个长方体展开成平面图形,需要几个矩形?14. 将一个圆柱体展开成平面图形,需要几个圆形和几个矩形?a) 正方体b) 长方体c) 圆柱体d) 四面体四、折叠技巧与应用16. 如何将一张纸折叠成等边三角形?17. 如何将一张纸折叠成等腰梯形?18. 如何将一张纸折叠成心形?19. 如何将一张纸折叠成玫瑰花?20. 如何将一张纸折叠成飞机模型?五、折叠与数学计算21. 一个正方形纸片的边长为10厘米,折叠成一个小正方体后,小正方体的边长是多少?22. 一个长方形纸片的长为20厘米,宽为10厘米,折叠成一个长方体后,长方体的长、宽和高分别是多少?23. 一个等边三角形纸片的边长为15厘米,折叠成一个四面体后,四面体的底面边长是多少?24. 一个圆柱体的底面半径为5厘米,高为10厘米,将其展开成平面图形,展开图的面积是多少?25. 一个正方体的表面积为150平方厘米,将其展开成平面图形,展开图的面积是多少?六、折叠与空间想象26. 一个正方形纸片折叠成一个正方体后,请描述正方体各个面的相对位置。

折叠问题专练---由折叠求最值(含答案)

折叠问题专练---由折叠求最值(含答案)

由折叠求最值1.如图,正方形ABCD边长为2,E为AB边的中点,点F是BC 边上一个动点,把△BEF沿EF向形内部折叠,点B的对应点为B′,当B′D的长最小时,BF长为()A .B .﹣1C .D .【分析】如图,当E.B′、D共线时,DB′最小,此时DB′=ED ﹣EB′=ED﹣EB,先求出DB′,设BF=x,再根据DF2=DB′2+B′F2=CD2+CF2,列出方程即可解决.【解答】解;如图,当E.B′、D共线时,DB′最小,此时DB′=ED﹣EB′=ED﹣EB.在RT△AED中,∵AD=2,AE=1,∴DE==,∴DB′=DE=EB=﹣1.设BF=x,∵DF2=DB′2+B′F2=CD2+CF2,∴x2+(﹣1)2=22+(2﹣x)2,∴x=.故选:D.2.如图,在矩形ABCD中,AB=3,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD、AD上,则AP+PQ 最小值为.【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ABE中,由勾股定理可得AB2=AE2+BE2,即32=(x)2+x2,解得x=,∴AE=,DE=,BE=,∴AD=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=3=AD=A′D∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=,故答案是:.3.如图,Rt△ABC中,AB=10,AC=8,BC=6,∠C=90°,AD平分∠BAC,点E为AC上一点,且AE=3CE,在AC上找一点F,AD上找一点P,连接EP、FP,则EP+FP的最小值为 3.6.【分析】如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.因为PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.【解答】解:如图,作EH⊥AB于H,交AD于G,作F关于AD的对称点F′,连接PF′.∵PF+PE=PE+PF′,根据垂线段最短可知,当F′与H重合,P与G重合时,PE+PF′最短.在Rt△ABC中,AC===8,∵AE=3EC,∴AE=6,∵∠EAH=∠BAC,∠EHA=∠C=90°,∴△AEH∽△ABC,∴=,∴=,∴EH=3.6,∴PF+PE的最小值为3.6.故答案为3.6.4.如图,矩形ABCD中,AB=5,AD=4,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM,射线BN交线段CD于点F,则DF的最大值为()A .B .C .D.2 【分析】过点A作AH⊥BF于点H,如图1所示:根据矩形的性质得到AB∥DC,由相似三角形的性质得到,推出当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图2所示:由折叠性质得:AD=AH,等量代换得到AH=BC,根据全等三角形的性质得到CF=BH,由勾股定理求得BH==3,即可得到结论.【解答】解:过点A作AH⊥BF于点H,如图1所示:∵四边形ABCD是矩形,∴AB∥DC,∴∠HBA=∠BFC,∵∠AHB=∠BCF=90°,∴△ABH∽△BFC,∴,∵AH≤AN=4,AB=5,∴当点N、H重合(即AH=AN)时,AH最大,BH最小,CF最小,DF最大,此时点M、F重合,B、N、M三点共线,如图2所示:由折叠性质得:AD=AH,∵AD=BC,∴AH=BC,在△ABH和△BFC中,,∴△ABH≌△BFC(AAS),∴CF=BH,由勾股定理得:BH==3,∴DF的最大值=DC﹣CF=2.故选:D.5.如图,在菱形ABCD中,AB=16,∠B=60°,P是AB上一点,BP=10,Q是CD边上一动点,将四边形APQD沿直线PQ折叠,A的对应点A′.当CA′的长度最小时,则CQ的长为()A.10 B.12 C.13 D.14【分析】由A′P=6可知点A′在以P为圆心以PA′为半径的弧上,故此当C,P,A′在一条直线上时,CA′有最小值,过点C作CH⊥AB,垂足为H,先求得BH、HC的长,则可得到PH的长,然后再求得PC的长,最后依据折叠的性质和平行线的性质可证明△CQP为等腰三角形,则可得到QC的长.【解答】解:如图所示:过点C作CH⊥AB,垂足为H.在Rt△BCH中,∠B=60°,BC=16,则BH=BC=8,CH=sin60°•BC=×16=8.∴PH=2.在Rt△CPH中,依据勾股定理可知:PC==14.由翻折的性质可知:∠APQ=∠A′PQ.∵DC∥AB,∴∠CQP=∠APQ.∴∠CQP=∠CPQ.∴QC=CP=14.故选:D.6.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)当∠BEF=45°时,求证:CF=AE;(2)当B′D=B′C时,求BF的长;(3)求△CB′F周长的最小值.【分析】(1)如图1中,当∠BEF=45°时,易知四边形BEB′F是正方形,推出BF=BE,由AB=BC,即可证明CF=AE=3.(2)如图2中,作B′N⊥BC于N,NB′的延长线交AD于M,作EG⊥MN于G,则四边形MNCD、四边形AEGM都是矩形.由△B′MD≌△B′CN,推出B′M=B′N=8,由AE=MG=3,推出GB′=5,在Rt△EGB′中,EG===12,由△EGB′∽△B′NF ,推出=,由此即可解决问题.(3)如图3中,以E为圆心EB为半径画圆,在Rt△EBC中,∠EBC=90°,EB=13,BC=16,推出EC==5,由△CFB′的周长=CF+FB′+CB′=BF+CF+CB′=BC+CB′=16+CB′,所以欲求△CFB′的周长的最小值,只要求出CB′的最小值即可,因为CB′+EB′≥EC,所以E、B′、C共线时,CB′的值最小.【解答】(1)证明:如图1中,当∠BEF=45°时,易知四边形BEB′F是正方形,∴BF=BE,∵AB=BC,∴CF=AE=3.(2)解:如图2中,作B′N⊥BC于N,NB′的延长线交AD于M,作EG⊥MN于G,则四边形MNCD、四边形AEGM都是矩形.