Aldmin《数学分析》3第一章 实数集与函数---§2数集和确界原理

合集下载

第一章实数集与函数

第一章实数集与函数
序言
数学分析的主要内容: 微积分 研究的对象: 函数(连续量) 什么是连续量?
初等数学: 主要是离散量的运算体系 (加, 减, 乘, 除) 两种体系的区别:初等数学主要是恒等变形技巧; 而数学分析则是用不
等式来刻划等式(用极限的概念) 学习方法的不同: 初、高中: 从填鸭式 -> 启发式, 以教师为主,强烈地依赖于教师。 大学: 从启发式 -> 个人自发,以学生本身为主,教师引导。 学习目的:掌握微积分,极限,实数连续统的概念和方法,更主要的是,
培养自己的积极思考问题、分析问题和解决问题的能力。
一、内容简介
主要讲述实数系的连续性(戴德金意义下)、确界定义和确 界存在定理。由于本章是建立数学分析理论的基础,对于习 惯于中学数学思维方式的大学新生来讲,会感到很抽象,学 习的难度相对会大一些.
二、学习要求
(1)了解数系的演变; (2)正确理解上、下确界的概念; (3)掌握实数连续性描述:确界存在定理 三、学习的重点和难点
使得 na > b.
5 实数的稠密性,即任何两实数之间必有另 一实数,且既有有理数,也有无理数.
6 实数与数轴上点一一对应.
例3 设 a,b R ,证明:若对任何正数 ,
有 a < b ,则 a b
注: a,b R 为常数,不能为变数
四、 绝对值与不等式
实数 a 的绝对值定义、几何意义. 性质
而当 x a0 为正整数时,则记 x (a0 1).999 9 ,
例如 2.001 记为 2.000 999…;对于负有限小(包括负数) y, 则先将 -y 表示为无限小数,再在所得无限小数之前加负号.
例如 -8 记为 -7.999 9…; 又规定数 0 表示为 0.0000…. 于是,任何实数都可用一个确定的无限小数来表示.

第一章第二节

第一章第二节

§2 数集.确界定理Ⅰ. 教学目的与要求1.理解区间及邻域的概念,2.掌握有界集和上、下确界的概念;3.理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅱ. 教学重点与难点:重点: 实数确界的定义及确界原理.难点: 实数确界的定义及确界原理的应用.Ⅲ. 讲授内容一 区间与邻域设a 、b ∈ R ,且b a <.我们称数集}|{b x a x <<引为开区间,记作(b a ,);数集}|{b x a x ≤≤称为闭区间,记作[b a ,];数集{b x a x ≤≤|}和{b x a x ≤<|}都称为半开半闭区间,分别记作[b a ,)和(],b a .以上这几类区间统称为有限区间.无限区间:[+∞,a ){}a x x ≥= ,},|{),(},|{],(a x x a a x x a >=+∞≤=-∞ }|{],(a x x a <=-∞,R x x =+∞<<-∞=+∞-∞}|{),(都称为无限区间.有限区间和无限区间统称为区间.设R a ∈,0>δ.集合).,(}|{);(δδδδ+-=<-=a a a x x a U 称为点a 的δ邻域,记作);(δa U ,或简单地写作U)(a .点a 的空心δ邻域定义为},0|{);(δδ<-<=a x x a U 或简单地记作)(a U ,注意);();(δδa U a U 与 的差别在于: }0|{);(δδ<-<=a x x a U不包含点a . 此外,我们还常用到以下几种邻域:点a 的δ右邻域),[);(δδ+=+a a a U ,简记为);(a U +点a 的δ左邻域],();(a a a U δδ-=-,简记为);(a U -)()((a U a U +-与去除点a 后,分别为点a 的空心δ左、右领域,简记为)()(a U a U +- 与.) ∞邻域}|{)(M x x U >=∞,其中M 为充分大的正数(下同);∞+邻域}|{)(M x x U -<=+∞,∞-领域}|{)(M x x U -<=-∞.二 有界集.确界原理定义 1 设S 为R 中的一个数集.若存在数M(L),使得对一切S x ∈,都有x ≤M(x ≥L),则称S 为有上界(下界)的数集,数M(L)称为S 的一个上界(下界).若数集S 既有上界又有下界,则称S 为有界集.若S 不是有界集,则称S 为无界集. 例1 证明数集n n N |{=+为正整数}有下界而无上界.证 显然,任何一个不大于1的实数都是+N 的下界,故+N 为有下界的数集.为证N+无上界,按照定义只须证明:对于无论多么大的数M ,总存在某个正整数)(+∈N n o ,使得M n o >事实上,对任何正数M (无论多么大),取=0n []1+M ,则o n +∈N ,且M n o >.这就证明了+N 无上界.同样可以证明:任何有限区间都是有界集,无限区间都是无界集;由有限个数组成的数集是有界集.定义2 设S 是R 中的一个数集.若数η满足:(i )对一切S x ∈,有η≤x ,即η是S 的上界;(ii )对任何ηα<存在S x o ∈,使得α>o x 即η又是S 的最小上界则称数η为数集S 的上确界,记作S sup =η定义3 设S 是R 中的一个数集.若数ξ满足:(i )对一切S x ∈,有ξ≥x ,即ξ是S 的下界(ii )对任何ξβ>,存在S x o ∈,使得,β<o x 即ξ又是S 的最大下界,则称数ξ为数集S 的下确界,记作 S inf =ξ上确界与下确界统称为确界.例2 设x x S |{=为区间)1,0(中的有理数}.试按上、下确界的定义验证: .0inf ,1sup ==S S解 先验证:1sup =S(i )对一切S x ∈,显然有1≤x 即1是S 的上界.(ii )对任何1<α,若0≤α,则任取S x o ∈都有α>o x ;若0>α,则由有理数集在实数集中的稠密性,在)1,(α中必有有理数o x 即存在S x o ∈,使得α>o x .类似地可验证0inf =S注1 由上(下)确界的定义可见,若数集S 存在上(下)确界,则一定是唯一的.又若数集S 存在上、下确界,则有S S sup inf ≤.注2 数集S 的确界可能属于S ,也可能不属于S .例3 设数集S 有上确界.证明:S S S max sup =⇔∈=ηη证 )⇒设S S ∈=sup η,则对一切s x ∈有η≤x ,而S ∈η,故η是数集S 中最大的数,即,S max =η.)⇐S m a x=η,则S ∈η;下面验证S sup =η. (i )对一切S x ∈,有η≤x ,即η可是S 的上界;(ii )对任何ηα<,只须取S x o ∈=η,则α>o x 从而满足S sup =η的定义. 定理1.1(确界原理) 设S 为非空数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.证 我们只证明关于上确界的结论,后一结论可类似地证明.为叙述的方便起见,不妨设S 含有非负数.由于S 有上界,故可找到非负整数n ,使得 )1对于任何S x ∈有1+<n x ;)2存在S a ∈0,使n a ≥0.对半开区间[)1,+n n 作10等分,分点为9.,,2.,1.n n n ,则存在,2,1,09, 中的一个数1n ,使得)1对于任何S x ∈有101.1+<n n x ; )2存在S a ∈1,使11.n n a ≥.再对半开区间)101.,.[11+n n n n 作10等分,则存在9,2,1,0 中的一个数2n 使得 )1对于任何S x ∈有<x 221101.+n n n )2存在S a ∈2,使..212n n n a ≥继续不断地10等分在前一步骤中所得到的半开区间,可知对任何存在9,2,1,0 中的—个数k n ,使得)1对于任何S x ∈有kk n n n n x 101.21+< )2存在S a k ∈,使 ..21k k n n n n a ≥将上述步骤无限地进行下去,得到实数..21 k n n n n =η.以下证明=ηS sup .为此只需证明:(i )对一切S x ∈有η≤x ;(ii )对任何ηα<,存在S ∈'α使'a <α.倘若结论(i )不成立,即存在S x ∈使η>x ,则可找到x 的k 位不足近似k x ,使=>k k x η+k n n n n 21.k101, 从而得 k k n n n n x 101.21+> , 但这与不等式)1(相矛盾.于是(i )得证. 现设ηα<,则存在k 使η的k 位不足近似k k αη>,即k k n n n n α> 21.,根据数η的构S a ∈'使k a η≥',从而有k a η≥'α≥>k ,即得到'a <α,.这说明(ii )成立.例4 设B A ,为非空数集,满足:对一切A x ∈和B y ∈有y x ≤.证明:数集A 有上确界,数集B 下确界,且B A inf sup ≤ ()2证 由假设,数集B 中任一数y 都是数集A 的上界,A 中任一数x 都是B的下界,故由确界原理推知数集A 有上确界,数集B 有下确界.现证不等式)2(对任何B y ∈,y 是数集A 的一个上界,而由上确界的定义知,A sup 是数集A 的最小上界,故有y A ≤sup .而此式又表明数A sup 是数集 B 的一个下界,故由下确界定义证得B A inf sup ≤.例5 设B A ,为非空有界数集, A S =B .证明:(i )}sup ,max{sup sup B A S =;(ii )}inf min{inf,inf B S =. 证 由于B A S =显然也是非空有界数集,因此S 的上、下确界都存在.(i )对任何∈x S ,有∈x A 或B x ∈A s sup ≤⇒或B x sup ≤,从而有≤x }{B A sup ,sup max ,故得}{B A S sup ,sup max sup ≤.另一方面,对任何A x ∈,有;s up s up s up S A S x S x ≤⇒≤⇒∈;同理又有S B sup sup ≤.所以}{B A S sup ,sup max sup ≥.综上,即证得}{B A S sup ,sup max sup =.(ii)可类似地证明.若把∞+和∞-补充到实数集中,并规定任一实数a 与∞+、∞-的大小关系为:+∞<a ,-∞>a ,+∞<∞-,则确界概念可扩充为:若数集S 无上界,则定义∞+为S 的非正常上确界,记作+∞=S sup ;若S 无下界,则定义∞-为S 的非正常下确界,记作-∞=S inf .相应地,前面定义2和定义3中所定义的确界分别称为正常上、下确界.推广的确界原理 任一非空数集必有上、下确界(正常的或非正常的).Ⅳ 小结与提问:本节要求学生掌握邻域的概念, 理解实数确界的定义及确界原理,并在有关命题中正确地加以应用.Ⅴ 课外作业:P 9 2、3、4、5、6、7、8.。

