光纤通信实验报告全
光纤实践总结报告范文(3篇)
第1篇一、前言随着信息技术的飞速发展,光纤通信技术因其高速、稳定、安全的特点,已成为现代社会信息传输的主要方式。
为了深入了解光纤通信技术的原理和应用,我们开展了为期一个月的光纤实践项目。
本次实践旨在通过实际操作,加深对光纤通信技术的理解,提升动手能力和工程实践能力。
以下是本次实践总结报告。
二、项目背景与目标1. 项目背景光纤通信技术自20世纪60年代诞生以来,凭借其优越的性能,逐渐取代了传统的铜线通信方式,成为现代通信的主要手段。
我国在光纤通信领域取得了举世瞩目的成就,但仍有很大的发展空间。
2. 项目目标(1)掌握光纤通信的基本原理和关键技术;(2)了解光纤通信系统的组成和结构;(3)提高动手能力,学会光纤通信设备的安装、调试和维护;(4)培养团队协作精神和创新意识。
三、实践内容与过程1. 光纤通信基本原理学习(1)光纤的类型与特性:本次实践主要学习了单模光纤和多模光纤的特点、应用场景等;(2)光纤传输原理:深入了解了光纤的传输机理,包括全反射、色散、损耗等;(3)光纤通信系统组成:学习了光纤通信系统的各个组成部分,如发射机、光纤、接收机等。
2. 光纤通信设备安装与调试(1)光纤熔接机操作:学习了光纤熔接机的使用方法,掌握了光纤熔接技术;(2)光纤跳线制作:学会了光纤跳线的制作方法,包括剥皮、清洗、熔接等;(3)光纤通信系统调试:对光纤通信系统进行了调试,确保其正常运行。
3. 光纤通信系统维护与故障排除(1)光纤通信系统日常维护:了解了光纤通信系统的日常维护方法,包括清洁、检查、更换等;(2)故障排除:针对光纤通信系统可能出现的故障,学习了故障排除方法,如查找故障点、更换设备等。
四、实践成果与体会1. 实践成果(1)掌握了光纤通信的基本原理和关键技术;(2)熟悉了光纤通信设备的安装、调试和维护;(3)提高了动手能力和团队协作精神;(4)培养了创新意识和工程实践能力。
2. 实践体会(1)理论知识与实践操作相结合的重要性:通过本次实践,深刻体会到理论知识与实践操作相结合的重要性,只有将所学知识应用于实际,才能真正掌握技能;(2)团队协作精神的重要性:在实践过程中,团队成员分工合作,共同解决问题,体现了团队协作精神的重要性;(3)创新意识的重要性:在实践过程中,我们不断尝试新的方法和技术,培养了创新意识。
光纤通信实验报告
光纤通信实验报告-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII光纤通信实验报告课程名称光纤通信实验实验一光源的P-I特性、光发射机消光比测试一、实验目的1、了解半导体激光器LD的P-I特性、光发射机消光比。
2、掌握光源P-I特性曲线、光发射机消光比的测试方法。
二、实验器材1、主控&信号源模块、2号、25号模块各一块2、23号模块(光功率计)一块3、FC/PC型光纤跳线、连接线若干4、万用表一个三、实验原理数字光发射机的指标包括:半导体光源的P -I 特性曲线测试、消光比(EXT )测试和平均光功率的测试。
1、半导体光源的P-I 特性I(mA)LD 半导体激光器P-I 曲线示意图半导体激光器具有高功率密度和极高量子效率的特点,微小的电流变化会导致光功率输出变化,是光纤通信中最重要的一种光源,激光二极管可以看作为一种光学振荡器,要形成光的振荡,就必须要有光放大机制,也即启动介质处于粒子数反转分布,而且产生的增益足以抵消所有的损耗。
半导体激光器的输出光功率与驱动电流的关系如上图所示,该特性有一个转折点,相应的驱动电流称为门限电流(或称阈值电流),用I th 表示。
在门限电流以下,激光器工作于自发辐射,输出(荧光)光功率很小,通常小于100pW ;在门限电流以上,激光器工作于受激辐射,输出激光功率随电流迅速上升,基本上成直线关系。
激光器的电流与电压的关系类似于正向二极管的特性。
该实验就是对该线性关系进行测量,以验证P -I 的线性关系。
P -I 特性是选择半导体激光器的重要依据。
在选择时,应选阈值电流I th 尽可能小,没有扭折点, P-I 曲线的斜率适当的半导体激光器:I th 小,对应P 值就小,这样的激光器工作电流小,工作稳定性高,消光比大;没有扭折点,不易产生光信号失真;斜率太小,则要求驱动信号太大,给驱动电路带来麻烦;斜率太大,则会出现光反射噪声及使自动光功率控制环路调整困难。
光纤通信实验报告
XX学号时间地点实验题目半导体激光器P-I特性测试实验一、实验目的1、学习半导体激光器发光原理和光纤通信中激光光源工作原理2、了解半导体激光器平均输出光功率与注入驱动电流的关系3、掌握半导体激光器P(平均发送光功率)-I(注入电流)曲线的测试方法二、实验内容1、测量半导体激光器输出功率和注入电流,并画出P-I关系曲线2、根据P-I特性曲线,找出半导体激光器阈值电流,计算半导体激光器斜率效率三、实验仪器1、ZY12OFCom23BH1型光纤通信原理实验箱1台2、FC接口光功率计1台3、FC-FC单模光跳线 1根4、万用表1台5、连接导线 20根四、实验步骤1、用导线连接电终端模块T68(M)和T94(13_DIN)。
2、将开关BM1拨为1310nm,将开关K43拨为“数字”,将电位器W44逆时针旋转到最小。
3、旋开光发端机光纤输出端口(1310nm T)防尘帽,用FC-FC光纤跳线将半导体激光器与光功率计输入端连接起来,并将光功率计测量波长调整到1310nm档。