∵B′D=B′C,∴∠B′DC=∠B′CD,∵∠ADC=∠BCD=90°,∴∠B′DM=∠B′CN,∵∠B′MD=∠B′NC=90°,∴△B′MD≌△B′CN,∴B′M=B′N=8,∵AE=MG=3,∴GB′=5,在Rt△EGB′中,EG===12,∵∠EB′G+∠FB′N=90°,∠FB′N+∠B′FN=90°,∴∠EB′G=∠B′FN,∵∠EGB′=∠FNB′=90°,∴△EGB′∽△B′NF,∴=,∴=,∴BF=B′F=.(3)解:如图3中,以E为圆心EB为半径画圆,在Rt△EBC中,∠EBC=90°,EB=13,BC=16,∴EC==5,∵△CFB′的周长=CF+FB′+CB′=BF+CF+CB′=BC+CB′=16+CB′,∴欲求△CFB′的周长的最小值,只要求出CB′的最小值即可,∵CB′+EB′≥EC,∴E、B′、C共线时,CB′的值最小,CB′最小值为5﹣13.∴△CFB′的周长的最小值为3+5.7.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.探究:请您结合图2给予证明,归纳:圆外一点到圆上各点的最短距离是:这点到连接这点与圆心连线与圆交点之间的距离.图中有圆,直接运用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P 是上的一个动点,连接AP,则AP的最小值是﹣1.图中无圆,构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C长度的最小值.解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA'=MD,故点A'在以AD为直径的圆上.如图5,以点M为圆心,MA为半径画⊙M,过M作MH⊥CD,垂足为H,(请继续完成下列解题过程)迁移拓展,深化运用:如图6,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.【分析】探究:在⊙O上任取一点C(不为点A、B),连接PC、OC,证得PA<PC即可得到PA是点P到⊙O上的点的最短距离;图中有圆,直接运用:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再根据勾股定理求出AE的长,然后减掉半径即可;图中无圆,构造运用:根据题意得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可;迁移拓展,深化运用:根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小.【解答】解:探究:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=PA+OA,OA=OC,∴PA<PC,∴PA是点P到⊙O上的点的最短距离.(3分)图中有圆,直接运用:解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE==,P2E=1,∴AP2=﹣1.故答案为:﹣1;图中无圆,构造运用:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.迁移拓展,深化运用:解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD===,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.8.问题情境:如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则PA是点P到⊙O上的点的最短距离.(1)探究:如图2,在⊙O上任取一点C(不为点A、B重合),连接PC、OC.试证明:PA<PC.(2)直接运用:如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P 是上的一个动点,连接AP,则AP 的最小值是﹣1.(3)构造运用:如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.解:由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上.(请继续完成解题过程)(4)综合应用:(下面两小题请选择其中一道完成)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是﹣1.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于﹣3.【分析】(1)利用三角形三边关系结合圆的性质得出答案;(2)直接利用勾股定理得出AO长,进而得出答案;(3)利用已知点A′在以AD为直径的圆上,得出当点A′在BM 上时,A′B长度取得最小值,进而得出BM的长,即可得出答案;(4)①根据正方形的性质可得AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,然后利用“边角边”证明△ABE和△DCF全等,根据全等三角形对应角相等可得∠1=∠2,利用“SAS”证明△ADG和△CDG全等,根据全等三角形对应角相等可得∠2=∠3,从而得到∠1=∠3,然后求出∠AHB=90°,取AB的中点O,连接OH、OD,根据直角三角形斜边上的中线等于斜边的一半可得OH=AB=1,利用勾股定理列式求出OD,然后根据三角形的三边关系可知当O、D、H三点共线时,DH的长度最小;②作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,根据两点之间线段最短得到此时PM+PN 最小,再利用对称确定A′的坐标,接着利用两点间的距离公式计算出A′B的长,然后用A′B的长减去两个圆的半径即可得到MN的长,即得到PM+PN的最小值.【解答】(1)证明:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=PA+OA,OA=OC,∴PA<PC,∴PA是点P到⊙O上的点的最短距离;(2)解:连接AO与⊙O相交于点P,如图3,由已知定理可知,此时AP最短,∵∠ACB=90°,AC=BC=2,BC为直径,∴PO=CO=1,∴AO==,∴AP=﹣1,故答案为:﹣1;(3)解:如图4,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上,由模型可知,当点A′在BM上时,A′B长度取得最小值,∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,∴BM==,故A′B 的最小值为:﹣1;(4)①解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,最小值=OD﹣OH=﹣1.故答案为:﹣1;②解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图6,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣A′M=﹣2﹣1=﹣3,∴PM+PN 的最小值为﹣3.故答案为:﹣3.。

折叠练习(50道含解析)

折叠练习(50道含解析)