第一章2数集 确界原理

第一章2数集 确界原理

1 2
正无穷大 负无穷大
王利梅 数学分析
设 a ∈ R, δ > 0, 满足绝对值不等式 |x − a| < δ 的全体 x 的集合 称为点 a 的 δ 领域, 记为 U (a, δ ), 或简记为 U (a), 即有 U (a, δ ) = {x | |x − a| < δ } = (a − δ, a + δ ). 点 a 的空心 δ 领域定义为 U 0 (a, δ ) = {x | 0 < |x − a| < δ } = (a − δ, a + δ ) \ {a} = U 0 (a). 点 a 的 δ 右领域为 U+ (a, δ ) = [a, a + δ ) = U+ (a). 点 a 的 δ 左领域定义为 U− (a, δ ) = (a − δ, a] = U− (a). 点 a = {x | x 为区间(0, 1)内的有理数},试按上, 下确界的定义验 证 sup S = 1, inf S = 0. . 证明. 先证明 sup S = 1. (i) 对 ∀ x ∈ S , 显然有 x ≤ 1. 即 1 是 S 的上界. (ii) 对 ∀ α < 1, 若 α ≤ 0, 则任取 x0 ∈ S , 有 x0 > α; 若 α > 0, 则 由有理数在实数中的稠密性知, 在 (α, 1) 内必有有理数 x0 , 即 ∃ x0 ∈ S 使得 x0 > α. 即 η 是 S 的最小上界. 类似地可验证 inf S = 0. 例:闭区间 [0, 1] 的上, 下确界分别为 1 和 0. 开区间 (0, 1) 的上, 下确界分别为 1 和 0. 正整数集有下确界 1, 而没有上确界.
王利梅
数学分析
王利梅