4、用万用表测量T97(TV+)和T98(TV-)之间的电阻值(电阻焊接在PCB板的反面),找出所测电压与半导体激光器驱动电流之间的关系(V=IR110)。
5、将电位器W46(阈值电流调节)逆时针旋转到底。
6、打开交流电源,此时指示灯D4、D5、D6、D7、D8亮7、用万用表测量T97(TV+)和T98(TV-)两端电压(红表笔插T97,黑表笔插T98)。
8、慢慢调节电位器W44(数字驱动调节),使所测得的电压为下表中数值,依次测量对应的光功率值,并将测得的数据填入表格中,精确到0.1uW。
9、做完实验后先关闭交流电开关。
10、拆下光跳线与光功率计,用防尘帽盖住实验箱半导体激光器光纤输出端口,将实验箱还原。
五、实验报告结果1、根据测试结果,算出半导体激光器驱动电流,画出相应的光功率与注入电流的关系曲线。
2、根据所画的P-I特性曲线,找出半导体激光器阈值电流的大小。
光纤通信实验报告
光纤通信实验报告实验报告:光纤通信技术引言:光纤通信技术是一种基于光传输原理的高速、大容量、低损耗的通信方式。
光纤通信以其优异的性能和广泛的应用领域受到了广泛的关注。
本次实验旨在探究光纤通信的基本原理和实验方法,以及光纤通信的特点和应用。
一、光纤通信的基本原理1.光纤通信的原理光纤通信是利用光纤作为传输介质,将光信号转换为电信号进行传输。
它主要包括光信号的产生、调制、传输和接收等过程。
光信号通过激光器发射端发出,经过光纤传输到接收端,然后通过光电转换器将光信号转换为电信号。
2.光纤的工作原理光纤是一种具有高折射率的细长光导纤维,主要由芯层、包层和包住层组成。
光信号在传输过程中会发生多次反射,利用全内反射原理将光信号在光纤内损耗尽可能小地传播。
二、光纤通信实验的步骤1.光信号的产生通过激光器发射端发出激光光束,光纤接收端接收光信号。
2.光信号的调制利用调制器对光信号进行调制,使其携带有用信息。
3.光信号的传输利用光纤的高折射率和全内反射的特点,将光信号传输到接收端。
4.光信号的接收通过光电转换器将光信号转换为电信号,进而进行信号处理,如放大、滤波等。
三、光纤通信的特点和应用1.高速传输光纤通信具有高传输速率和大容量的优势,可以满足现代通信的高速要求。
2.低损耗光纤通信中光信号的传输损耗非常小,可以远距离传输无衰减。
3.安全性强光信号在传输过程中不容易被窃听或干扰,保证了通信的安全性。
4.应用广泛结论:通过本次实验,我们深入了解了光纤通信的基本原理和实验方法。
光纤通信具有高速传输、低损耗、安全性强和应用广泛等特点,是现代通信领域的重要技术。
光纤通信的发展势头迅猛,未来有望取代传统的铜线通信,成为主流的通信技术。
光纤通信实验报告
光纤通信实验报告1. 引言光纤通信是一种基于光信号传输的通信方式,其具有高速、大容量、低损耗等优点,已经成为现代通信领域的主流技术。
本实验旨在通过搭建光纤通信系统,验证其性能和可行性。
2. 实验目的本实验的主要目的是:- 了解光纤通信的基本原理与技术;- 掌握光纤通信系统的搭建方法;- 通过实际操作验证光纤通信的传输性能。
3. 实验原理光纤通信系统包括光源、光纤传输介质、光检测器等组成部分。
光信号通过光源产生,经由光纤传输介质传输,并最终被光检测器接收和解读。
4. 实验步骤4.1 实验材料准备在进行实验之前,我们需要准备以下材料:- 光纤通信系统实验箱,包括光源、光纤、光检测器等;- 光纤连接器、光纤插入损耗测量仪等辅助器材;- 电源线、示波器等实验设备。
4.2 搭建光纤通信系统根据实验箱中提供的说明书,依次将光源、光纤和光检测器进行连接。
确保光纤的插入损耗尽量低,并且连接稳定可靠。
4.3 进行数据传输测试利用示波器等实验设备,观察发送端的信号波形,并通过光检测器接收信号,并利用示波器显示接收端信号波形。
记录并比较发送端和接收端的信号特征,进一步验证光纤通信的性能。
5. 实验结果与讨论通过实验,我们获得了发送端和接收端的信号波形,并进行了详细的比较分析。
根据实验结果,我们可以得出以下结论:- 光纤通信系统具有较高的传输速率和大容量的特点;- 通过合理的布线和连接方式,可以降低光纤的插入损耗,提高通信系统的性能;- 在实际应用中,光纤通信系统需要注意光纤的维护和保护,避免光纤的弯曲和损坏。
6. 实验总结通过本次实验,我们深入了解了光纤通信的原理和技术,并通过实际搭建光纤通信系统验证了其性能和可行性。
光纤通信作为一种高速、大容量的通信方式,在现代通信领域具有广泛的应用前景。
7. 实验心得通过参与光纤通信实验,我对光纤通信技术有了更深入的了解。
在实践中发现光纤通信的可靠性和稳定性较高,但需要注意光纤的维护和保护。
光纤通信实验报告
光纤通信实验报告光纤通信是一种使用光信号传输数据的通信技术,它利用了光的高速传输和大带宽的特性,成为了现代通信领域的重要技术之一。
在本次实验中,我们对光纤通信的原理和实验验证进行了深入研究。
实验一: 光的传播特性我们首先对光的传播特性进行了研究。
选择了一根直径较细的光纤,并采用了迎射法和反射法进行传导实验。
通过在纤芯中投射光线,并观察传导的情况,我们验证了光在光纤中的传播路径并没有明显偏向,光线能够相对直线传播。
实验二: 光纤的损耗与色散在光纤通信中,损耗和色散是不可避免的问题。
我们通过实验对光纤中损耗和色散的影响进行了测试。