折叠练习(50 道含解析)一.填空题(共50 小题)1.如图,在△ABC 中,CA=3,CB=4,AB=5,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E,交AC 于点F,那么sin∠BED 的值为.2.如图,矩形ABCD中,P为AB上一动点(P与A,B不重合),将△BPC沿CP翻折至△B1PC,BP1 与AD 相交于点E,CB1 与AD 相交于点F,连接BB1 交AD 于Q,若EQ =8,QF=5,BC=20,则B1F 的长=,折痕CP 的长=.3.如图,正方形纸片ABCD 沿直线BE 折叠,点C 恰好落在点G 处,连接BG 并延长,交CD于点H,延长EG交AD于点F,连接FH.若AF=FD=6cm,则FH的长为cm.4.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF,点E、F 分别在AC 和BC 上,如果AD:DB=1:2,则CE:CF 的值为.5.如图,在矩形ABCD 中,AB:BC=3:4,点E 是对角线BD 上一动点(不与点B,D 重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC 上,当△DEF 为直角三角形时,CN:BN 的值为.6.如图,已知正方形ABCD 的边长为6,E 为BC 的中点,将△ABE 沿直线AE 折叠后,点B 落在点F 处,AF 交对角线BD 于点G,则FG 的长是.7.如图,在正方形ABCD 中,E,F 分别为BC,CD 的中点,连接AE,BF 交于点G,将△BCF 沿BF 对折,得到△BPF,延长FP 交BA 延长于点Q,若,则AE的值为.8.如图,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 上,AF=2BF,点G 是AD 边上一点,将△CDE 沿DE 折叠得△C′DE,将△AFG 沿FG 折叠,点A 的对应点A′刚好落在DC′上,则cos∠DA′G=.9.四边形ABCD 中,∠A=90°,AD∥BC,AB=5,AD=8,P 是AD 边上的一点,连结PC,将△ABP 沿直线BP 对折得到△A'BP,A'点恰好落在线段PC 上,当∠BCP=∠D 时,△PBC 的面积为.10.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P,若AD=8,AB=5,则线段PE 的长等于.11.如图,在矩形ABCD 中,点N 为边BC 上不与B、C 重合的一个动点,过点N 作MN⊥ BC 交AD 于点M,交BD 于点E,以MN 为对称轴折叠矩形ABNM,点A、B 的对应点分别是G、F,连接EF、DF,若AB=6,BC=8,当△DEF 为直角三角形时,CN 的长为.12.如图,在四边形ABCD 中,∠C+∠D=210°,E、F 分别是AD,BC 上的点,将四边形CDEF 沿直线EF 翻折,得到四边形C′D′EF,C′F 交AD 于点G,若△EFG 有两个角相等,则∠EFG °.13.如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为.14.如图,在△ABC 中,∠ACB=90°,点D,E 分别在AC,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,CF 与DE 交于点G.下列结论:①AB=2CF;②若∠ABC=50°,则∠AFD=60°;③若AB=4,则DG•GE=1;④若AC=4,BC=3,则其中正确的结论是(填写所有正确结论的序号)15.如图,△ABC 中,∠ACB=90°,∠A=30°,BC=1,CD 是△ABC 的中线,E 是AC 上一动点,将△AED 沿ED 折叠,点A 落在点F 处,EF 线段CD 交于点G,若△CEG 是直角三角形,则CE=.16.如图,在菱形ABCD 中,tan A=,M,N 分别在边AD,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D,延长NF 交DC 于点H,当EF⊥AD 时,的值为.17.如图,菱形ABCD 的边长为6,∠A=60°,点O 在AB 上,且BO=2,点P 是CD 上一动点,将四边形BCPO 沿直线OP 折叠,点B 的对应点是E,连接DE,当DE 的长度最小时,CP 的长为.18.如图在等边△ABC 中,D、E 分别是BC、AC 上的点,且AE=CD,AD 与BE 相交于F,CF⊥BE.将△ABF 沿AB 翻折,得△ABG,M 为BF 中点,连接GM,若AF=2,则△BGM 的面积为.19.已知,如图,在矩形ABCD 中,AB=8,BC=12,点E 为线段AB 上一动点(不与点A、点B重合),先将矩形ABCD沿CE折叠,使点B落在点F处,CF交AD于点H,若折叠后,点B 的对应点F 落在矩形ABCD 的对称轴上,则AE 的长是.20.如图,在菱形ABCD 中,M,N 分别在边AD,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D,当EF⊥AD 时的值为.21.已知正方形ABCD 中,AC、BD 交于点=,连AE,将△ADE 沿AD 翻折,得△ADE′,点F 是AE 的中点,连CF、DF、E′F.若,则四边形CDE′F 的面积是.22.如图:菱形ABCD 中,点E 在边AB 上,将△BCE 沿CE 折叠,点B 对应点为点F 恰好使CF⊥AD,点P 为CD 边上一点,直线BA,PF 交于点G,若,BE=5,DP=2,则AG 的长为.23.如图,已知菱形ABCD 中,∠B=60°,E,F 分别为边AD,边BC 上一点,将四边形ABFE沿EF折叠得四边形EFGH,若GH⊥BC,垂足为点I,DE+CF=AB,则=.24.如图,在菱形ABCD 中,AB=2,∠BAD=120°,点E,F 分别是边AB,BC 上的动点,沿EF 所在直线折叠△BEF,使点B 的对应点B'始终落在边CD 上,则点A,E 间的距离d 的取值范围是.25.如图,在菱形ABCD中,AB=5,tan D=,点E在BC上运动(不与B,C重合),将四边形AECD 沿直线AE 翻折后,点C 落在C′处,点D′落在D 处,C′D′与AB 交于点F,当C′D'⊥AB 时,CE 长为.26.如图,四边形ABCD 是矩形,点E 在CD 边上,DE=2,连接BE,F 是BE 边上的一点,过点F 作FG⊥AB 于G,连接DG,将△ADG 沿DG 翻折的△PDG,设EF=x,当P落在△EBC内部时(包括边界),x的取值范围是.27.在边长为的正方形ABCD 中,点E 是边CD 上一点,连接AE,过点D 作DM⊥AE于点M,连接MC.把△DMC 沿DM 翻折,点C 的对应点为C′,DC′交AE 于点P,连接AC'、BC′,已知S△ABC′=1,则△PMC'的周长为.28.如图,已知正方形ABCD 的边长为4,E 为对角线AC 上一点,连接DE,作EF⊥DE 交BC 于点F,且,把△ADE 沿DE 翻折得到△A′DE,边A′D 交EF、AC 分别于点G、H,则△A′FG 的面积为.29.如图,等腰Rt△ABC 中,AC=BC,∠ACB=90°,以BC 为底边作等腰△DCB,DC =DB,CD 与AB 交于E,将△DCB 沿DC 折叠,点B 落到点F 处,连接FD 刚好经过点A,连接FB,分别交AC 于G,交CD 于H.在下列结论中:①∠CBG=30°;②△FDB 是等腰直角三角形;③FA=FG;CG.其中正确的结论有.(填写所有正确的序号).30.如图,平行四边形ABCD 中,多点B 作BE⊥AD 于点E,过点E 作EF⊥AB 于点F,与CD 的延长线交于点G,连接BG,且BE=BC,BG=5 ,∠BGF=45°,EG=3,若点M是线段BF上的一个动点,将△MEF沿ME所在直线翻折得到△MEF′,连接CF′,则CF′长度的最小值是.31.