数学分析(华东师大)第一章实数集与函数

数学分析(华东师大)第一章实数集与函数

第一章实数集与函数§1 实数数学分析研究的基本对象是定义在实数集上的函数.为此, 我们先简要叙述实数的有关概念.一实数及其性质在中学数学课程中, 我们知道实数由有理数与无理数两部分组成.有理数可用分数形式p( p、q 为整数, q≠0 ) 表示, 也可用有限十进小数或无限十进循环q小数来表示; 而无限十进不循环小数则称为无理数.有理数和无理数统称为实数.为了以下讨论的需要, 我们把有限小数( 包括整数) 也表示为无限小数.对此我们作如下规定: 对于正有限小数( 包括正整数) x , 当x = a0 . a1 a2 a n 时, 其中0≤a i ≤9 , i = 1 , 2 , , n , a n ≠0 , a0 为非负整数, 记x = a0 . a1 a2 ( a n - 1) 999 9 ,而当x = a0 为正整数时, 则记x = ( a0 - 1 ) .999 9 ,例如2 .001 记为2.000 999 9 ; 对于负有限小数( 包括负整数) y , 则先将- y 表示为无限小数, 再在所得无限小数之前加负号, 例如- 8 记为- 7.999 9 ; 又规定数0 表示为0.000 0 .于是, 任何实数都可用一个确定的无限小数来表示.我们已经熟知比较两个有理数大小的方法.现定义两个实数的大小关系.定义1 给定两个非负实数x = a0 . a1 a2 a n , y = b0 .b1 b2 b n ,其中a0 , b0 为非负整数, a k , b k ( k = 1 , 2 , ) 为整数, 0≤a k ≤9 , 0≤b k ≤9 .若有a k =b k , k = 0 , 1 , 2 , ,则称x 与y 相等, 记为x = y; 若a0 > b0 或存在非负整数l , 使得a k =b k ( k = 0 , 1 , 2 , , l ) 而a l + 1 > b l + 1 ,则称x 大于y 或y 小于x , 分别记为x > y 或y < x .2 第一章实数集与函数对于负实数x , y, 若按上述规定分别有- x = - y 与- x > - y , 则分别称x = y 与x < y( 或y > x) .另外, 自然规定任何非负实数大于任何负实数.以下给出通过有限小数来比较两个实数大小的等价条件.为此, 先给出如下定义.定义 2 设x = a0 . a1 a2 a n 为非负实数.称有理数x n = a0 . a1 a2 a n为实数x 的n位不足近似, 而有理数x n = x n + 称为x 的n位过剩近似, n = 0 , 1 , 2 , . 1 10 n对于负实数x = - a0 .a1 a2 a n , 其n 位不足近似与过剩近似分别规定为1x n = - a0 .a1 a2 a n - n 与x n = - a0 .a1 a2 a n .10注不难看出, 实数x 的不足近似x n 当n 增大时不减, 即有x0 ≤x1 ≤x2 ≤, 而过剩近似x n 当n 增大时不增, 即有x0 ≥x1 ≥x2 ≥.我们有以下的命题设x = a0 .a1 a2 与y = b0 . b1 b2 为两个实数, 则x > y 的等价条件是: 存在非负整数n , 使得x n > y n ,其中x n 表示x 的n 位不足近似, y n 表示y 的n 位过剩近似.关于这个命题的证明, 以及关于实数的四则运算法则的定义, 可参阅本书附录Ⅱ第八节.例1 设x、y 为实数, x < y .证明: 存在有理数r 满足x < r < y .证由于x < y , 故存在非负整数n , 使得x n < y n .令r = 1( x n + y n ) ,2则r 为有理数, 且有即得x < r < y .x ≤ x n < r < y n ≤y,为方便起见, 通常将全体实数构成的集合记为R , 即R = { x x 为实数} .实数有如下一些主要性质:1 . 实数集R 对加、减、乘、除( 除数不为0 ) 四则运算是封闭的, 即任意两个§1 实数3实数的和、差、积、商( 除数不为0) 仍然是实数.2 . 实数集是有序的, 即任意两实数a、b 必满足下述三个关系之一: a < b,a = b, a >b .3 . 实数的大小关系具有传递性, 即若a > b, b > c, 则有a > c .4 . 实数具有阿基米德( Archimedes ) 性, 即对任何a、b∈R , 若b > a > 0 , 则存在正整数n , 使得na > b .5 . 实数集R 具有稠密性, 即任何两个不相等的实数之间必有另一个实数, 且既有有理数( 见例1 ) , 也有无理数.6 . 如果在一直线( 通常画成水平直线) 上确定一点O 作为原点, 指定一个方向为正向( 通常把指向右方的方向规定为正向) , 并规定一个单位长度, 则称此直线为数轴.任一实数都对应数轴上唯一的一点; 反之, 数轴上的每一点也都唯一地代表一个实数.于是, 实数集R 与数轴上的点有着一一对应关系.在本书以后的叙述中, 常把“实数a”与“数轴上的点a”这两种说法看作具有相同的含义.例2 设a、b∈R .证明: 若对任何正数ε有a < b + ε, 则a≤b .证用反证法.倘若结论不成立, 则根据实数集的有序性, 有a > b .令ε= a - b, 则ε为正数且 a = b + ε, 但这与假设 a < b + ε相矛盾.从而必有a≤b .关于实数的定义与性质的详细论述, 有兴趣的读者可参阅本书附录Ⅱ .二绝对值与不等式实数a 的绝对值定义为a = a , a ≥0 ,- a , a < 0 .从数轴上看, 数a 的绝对值| a | 就是点 a 到原点的距离.实数的绝对值有如下一些性质:1 . | a | = | - a | ≥0; 当且仅当 a = 0 时有| a | = 0 .2 . - | a | ≤ a≤ | a | .3 . | a | < h! - h < a < h; | a | ≤ h! - h≤ a≤ h ( h > 0) .4 . 对于任何a、b∈R 有如下的三角形不等式:a -b ≤ a ±b ≤ a + b .5 . | ab | = | a | | b| .6 . ab| a || b|( b≠ 0) .下面只证明性质4 , 其余性质由读者自行证明. 由性质2 有=4 第一章实数集与函数两式相加后得到- a ≤ a ≤ a , - b ≤ b ≤ b .- ( a + b ) ≤ a + b ≤ a + b .根据性质3 , 上式等价于a +b ≤ a + b . ( 1) 将(1 ) 式中 b 换成- b, ( 1) 式右边不变, 即得| a - b | ≤| a | + | b | , 这就证明了性质4 不等式的右半部分.又由| a | = | a - b + b | , 据(1 ) 式有a ≤ a -b + b .从而得a -b ≤ a - b . ( 2) 将(2 ) 式中 b 换成- b, 即得| a | - | b | ≤| a + b | .性质4 得证.习题1 . 设a 为有理数, x 为无理数.证明:( 1) a + x 是无理数; ( 2)当a≠0 时, ax 是无理数.2 . 试在数轴上表示出下列不等式的解:( 1) x ( x2 - 1) > 0; ( 2) | x - 1 | < | x - 3 | ;( 3) x - 1 - 2 x - 1≥ 3 x - 2 .3 . 设a、b∈R .证明:若对任何正数ε有| a - b| < ε, 则a = b .4 . 设x ≠0 ,证明x + 1 x5 . 证明: 对任何x ∈R 有≥2 , 并说明其中等号何时成立.( 1) | x - 1 | + | x - 2 | ≥1; ( 2) | x - 1 | + | x - 2 | + | x - 3 | ≥2 .6 . 设a、b、c∈R+ ( R+ 表示全体正实数的集合) .证明a2 + b2- a2+ c2 ≤ b - c .你能说明此不等式的几何意义吗?7 . 设x > 0 , b > 0 , a≠b .证明a + x介于 1 与a之间.b + x b8 . 设p 为正整数.证明:若p 不是完全平方数, 则p是无理数.9 . 设a、b 为给定实数.试用不等式符号(不用绝对值符号) 表示下列不等式的解:( 1) | x - a| < | x - b | ; ( 2) | x - a | < x - b; (3) | x2 - a | < b .§2 数集·确界原理本节中我们先定义R 中两类重要的数集———区间与邻域, 然后讨论有界集§2 数集·确界原理5并给出确界定义和确界原理.一区间与邻域设a、b∈R , 且 a < b .我们称数集{ x | a < x < b} 为开区间, 记作( a , b) ; 数集{ x | a≤x≤b} 称为闭区间, 记作[ a , b] ; 数集{ x | a≤x < b} 和{ x | a < x ≤b} 都称为半开半闭区间, 分别记作[ a , b) 和( a , b] .以上这几类区间统称为有限区间.从数轴上来看, 开区间( a , b) 表示a、b 两点间所有点的集合, 闭区间[ a, b] 比开区间( a , b) 多两个端点, 半开半闭区间[ a, b) 比开区间( a, b) 多一个端点 a 等.满足关系式x ≥a 的全体实数x 的集合记作[ a , + ∞) , 这里符号∞读作“无穷大”, + ∞读作“正无穷大”.类似地, 我们记( - ∞ , a] = { x x ≤ a} , ( a , + ∞ ) = { x x > a} ,( - ∞, a) = { x x < a} , ( - ∞, + ∞) = { x - ∞< x < + ∞} = R , 其中- ∞读作“负无穷大”.以上这几类数集都称为无限区间.有限区间和无限区间统称为区间.设a∈R , δ> 0 .满足绝对值不等式| x - a | < δ的全体实数x 的集合称为点a 的δ邻域, 记作U ( a;δ) , 或简单地写作U( a ) , 即有U( a; δ) = { x x - a < δ} = ( a - δ, a + δ) .点a 的空心δ邻域定义为U°(a;δ) = { x 0 < x - a < δ} ,它也可简单地记作U°( a) .注意, U°( a;δ) 与U( a;δ) 的差别在于: U°( a;δ) 不包含点 a .此外, 我们还常用到以下几种邻域:点a 的δ右邻域U + ( a;δ) = [ a , a + δ) , 简记为U + ( a) ;点a 的δ左邻域U - ( a;δ) = ( a - δ, a] , 简记为U - ( a) ;( U- ( a ) 与U+ ( a ) 去除点 a 后, 分别为点 a 的空心δ左、右邻域, 简记为U°- ( a) 与U°+ ( a) .)∞邻域U( ∞) = { x | x | > M} , 其中M 为充分大的正数( 下同) ;+ ∞邻域U( + ∞) = { x | x > M}; - ∞邻域U( - ∞) = { x | x < - M} .二有界集·确界原理定义1 设S 为R 中的一个数集.若存在数M ( L ) , 使得对一切x ∈S , 都有x ≤M( x≥L) , 则称S 为有上界( 下界) 的数集, 数M( L) 称为S 的一个上界( 下界) .6 第一章实数集与函数若数集S 既有上界又有下界, 则称S 为有界集.若S 不是有界集, 则称S 为无界集.例1 证明数集N + = { n | n 为正整数}有下界而无上界.证显然, 任何一个不大于1 的实数都是N + 的下界, 故N + 为有下界的数集.为证N + 无上界, 按照定义只须证明: 对于无论多么大的数M, 总存在某个正整数n0 ( ∈N + ) , 使得n0 > M .事实上, 对任何正数M ( 无论多么大) , 取n0 = [ M ] + 1 ①, 则n0 ∈N + , 且n0 > M .这就证明了N + 无上界.读者还可自行证明: 任何有限区间都是有界集, 无限区间都是无界集; 由有限个数组成的数集是有界集.若数集S 有上界, 则显然它有无穷多个上界, 而其中最小的一个上界常常具有重要的作用, 称它为数集S 的上确界.同样, 有下界数集的最大下界, 称为该数集的下确界.下面给出数集的上确界和下确界的精确定义.定义2 设S 是R 中的一个数集.若数η满足:( i) 对一切x∈S , 有x≤η, 即η是S 的上界;( ii) 对任何α< η, 存在x0 ∈S , 使得x0 > α, 即η又是S 的最小上界,则称数η为数集S 的上确界, 记作η = sup S② .定义3 设S 是R 中的一个数集.若数ξ满足:( i) 对一切x∈S , 有x≥ξ, 即ξ是S 的下界;( ii) 对任何β> ξ, 存在x0 ∈S , 使得x0 < β, 即ξ又是S 的最大下界,则称数ξ为数集S 的下确界, 记作ξ= inf S .上确界与下确界统称为确界.例2 设S = { x |x 为区间(0 , 1 ) 中的有理数} .试按上、下确界的定义验证: sup S = 1 , inf S = 0 .解先验证sup S = 1 :( i) 对一切x∈S , 显然有x≤1 , 即1 是S 的上界.( ii) 对任何α< 1 , 若α≤0 , 则任取x0 ∈S 都有x0 > α; 若α> 0 , 则由有理数集在实数集中的稠密性, 在( α, 1) 中必有有理数x0 , 即存在x0 ∈S , 使得x0 > α.类似地可验证inf S = 0 .读者还可自行验证: 闭区间[0 , 1 ]的上、下确界分别为1 和0 ; 对于数集①[ x] 表示不超过数x 的最大整数, 例如[ 2 .9 ] = 2 , [ - 4 .1 ] = - 5 .②sup 是拉丁文supremum ( 上确界) 一词的简写; 下面的inf 是拉丁文infimum ( 下确界) 一词的简写.E = ( - 1 ) §2 数集·确界原理7nn n = 1 , 2 , , 有 sup E = N + = 1 , 而没有上确界 . 1 2 , inf E = - 1 ; 正整数集 N + 有下确界 inf 注 1 由上 ( 下 ) 确界的定义可见 , 若数集 S 存在上 ( 下 ) 确界 , 则一定是唯一 的 .又若数集 S 存在上、下确界 , 则有 inf S ≤s up S .注 2 从上面一些例子可见 , 数集 S 的确界可能属于 S , 也可能不属于 S . 例 3 设数集 S 有上确界 .证明η = sup S ∈ S !η = max S ① .证 ª ) 设 η= sup S ∈ S , 则对一切 x ∈ S 有 x ≤η, 而 η∈ S , 故 η是数集 S 中最大的数 , 即 η= max S .Ï ) 设 η= max S , 则 η∈ S ; 下面验证 η= sup S:( i ) 对一切 x ∈ S , 有 x ≤η, 即 η是 S 的上界 ;( ii ) 对任何 α< η, 只 须取 x 0 = η∈ S , 则 x 0 > α .