损耗实验中,我们通过分析在不同长度光纤中传输的光强度,发现随着距离的增加,光强度会逐渐减弱。
这是由于光纤中存在材料吸收和散射等因素造成的。
为了减小损耗,优化光纤的材料和结构是很重要的。
色散实验中,我们将不同波长的光信号通过光纤传输,并测量到达另一端的时间。
实验结果显示,不同波长的光信号到达时间存在差异。
这是由于光纤中折射率随波长变化而引起的色散效应。
为了减小色散,需要采用更先进的技术,如光纤衍生波导和光纤增益等手段。
实验三: 单模光纤与多模光纤光纤通信中,单模光纤和多模光纤是常用的两种类型。
通过实验,我们对这两种光纤的传输特性进行了研究。
我们首先测试了单模光纤。
结果显示,在单模光纤中,光信号会以单一光波传播,因此具有较低的色散和损耗,适用于远距离传输和高速通信。
然后我们进行了多模光纤的实验。
实验结果显示,多模光纤中存在多个模式的光信号传播,由于不同模式间的传播速度不同,会导致严重的色散和损耗问题。
因此,多模光纤适用于近距离传输和低速通信。
结论通过本次光纤通信实验,我们对光纤通信的原理和实际应用有了更深入的了解。
我们发现光纤通信具有高速率、低损耗和大带宽等优势,而不同类型的光纤对于不同的通信需求有着不同的适应性。
然而,我们也看到了光纤通信中存在的一些问题,如损耗、色散和设备成本等。
光纤通信实训报告
光纤通信实训报告
一、实训目的
光纤通信是一种高速、高带宽的通信方式,具有传输速度快、抗干扰能力强等优点。
本次实训旨在通过实际操作,掌握光纤通信的基本原理和实验操作技能,提高学生对光纤通信的理论知识的理解和应用能力。
二、实训内容
1. 光纤通信系统的组成和工作原理;
2. 光纤的制备和连接;
3. 光纤通信系统的性能测试和故障排除。
三、实训过程
1. 光纤通信系统的组成和工作原理
光纤通信系统主要由光源、光纤、光接收器和信号处理器四部分组成。
其中,光源产生光信号,光纤用来传输光信号,光接收器接收光信号并转换为电信号,信号处理器对电信号进行处理。
2. 光纤的制备和连接
光纤通信系统中的光纤需要进行制备和连接。
制备光纤的过程包括拉制、拉伸和涂覆等步骤。
连接光纤的方法有光纤对接、光纤接头
等。
3. 光纤通信系统的性能测试和故障排除
为了确保光纤通信系统的正常工作,需要对其性能进行测试和故障排除。
性能测试包括光损耗测试、插入损耗测试等;故障排除包括光纤切断、光纤接头损坏等情况的排查和修复。
四、实训成果
通过本次实训,学生们掌握了光纤通信系统的组成和工作原理,了解了光纤的制备和连接方法,学会了对光纤通信系统进行性能测试和故障排除。
同时,实训过程中培养了学生们的动手能力和团队合作精神。
五、实训总结
光纤通信是当今通信领域的重要技术,具有广阔的应用前景。
通过本次实训,学生们不仅增加了对光纤通信的理论知识的掌握,还提高了实际操作的能力。
希望学生们能够继续深入学习光纤通信技术,为我国通信事业的发展做出贡献。
光纤通信实验报告全
光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道),注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。
确认,即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超过5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。
9.关闭系统电源,拆除各光器件并套好防尘帽。
实验2.13.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将拨码器设置序列电信号送入1550nm 光发端机,并转换成光信号从 TX1550法兰接口输出。
5.6.拨码器设置其它序列组合,W205 保持不变,记录码型和对应的输出光功率,得出你的结论。
光纤传输实验报告(共8篇)
光纤传输实验报告(共8篇)
1. 实验目的
通过本次实验,我们的目的是了解光纤传输的基本原理、结构和特点,并熟悉光纤通信系统的构成,掌握光纤传输实验的基本操作和注意事项。
2. 实验器材和材料
主要器材有:激光器、偏振器、光纤发射机、光纤接收机、光功率计、光纤、电缆等。
主要材料有:测试记录表格、实验手册等。
3. 实验原理
光纤传输是指利用光纤作为信号传输中介的通信方式。
光纤是一种用玻璃、塑料、石英等物质制成的细长、柔韧可弯曲的导光体,通过对光的全内反射来实现信号的传输。
在光纤传输中,激光作为载荷被发射机转换成光信号,经过光纤的传播和干扰、衰减和扩散、噪声和失真等影响后,到达接收机进行解码并转换为电信号输出。
4. 实验步骤
(1)接通设备并拟定实验计划:先接通激光器、光纤发射机和光纤接收机等设备,确定实验计划和实验要求。
(2)调整偏振器和测试光功率:首先需要调整偏振器并测量测试光功率,确保光信号的输出和传输。
(3)连接光纤并测试网络质量:将光纤连接到发射机或接收机并测试网络质量,计算信号的传输速度和误码率等参数。
(4)记录数据并分析结果:将实验过程中的数据记录下来,并进行数据分析和统计,得出结论并进行总结。
5. 实验注意事项
(1)实验操作时需严格遵守操作规程和安全规范,避免任何不必要的事故和安全隐患。
(2)实验时需认真检查设备连接,确保连接正确和稳定,以免出现信号的传输失败和误差。