如图,四边形ABCD 是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC 重合,折痕为EF;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N,折痕BM 与EF 相交于点Q;再次展平,连接BN,MN,延长MN 交BC 于点G.有如下结论:①∠ABN=60°;②AM=1;③AB⊥CG;④△BMG 是等边三角形;⑤P 为线段BM 上一动点,H 是BN 的中点,则PN+PH 的最小值.其中正确结论的序号是.32.在直角坐标系中,矩形OABC的边OA、OC在坐标轴上,已知B(4,2),M、N分别是边OC、OA 上的点.将△OMN 沿着直线MN 翻折,点O 的对应点是O′.若O′落在△OAC 内部,过O′作平行于x 轴的直线交CO 于点E,交AC 于点F,若O′是EF 的中点,则O′横坐标x 的取值范围为.33.如图,把正方形纸片对折得到矩形ABCD,点E 在BC 上,把△ECD 沿ED 折叠,使点C 恰好落在AD 上点C′处,点M、N 分别是线段AC′与线段BE 上的点,把四边形ABNM沿NM 向下翻折,点A 落在DE 的中点A′处.若原正方形的边长为12,则线段MN 的长为.34.如图,一张矩形纸片ABCD 中,AB=3,BC=6,点E、F 分别在边AD、BC 上,将纸片ABCD 折叠,折痕为EF,使点C 落在边AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH;③线段BF 的取值范围≤BF≤3;④当点H与点A重合时,EF=.以上结论中,正确的是.(填序号).35.已知如图,在矩形ABCD 中,点E 是AD 的中点,连结BE,将△ABE 沿着BE 翻折得到△FBE,EF 交BC 于点H,延长BF、DC 相交于点G,若DG=16,BC=24,则FH =.36.在矩形ABCD 中,AB=3,点P 在对角线AC 上,直线l 过点P,且与AC 垂直交AD 边于点E.(1)如图1,若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形ABCD 的对称中心O 重合,求BC 的长;(2)如图2,若直线l 与AB 相交于点F 且AC,设AD 的长为x,五边形BCDEF 的面积为S,①求S 关于x 的函数关系式,并写出自变量x 的取值范围;②探索:是否存在这样的x,使得以A 为圆心,以长为半径的圆与直线l 相切?若存在,请求出x 的值若不存在,请说明理由.37.如图,在正方形ABCD 中,AD=6,点E 是对角线AC 上一点,连接DE,过点E 作EF ⊥ED,连接DF 交AC 于点G,将△EFG 沿EF 翻折,得到△EFM.连接DM.交EF 于点N.若AF=2.则△EMN 的面积是.38.如图,有一直角三角形纸片ABC,∠ACB=90°,∠B=30°,AC=1,CD⊥AB 于点D.F,G 分别是线段AD,BD 上的点,H,Ⅰ分别是线段AC,BC 上的点,沿HF,GI 折叠,使点A,B 恰好都落在线段CD 上的点E 处.当FG=EG 时,AF 的长是.39.如图,把矩形ABCD 沿EF,GH 折叠,使点B,C 落在AD 上同一点P 处,∠FPG=90°,△A′EP 的面积是,△D′PH 的面积是,则矩形ABCD 的面积等于.40.如图,在Rt△ABC 中,∠ACB=90°,BC=6,点D 为斜边AB 上的一点,连接CD,将△BCD 沿CD 翻折,使点B 落在点E 处,点F 为直角边AC 上一点,连接DF,将△ ADF 沿DF 翻折,点A 恰好与点E 重合.若DC=5,则AF=.41.如图,矩形纸片ABCD 中,AB=8cm,BC=12cm,将纸片沿EF 折叠,使点A 落在BC 边上的A′处,折痕分别交边AB、AD 于点F、E,且AF=5.再将纸片沿EH 折叠,使点D落在线段EA′上的D′处,折痕交边CD于点H.连接FD',则FD'的长是cm.42.如图,在矩形ABCD 中,AB=3,点E 为边CD 上一点,将△ADE 沿AE 所在直线翻折,得到△AFE,点F 恰好是BC 的中点,M 为AF 上一动点,作MN⊥AD 于N,则BM+AN 的最小值为.43.如图,矩形ABCD 与菱形EFGH 的对角线均交于点O,且EG∥BC,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G,,EF=2,∠H=120°,则DN 的长为.44.如图,在▱ABCD 中,AB=6,BC=6 ,∠D=30°,点E 是AB 边的中点,点F 是BC 边上一动点,将△BEF 移沿直线EF 折叠,得到△GEF,当FG∥AC 时,BF 的长为.45.如图,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F,连接AE.如果,那的值是.46.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB=3,BC=4,则折痕EF 的长为.47.如图所示,在菱形纸片ABCD 中,AB=4,∠BAD=60°,按如下步骤折叠该菱形纸片:第一步:如图①,将菱形纸片ABCD 折叠,使点A 的对应点A′恰好落在边CD 上,折痕EF 分别与边AD、AB 交于点E、F,折痕EF 与对应点A、A′的连线交于点G.第二步:如图②,再将四边形纸片BCA′F 折叠使点C 的对应点C′恰好落在A′F 上,折痕MN 分别交边CD、BC 于点M、N.第三步:展开菱形纸片ABCD ,连接GC ′,则GC ′最小值是.48.如图,在边长为5 的正方形ABCD 中,点E 在边BC 上,连接AE,过D 作DF∥AE 交BC 的延长线于点F,过点C 作CG⊥DF 于点G,延长AE、GC 交于点H,点P 是线段DG上的任意一点(不与点D、点G重合),连接CP,将△CPG沿CP翻折得到△CPG',连接AG'.若CH=1,则AG'长度的最小值为.49.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8.点M、N 分别在边AB、BC 上,沿直线MN将△ABC折叠,点B落在点P处,如果AP∥BC且AP=4,那么BN=.50.如图,在矩形ABCD 中,E 为CD 上一点,若△ADE 沿直线AE 翻折,使点D 落在BC 边上点D′处.F 为AD 上一点,且DF=CD',EF 与BD 相交于点G,AD′与BD 相交于点H.D′E∥BD,HG=4,则BD=.折叠练习(50 道含解析)参考答案与试题解析一.填空题(共50 小题)1.如图,在△ABC 中,CA=3,CB=4,AB=5,点D 是BC 的中点,将△ABC 沿着直线EF 折叠,使点A 与点D 重合,折痕交AB 于点E,交AC 于点F,那么sin∠BED 的值为.【分析】先根据翻折变换的性质得到△DEF≌△AEF,根据勾股定理的逆定理得到△ABC 是直角三角形,根据相似三角形的性质得到,BH=,根据勾股定理即可得到结论.【解答】解:∵△DEF 是△AEF 翻折而成,∴△DEF≌△AEF,∴AE=DE,∵CA=3,CB=4,AB=5,∴CA2+CB2=32+42=52=AB2,∴△ABC 是直角三角形,∵点D 是BC 的中点,∴CD=BD=2,过D 作DH⊥AB 于H,∴∠BHD=∠C=90°,∵∠B=∠B,∴△BDH∽△BAC,∴=,∴DH=,BH=,∴AH=,设AE=DE=x,则﹣x,在Rt△DEH 中,由勾股定理得,DH2+EH2=DE2,即)2+(﹣x)2=x2,解得,∴sin∠BED==,故答案为.【点评】本题考查的是图形翻折变换的性质、勾股定理的逆定理、勾股定理、相似三角形的判定和性质,正确的作出辅助线构造相似三角形是解题的关键.2.