从 而满 足 η= sup S 的 定 义 .关于数集确界的存在性 , 我们给出如下确界原理 .定理 1 .1 ( 确界原理 ) 设 S 为非空数集 .若 S 有上界 , 则 S 必有上确界 ; 若 S 有下界 , 则 S 必有下确界 .证 我们只证明关于上确界的结论 , 后一结论可类似地证明 .为叙述的方便起见 , 不妨设 S 含有非负数 .由于 S 有上界 , 故可找到非负整 数 n , 使得1) 对于任何 x ∈ S 有 x < n + 1 ;2) 存在 a 0 ∈ S , 使 a 0 ≥ n .对半开区间 [ n , n + 1) 作 10 等分 , 分点为 n .1 , n .2 ,, n .9 , 则存在 0 , 1 , 2 , , 9 中的一个数 n 1 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 + 1 ; 102) 存在 a 1 ∈ S , 使 a 1 ≥ n . n 1 .再对半开区间 [ n . n 1 , n . n 1 + 1 ) 作 10 等 分 , 则 存在 0 , 1 , 2 , , 9 中的一 个 10数 n 2 , 使得1) 对于任何 x ∈ S 有 x < n . n 1 n 2 + 1 ; 1022) 存在 a 2 ∈ S , 使 a 2 ≥ n . n 1 n 2 .① 记号 max 是 maxim um( 最大 ) 一 词的 简写 , η= max S 表 示数 η是 数集 S 中 最大 的数 .以下 将出 现 的记号 min 是 minimu m( 最小 ) 一 词的简 写 , min S 表示 数集 S 中 最小 的数 .8 第一章实数集与函数继续不断地10 等分在前一步骤中所得到的半开区间, 可知对任何k = 1 , 2 , , 存在0 , 1 , 2 , , 9 中的一个数n k , 使得1) 对于任何x∈S 有x < n . n1 n2 n k + 1; ( 1)10 k2) 存在a k ∈S , 使a k ≥n . n1 n2 n k .将上述步骤无限地进行下去, 得到实数η= n . n1 n2 n k .以下证明η= sup S .为此只需证明:( i) 对一切x∈S 有x≤η; ( ii ) 对任何α< η, 存在a′∈S 使α< a′.倘若结论( i ) 不成立, 即存在x ∈S 使x > η, 则可找到x 的k 位不足近似x k , 使从而得x k > 珔ηk = n . n1 n2 n k +1,10 kx > n . n1 n2 n k +1,10 k但这与不等式(1 ) 相矛盾.于是( i) 得证.现设α< η, 则存在k 使η的k 位不足近似ηk > 珔αk , 即n . n1 n2 n k > 珔αk .根据数η的构造, 存在a′∈S 使a′≥ηk , 从而有a′≥ηk > 珔αk ≥α,即得到α< a′.这说明( ii) 成立.在本书中确界原理是极限理论的基础, 读者应给予充分的重视.例4 设 A 、B为非空数集, 满足: 对一切x∈A 和y∈B 有x ≤y .证明: 数集A 有上确界, 数集 B 有下确界, 且sup A ≤ inf B . ( 2) 证由假设, 数集 B 中任一数y 都是数集 A 的上界, A 中任一数x 都是 B 的下界, 故由确界原理推知数集 A 有上确界, 数集 B 有下确界.现证不等式(2 ) .对任何y∈B , y 是数集A 的一个上界, 而由上确界的定义知, sup A 是数集A 的最小上界, 故有sup A≤y .而此式又表明数sup A 是数集B 的一个下界, 故由下确界定义证得sup A≤inf B .例5 设 A 、B为非空有界数集, S = A ∪ B .证明:( i) sup S = max{sup A , sup B};( ii) inf S = min{inf A , inf B} .证由于S = A ∪B 显然也是非空有界数集, 因此S 的上、下确界都存在.( i) 对任何x∈S , 有x∈A 或x∈Bªx≤sup A 或x≤sup B , 从而有x ≤§2 数集·确界原理9max{sup A , sup B} , 故得sup S≤max{ sup A , sup B} .另一方面, 对任何x∈A , 有x ∈S ªx ≤sup S ªs up A ≤sup S ; 同理又有sup B≤sup S .所以sup S≥max{sup A , sup B} .综上, 即证得sup S = max{sup A , sup B} .( ii) 可类似地证明.若把+ ∞和- ∞补充到实数集中, 并规定任一实数 a 与+ ∞、- ∞的大小关系为: a < + ∞, a > - ∞, - ∞< + ∞, 则确界概念可扩充为:若数集S 无上界, 则定义+ ∞为S 的非正常上确界, 记作sup S = + ∞;若S 无下界, 则定义- ∞为S 的非正常下确界, 记作inf S = - ∞.相应地, 前面定义2 和定义3 中所定义的确界分别称为正常上、下确界.在上述扩充意义下,我们有推广的确界原理任一非空数集必有上、下确界( 正常的或非正常的) .例如, 对于正整数集N+ 有inf N+ = 1 , sup N+ = + ∞; 对于数集S = { y y = 2 - x2 , x ∈R } ( 3) 有inf S = - ∞, sup S = 2 .习题1 . 用区间表示下列不等式的解:( 1) | 1 - x | - x ≥0; ( 2) x + 1x≤6 ;( 3) ( x - a) ( x - b) ( x - c) > 0( a , b , c 为常数, 且 a < b < c) ;( 4) sin x ≥ 2 .22 . 设S 为非空数集.试对下列概念给出定义:( 1) S 无上界; ( 2) S 无界.3 . 试证明由(3 )式所确定的数集S 有上界而无下界.4 . 求下列数集的上、下确界, 并依定义加以验证:( 1) S = { x | x2 < 2} ; (2 ) S = { x | x = n !, n∈ N+ } ;( 3) S = { x | x 为(0 , 1 )内的无理数} ;( 4) S = { x | x = 1 - 1, n∈N+ } .2 n5 . 设S 为非空有下界数集.证明:inf S = ξ∈ S!ξ = min S .6 . 设S 为非空数集, 定义S - = { x | - x ∈S} .证明:( 1) inf S - = - sup S; ( 2) sup S - = - inf S .7 . 设A 、B皆为非空有界数集, 定义数集A +B = { z | z = x + y, x ∈ A , y ∈ B} .10 第一章实数集与函数证明: (1) sup( A + B) = sup A + sup B; ( 2) inf( A + B) = inf A + inf B .8 . 设a > 0 , a≠1 , x 为有理数.证明sup{ a r | r 为有理数, r < x} , 当a > 1 ,a x =inf{ a r | r 为有理数, r < x} , 当a < 1 .§3 函数概念关于函数概念, 在中学数学中我们已有了初步的了解, 本节将对此作进一步的讨论.一函数的定义定义1 给定两个实数集 D 和M , 若有对应法则 f , 使对D 内每一个数x , 都有唯一的一个数y∈M 与它相对应, 则称 f 是定义在数集D 上的函数, 记作f : D → M ,( 1)x 組y .数集 D 称为函数 f 的定义域, x 所对应的数y , 称为f 在点x 的函数值, 常记为f ( x) .全体函数值的集合f ( D) = { y y = f ( x ) , x ∈ D} ( ÌM)称为函数f 的值域.(1 ) 中第一式“D→M”表示按法则 f 建立数集D到M 的函数关系; 第二式“x 組y”表示这两个数集中元素之间的对应关系, 也可记为“x 組f ( x) ”.习惯上, 我们称此函数关系中的x 为自变量, y 为因变量.关于函数的定义, 我们作如下几点说明:1 . 定义1 中的实数集M 常以R 来代替, 于是定义域 D 和对应法则 f 就成为确定函数的两个主要因素.所以, 我们也常用y = f ( x ) , x ∈D表示一个函数.由此, 我们说某两个函数相同, 是指它们有相同的定义域和对应法则.如果两个函数对应法则相同而定义域不同, 那么这两个函数仍是不相同的.例如 f ( x ) = 1 , x ∈R 和g( x) = 1 , x∈R \ {0 } 是不相同的两个函数.另一方面, 两个相同的函数, 其对应法则的表达形式可能不同, 例如φ( x) = x , x ∈R 和ψ( x) = x2 , x ∈R .2 . 我们在中学数学中已经知道,表示函数的主要方法是公式法, 即用数学运算式子来表示函数.这时, 函数的定义域常取使该运算式子有意义的自变量值的全体,通常称为存在域.在这种情况下,函数的定义域( 即存在域) D 可省略不写,而只用对应法则 f 来表示一个函数,此时可简单地说“函数y = f ( x)”或“函数f”.§3 函 数 概 念113 . 函数 f 给出了 x 轴上的点集 D 到 y 轴上 点集 M 之间 的单值 对应 , 也 称 为映射 .对于 a ∈ D, f ( a) 称为映射 f 下 a 的象 , a 则称为 f ( a) 的原象 .4 . 在函数定义中 , 对每一个 x ∈ D , 只能有唯一的 一个 y 值 与它对 应 , 这 样 定义的函数称为单值函数 .若同 一个 x 值 可以 对应 多于 一 个的 y 值 , 则 称这 种 函数为多值函数 .在本书范围内 , 我们只讨论单值函数 .二 函数的表示法在中学课程里 , 我们已经知道函数 的表 示法主 要有 三种 , 即 解析法 ( 或称 公 式法 ) 、列表法和图象法 . 有些函数在其定义域的不同部 分用 不同的 公式 表达 , 这 类函数 通常 称为 分 段函数 .例如 , 函数sgn x =1 , x > 0 , 0 ,x = 0 ,- 1 , x < 0是分段函数 , 称为符号函数 , 其图象如图 1 - 1 所示 . 又如函数 f ( x ) = | x | 也可 用 如下 的 分 段函 数 形式 来表示 :图 1 - 1f ( x) =x ,x ≥ 0 ,- x , x < 0 .它还可表示为 f ( x) = x sgn x .函数 y = f ( x ) , x ∈ D 又可用如下有序数对的集合 :G = { ( x , y) y = f ( x ) , x ∈ D} 来表示 .在坐标平面上 , 集合 G 的每一个元素 ( x , y ) 表 示平面上 的一个点 , 因 而 集合 G 在坐标平面 上 描绘 出 这 个函 数 的图 象 .这 就 是用 图 象法 表 示 函数 的 依 据 .有些函数难以用解析法、列表法 或图 象法来 表示 , 只 能用 语言来 描述 .如 定 义在 R 上的狄利克雷 ( Dirichlet ) 函数1 , 当 x 为有理数 ,D( x) =0 , 当 x 为无理数 和定义在 [0 , 1 ] 上的黎曼 ( Riemann ) 函数1 , 当 x = p ( p , q ∈ N + , p为既约真分数 ) ,R ( x) =q qq0 ,当 x = 0 , 1 和 (0 , 1 ) 内的无理数 .三 函数的四则运算给定两个函数 f , x ∈ D 1 和 g , x ∈ D 2 , 记 D = D 1 ∩ D 2 , 并设 D ≠¹?.我们定* 2 12第一章 实数集与函数义 f 与 g 在 D 上的和、差、积运算如下 :F( x ) = f ( x) + g ( x ) , x ∈ D,G( x) = f ( x ) - g( x) , x ∈ D,H( x ) = f ( x) g( x) , x ∈ D .若在 D 中剔除使 g( x) = 0 的 x 值 , 即令D = D 1 ∩ { x g( x) ≠ 0 , x ∈ D 2 } ≠ ¹?,可在 D *上定义 f 与 g 的商的运算如下 :L( x ) = f ( x) , x ∈ D *.g( x )注 若 D = D 1 ∩ D 2 = ¹?, 则 f 与 g 不能进行四则运算 .例如 , 设f ( x) = 1 - x 2, x ∈ D 1 = { x x ≤ 1} , g( x) =x 2- 4 , x ∈ D = { xx ≥ 2 } ,由于 D 1 ∩ D 2 = ¹?, 所以表达式f ( x ) + g( x) =1 - x 2+x 2- 4是没有意义的 .以后为叙述方便 , 函数 f 与 g 的和、差、积、商常分别写作f +g , f - g, fg , f.g四 复合函数设有两函数y = f ( u) , u ∈ D, u = g( x ) , x ∈ E .( 2)记 E * = { x | g( x ) ∈ D } ∩ E .若 E *≠¹?, 则对每一个 x ∈ E *, 可通过函数 g 对 应 D 内唯一的一个值 u , 而 u 又通过函数 f 对应唯一的一个值 y .这就确定了一 个定义在 E *上的函数 , 它以 x 为自变量 , y 为因变量 , 记作y = f ( g( x ) ) , x ∈ E *或 y = ( f g) ( x) , x ∈ E *, 称为函数 f 和 g 的 复合函 数 .并称 f 为 外函数 , g 为内函 数 , ( 2) 式中 的 u 为 中 间变量 .函数 f 和 g 的复合运算也可简单地写作 f g . 例 1 函数 y = f ( u ) = u , u ∈ D = [0 , + ∞ ) 与 函数 u = g( x ) = 1 - x 2, x ∈ E = R 的复合函数为y = f ( g( x ) ) =1 - x2或 ( f g) ( x ) =1 - x 2,其定义域 E *= [ - 1 , 1] Ì E .复合函数也可由多个函数相继复 合而 成 .例如 , 由三 个函 数 y = sin u , u =§3 函数概念13v 与v = 1 - x2 ( 它们的定义域取为各自的存在域)相继复合而得的复合函数为y = sin 1 - x2 , x ∈[ - 1 , 1] .注当且仅当 E * ≠¹?( 即D∩g ( E) ≠¹?) 时, 函数 f 与g 才能进行复合. 例如, 以y = f ( u) = arc sin u , u∈D = [ - 1 , 1 ] 为外函数, u = g( x ) = 2 + x2 , x ∈E = R 为内函数, 就不能进行复合.这是因为外函数的定义域 D = [ - 1 , 1 ] 与内函数的值域g( E ) = [ 2 , + ∞) 不相交.