(3)实验过程中需注意环境干扰和噪声干扰,以免影响实验结果和数据测量的准确性。
(4)实验结束后需及时关闭设备并整理实验器材、材料、记录表格等,保持实验室的整洁和安全。
光纤通信实验报告
光纤通信实验报告
实验目的:通过实际操作,了解光纤通信的基本原理和技术特点,
掌握光纤通信系统的组成和工作过程,以及光纤连接的方法。
实验仪器:光纤通信实验箱、光纤收发器、光纤跳线、示波器、光
功率计等。
实验步骤:
1. 搭建光纤通信实验箱,将光纤收发器连接至实验箱主机。
2. 用光纤跳线将实验箱主机与光功率计连接,以便实时监测光功率
的变化。
3. 调节实验箱主机的光发射功率和接收灵敏度,使其达到最佳状态。
4. 在示波器上观察传输信号的波形,分析信号的稳定性和传输质量。
5. 采用不同的光纤连接方法,比较它们对信号传输的影响,验证光
纤连接的重要性。
实验结果与分析:
经过实验操作,我们可以明显地感受到光纤通信系统的高速传输、
低损耗、抗干扰等优点。
同时,我们也发现光纤连接的质量对信号传
输有着至关重要的影响,需要谨慎处理光纤的清洁、固定和连接方式,以确保信号传输的稳定性和可靠性。
实验总结:
通过本次实验,我们深入了解了光纤通信的基本原理和技术特点,掌握了光纤通信系统的组成和工作过程,以及光纤连接的方法。
同时也加深了对光纤通信技术在现代通信领域中的广泛应用和重要性的认识,为我们今后的学习和研究打下了坚实的基础。
希望通过持续的实践和探索,我们能够进一步提升对光纤通信技术的理解和应用水平,为推动通信技术的发展做出更大的贡献。
光纤技术专题实验报告
一、实验目的1. 理解光纤的基本原理和特性。
2. 掌握光纤通信系统的基本结构和工作原理。
3. 学习光纤传感技术的应用及其在各个领域的应用价值。
4. 通过实验,验证光纤传输和传感技术的实际效果。
二、实验原理1. 光纤基本原理:光纤是一种通过光的全反射原理来传输光信号的介质。
光纤主要由纤芯、包层和涂覆层组成。
纤芯具有高折射率,包层具有低折射率,涂覆层则用于保护光纤。
2. 光纤通信系统:光纤通信系统主要由光发射机、光纤传输线路和光接收机组成。
光发射机将电信号转换为光信号,通过光纤传输,光接收机再将光信号转换回电信号。
3. 光纤传感技术:光纤传感技术利用光纤的物理或化学特性,将待测物理量转换为光信号,从而实现对物理量的监测。
光纤传感器具有抗电磁干扰、耐腐蚀、灵敏度高、可远程传输等优点。
三、实验仪器与材料1. 光纤通信实验箱2. 光发射机3. 光接收机4. 光纤5. 光纤连接器6. 双踪示波器7. 光功率计8. 实验指导书四、实验步骤1. 光纤通信实验(1)搭建光纤通信实验系统,连接光发射机、光纤、光接收机。
(2)使用双踪示波器观察光发射机和光接收机的输出波形。
(3)调整光发射机的功率,观察光接收机的输出功率变化。
(4)改变光纤长度,观察光接收机的输出功率变化。
2. 光纤传感实验(1)搭建光纤传感实验系统,连接光纤传感器、光接收机。
(2)使用光功率计测量传感器在不同温度下的输出功率。
(3)分析光纤传感器的灵敏度、响应时间等性能指标。
五、实验结果与分析1. 光纤通信实验结果通过实验,我们观察到光发射机输出光信号,经过光纤传输后,光接收机能够成功接收并转换为电信号。
随着光纤长度的增加,光接收机的输出功率逐渐减小,说明光纤的传输损耗与长度成正比。
2. 光纤传感实验结果通过实验,我们得到光纤传感器在不同温度下的输出功率。
分析结果表明,光纤传感器的灵敏度较高,响应时间较短,适用于温度监测等领域。
六、实验结论1. 光纤通信技术具有传输速度快、容量大、抗干扰能力强等优点,是现代通信的主要传输工具。
光纤通信实验报告全
光纤通信实验报告全一、实验目的1. 学习光纤通信的基本原理;2. 掌握光纤通信实验的基本步骤和方法;3. 熟悉光纤通信系统所需的主要元器件。
二、实验原理1. 光纤通信的基本原理光纤通信是指利用光纤作为传输介质,将信号进行传输和接收的通信方式。
它的原理基于光的全反射和光纤的全内反射,将光信号从一端传输到另一端。
光纤通信和其他传输方式相比,具有传输速度快、传输距离远、容量大等特点。
2. 光纤通信的主要元器件光纤通信系统的主要元器件有:光源、光纤、光学耦合器、接收器等。
其中,光源是产生光信号的元器件;光纤是光信号传输的介质;光学耦合器是将光源产生的光信号耦合到光纤中的元器件;接收器是将光纤中传输的光信号转换成电信号的元器件。
三、实验步骤1. 实验前准备先检查实验中所需的仪器设备是否齐全,包括光源、光纤、光学耦合器、接收器等。
接着,将实验仪器逐一放置在实验室桌面上,并保证其正常工作。
2. 测试单模光纤的传输性能选用单模光纤,将光源输出的光信号通过光学耦合器输入到光纤中,然后将光纤输出端的光信号转换成电信号进行检测并记录。
在实验中,可以通过检测光信号的衰减程度、频率响应等参数,测试单模光纤的传输性能。
4. 测试光纤模式发射器的输出功率和频率特性5. 测试光纤接收器的灵敏度和非线性特点四、实验结果在实验中,我们通过测试单模光纤和多模光纤的传输性能,以及光纤模式发射器和光纤接收器的性能特点,得到了丰富的实验数据。
通过对实验数据的分析,我们得出了以下结论:1. 单模光纤相比于多模光纤,具有更小的光信号衰减和更高的频率响应;2. 光纤模式发射器的输出功率和频率特性较为稳定,可以满足长距离信号传输的需求;3. 光纤接收器的灵敏度和非线性特点对于信号传输的质量影响较大,应予以重视。