如图,矩形ABCD中,P为AB上一动点(P与A,B不重合),将△BPC沿CP翻折至△B1PC,BP1 与AD 相交于点E,CB1 与AD 相交于点F,连接BB1 交AD 于Q,若EQ =8,QF=5,BC=20,则B1F 的长= 5 ,折痕CP 的长=.【分析】如图,作∠EFB1 的平分线交EB1 于T,连接TQ.首先证明FB1=FQ=5,由△ FTQ≌△FTB1,推出TB1=TQ,∠TQF=∠TB1F=90°,设TB1=TQ=x,利用勾股定理求出EB1,TB1,FT,再证明△PCB∽△TFB1,推=,由此求出PC 即可.【解答】解:如图,作∠EFB1 的平分线交EB1 于T,连接TQ.∵四边形ABCD 是矩形,∴∠ABC=90°,AD∥BC,∠FQB1=∠CBB1,由翻折可知:CB=CB1,∠CB1P=90°,∴∠CBB1=∠CB1B,∴∠FQB1=∠FB1Q,∴FB1=FQ=5,∵FQ=FB1,∠TFQ=∠TFB1,FT=FT,∴△FTQ≌△FTB1,∴TB1=TQ,∠TQF=∠TB1F=90°,设TB1=TQ=x,在Rt△EFB1 中==12,在Rt△ETQ 中,∵ET2=EQ2+TQ2,∴(12﹣x)2=82+x2,解得,∴TB1=,FT===∵AD∥CB,∴∠B1FE=∠FCB,∵∠PCB=∠FCB,∠B1FT=∠B1FE,∴∠PCB=∠B1FT,∵∠PBC=∠FB1T,∴△PCB∽△TFB1,∴=,∴,∴PC=.故答案为5,.【点评】本题考查翻折变换,矩形的性质,解直角三角形,相似三角形的判定和性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考填空题中的压轴题.3.如图,正方形纸片ABCD 沿直线BE 折叠,点C 恰好落在点G 处,连接BG 并延长,交CD于点H,延长EG交AD于点F,连接FH.若AF=FD=6cm,则FH的长为cm.【分析】先证明Rt△ABF≌Rt△GBF,得到∠AFB=∠GFB,FA=FG,再证明Rt△FGH ≌Rt△FDH,得到∠GFH=∠DFH,于是180°=90°,根据△ABF∽△DFH,列出比例所以,求出.【解答】解:如图,连接BF.∵四边形ABCD 是正方形,∴∠A=∠C=90°,AB=BC=AF+FD=12cm.由折叠可知,BG=BC=12cm,∠BGE=∠BCE=90°.∴AB=GB.在Rt△ABF 和Rt△GBF 中BF=BF,AB=GB∴Rt△ABF≌Rt△GBF(HL).∴∠AFB=∠GFB,FA=FG,又∵AF=FD,∴FG=FD.同理可证Rt△FGH≌Rt△FDH,∴∠GFH=∠DFH,∴∠BFH=∠BFG+∠GFH=180°=90°,∴∠AFB+∠DFH=90°.又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFH.又∵∠A=∠D=90°,∴△ABF∽△DFH,∴,在Rt△ABF 中,由勾股定理,得,∴,∴FH=.故答案为.【点评】本题考查了三角形折叠问题,熟练运用三角形全等和勾股定理、相似三角形的性质是解题的关键.4.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF,点E、F 分别在AC 和BC 上,如果AD:DB=1:2,则CE:CF 的值为4:5 .【分析】首先证明△ADE∽△BFD,表示出ED,DF,EA,DB,AD,BF,再利用相似三角形的性质解决问题即可.【解答】解:∵△EFC 与△EFD 关于EF 对称,∴∠EDF=∠ECF=60°,EC=ED,FC=FD,∵∠BDF+∠EDF=∠BDE=∠A+∠DEA,∵∠EDF=∠A=60°,∴∠BDF=∠DEA,∴△ADE∽△BFD,设AD=x,CE=DE=a,CF=DF=b,∵AD:BD=1:2,∴DB=2x,∴AB=3x=AC=BC,∴AE=3x﹣a,BF=3x﹣b,∵△ADE∽△BFD,∴==,∴==,由前两项得,2ax=b(3x﹣a),由后两项得,(3x﹣a)(3x﹣b)=2x2,即:3x(3x﹣a)﹣b(3x﹣a)=2x2,∴3x(3x﹣a)﹣2ax=2x2,∴a=x,∴==,∴CE:CF=4:5.故答案为4:5.【点评】本题考查翻折变换,等边三角形的性质,相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.5.如图,在矩形ABCD 中,AB:BC=3:4,点E 是对角线BD 上一动点(不与点B,D 重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC 上,当△DEF 为直角三角形时,CN:BN 的值为.【分析】分两种情况进行讨论:当∠DFE=90°时,△DEF 为直角三角形;当∠EDF=90°时,△DEF 为直角三角形,分别判定△DCF∽△BCD,得=,进而得出CF,根据线段的和差关系可得CN 和BN 的长,于是得到结论.【解答】解:∵AB:BC=3:4,设AB=3x,BC=4x,∵四边形ABCD 是矩形,∴CD=AB=3x,AD=BC=4x,分两种情况:①如图所示,当∠DFE=90°时,△DEF 为直角三角形,∵∠CDF+∠CFD=∠EFN+∠CFD=90°,∴∠CDF=∠EFN,由折叠可得,EF=EB,BN=FN,∴∠EFN=∠EBN,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,=,∴CF=x,∴FN=NB==,∴CN=CF+NF=x+x=x,∴BN=∴CN:BN=x:x=25:7.②如图所示,当∠EDF=90°时,△DEF 为直角三角形,∵∠CDF+∠CDB=∠CDF+∠CBD=90°,∴∠CDF=∠CBD,又∵∠DCF=∠BCD=90°,∴△DCF∽△BCD,∴=,=,∴CF=x,∴NF=BN==x,∴CN=NF﹣CF=x﹣x=x,∴CN:BN=7:25,综上所述,CN:BN 的值或,故答案为或.【点评】本题主要考查了折叠问题,矩形的性质以及相似三角形的判定与性质的运用,解决问题的关键是依据相似三角形的对应边成比例列式计算.解题时注意分类思想的运用.6.如图,已知正方形ABCD 的边长为6,E 为BC 的中点,将△ABE 沿直线AE 折叠后,点B 落在点F 处,AF 交对角线BD 于点G,则FG 的长是.【分析】延长AF,EF 分别交CD 于H,M,连接AM,根据折叠的性质得到AB=AF,∠ABE=∠AFE=90°,根据全等三角形的性质得到DM=FM,设DM=FM=x,则CM =6﹣x,EM=3+x,根据勾股定理得到DM=FM=2,根据相似三角形的判定和性质定理即可得到结论.【解答】解:延长AF,EF 分别交CD 于H,M,连接AM,∵四边形ABCD 是正方形,∴AB=AD,∠ABE=∠ADC=90°,∵将△ABE 沿直线AE 折叠后,点B 落在点F 处,∴AB=AF,∠ABE=∠AFE=90°,∴∠ADM=∠AFM=90°,AF=AD,∵AM=AM,∴Rt△ADM≌Rt△AFM(HL),∴DM=FM,∵E 为BC 的中点,BC=CD=6,∴CE=3,设DM=FM=x,则CM=6﹣x,EM=3+x,∵EM2=CM2+CE2,∴(3+x)2=32+(6﹣x)2,解得:x=2,∴DM=FM=2,∵∠MFH=∠ECM=90°,∠HMF=∠CME,∴△MFH∽△MCE,∴,∴,∴MH=2.5,FH=1.5,∴AH=6+1.5=7.5,DH=4.5,∵AB∥DH,∴△AGB∽△HGD,∴,∴=,∴AG=,∴GF=AF﹣AG=,故答案为.