五反函数函数y = f ( x ) 的自变量x 与因变量y 的关系往往是相对的.有时我们不仅要研究y 随x 而变化的状况, 也要研究x 随y 而变化的状况.对此, 我们引入反函数概念.设函数y = f ( x ) , x ∈ D ( 3) 满足: 对于值域 f ( D) 中的每一个值y, D 中有且只有一个值x 使得f ( x) = y,则按此对应法则得到一个定义在 f ( D) 上的函数, 称这个函数为 f 的反函数, 记作f - 1 : f ( D) → D,y 組x或x = f - 1 ( y) , y ∈ f ( D) . ( 4) 注1 函数 f 有反函数, 意味着 f 是D 与 f ( D) 之间的一个一一映射.我们称 f - 1 为映射 f 的逆映射, 它把集合 f ( D) 映射到集合D, 即把 f ( D) 中的每一个值 f ( a) 对应到 D 中唯一的一个值 a .这时称a 为逆映射 f - 1 下f ( a) 的象,而f ( a ) 则是 a 在逆映射f - 1 下的原象.从上述讨论还可看到, 函数 f 也是函数 f - 1 的反函数.或者说, f 与f - 1 互为反函数.并有f - 1 ( f ( x ) ) ≡ x , x ∈ D ,f ( f - 1 ( y) ) ≡ y , y ∈ f ( D) .注2 在反函数 f - 1 的表示式( 4) 中, 是以y 为自变量, x 为因变量.若按习惯仍用x 作为自变量的记号, y 作为因变量的记号, 则函数( 3 ) 的反函数( 4 ) 可改写为y = f - 1 ( x ) , x ∈ f ( D) . ( 5) 例如, 按习惯记法, 函数y = ax + b ( a≠0 ) , y = a x ( a > 0 , a ≠1 ) 与y = sin x ,14第一章 实数集与函数x ∈ - π , π的反函数分别是2 2x - b a , y = log a x 与 y = arcsin x . 应该注意 , 尽管反函数 f - 1的表示式 (4 ) 与 ( 5) 的形式不同 , 但它 们仍表示 同 一个函数 , 因 为它 们的定 义域 都是 f ( D) , 对应 法则 都是 f - 1, 只是 所用 变量 的 记号不同而已 .六 初等函数在中学数学中 , 读者已经熟悉基本初等函数有以下六类 : 常量函数 y = c ( c 是常数 ) ; 幂函数 y = x α(α为实数 ) ; 指数函数 y = a x( a > 0 , a ≠ 1) ; 对数函数 y = log a x ( a > 0 , a ≠1 ) ;三角函数 y = sin x( 正弦函数 ) , y = cos x ( 余弦函数 ) ,y = tan x( 正切函数 ) , y = cot x( 余切函数 ) ; 反三角函数y = arcsin x( 反正弦函数 ) , y = arccos x ( 反余弦函数 ) ,y = arctan x ( 反正切函数 ) , y = arccot x( 反余切函数 ) .这里我们要指 出 , 幂函 数 y = x α和指数 函数 y = a x都涉 及乘幂 , 而 在中 学 数学课程中只给出了有理指数乘幂的定 义 .下面 我们借 助确 界来 定义无 理指 数 幂 , 使它与有理指数幂一起构成实指数乘幂 , 并保持有理指数幂的基本性质 .定义 2 给定实数 a > 0 , a ≠1 .设 x 为无理数 , 我们规定a x= sup { arr 为有理数 } , 当 a > 1 时 ,r < xinf { arr 为有理数 } , 当 0 < a < 1 时 .r < x( 6)( 7)注 1 对任一无理数 x , 必有有理数 r 0 , 使 x < r 0 , 则当有理数 r < x 时有 r < r 0 , 从而由有理数乘幂的性质 , 当 a > 1 时有 a r< ar.这表明非空数集{ a r r < x , r 为有理数 }有一个上界 a r 0 .由确界原理 , 该数集有上确界 , 所以 ( 6) 式右边是一个确定的数 . 同理 , 当 0 < a < 1 时 (7 ) 式右边也是一个定数 .注 2 由§2 习题 8 可知 , 当 x 为有理数时 , 同样可 按 ( 6 ) 式和 (7 ) 式来表 示 a x, 而且与我们以前所熟知的有理数乘幂的概念是 一致的 .这样 , 无论 x 是有 理 数还是无理数 , a x都可用 (6 ) 式和 ( 7) 式来统一表示 .定义 3 由基本初等函 数 经过 有限 次四 则运 算 与复 合运 算所 得到 的 函数 ,y =§3 函数概念15统称为初等函数.不是初等函数的函数, 称为非初等函数.如在本节第二段中给出的狄利克雷函数和黎曼函数, 都是非初等函数.习题1 . 试作下列函数的图象:( 1) y = x2 + 1 ; (2) y = ( x + 1) 2 ;( 3) y = 1 - ( x + 1 )2 ; (4) y = sgn( sin x) ;3 x , | x | > 1 ,( 5) y = x3 , | x | < 1 ,3 , | x | = 1 .2 . 试比较函数y = a x 与y = log a x 分别当 a = 2 和 a = 1 时2的图象.3 . 根据图1 - 2 写出定义在[ 0 , 1 ] 上的分段函数f1 ( x ) 和f2 ( x )的解析表示式.4 . 确定下列初等函数的存在域:( 1) y = sin( sin x) ; ( 2) y = lg( lg x) ;( 3) y = arcsin lg x105 . 设函数f ( x) = ; ( 4) y = lg arcsinx.102 + x , x ≤0 ,2 x , x > 0 .图 1 - 2求: (1 ) f ( - 3) , f (0 ) , f ( 1) ; (2 ) f (Δx) - f ( 0) , f ( - Δx) - f ( 0) (Δx > 0) .6 . 设函数 f ( x ) = 1, 求1 + xf (2 + x) , f ( 2 x) , f ( x2 ) , f ( f ( x) ) , f 1.f ( x )7 . 试问下列函数是由哪些基本初等函数复合而成:( 1) y = (1 + x) 20 ; (2 ) y = ( arcsin x2 ) 2 ;2 ( 3) y = lg(1 + 1 + x2 ) ; (4 ) y = 2sin x .8 . 在什么条件下,函数的反函数就是它本身? y =ax + bcx + d9 . 试作函数y = arcsin (sin x )的图象.10 . 试问下列等式是否成立:16 第一章实数集与函数( 1) tan( arctan x) = x , x∈R ;( 2) arctan( tan x) = x , x≠kπ+ 11 . 试问y = | x | 是初等函数吗? π2, k = 0 , ±1 ,±2 , .12 . 证明关于函数y = [ x ]的如下不等式:( 1) 当x > 0 时, 1 - x < x 1x≤1;( 2) 当x < 0 时, 1≤x 1x< 1 - x .§4 具有某些特性的函数在本节中, 我们将介绍以后常用到的几类具有某些特性的函数.一有界函数定义 1 设f 为定义在 D 上的函数.若存在数M( L) , 使得对每一个x∈D 有f ( x ) ≤ M ( f ( x) ≥ L) ,则称 f 为 D 上的有上( 下) 界函数, M( L) 称为 f 在D 上的一个上( 下) 界.根据定义, f 在D 上有上( 下) 界, 意味着值域 f ( D) 是一个有上( 下) 界的数集.又若M( L) 为 f 在D 上的上( 下) 界, 则任何大于( 小于) M ( L) 的数也是 f 在D 上的上( 下) 界.定义2 设f 为定义在 D 上的函数.若存在正数M , 使得对每一个x ∈D 有则称f 为D 上的有界函数.f ( x ) ≤M , ( 1)根据定义, f 在D 上有界, 意味着值域 f ( D) 是一个有界集.又按定义不难验证: f 在D 上有界的充要条件是f 在D 上既有上界又有下界.( 1) 式的几何意义是: 若 f 为D 上的有界函数, 则 f 的图象完全落在直线y = M 与y = - M 之间.例如, 正弦函数sin x 和余弦函数cos x 为R 上的有界函数, 因为对每一个x∈R 都有| sin x | ≤1 和| cos x | ≤1 .关于函数 f 在数集D上无上界、无下界或无界的定义, 可按上述相应定义的否定说法来叙述.例如, 设 f 为定义在D 上的函数, 若对任何M( 无论M 多大) , 都存在x0 ∈D , 使得 f ( x0 ) > M , 则称 f 为D 上的无上界函数.作为练习, 读者可自行写出无下界函数与无界函数的定义.§4 具有某些特性的函数 17例 1 证明 f ( x) = 1为 (0 , 1 ] 上的无上界函数 .x证 对任何正数 M , 取 ( 0 , 1] 上一点 x 0 = 1, 则有M + 1f ( x 0 ) = 1x 0= M + 1 > M .故按上述定义 , f 为 ( 0 , 1] 上的无上界函数 .前面已经指出 , f 在 其 定 义域 D 上 有上 界 , 是 指 值域 f ( D) 为 有 上 界 的 数 集 .于是 由 确界 原 理 , 数 集 f ( D) 有上 确 界 .通 常 , 我 们 把 f ( D) 的 上 确 界 记 为 sup f ( x ) , 并称之为 f 在 D 上的上确界 .类似地 , 若 f 在其定义域 D 上有下界 , 则x ∈ Df 在 D 上的下确界记为 inf f ( x) .x ∈ D例 2 设 f , g 为 D 上的有界函数 .证明 : (i ) ) inf f ( x) + inf g( x) ≤ inf { f ( x) + g( x) } ;x ∈ Dx ∈ Dx ∈ D(i )) sup { f ( x) + g( x) } ≤sup f ( x ) + sup g( x ) .x ∈ D证 ( i ) 对任何 x ∈ D 有x ∈ Dx ∈ Dinf f ( x ) ≤ f ( x) , inf g( x ) ≤ g( x) ª inf f ( x) + inf g( x ) ≤ f ( x) + g( x) .x ∈ Dx ∈ Dx ∈ Dx ∈ D上式表明 , 数 inf f ( x ) + inf g( x ) 是函数 f + g 在 D 上的一个下界 , 从而x ∈ Dx ∈ Dinf f ( x) + inf g( x) ≤ inf { f ( x ) + g( x) } .x ∈ D( ii ) 可类似地证明 ( 略 ) .x ∈ Dx ∈ D注 例 2 中的两个不等式 , 其严格的不等号有可能成立 .例如 , 设f ( x ) = x , g( x ) = - x , x ∈ [ - 1 , 1 ] ,则有 inf | x | ≤ 1f ( x ) = inf | x | ≤ 1g( x) = - 1 , sup | x | ≤ 1f ( x) = sup | x | ≤ 1g( x ) = 1 , 而inf | x| ≤ 1{ f ( x) + g ( x ) } = sup { f ( x ) + g( x) } = 0 .| x | ≤ 1二 单调函数定义 3 设 f 为定义在 D 上的函数 .若对任何 x 1 , x 2 ∈ D , 当 x 1 < x 2 时 , 总 有( i ) f ( x 1 ) ≤ f ( x 2 ) , 则称 f 为 D 上的增函数 , 特别当成立严格不等式 f ( x 1 ) < f ( x 2 ) 时 , 称 f 为 D 上的严格增函数 ;(ii ) f ( x 1 ) ≥ f ( x 2 ) , 则 称 f 为 D 上 的 减 函 数 , 特 别 当 成 立 严 格 不 等 式 f ( x 1 ) > f ( x 2 ) 时 , 称 f 为 D 上的严格减函数 ;增函数和减函数统称为单调函 数 , 严格 增函 数和严 格减 函数统 称为 严格 单 调函数 .例 3 函数 y = x 3在 R 上是 严格 增的 .因为 对任 何 x 1 , x 2 ∈ R , 当 x 1 < x 21 2- 1 - 1 - 11 2 1 2 1 1 218第一章 实数集与函数时总有x33x 123 2即 x 3< x 3.2- x 1 = ( x 2 - x 1 ) x 2 + 2+ 4x 1 > 0 ,例 4 函数 y = [ x ] 在 R 上是增的 .因为对任何 x 1 , x 2 ∈R , 当 x 1 < x 2 时 显然有 [ x 1 ] ≤ [ x 2 ] .但 此 函 数 在 R 上 不 是 严 格 增 的 , 若 取 x 1 = 0 , x 2 = 12 , 则 有[ x 1 ] = [ x 2 ] = 0 , 即定义中所要求的严格不等式不成立 .此函数的图象如图 1 - 3 所示 .严格单调 函 数 的 图 象与 任 一 平 行 于 x 轴 的 直 线至多有一个交 点 , 这一 特性 保 证了 它 必定 具 有反 函数 .定理 1 .2 设 y = f ( x ) , x ∈ D 为严 格增 ( 减 ) 函数 , 则 f 必有反函数 f - 1, 且 f - 1在其定义域 f ( D) 上也是严格增 ( 减 ) 函数 .证 设 f 在 D 上 严格 增 .对任 一 y ∈ f ( D) , 有 x ∈ D 使 f ( x) = y .下面证明这样的 x 只能有一个 .图 1 - 3事实上 , 对于 D 内任一 x 1 ≠ x , 由 f 在 D 上的严格增性 , 当 x 1 < x 时 f ( x 1 ) < y, 当 x 1 > x 时有 f ( x 1 ) > y, 总之 f ( x 1 ) ≠ y .这就说 明 , 对 每一个 y ∈ f ( D) , 都 只 存在唯 一的 一个 x ∈ D, 使 得 f ( x ) = y , 从而 函 数 f 存在 反函 数 x = f - 1( y) , y ∈ f ( D) .现证 f - 1也是 严格 增的 .任取 y , y ∈ f ( D) , y < y .设 x = f- 1( y ) , x = f - 1 ( y 2 ) , 则 y 1 = f ( x 1 ) , y 2 = f ( x 2 ) .由 y 1 < y 2 及 f 的严 格增 性 , 显然 有 x 1< x 2 , 即 f ( y 1 ) < f ( y 2 ) .所以反函数 f 是严格增的 .例 5 函数 y = x 2在 ( - ∞ , 0 ) 上是 严格减 的 , 有反 函数 ( 按习惯 记法 ) y = - x , x ∈ ( 0 , + ∞ ) ; y = x 2在 [0 , + ∞ ) 上是 严格 增的 , 有 反 函数 y = x , x ∈ [0 , + ∞ ) 。