通过本次实验,我们更深入地了解了光纤通信的原理和应用,掌握了基本的光纤通信实验技能和方法。
在实验中,我们也发现了光纤通信系统所需的主要元器件,以及它们的性能特点和应用范围。
通信光纤实验报告
一、实验目的1. 理解光纤通信的基本原理和系统组成。
2. 掌握光纤的特性及其在通信中的应用。
3. 熟悉光纤通信实验仪器的操作方法。
4. 通过实验验证光纤通信系统的性能。
二、实验原理光纤通信是利用光波在光纤中传输信息的一种通信方式。
光纤具有损耗低、频带宽、抗干扰能力强等优点,是现代通信的主要传输介质。
光纤通信系统主要由光发射机、光纤、光接收机和信号处理单元组成。
光发射机将电信号转换为光信号,通过光纤传输到接收端,光接收机将光信号转换为电信号,信号处理单元对信号进行处理。
三、实验仪器与设备1. 光纤通信实验仪2. 光纤跳线3. 光功率计4. 光频谱分析仪5. 光电探测器6. 示波器四、实验内容1. 光纤特性测试(1)测试光纤的损耗使用光功率计测量光纤在1550nm波长的损耗,并与理论值进行比较。
(2)测试光纤的带宽使用光频谱分析仪测量光纤的带宽,并与理论值进行比较。
2. 光发射机测试(1)测试光发射机的输出功率使用光功率计测量光发射机的输出功率,并与理论值进行比较。
(2)测试光发射机的调制频率使用示波器观察光发射机的调制波形,确定其调制频率。
3. 光接收机测试(1)测试光接收机的灵敏度使用光电探测器测量光接收机的灵敏度,并与理论值进行比较。
(2)测试光接收机的非线性失真使用示波器观察光接收机的输出波形,分析其非线性失真。
4. 光纤通信系统测试(1)搭建光纤通信系统使用光纤跳线将光发射机、光纤和光接收机连接起来,形成一个完整的通信系统。
(2)测试通信系统的性能使用光功率计和示波器测量通信系统的输出功率、调制频率、灵敏度、非线性失真等参数,并与理论值进行比较。
五、实验结果与分析1. 光纤损耗测试实验测得光纤在1550nm波长的损耗为0.25dB/km,与理论值0.2dB/km基本一致。
2. 光纤带宽测试实验测得光纤的带宽为20GHz,与理论值20GHz基本一致。
3. 光发射机测试实验测得光发射机的输出功率为10dBm,与理论值10dBm基本一致。
光纤通信实验报告
光纤通信实验报告1. 实验目的本次实验的目的是研究光纤通信的原理、方法和特点,掌握实际操作光纤通信系统的能力。
通过实验验证光纤通信系统的性能,并熟悉基本的光通信设备的使用技能。
2. 实验原理光纤通信是利用光学纤维作为传输介质,将光信号通过纤维传递,再由接收装置将光信号转换为电信号进行数据的接收和处理。
光源产生激光,经过透过器调整光强度,之后由发射器向光纤输入光信号。
光纤是将光信号通过光纤的全反射,由光源发出光束的入口被光纤捕获,从而实现了光信号的传输。
接收端利用接收器将传输的光信号转换成电信号进行接收、解析和处理。
整个过程非常迅速而且非常高效。
3. 实验仪器本次实验所用仪器有:光源、透过器、发射器、光纤、接收器及接收端的处理器。
4. 实验步骤(1)将光源与波长调整器连接,并将波长调整器波长改为1310nm,紧接着连接透过器。
(2)将透过器波长调整为1310nm,并将其连接到发射器。
(3)将发射器附着在光纤的末端,特别是朝向光源的位置。
注意正确调整发射器的位置和方向,以确保光能够被准确的输入到光纤中。
(4)将光纤的另一端连接到接收器,并调整接收器的定位和调整角度,以便更好的接受光信号。
(5)通过接收器将光信号转换成电信号,之后将其接到处理器中。
(6)可通过一系列的测试诊断工具对数据传输质量进行检测和分析,并通过调整系统参数来保障系统的稳定与安全。
5. 实验结果实验结果表明,光纤通信传输速度高,传输品质稳定,具有高带宽,同时还可以承受长距离传输,在实现高速率数据传输的过程中,光纤通信比传统的WIFI传输速度快得多。
6. 实验感悟通过本次实验,我掌握了光纤通信的原理和运行过程,了解了各个光通信设备的性能和特点。
在实际操作过程中,我深感光纤通信传输速度的高效简洁性,并对传统的有线网络传输方式有了更多的认识。
光纤通信是未来网络通信的重要手段,我相信在接下来的时间里,它将发挥更加重要的作用。
光纤通信基础实验报告
光纤通信基础实验报告光纤通信基础实验报告引言:光纤通信是一种高速、高带宽的通信方式,已经成为现代通信领域的重要技术之一。
本实验旨在通过实际操作,了解光纤通信的基本原理、构成和工作方式,并探索其在现实生活中的应用。
一、实验目的本实验的主要目的是通过搭建光纤通信实验平台,深入了解光纤通信的基本原理和工作方式,掌握光纤通信系统的搭建和调试方法,并通过实际操作验证光纤通信系统的性能。
二、实验原理光纤通信是利用光纤作为信号传输介质的通信方式。
光纤是一种由高纯度石英制成的细长光导纤维,具有低损耗、高带宽、抗干扰等优点。
光纤通信系统由光源、调制器、传输介质(光纤)、接收器和控制电路等组成。
光纤通信的基本原理是利用光源产生的光信号经过调制器调制后,通过光纤传输到接收器,再经过解调器解调得到原始信号。
其中,光源可以是激光二极管、LED等,调制器可以是电调制器、光调制器等,接收器可以是光电二极管、光电探测器等。