【点评】本题考查了翻折变换(折叠问题),正方形的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.7.如图,在正方形ABCD 中,E,F 分别为BC,CD 的中点,连接AE,BF 交于点G,将△BCF 沿BF 对折,得到△BPF,延长FP 交BA 延长于点Q,若,则AE的值为.【分析】作QT⊥BF 于T.解直角三角形求出AE,BF,再利用相似三角形的性质求出BQ 即可解决问题.【解答】解:作QT⊥BF 于T.∵E,F 分别是正方形ABCD 边BC,CD 的中点,∴CF=BE,在△ABE 和△BCF 中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,由翻折的性质可知,∴AB=BC=,∴BF=AE==,∵QT⊥BF,∴BT=TF=,∵∠QTB=∠C=∠ABC=90°,∴∠QBT+∠FBC=90°,∠FBC+∠BFC=90°,∴∠QBT=∠BFC,∴△QTB∽△CBF,∴=,∴=,∴QB=1,∴QB+AE=1+=,故答案.【点评】本题考查翻折变换,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题.8.如图,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 上,AF=2BF,点G 是AD 边上一点,将△CDE 沿DE 折叠得△C′DE,将△AFG 沿FG 折叠,点A 的对应点A′刚好落在DC′上,则cos∠DA′G=.【分析】延长DC'交AB 于K,连接FK,分别过H,E 作DK 的垂线,垂足分别为M,N,利用正方形的性质及轴对称的性质,先证Rt△EBK≌Rt△EC'K,推出BK=C'K,在Rt△ADK 中,利用勾股定理求出BK,C'K 的长,进一步求出FK 的长,在Rt△KFN 与Rt△KAD 中,利用三角函数求出FN 的长,在Rt△FA'N 中,求出cos∠A'FN 的值,证∠DA'H 与∠A'FN 相等即可.【解答】解:如图,延长DC'交AB 于K,连接EK,分别过H,F 作DK 的垂线,垂足分别为M,N∵四边形ABCD 为正方形,∴∠A=∠B=∠C=90°,AB=BC=6,∵E,F 分别为BC,AB 的中点,∴BE=EC=×6=3,∵AF=2BF,∴AF=4,BF=2,由翻折知,△DCE≌△DC'E,△AFH≌△A'FH,∴∠EC'D=∠C=90°,∠A=∠HA'F=90°,AF=A'F=4,C'E=CE=BE=3,DC'=DC=6,∴∠B=∠EC'K=90°,又∵KE=KE,∴Rt△EBK≌Rt△EC'K(HL),∴KB=KC',设KB=KC'=x,在Rt△ADK 中,AD=6,AK=6﹣x,DK=6+x,∵DK2=AD2+AK2,∴(6+x)2=62+(6﹣x)2,解得,∴BK=C'K=,∴DK=DC'+KC'=6+=,FK=BF﹣BK=2﹣=,在Rt△KNF 与Rt△KAD 中,sin∠FKN==,即=,解得,∵∠DA'H+∠FA'N=90°,∠FA'N+∠NFA'=90°,∴∠HA'D=∠NFA',在Rt△FA'N 中,cos∠A'FN===,即,故答案.【点评】本题考查了正方形的性质,轴对称的性质,勾股定理,解直角三角形等,解题关键是能够作出适当的辅助线,构造和相关角相等的角.9.四边形ABCD 中,∠A=90°,AD∥BC,AB=5,AD=8,P 是AD 边上的一点,连结PC,将△ABP 沿直线BP 对折得到△A'BP,A'点恰好落在线段PC 上,当∠BCP=∠D 时,△PBC 的面积为.【分析】如图,作CH⊥AD 于H.证明CB=CP=CD,设CB=CP=CD=x,证明PH=CH,设PH=DH=y,想办法构建方程组即可解决问题.【解答】解:如图,作CH⊥AD 于H.∵AD∥BC,∴∠APB=∠PBC,∠DPC=∠BCP,∵∠APB=∠BPC,∠BCP=∠D,∴∠CBP=∠BPC,∠CPD=∠D,∴CB=CP=CD,设CB=CP=CD=x,∵CH⊥PD,CP=CD,∴PH=CH,设PH=DH=y,∵∠A=∠ABC=∠AHC=90°,∴四边形ABCH 是矩形,∴AH=BC=x,AB=CH=5,则有,解得,=•PC•BA′=××5=,∴S△PBC故答案.【点评】本题考查翻折变换,平行线的性质,三角形的面积等知识,解题的关键是学会利用参数构建方程组解决问题.10.如图,在矩形纸片ABCD 中,将AB 沿BM 翻折,使点A 落在BC 上的点N 处,BM 为折痕,连接MN;再将CD 沿CE 翻折,使点D 恰好落在MN 上的点F 处,CE 为折痕,连接EF 并延长交BM 于点P,若AD=8,AB=5,则线段PE 的长等于.【分析】根据折叠可得ABNM 是正方形,CD=CF=5,∠D=∠CFE=90°,ED=EF,可求出三角形FNC 的三边为3,4,5,在Rt△MEF 中,由勾股定理可以求出三边的长,通过作辅助线,可证△FNC∽△PGF,三边占比为3:4:5,设未知数,通过PG=HN,列方程求出待定系数,进而求出PF 的长,然后求PE 的长.【解答】解:过点P 作PG⊥FN,PH⊥BN,垂足为G、H,由折叠得:ABNM 是正方形,AB=BN=NM=MA=5,CD=CF=5,∠D=∠CFE=90°,ED=EF,∴NC=MD=8﹣5=3,在Rt△FNC 中=4,∴MF=5﹣4=1,在Rt△MEF 中,设EF=x,则ME=3﹣x,由勾股定理得,12+(3﹣x)2=x2,解得,∵∠CFN+∠PFG=90°,∠PFG+∠FPG=90°,∴△FNC∽△PGF,∴FG:PG:PF=NC:FN:FC=3:4:5,设FG=3m,则PG=4m,PF=5m,∴GN=PH=BH=4﹣3m,HN=5﹣(4﹣3m)=1+3m=PG=4m,解得:m=1,∴PF=5m=5,∴PE=PF+FE=5+=,故答案为.【点评】考查折叠轴对称的性质,矩形、正方形的性质,直角三角形的性质等知识,知识的综合性较强,是有一定难度的题目.11.如图,在矩形ABCD 中,点N 为边BC 上不与B、C 重合的一个动点,过点N 作MN⊥BC 交AD 于点M,交BD 于点E,以MN 为对称轴折叠矩形ABNM,点A、B 的对应点分别是G、F,连接EF、DF,若AB=6,BC=8,当△DEF 为直角三角形时,CN 的长为或.【分析】△DEF 为直角三角形时,可能出现三种情况,分别令不同的内角为直角,画出相应的图形,根据折叠的性质和相似三角形的性质进行解答即可.【解答】解:矩形ABCD 中,AB=6,BC=8,∴BD==10,由折叠得:BE=EF,BN=NF,∠EBF=∠EFB,∠BEN=∠FEN,当△DEF 为直角三角形时,(1)当∠DEF=90°,则∠BEN=∠FEN=45°,不合题意;(2)当∠EFD=90°时,如图1 所示:∵∠EFN+∠DFC=90°,∠DFC+∠CDF=90°,∴∠EFN=∠CDF=∠EBN,∵tan∠DBC===tan∠CDF=设CN=x,则BN=NF=8﹣x,FC=x﹣(8﹣x)=2x﹣8,∴=解得,即.(3)当∠EDF=90°时,如图2 所示:易证△BDC∽△DFC,∴CD2=BC•CF设CN=x,则BN=NF=8﹣x,FC=(8﹣x)﹣x=8﹣2x,∴62=8(8﹣2x)解得,即,综上所述,CN 的长或.故答案为:或.【点评】考查折叠轴对称的性质,进矩形的性质,直角三角形的边角关系以及相似三角形的性质和判定等知识,分情况画出图形进行解答是解决问题的关键.12.如图,在四边形ABCD 中,∠C+∠D=210°,E、F 分别是AD,BC 上的点,将四边形CDEF 沿直线EF 翻折,得到四边形C′D′EF,C′F 交AD 于点G,若△EFG 有两个角相等,则∠EFG 40°或50 °.