1_2数集确界原理

1_2数集确界原理

例5 设A、B 为非空有界数集,S A B. 证明: (i) sup S = max{sup A, sup B}; (ii) inf S = min{inf A, inf B}; 证: (ii)由题设易知数集A , B及S的确界都存在。
inf A x or inf B x 从而有 min inf A, inf B x, 即 min inf A, inf B 是 S的
上页 下页 返回 结束
EX2 设A、B 为非空有界数集,T A B. 证明: sup T ≤ min{sup A, sup B}; 证: 由题设易知数集A , B及T的确界都存在。不妨设
min sup A, sup B sup A
由上确界定义知 0, x0 T , s.t. x0 sup T .
y B, y是A的一个上界,从而sup A存在; x A, x是B的一个下界,从而inf B存在。
再证sup A ≤ inf B.
y B, y是A的一个上界,∴sup A≤y 。
由此可知sup A 是 B的一个下界,从而由下确界定义又有
sup A inf B
上页 下页 返回 结束
上页 下页 返| 0 x a a, a 点a的δ左邻域: U (a; ) x | x a 0 a , a
∞邻域:
U () x | x | M , M为充分大的正数
x b 称为半开区间, 记作 [a , b)
称为半开区间, 记作 (a , b]
上页 下页 返回
有 限 区 间
结束
[a ,) { x a x }
o
a
x
( , b) { x x b}

第一章实数集及函数

第一章实数集及函数

第一章 实数集与函数(10学时)§1.实数教学目的:使学生把握实数的大体性质.教学重点:(1)明白得并熟练运用实数的有序性、浓密性和封锁性;(2)牢记并熟练运用实数绝对值的有关性质和几个常见的不等式.(它们是分析论证的重要工具) 教学难点:实数集的概念及其应用.学时安排: 2学时教学方式:教学.(部份内容自学)教学程序:引言上节课中,咱们与大伙儿一起探讨了《分析》这门旅程的研究对象、要紧内容等话题.从本节课开始,咱们就大体依照教材顺序给大伙儿介绍这门课程的要紧内容.第一,从大伙儿都较为熟悉的实数和函数开始.[问题] 什么缘故从“实数”开始.答:《数学分析》研究的大体对象是函数,但那个地址的“函数”是概念在“实数集”上的(《复变函数》研究的是概念在复数集上的函数).为此,咱们要先了解一下实数的有关性质.一 实数及其性质 1、实数(,q p q p ⎧⎧≠⎪⎨⎨⎩⎪⎩正分数,有理数为整数且q 0)或有限小数和无限小数.负分数,无理数:用无限不循环小数表示. {}|R x x =--为实数全体实数的集合.[问题] 有理数,无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,咱们把“有限小数”(包括整数)也表示为“无穷小数”.为此作如下规定: ,n a 其,,n n a ≠19999n a -;关于正整数0,x a =1).9999;关于负有限小数(包括负整,那么先将y -表示为无穷小数,此刻所得的小数之前加负号.0=0.0000例:2.001 2.0009999→3 2.99992.001 2.0099993 2.9999→-→--→-利用上述规定,任何实数都可用一个确信的无穷小数来表示.但新的问题又显现了:在此规定下,如何比较实数的大小?2.两实数大小的比较1) 概念1 给定两个非负实数01n x a a a =,01n y b b b =. 其中00,a b 为非负整数,,k k a b (1,2,)k =为整数,09,09k k a b ≤≤≤≤.假设有,1,2,k k a b k ==,那么称x 与y 相等,记为x y =;假设00a b >或存在非负整数l ,使得,1,2,,k k a b k l ==,而11l l a b ++>,那么称x 大于y 或y 小于x ,别离记为x y >或y x <.关于负实数x 、y ,假设按上述规定别离有x y -=-或x y ->-,那么别离称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2) 实数比较大小的等价条件(通过有限小数来比较).概念2(不足近似与多余近似):01n x a a a =为非负实数,称有理数01n x a a a =为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位多余近似;关于实数01nx a a a =-,其n 位不足近似01110n n n x a a a =--;n 位多余近似01n n x a a a =-. 注:实数x 的不足近似n x 当n 增大时不减,即有012;x x x x ≤≤≤≤ 多余近似n x 当n 增大时不增,即有01x x x x ≥≥≥≥.命题:记01n x a a a =,01n y b b b =为两个实数,那么x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位多余近似).命题应用————例1例1.设,x y 为实数,x y <,证明存在有理数r ,知足x r y <<.证.由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,那么r 为有理数,且 n n x x r y y ≤<<≤.即x r y <<.3.实数经常使用性质(详见附录Ⅱ.P289-302).● 封锁性(实数集R对,,,+-⨯÷)四那么运算是封锁的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.● 有序性:任意两个实数,a b 必知足以下关系之一:,,a b a b a b <>=.● 传递性;,a b b c a c <>⇒>.● 阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.● 浓密性:两个不等的实数之间总有另一个实数.● 实数集R与数轴上的点有着一一对应关系.例2.设,a b R ∀∈,证明:假设对任何正数ε,有a b ε<+,那么a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二 、绝对值与不等式(分析论证的大体工具).1.绝对值的概念实数a 的绝对值的概念为,0||0a a a a a ≥⎧=⎨-<⎩.2. 几何意义:从数轴看,数a 的绝对值||a 确实是点a 到原点的距离.熟悉到这一点超级有效,与此相应,||x a - 表示确实是数轴上点x 与a 之间的距离.3.性质.1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式);5)||||||ab a b =⋅;6)||||a a b b =(0b ≠). [练习]P4. 5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式.§2数集和确界原理教学目的:使学生把握确界原理,成立起实数确界的清楚概念。

《数学分析》3第一章__实数集与函数---§2数集和确界原理

《数学分析》3第一章__实数集与函数---§2数集和确界原理

授课章节:第一章 实数集与函数---§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。

教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。

引言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。

下面,我们先来检验一下自学的效果如何!1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-.3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。

而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。

提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。

本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。

一 区间与邻域1.区间(用来表示变量的变化范围)设,a b R ∈且a b <。

{}{}{}{}{}{}{}{}{}|(,).|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ⎧⎧⎪⎪∈<<=⎪⎪⎪⎪∈≤≤=⎨⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩⎨⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩2.邻域联想:“邻居”。

(完整版)最新数学分析知识点最全汇总(可编辑修改word版)

(完整版)最新数学分析知识点最全汇总(可编辑修改word版)