三、实验步骤1. 搭建光纤通信实验平台:将光源、调制器、光纤和接收器按照实验要求连接起来,确保信号传输的连续性和稳定性。
2. 设置信号参数:根据实验要求,调整光源的功率、频率等参数,以及调制器的调制方式和速度。
3. 测试信号传输:将信号发送端与接收端连接,通过调节光源和调制器的参数,观察信号传输的质量和稳定性。
4. 分析实验结果:根据观察到的信号传输情况,分析光纤通信系统的性能,并对实验结果进行总结和思考。
四、实验结果与分析在实验过程中,我们成功搭建了光纤通信实验平台,并设置了适当的信号参数。
通过观察实验结果,我们发现光纤通信系统具有以下特点:1. 高速传输:相比传统的铜缆通信,光纤通信具有更高的传输速度和带宽,可以满足大规模数据传输的需求。
2. 低信号衰减:光纤通信系统的光信号在传输过程中的衰减较小,可以实现远距离的信号传输。
3. 抗干扰能力强:光纤通信系统对外界电磁干扰的抗干扰能力较强,可以保证信号传输的稳定性和可靠性。
光纤通信实验报告汇总
光纤通信实验报告汇总1.引言光纤通信是一种高速、大容量、远距离传输信息的通信方式。
光纤通信实验通过实践掌握了光纤通信的原理、设备以及信号传输等关键技术。
本报告旨在总结光纤通信实验的步骤、结果及对实验的反思。
2.实验目的本次光纤通信实验的目的是掌握光纤通信的基本原理,了解光纤通信系统的组成部分,并进行光纤传输实验。
3.实验步骤a)实验材料准备:光源、光电探测器、衰减器、光纤及相关连接线等。
b)搭建实验装置:按照实验要求连接光纤通信系统的各个部分,并保证连接正确稳定。
c)实验操作:利用光源发出光信号,通过光纤将信号传输到接收端。
调整衰减器来模拟光信号传输中的衰减情况,通过光电探测器接收并解析传输的信号。
d)数据记录:记录不同衰减情况下的传输距离、信号强度以及误码率等实验数据。
e)数据分析:根据实验数据,分析光信号传输中的衰减情况、传输距离对信号强度的影响以及误码率的变化。
4.实验结果实验结果表明,在光信号传输中,随着传输距离的增加,信号强度会逐渐减弱,同时误码率也会增加。
当光信号经过较长的传输距离后,信号强度降低至一定程度,误码率显著增加,导致数据传输质量下降。
实验结果与光纤通信中的衰减与失真现象相符。
5.实验反思通过本次光纤通信实验,我对光纤通信的原理、设备及信号传输等关键技术有了更深入的了解。
同时,我也体会到了光信号传输中的衰减现象对数据传输质量的影响。
在今后的实验中,我会更加注意实验操作的准确性,确保实验结果的可靠性。
同时,我还将学习更多有关光纤通信的知识,不断提升自己的实验技能。
6.总结光纤通信实验是一项重要且有趣的实验,通过实践掌握了光纤通信的基本原理与技术。
在实验过程中,我们搭建了光纤通信系统,并进行了光信号传输的相关实验。
实验结果表明,在光信号传输过程中传输距离的增加会造成信号强度减弱以及误码率的增加。
通过本次实验,我们不仅对光纤通信有了更深入的了解,还培养了团队合作能力和实验操作技能。
光纤通信实验报告
实验一SDH设备硬件总体介绍一、实验目的通过对SDH传输设备实物的讲解,让学生对OPTIX 155/622H设备具体硬件有个大致的了解。
二、实验器材1、OPTIX 155/622H(METRO1000)设备2套。
2、OPTIX 155/62H(METRO2050)设备1套。
3、维护用终端若干台。
三、实验内容说明对实物和终端分组进行现场讲解。
四、实验步骤系统硬件介绍:1、本实验平台为华为公司最新一代SDH光传输设备,采用多ADM技术,根据不同的配置需求,可以同时提供E1、64K语音、10M/100M、34M/45M等多种接口,满足现代通信网对复杂组网的需求。
根据实际需要和配置,目前提供E1、64K语音、10M/100M三种接口。
2、实验终端通过局域网(LAN)采用SEVER/CLIENT方式和光传输网元通讯,并完成对网元业务的设置、数据修改、监视等来达到用户管理的目的。
3、本实验平台提供传输设备为OPTIX 155/622H传输速率为STM-1(即155M)。
(一)、OPTIX 155/622(METRO2050)设备介绍OptiX 155/622设备由机柜、子架、风机盒以及若干可选插入式电路板等构成,可灵活配置为终端复用器(TM)、分插复用器(ADM)、再生中继器(REG)。
系统可配置为STM-1单系统或双系统、STM-4单系统或双系统、两者的混合系统,并可实现由STM-1向STM-4的在线升级,又可以通过调整配置以满足网络灵活逐级扩容的需求。
本传输实验平台采用三套OPTIX 166/622 SDH光传输设备,因每个传输设备(也简称网元)硬件配置基本都一样,所以只需介绍其中一个即可。
1.1 电源盒电源盒安装于OptiX 155/622 机柜的顶部。
电源盒主要起-48V 电源接入和分配的作用;为了给SDH 设备提供更好的电性能,增强供电的安全性,电源盒配备了电源滤波器和过流保护器件。
此外电源盒内还配备了电源分配板(PDA)、电源监测板(PMU)、过压保护板(OPU)、低压保护板(LVC)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤通信实验报告实验1.1了解和掌握了光纤的结构、分类和特性参数,能够快速准确的区分单模或者多模类型的光纤。