【分析】根据题意△EFG 有两个角相等,于是有三种情况,分别令不同的两个角相等,通过折叠和四边形的内角和列方程求出结果即可,最后综合得出答案.【解答】解:(1)当∠FGE=∠FEG时,设∠EFG=x,则(180°﹣x)在四边形GFCD 中,由内角和为360°得:(180°﹣x)+2x+∠C+∠D=360°,∵∠C+∠D=210°,∴(180°﹣x)+2x=360°﹣210°,解得:x=40°,(2)当∠GFE=∠FEG 时,此时AD∥BC 不合题意舍去,(3)当∠FGE=∠GFE 时,同理有:x+2x+∠C+∠D=360°,∵∠C+∠D=210°,∴x+2x+210°=360°,解得:x=50°,故答案为40°或50.【点评】考查轴对称的性质和四边形的内角和为360°,分情况讨论得出不同答案.13.如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若BC=4,BG=3,则GE的长为.【分析】根据菱形的性质、折叠的性质,以及∠ABC=120°,可以得到△ABD△BCD 都是等边三角形,根据三角形的内角和和平角的意义,可以找出△BGE∽△DFG,对应边成比例,设AF=x、AE=y,由比例式列出方程,解出y 即可.【解答】解:∵菱形ABCD 中,∠ABC=120°,∴AB=BC=CD=DA,∠A=60°,∴AB=BC=CD=DA=BD=3+1=4,∴∠ADB=∠ABD=60°,由折叠得:AF=FG,AE=EG,∠EGF=∠A=60°,∵∠DFG+∠DGF=180°﹣60°=120°,∠BGE+∠DGF=180°﹣60°=120°,∴∠DFG=∠BGE,∴△BGE∽△DFG,∴,设AF=x=FG,AE=y=EG,则:DF=4﹣x,BE=4﹣y,即,当时,即:,当时,即:,∴,解得:y1=0 舍去,故答案为.【点评】考查菱形的性质、折叠的性质、等边三角形的判定和性质以及分式方程等知识,根据折叠和菱形等边三角形的性质进行转化,从而得到关于EG 的关系式,是解决问题的关键.14.如图,在△ABC 中,∠ACB=90°,点D,E 分别在AC,BC 上,且∠CDE=∠B,将△CDE 沿DE 折叠,点C 恰好落在AB 边上的点F 处,CF 与DE 交于点G.下列结论:①AB=2CF;②若∠ABC=50°,则∠AFD=60°;③若AB=4,则DG•GE=1;④若AC=4,BC=3,则其中正确的结论是①②③④(填写所有正确结论的序号)【分析】①CF 是Rt△ABC 的中线,即可求解;②∠ABC=50°,则∠CDG=40°=∠GDF,则∠ADF=80°,即可求解;③CG=CF=AB=1,因为CG⊥DE,则DG•GE=CG2,即可求解;④△ABC 的高,CG=AB=,△ABC∽△EDC,根据相似比等于高的比,即可求解.【解答】解:①∵CF 是Rt△ABC 的中线AB,故①正确;②∠ABC=50°,∴∠CDG=40°=∠GDF,∴∠ADF=80°,则∠AFD=180°﹣80°﹣40°=60°,故②正确;③CG=CF=AB=1,∵CG⊥DE,则DG•GE=CG2=1,故正确;④AC=4,BC=3,则AB=5,S△ABC=AC×BC=AB×△ABC的高,则△ABC 的高,CG=AB=;∵∠CDE=∠B,则△ABC∽△EDC,根据相似比等于高的比,则,故,故④正确.故答案为①②③④.【点评】本题考查的是翻折变换(折叠问题),涉及到直角三角形中线定理、三角形相似、三角形面积计算等,综合性强、难度较大.15.如图,△ABC 中,∠ACB=90°,∠A=30°,BC=1,CD 是△ABC 的中线,E 是AC 上一动点,将△AED 沿ED 折叠,点A 落在点F 处,EF 线段CD 交于点G,若△CEG 是直角三角形,则CE=.【分析】分两种情形:如图 1 中,当∠CEG=90°时.如图2 中,当∠EGC=90°时,分别求解即可.【解答】解:如图 1 中,当∠CEG=90°时.易知∠AED=∠DEF=45°,作DH⊥AC 于H.则DH=EH,在Rt△ABC 中,∵∠ACB=90°,∠A=30°,BC=1,∴AB=2BC=2,AC=AB•cos30°=,∵AD=DB,∴AD=1,在Rt△ADH 中,AH=AD•cos30°=,∴EC=AC﹣AH﹣EH=﹣=.如图2 中,当∠EGC=90°时,易证点B 与点F 重合,此时,EC==,综上所述,EC 的长为.故答案或.【点评】本题考查翻折变换,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.如图,在菱形ABCD 中,M,N 分别在边AD,BC 上,将四边形AMNB 沿MN 翻折,使AB 的对应线段EF 经过顶点D,延长NF 交DC 于点H,当EF⊥AD 时,的值为.【分析】如图,由翻折不变性可知:∠A=∠E,推出tan A=tan E==,可以假设:DM=4k,DE=3k,则EM=5k,AD=EF=CD=9k.想办法求出DH,CH 即可解决问题.【解答】解:如图,由翻折不变性可知:∠A=∠E,∴tan A=tan E==,∴可以假设:DM=4k,DE=3k,则EM=5k,AD=EF=CD=9k.∵AD∥BC,∴∠A+∠B=180°,∵∠DFH+∠EFN=180°,∠B=∠EFN,∴∠A=∠DFH,∵EF⊥AD,∴∠ADF=90°,∵AB∥CD,∴∠A+∠ADC=180°,∴∠A+∠HDF=90°,∴∠HDF+∠DFH=90°,∴tan∠DFH=tan A==,设FH=3x,则DH=4x在R△DHF 中,DF=EF﹣DE=6k,根据勾股定理得,DH2+FH2=DF2,∴16x2+9x2=36k2,∴x=k∴DH=k,∴CH=9k﹣k=k,∴==.故答案.【点评】本题考查翻折变换,菱形的性质,解直角三角形等知识,解题的关键是学会利用参数解决问题,属于中考填空题中的压轴题.17.如图,菱形ABCD 的边长为6,∠A=60°,点O 在AB 上,且BO=2,点P 是CD 上一动点,将四边形BCPO 沿直线OP 折叠,点B 的对应点是E,连接DE,当DE 的长度最小时,CP 的长为6﹣.【分析】由折叠可知点E 在以O 为圆心,以BO 长为半径的弧上,故当D,E,O 在一条直线上时,DE 有最小值,过点D 作DH⊥AB,先求得DH、HO 的长,则依据勾股定理可得到DO 的长,然后再求得PD 的长,最后可得到CP 的长.【解答】解:如图所示:过点D 作DH⊥AB,垂足为H.在Rt△ADH 中,∠A=60°,AD=6,则AH=AD=3,DH=sin60°•AD=×6=3 .又∵AO=AB﹣BO=4,∴OH=1.在Rt△DOH 中,依据勾股定理可知==2.由翻折的性质可知:∠BOP=∠EOP.∵DC∥AB,∴∠BOP=∠DPO,∴∠EOP=∠DPO,∴DP=DO=2,∴CP=DC﹣DP=6﹣2,故答案为:6﹣2 .【点评】本题主要考查的是菱形的性质、勾股定理的应用,翻折的性质、等腰三角形的判定,判断出DE 取得最小值时点E 的位置是解题的关键.18.如图在等边△ABC 中,D、E 分别是BC、AC 上的点,且AE=CD,AD 与BE 相交于F,CF⊥BE.将△ABF 沿AB 翻折,得△ABG,M 为BF 中点,连接GM,若AF=2,则△BGM 的面积为.【分析】先证明△ABE≌△CAD 得∠ABE=∠CAD,则∠BAD=∠CBE,求出∠BFK=60 °,由BK⊥DF 可得∠FBK=30°,得出BF,再证明△ABK≌△BCF,得出AK=BF,即AF+FK=BF,得出BF=2AF=4,证明△AFH∽△ABK,得==,求出AH、FH 的长,得出GF、BH 的长,求出△BGF 的面积,即可得出△BGM 的面积.