第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1 实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质⎪1、实数⎧有理数: 任何有理数都可以用分数形式 q ( p , q 为整数且q ≠ 0) 表示,⎪p ⎨也可以用有限十进小数或无限十进小数来表示. ⎪⎩ 无理数: 用无限十进不循环小数表示.R = {x | x 一 一 一 }- - 一 一 一 一 一 一 一 .[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利 的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例:2.001 → 2.0009999 ; 3 → 2.9999 ; -2.001 → -2.009999 -3 → -2.9999利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1) 定义 1 给定两个非负实数x = a 0 .a 1 a n , y = b 0 .b 1 b n . 其中对于正有限小数x = a 0 .a 1a 2 a n , 其中0 ≤ a i ≤ 9, i = 1, 2, , n , a n ≠ 0, a 0为非负整数,记x = a 0 .a 1 a n -1 (a n -1)9999 ;对于正整数x = a 0 , 则记x = (a 0 -1).9999 ;对于负有限小数(包括负整数) y ,则先将- y 表示为无限小数,现在所得的小数之前加负号.0 表示为 0= 0.0000a 0 ,b 0 为非负整数, a k , b k (k = 1, 2, ) 为整数, 0 ≤ a k ≤ 9, 0 ≤ b k ≤ 9 . 若有a k = b k , k = 0,1, 2, ,则称 x 与 y 相等,记为 x = y ;若a 0 > b 0 或存在非负整数l ,使得a k = b k , k = 0,1, 2, , l ,而a l +1 > b l +1 ,则称x 大于 y 或 y 小于x , 分别记为 x > y 或 y < x . 对于负实数 x 、 y , 若按上述规定分别有-x = - y 或-x > - y ,则分别称为x = y 与x < y (或 y > x ).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义 2(不足近似与过剩近似): x = a 0 .a 1 a n 为非负实数,称 有理数 x = a .a a 为实数 x 的n 位不足近似; x = x + 1称为实数 xn0 1nn n10n的n 位过剩近似, n = 0,1, 2, .对于负实数 x = -a .a a,其n 位不足近似 x = -a .a a - 1; 0 1 nn 位过剩近似x n = -a 0 .a 1 a n .n 0 1 n10n注:实数 x 的不足近似 x n 当n 增大时不减,即有 x 0 ≤ x 1 ≤ x 2 ≤ ; 过剩近似 x n 当 n 增大时不增,即有x 0 ≥ x 1 ≥ x 2 ≥ .命题:记 x = a 0 .a 1 a n , y = b 0 .b 1 b n 为两个实数,则 x > y 的等 价条件是:存在非负整数 n ,使x n > y n (其中x n 为x 的n 位不足近似,y n 为 y 的n 位过剩近似).命题应用例 1.设x , y 为实数, x < y ,证明存在有理数r ,满足x < r < y . 证明:由 x < y ,知:存在非负整数 n ,使得x < y .令r =1(x+ y ),nn则 r 为有理数,且x ≤ x n < r < y n ≤ y .即x < r < y .2nn⎩3、实数常用性质(详见附录Ⅱ. P 289 - P 302 ).1) 封闭性(实数集R 对+, -,⨯, ÷ )四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为 0)仍是实数.2) 有序性: ∀a , b ∈ R ,关系a < b , a > b , a = b ,三者必居其一,也只居其一.3) 传递性: ∀a ,b ,c ∈ R , 若a > b , b > c ,则a > c .4) 阿基米德性: ∀a , b ∈ R , b > a > 0 ⇒ ∃n ∈ N 使得na > b .5) 稠密性:两个不等的实数之间总有另一个实数.6) 一一对应关系:实数集R 与数轴上的点有着一一对应关系.例 2.设∀a , b ∈ R ,证明:若对任何正数,有a < b +,则a ≤ b .(提示:反证法.利用“有序性”,取= a - b )二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为| a |= ⎧ a ,a ≥ 0 .⎨-a a < 02、几何意义从数轴看,数a 的绝对值| a | 就是点a 到原点的距离.| x - a | 表示就是数轴上点x 与a 之间的距离.3、性质1)| a |=| -a |≥ 0;| a |= 0 ⇔ a = 0 (非负性);2) - | a |≤ a ≤| a | ;3)| a |< h ⇔ -h < a < h ,| a |≤ h ⇔ -h ≤ a ≤ h .(h > 0) ;abn (1 + x )n n 4)对任何a , b ∈ R 有| a | - | b |≤| a ± b |≤| a | + | b |(三角不等式);5)| ab |=| a | ⋅ | b |;6)= | a |( b ≠ 0 ).| b |三、几个重要不等式1、a 2 + b 2 ≥ 2 ab ,sin x ≤ 1. sin x ≤ x .2、均值不等式:对∀a 1, a 2 , , a n ∈ R + , 记M (a ) =a 1 + a 2 + + a n =1∑na ,(算术平均值)in n i i =11 ⎛ n ⎫ nG (a i ) = = ∏ a i ⎪ , (几何平均值)H (a ) =⎝ i =1 ⎭n = 1= n .(调和平均值) i1 + 1 + + 1 1 ∑n 1 ∑ 1 a 1 a2 a n n i =1 a i i =1 a i有平均值不等式: H (a i ) ≤ G (a i ) ≤ M (a i ), 即:n ≤≤ a 1 + a 2 + + a n1 + 1 + + 1 na 1 a 2 a n等号当且仅当a 1 = a 2 = = a n 时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过)∀x > -1, 有不等式(1+ x )n ≥ 1+ nx ,n ∈ N .当x > -1且 x ≠ 0 , n ∈ N 且n ≥ 2 时,有严格不等式(1 + x )n > 1 + nx .证:由1 + x > 0 且1 + x ≠ 0, ⇒ (1 + x )n + n - 1 = (1 + x )n + 1 + 1 + + 1 >> n = n (1 + x ). ⇒ (1 + x )n > 1 + nx .4、利用二项展开式得到的不等式:对∀h > 0, 由二项展开式n a 1a 2 a n⎨二 绝对值与不等式 (1 + h )n = 1 + nh +n (n -1) h 2 +n (n -1)(n - 2)h 3 + + h n ,2!3!有(1 + h )n > 上式右端任何一项.[练习]P4.5 [课堂小结]:实数: ⎧一 实数及其性质.⎩[作业]P4.1.(1),2.(2)、(3),3§2 数集和确界原理授课章节:第一章实数集与函数——§2 数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1) 掌握邻域的概念;(2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理). 教学难点:确界的定义及其应用. 教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1 实数的相关内容.下面,我们先来检验一下自学的效果如何!1 、证明:对任何x ∈R 有: (1)| x -1| + | x -2 |≥ 1 ; (2)| x -1| + | x - 2 | + | x - 3 |≥ 2 .((1) x-1=1+(x-2)≥1-x-2,∴x-1+x-2≥1)((2)x -1 +x - 2 ≥1, x - 2 +x - 3 ≥1, x - 2 +x - 3 ≥ 2.三式相加化简即可)2、证明:| x | - | y | ≤| x -y |.3、设a,b∈R,证明:若对任何正数有a+b<,则a≤b.4、设x, y ∈R, x >y ,证明:存在有理数r 满足y <r <x .[引申]:①由题 1 可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集 R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、区间(用来表示变量的变化范围)⎧有限区间设a, b ∈R 且a <b .区间⎨,其中⎩无限区间⎨⎪ ⎨ ⎪ + +⎧ ⎪ ⎪ ⎪有限区间⎪⎪ ⎪ 开区间: {x ∈ R | a < x < b } = (a , b ) 闭区间: {x ∈ R | a ≤ x ≤ b } = [a , b ]⎧⎪闭开区间: {x ∈ R | a ≤ x < b } = [a , b ) ⎪半开半闭区间⎨⎩⎪⎪⎩开闭区间: {x ∈ R | a < x ≤ b } = (a , b ]⎧ {x ∈ R | x ≥ a } = [a , +∞).⎪{x ∈ R | x ≤ a } = (-∞, a ]. 无限区间⎪{x ∈ R | x > a } = (a , +∞).⎪{x ∈ R | x < a } = (-∞, a ). ⎪⎩{x ∈ R | -∞ < x < +∞} = R .2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1) a 的邻域:设a ∈ R ,> 0 ,满足不等式| x - a |< 的全体实数x的集合称为点a 的邻域,记作U (a ;) ,或简记为U (a ) ,即U (a ;) = {x | x - a |< } = (a -, a +) .其中a 称为该邻域的中心,称为该邻域的半径. (2) 点a 的空心邻域U o (a ;) = {x 0 <| x - a |< } = (a -, a ) ⋃ (a , a +) U o (a ) .(3) a 的右邻域和点a 的空心右邻域U + (a ;) = [a , a +) U + (a ) = {x a ≤ x < a +};U 0 (a ;) = (a , a +) U 0 (a ) = {x a < x < a +}. (4) 点a 的左邻域和点a 的空心左邻域U - (a ;) = (a -, a ] U - (a ) = {x a -< x ≤ a }; U(a ;) = (a -, a ) U 0 (a ) = {x a -< x < a }.-+⎨ ⎬ (5) ∞ 邻域, + ∞ 邻域, -∞ 邻域U (∞) = {x | x |> M }, (其中 M 为充分大的正数); U (+∞) = {x x > M }, U (-∞) = {x x < -M }二 、有界集与无界集1、定义 1(上、下界):设S 为R 中的一个数集.若存在数M (L ) ,使得一切 x ∈ S 都有x ≤ M (x ≥ L ) ,则称 S 为有上(下)界的数集.数M (L ) 称为 S 的上界(下界);若数集 S 既有上界,又有下界,则称 S 为有界集.闭区间[a , b ] 、开区间(a , b ) (a , b 为有限数)、邻域等都是有界数集,集合 E = {yy = sin x , x ∈( - ∞ , + ∞ )}也是有界数集.若数集 S 不是有界集,则称 S 为无界集.( - ∞ , + ∞ ) , ( - ∞ , 0 ) , ( 0 , + ∞ ) 等都是无界数集,集合 E = ⎧ y ⎩ y = 1 , x x ∈ ( 0 ,1 )⎫也是无界数集.⎭注:1)上(下)界若存在,不唯一;2)上(下)界与 S 的关系如何?看下例:例 1 讨论数集N + = {n | n 为正整数} 的有界性. 解:任取n 0 ∈ N + ,显然有n 0 ≥ 1 ,所以 N + 有下界 1;但 N + 无上界.因为假设 N + 有上界 M,则 M>0,按定义,对任意n 0 ∈ N + , 都 有 n 0 ≤ M , 这 是 不 可 能 的 , 如 取n 0 = [M ] +(1 符号[M ]表示不超过M 的最大整数) 则n 0 ∈ N + ,且n 0 > M .综上所述知:N+是有下界无上界的数集,因而是无界集.例 2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一,有无穷多个).三、确界与确界原理1、定义定义 2(上确界)设S 是R 中的一个数集,若数满足:(1) 对一切x∈S,有x≤(即是S 的上界); (2) 对任何<,存在x0∈S ,使得x0>(即是S 的上界中最小的一个),则称数为数集S 的上确界,记作= sup S.从定义中可以得出:上确界就是上界中的最小者.命题 1 M = sup E 充要条件1)∀x ∈E, x ≤M ;2)∀>o, ∃x0∈S, 使得x>M -.证明:必要性,用反证法 .设 2)不成立,则∃0>0,使得∀x∈E,均有x≤M-o,与M是上界中最小的一个矛盾.充分性(用反证法),设M不是E的上确界,即∃M是上界,但M>M0.令=M-M>0,由 2),∃x∈E,使得x>M-=M,与M是E 的上界矛盾.定义 3(下确界)设S 是R 中的一个数集,若数满足:(1)对一切x∈S,有x≥(即是S 的下界);(2)对任何>,存在x0∈S ,使得x0<(即是S 的下界中最大的一个),则称数为数集 S 的下确界,记作=inf S.从定义中可以得出:下确界就是下界中的最大者.⎝ ⎭ ⎝ ⎭命题 2 = inf S 的充要条件:1) ∀x ∈ E , x ≥ ;2) ∀>0, x 0 ∈ S ,有x 0 <+.上确界与下确界统称为确界.⎧ (-1 )n ⎫例 3(1) S = ⎨1 +⎩⎬, 则sup S = 1 ; inf S = 0 . n ⎭ ( 2) E = {y y = sin x , x ∈ (0,)}. 则sup S =1; inf S =0 .注:非空有界数集的上(或下)确界是唯一的.命题 3:设数集 A 有上(下)确界,则这上(下)确界必是唯一的.证明:设= sup A ,' = sup A 且≠' ,则不妨设<'= sup A ⇒ ∀x ∈ A 有x ≤' = sup A ⇒ 对<' , ∃ x 0 ∈ A 使< x 0 ,矛盾.例: sup R - = 0 , sup ⎛n ⎫= 1, inf ⎛n ⎫ = 1n ∈Z + n +1 ⎪ n ∈Z + n +1 ⎪ 2E = {-5, 0, 3, 9,11} 则有inf E = -5 .开区间(a , b ) 与闭区间[a , b ]有相同的上确界b 与下确界a例 4 设S 和 A 是非空数集,且有S ⊃ A . 则有sup S ≥ sup A , inf S ≤ inf A ..例 5 设 A 和 B 是非空数集.