实验1.21.关闭系统电源,将光跳线分别连接TX1550、RX1550两法兰接口(选择工作波长为1550nm的光信道),注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验—CMI码PN”。
确认,即在P101铆孔输出32KHZ的15位m序列。
3.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节 W205 即改变送入光发端机信号(TX1550)幅度,最大不超过5V。
即将m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.示波器B通道测试光收端机输出电信号的P204试点,看是否有与TX1550测试点一样或类似的信号波形。
6.按“返回”键,选择“码型变换实验—CMI码设置”并确认。
改变SW101拨码器设置(往上为1,往下为0),以同样的方法测试,验证P204和TX1550测试点波形是否跟着变化。
7.轻轻拧下TX1550或RX1550法兰接口的光跳线,观测P204测试点的示波器B通道是否还有信号波形?重新接好,此时是否出现信号波形。
8.以上实验都是在同一台实验箱上自环测试,如果要求两实验箱间进行双工通信,如何设计连接关系,设计出实验方案,并进行实验。
9.关闭系统电源,拆除各光器件并套好防尘帽。
实验2.11.关闭系统电源,按照图2.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550通过尾纤接到光功率计),注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。
3.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将拨码器设置序列电信号送入1550nm光发端机,并转换成光信号从 TX1550法兰接口输出。
5.调节光功率计工作波长“1550nm”、单位“dBm”,读取此时光功率P,即为1550nm 光发射端机在正常工作情况下,对于拨码器设置32K的10001000序列的平均光功率,记录码型和光功率6.拨码器设置其它序列组合,W205 保持不变,记录码型和对应的输出光功率,得出你的结论。
7.按返回键,液晶菜单选择“码型变换实验—CMI码PN”。
确认,即在P101铆孔输出32KHZ的15位m序列。
以同样的方法测试,记录码型、速率和平均光功率值。
8.改变W205值,以同样的方法测试,记录TX1550点信号电平值和对应的输出光功率,得出你的结论。
9.关闭系统电源,拆除各光器件并套好防尘帽。
实验2.21.关闭系统电源,按照图2.2.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好(TX1550 法兰输出通过尾纤接到光功率计),注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验-- CMI码设置” 确认,即在P101铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。
3.示波器测试P101铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P101、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将拨码器设置序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.调节光功率计工作波长“1550nm”、单位“mW”,设置拨码器SW101为11111111,读取此时光功率P1,即为1550nm光发射端机在正常工作情况下,对于全1码的输出光功率,记录码型和光功率。
6.拨码器SW101设置为00000001(原因见“注”),W205保持不变,记录码型和对应的输出光功率P0。
7.将P0、P1代入公式2.1.1,算出此数字光端机的消光比EXT。
EXT=-8.77EXT=-8.778.关闭系统电源,拆除各光器件并套好防尘帽。
实验2.41.将光功率计与激光器输出TX1310法兰相连。
2.电流表(直流档)插入TP202,TP203,正表笔接TP202,负表笔接TP203,将K02 跳线器拔掉。
3.加电后即可开始实验。
4.要测出自动光功率控制(APC)的结果,需要将无APC和有APC进行比较。
按照下表进行测试:无APC(K03跳线插入右侧)有APC(K03跳线插入左侧)K01断开(拔掉跳线器),调整W202,使电流指示为:7mA 7mA测出K01断开时的功率 147.6nW 139.6nW接通K01(增加光端机电流),测出此时的电流9.251mA 8.231mA测出接通K01时的功率 7400000nW 3100000nW6.将所测数据填入上表,从上表看出,有APC时,接与不接K01,电流和功率变化较小,而无APC时,电流和功率变化比较大。
所以,可以看出当激光器输出光功率突然变化时,APC 电路将自动调整其输出功率,确保激光器输出功率稳定。
上面实验参数,验证了APC电路对光功率突然变大的影响。
另外,也可验证APC电路对光功率突然变小的影响,请实验者自行设计实验方案,写出实验步骤。
7.测试完毕后,关闭系统电源,拆除电流表及光功率计,套好防尘帽,插好K01、K02 跳线器。