【解答】解:过B 作AD 的垂线,垂足为K,连接GF 交AB 于H,如图所示:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,AB=AC,∵在△ABE 和△CAD 中,,∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠ABE+∠CBE=∠BAD+∠CAD=60°,∴∠BAD=∠CBE,∴∠BFK=∠BAF+∠ABF=∠CBE+∠ABF=∠ABC=60°,∵BK⊥DF,∴∠BKF=90°,∴∠FBK=30°,∴FK=BF,BK=FK,在△ABK 和△BCF 中,,∴△ABK≌△BCF(AAS),∴AK=BF,即AF+FK=BF,∴AF+BF=BF,∴BF=2AF=4,FK=AF=2,BK=2,∴AB==2,由折叠的性质得:AB 垂直平分GF,∴GF=2FH,∠AHF=90°=∠AKB,又∵∠FAH=∠BAK,∴△AFH∽△ABK,∴==,==,解得:AH=,FH=,∴GF=2FH=,BH=AB﹣AH=,∴△BGF 的面积GF×BH=××,∵M 为BF 中点,∴△BGM 的面积△BGF 的面积;故答案为:.【点评】本题考查了等边三角形的性质、翻折变换的性质、全等三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识;本题综合性强,难度较大,证明三角形全等和三角形相似是解题的关键.19.已知,如图,在矩形 ABCD 中,AB =8,BC =12,点 E 为线段 AB 上一动点(不与点 A 、点 B 重合),先将矩形 ABCD 沿 CE 折叠,使点 B 落在点 F 处,CF 交 AD 于点 H ,若折 叠后,点 B 的对应点 F 落在矩形 ABCD 的对称轴上,则 AE的长是 24 ﹣28 或 8﹣.【分析】依据点 B 的对应点 F 落在矩形 ABCD 的对称轴上,分两种情况讨论:F 在横对称轴上与 F 在竖对称轴上,分别求出 BF 的长即可.【解答】解:分两种情况:①当 F 在横对称轴 MN 上,如图所示,此时 CD =4,CF =BC =12,∴FN ==8, ∴MF =12﹣8, 由折叠得,EF =BE ,EM =4﹣BE ,∵EM 2+MF 2=EF 2,即 )2=BE 2,∴BE =36﹣24, ∴AE =24 ﹣28;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A B C D M N P
Q 折叠问题
1.将一张长方形纸片按如图所示的方式折叠,BC 、BD 为折痕,则∠CBD 的度数为_____ 2.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D′、C′的位置,若∠EFB=65°,
则∠AED′等于______
3、如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=°,则AEF ∠=( )
A .110° B.115° C.120° D.130°
4、如图,梯形ABCD 中,AD∥BC,DC⊥BC,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A´处,若∠A´BC=20°,则∠A´BD 的度数为( ) A .15° B.20° C.25° D.30°
5、如图,将纸片△ABC 沿DE 折叠,点A 落在点A′处,已知∠1+∠2=100°,则∠A 的大小等于____________度.
6 、点E 是矩形ABCD 的边CD 上的点,沿着AE 折叠矩形ABCD ,使D 落在BC 边上的F 点处,如果∠BAF =60°,则∠DEA =____________.
7.如图,已知正方形纸片ABCD ,M ,N 分别是AD 、BC 的中点,把BC 边向上翻折,使点C 恰好落在MN 上的P 点处,BQ 为折痕,则∠PBQ = 度.
1 A E
D
C
B
F
8. 如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点
D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为
MN,则∠AMF等于_____________。

9.如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C’,D’处,C’E
交AF于点G.若∠CEF=70°,则∠GFD’=
_____。

10、将矩形纸片ABCD折叠,使点D与点B重合,点C落在点c'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为_________。

11.如图,将矩形纸片ABCD(图①)按如下步骤操作:(1)以过点A的直线为折痕折叠纸片,使点B恰好落在AD边上,折痕与BC边交于点E(如图②);(2)以过点E的直线为折痕折叠纸片,使点A落在BC边上A1,折痕EF交AD边于点F(如图③);(3)将纸片收展平,则∠AFE=____________.
12.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD =____________.
A B
A B
O
O
C D
13、用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可
以得到如图(2)所示的正五边形ABCDE,其中∠BAC=度.
14.如图a,ABCD是一矩形纸片,AB=6cm,AD=8cm,E是AD上一点,且AE=6cm。

操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将△AFB以BF为折痕向右折过去,得图c。

则△GFC的面积是________
15.如图1所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是()
16.将一圆形纸片对折后再对折得图,然后沿着图中的虚线剪开,得①、②
两部分,将②展开后的平面图形可以是图中的()
A.B.C.D.
17.如图所示,把一个正方形纸片三次对折后沿虚线剪开,则剩余图形展开后得到的图形是()

D
E
B
A
图(2)
E
A A
A B
B B
C C C
G
D D D
F
F
F
图a 图b 图c
A.
B.C.
D.
18.把一张长方形纸对折再对折,然后在折叠着的角上剪一刀,纸的中间就剪出了一个洞(如图所示).如果对折了10次后,再在折叠着的角上剪一刀,那么这张纸上共剪出了________个洞.
19、用折纸的方法,可以直接剪出一个正五边形(如下图).方法是:拿一张长方形纸对折,折痕为AB,以AB的中点O为顶点将平角五等份,并沿五等份的线折叠,再沿CD剪开,使展开后的图形为正五边形,则∠OCD等于__________。

20.如图(1),小强拿一张正方形的纸,沿虚线对折一次得图(2),再对折一次得图(3),然后用剪刀沿图(3)中的虚线剪去一个角,再打开后的形状是()
A.B.C.D.
21、如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是()
A.B.C.D.
(此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容,
供参考,感谢您的配合和支持)。

相关文档
最新文档