实验3.1(一)活动连接器的插入损耗测量1.关闭系统电源,按图 3.1.2(a)将光发射端机(TX1550)、光跳线、光功率计连接好,注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“光纤测量实验—平均光发功率”确认,即在 P103(P108)铆孔输出1KHZ的31位m序列。
3.示波器测试P103(P108)铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P103(P108)、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将1KHZ的31位m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.调节光功率计工作波长“1550nm”、单位“mW”,读取此时光功率,即为1550nm光发射端机在正常工作情况下,对于31位m序列的平均光功率,记录光功率P1。
6.将待测活动连接器按图3.1.2(b)串入其中。
测得此时光功率P2。
7.代入公式3.1.1,计算活动连接器的插入损耗(dB)。
8.关闭系统电源,拆除各光器件并套好防尘帽。
(二)活动连接器的回波损耗测量(该实验测试效果不明显,学生可不做,只需了解测试方法)1.关闭系统电源,按图3.1.3(a)将光发射端机(TX1550)、Y型光分路器(1550nm)、光功率计连接好,注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“光纤测量实验—平均光发功率”确认,即在 P103 (P108)铆孔输出1KHZ的31位m序列。
3.示波器测试P103(P108)铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P103(P108)、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将1KHZ的31位m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.调节光功率计工作波长“1550nm”、单位“mW”,读取此时光功率,即为1550nm光发射端机在正常工作情况下,对于31位m序列的平均光功率,记录光功率P1。
6.将待测活动连接器按图3.1.3(b)串入其中。
测得此时光功率P3。
7.代入公式3.1.2,计算活动连接器的回波损耗(dB)。
8.关闭系统电源,拆除各光器件并套好防尘帽。
实验3.4(一)光波分复用器1310nm光传输插入损耗和波长隔离度的测量1.关闭系统电源,按照前面实验中图3.1.2(a)将1310nm光发射端机的TX1310法兰接口、FC-FC单模尾纤、光功率计连接好,注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“光纤测量实验—平均光发功率”确认,即在 P103 (P108)铆孔输出1KHZ的31位m序列。
3.示波器测试P103(P108)铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P103(P108)、P201两铆孔,示波器A通道测试TP201测试点,确认有相应的波形输出,即将1KHZ的31位m序列电信号送入1310nm光发端机,并转换成光信号从TX1310法兰接口输出。
5.调节光功率计工作波长“1310nm”、单位“mW”,读取此时光功率,即为1310nm 光发射端机在正常工作情况下,对于31位m序列的平均光功率,记录光功率Pa。
6.关闭系统电源,拆除各光器件并套好防尘帽。
(二)光波分复用器1550nm光传输插入损耗和波长隔离度的测量1.关闭系统电源,按照前面实验中图3.1.2(a)将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、光功率计连接好,注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“光纤测量实验—平均光发功率”确认,即在 P103 (P108)铆孔输出1KHZ的31位m序列。
3.示波器测试P103(P108)铆孔波形,确认有相应的波形输出。
4.用信号连接线连接P103(P108)、P203两铆孔,示波器A通道测试TX1550测试点,确认有相应的波形输出,调节W205即改变送入光发端机信号(TX1550)幅度最大(不超过5V),记录信号电平值。
即将1KHZ的31位m序列电信号送入1550nm光发端机,并转换成光信号从TX1550法兰接口输出。
5.调节光功率计工作波长“1550nm”、单位“mW”,读取此时光功率,即为1550nm 光发射端机在正常工作情况下,对于31位m序列的平均光功率,记录光功率Pb。
6.关闭系统电源,拆除各光器件并套好防尘帽。
实验6.11.关闭系统电源,按照图6.1.1将1550nm光发射端机的TX1550法兰接口、FC-FC单模尾纤、1550nm光接收端机的RX1550法兰接口连接好。
注意收集好器件的防尘帽。
2.打开系统电源,液晶菜单选择“码型变换实验-- CMI 码设置” 确认,即在 P101 铆孔输出32KHZ的SW101拨码器设置的8比特周期性序列,如10001000。