若对 ∀x ∈ A 和 ∀y ∈ B , 都有 x ≤ y , 则有sup A ≤ inf B .证明: ∀y ∈ B , y 是 A 的上界, ⇒ sup A ≤ y . ⇒ sup A 是 B 的下界,⇒ sup A ≤ inf B.例 6 A 和B 为非空数集, S =A B. 试证明: inf S = min{inf A , inf B }.证明:∀x ∈S, 有x ∈A 或x ∈B, 由inf A 和inf B 分别是A 和B 的下界,有x ≥ inf A 或x ≥ inf B. ⇒x ≥ min{inf A , inf B }.即min{inf A , inf B }是数集S 的下界,⇒ inf S ≥ min{inf A , inf B }.又S ⊃A, ⇒ S 的下界就是 A 的下界,inf S 是S 的下界, ⇒ inf S 是 A 的下界, ⇒ inf S ≤ inf A; 同理有inf S ≤ inf B.于是有inf S ≤ min{inf A , inf B }.综上,有inf S = min{inf A , inf B }.1.数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2.确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若max E 存在,必有max E = sup E. 对下确界有类似的结论.4.确界原理:T h1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 E ⊂R, E 非空,∃x ∈E ,我们可以找到一个整数p ,使得p 不是E 上界,而p +1是E 的上界.然后我们遍查p.1 , p.2 , , p.9 和p + 1 ,我们可以找到一个q0 ,0 ≤q0 ≤ 9 ,使得p.q0 不是E 上界,p.(q0 + 1) 是E 上界,如果再找第二位小数q1 , , 如此下10k去,最后得到 p .q 0 q 1q 2 ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明) 不妨设S 中的元素都为非负数,则存在非负整数n ,使得1) ∀x ∈ S ,有x > n ;2) 存在x 1 ∈ S ,有x ≤ n + 1 ; 把区间(n , n + 1] 10 等分,分点为 n.1,n.2,..,n.9, 存在n 1 ,使得 1) ∀ ∈ S ,有; x > n .n 1 ;2)存在x ∈ S ,使得x 2 ≤ n .n 1 + 1 .210再对开区间(n .n , n .n + 1] 10 等分,同理存在n ,使得111021) 对任何x ∈ S ,有x > n .n 1n 2 ;2) 存在 x 2 ,使x 2 ≤ n .n 1n 2 + 1102继续重复此步骤,知对任何k = 1,2, ,存在n k 使得1) 对任何 x ∈ S , x > n .n 1n 2 n k - 1; 2) 存在x k ∈ S , x k ≤ n .n 1n 2 n k .因此得到= n .n 1n 2 n k .以下证明= inf S .(ⅰ)对任意x ∈ S , x >;(ⅱ)对任何>,存在x ' ∈ S 使> x ' .[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3 函数概念授课章节:第一章实数集与函数——§3 函数概念 教学目的:使学生深刻理解函数概念. 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设D, M ⊂R ,如果存在对应法则f ,使对∀x ∈D ,存在唯一的一个数y ∈M 与之对应,则称 f 是定义在数集D 上的函数,记作f : D →Mx |→y .数集D 称为函数 f 的定义域,x 所对应的y ,称为f 在点x 的函数值,记为 f (x) .全体函数值的集合称为函数 f 的值域,记作 f (D) .即 f (D) ={y | y =f (x), x ∈D}.2.几点说明(1)函数定义的记号中“ f : D →M ”表示按法则 f 建立D 到M 的函数关系,x |→y 表示这两个数集中元素之间的对应关系,也记作x |→f (x) .习惯上称x 自变量,y 为因变量.(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:y =f (x), x ∈D .由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)f (x) =1, x ∈R,g(x) = 1, x ∈R \ {0}. (不相同,对应法则相同,定义域不同)2)(x) =| x |, x ∈R , (x) = x2 , x ∈R.(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则 f 来表示一个函数.即“函数y =f (x) ”或“函数 f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a ∈D ,f (a)称为映射 f 下a 的象. a 称为 f (a) 的原象.(5)函数定义中,∀x ∈D ,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二、函数的表示方法1主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.⎨ ⎩⎨0,当x 为无理数, ⎨ F (x ) = f (x ) + g (x ), x ∈ D ; G (x ) = f (x ) - g (x ), x ∈ D ;H (x ) = f (x )g (x ), x ∈ D .⎧ 1, x > 0 例如sgn x = ⎪0, x = 0 ,(符号函数)⎪-1, x < 0(借助于 sgnx 可表示 f (x ) =| x |, 即 f (x ) =| x |= x sgn x ).2) 用语言叙述的函数.(注意;以下函数不是分段函数)例 1) y = [x ] (取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [x ] ≤ x < [x ] +1 , 即0 ≤ x -[x ] < 1.与此有关一个的函数 y = x -[x ] {x } (非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数D (x ) = ⎧1,当x 为有理数, ⎩这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数⎧ 1,当x = p ( p , q ∈ N , p为既约分数) ,R (x ) = ⎪ q q+ q ⎪⎩0,当x = 0,1和(0,1)内的无理数. 三 函数的四则运算给定两个函数 f , x ∈ D 1 , g , x ∈ D 2 ,记D = D 1 D 2 ,并设D ≠ ,定义 f 与 g 在D 上的和、差、积运算如下:若在 D 中除去使 g (x ) = 0 的值,即令 D = D \ {x g (x ) ≠ 0, x ∈ D 2 } ≠ ,⎬ 可在D 上定义 f 与 g 的商运算如下; L (x ) =f (x ), x ∈ D . g (x )注:1)若D = D 1 D 2 =,则 f 与 g 不能进行四则运算.2)为叙述方便,函数 f 与 g 的和、差、积、商常分别写为:f +g , f - g , fg ,f .g四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为 m 的物体自由下落,速度为 v ,则功率E 为E = 1 mv 2 ⎫12 v = gt ⎪ ⇒ E = ⎪⎭mg 2t 2 . 2抽去该问题的实际意义,我们得到两个函数 f (v ) = 1mv 2 , v = gt ,把2v (t ) 代入 f ,即得f (v (t )) = 1mg 2t 2 .2这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;y = f (u ) = arcsin u , u ∈ D = [-1,1], u = g (x ) = 2 + x 2 , x ∈ E = R .就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数 y = f (u ), u ∈ D , u = g (x ), x ∈ E ,⎛ 1 ⎫ 2 x E = {x f (x ) ∈ D } E ,若 E ≠ ,则对每一个 x ∈ E ,通过 g 对应 D 内唯一一个值u ,而u 又通过 f 对应唯一一个值 y ,这就确定了一个定义在E 上的函数,它以 x 为自变量, y 因变量,记作 y = f (g (x )), x ∈ E 或y = ( f g )(x ), x ∈ E .简记为 f g .称为函数 f 和 g 的复合函数,并称 f 为外函数, g 为内函数, u 为中间变量.3.例子 例y = f (u ) = u , u = g (x ) = 1 - x 2 . 求( f g )(x ) = f [g (x ).]并求定义域. 例⑴f (1 - x ) = x 2 + x + 1,f (x ) =.⑵f x + = x + 1. 则⎪⎝ ⎭f (x ) = ()A . x 2 ,B . x 2 + 1,C . x 2 - 2,D .x 2 + 2.例 讨论函数 y = f (u ) = u , u ∈[0, +∞) 与函数u = g (x ) = 1- x 2 , x ∈ R 能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么? 例 如 : y = sin u , u = v , v = 1- x 2 , 复 合 成 :y = sin 1- x 2 , x ∈[-1,1] .2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函x 2a 数,在分解时也要注意定义域的变化.①y = log a 1- x 2 , x ∈(0,1) → y = log u ,u = z , z = 1- x 2.② y = arcsin → y = arcsin u , u = v , v = x 2 +1.③ y = 2sin 2x → y = 2u , u = v 2 , v = sin x .五、反函数1.引言在函数 y = f (x ) 中把 x 叫做自变量, y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:f (u ) = u , u = t 2 +1,那么u 对于 f 来讲是自变量,但对t 来讲, u 是因变量.习惯上说函数 y = f (x ) 中x 是自变量, y 是因变量,是基于 y 随x 的变化现时变化.但有时我们不仅要研究 y 随x 的变化状况,也要研究x随 y 的变化的状况.对此,我们引入反函数的概念. 2.反函数概念定义设 f : X → R 是一函数, 如果∀ x 1 , x 2 ∈ X , 由x 1 ≠ x 2 ⇒ f (x 1 ) ≠ f (x 2 )(或由 f (x 1 ) = f (x 2 ) ⇒ x 1 = x 2 ),则称 f 在 X 上是 1-1 的.若 f : X → Y ,Y = f ( X ) ,称 f 为满的.若 f : X → Y 是满的 1-1 的,则称 f 为 1-1 对应.f : X → R 是1-1 的意味着 y = f (x ) 对固定 y 至多有一个解x , f : X → Y 是 1-1 的意味着对 y ∈Y , y = 仅有一个解x .f (x ) 有且 x 2 +1y 2 +1 ⎨定义 设 f : X → Y 是1-1 对应. ∀y ∈Y , 由 y = f (x ) 唯 一确定一个 x ∈ X , 由这种对应法则所确定的函数称为y = f (x ) 的反函数,记为x = f -1( y ) .反函数的定义域和值域恰为原函数的值域和定义域f : X → Yf -1 : Y → X显然有f -1 f= I : X → X(恒等变换)f f -1 = I : Y → Y (恒等变换)( f -1 )-1 = f : X → Y .从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 y = f -1(x ) , 这样它的图形 与 y = f (x ) 的图形是关于对角线 y = x 对称的. 严格单调函数是 1-1 但 1-1 例子 f (x ) =⎧ x ,0 ≤ x < 1 ⎩3 - x ,1 ≤ x ≤ 2它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 f : X → Y 的定义域 X 和值域Y ,考虑 1-1 对应条件.固定 y ∈Y ,解方程 f (x ) = y 得出 x = f -1( y ) .2. 按习惯,自变量x 、因变量 y 互换,得y = f -1(x ) . 例 求 y = sh (x ) = e x - e - x2:R → R 的反函数.解 固定 y ,为解 e x - e - x ,令2e x = z ,方程变为 2zy = z 2 -1 z 2 - 2zy -1 = 0 z = y ±( 舍去 y - )得x = ln( y + y 2 +1) ,即 y = ln(x + x 2 +1) = sh -1(x ) ,称为反双曲正弦. 定理 给定函数 y = f (x ) ,其定义域和值域分别记为 X 和Y , 若在Y 上存在函数g ( y ) ,使得 g ( f (x )) = x , 则有g ( y ) = f -1( y ) .y 2 +1y =分析:要证两层结论:一是y =f (x) 的反函数存在,我们只要证它是 1-1 对应就行了;二是要证g( y) = f -1( y) .证要证y =f (x) 的反函数存在,只要证 f (x) 是X 到Y 的 1-1 对应.∀x1,x2∈X ,若f (x1) = g( f (x1)) =x1f (x2 ) ,则由定理条件,我们有g( f (x2 )) =x2⇒x1 =x2,即 f : X →Y是 1-1 对应.再证g( y) = f -1 ( y) .∀y ∈Y ,∃x ∈X ,使得y = f (x) .由反函数定义x =f -1( y) ,再由定理条件g( y) =g( f (x)) =x . ⇒g( y) = f -1( y)例 f : R →R ,若f ( f (x)) 存在唯一(∃| )不动点,则f (x) 也∃|不动点.证存在性,设x * = f [ f (x *)],f (x *) = f f [ f (x * )],即f (x * ) 是f f 的不动点,由唯一性 f (x * ) =x *,即存在f (x) 的不动点x *.唯一性:设x = f (x) ,x = f (x) = f ( f (x)) ,说明x 是 f f 的不动点,由唯一性,x = x *.从映射的观点看函数.设函数y =f (x), x ∈D .满足:对于值域 f (D) 中的每一个值y ,D中有且只有一个值x ,使得f (x) =y ,则按此对应法则得到一个定义在 f (D) 上的函数,称这个函数为 f 的反函数,记作f -1 : f (D) →D,( y |→x) 或x =f -1( y), y ∈f (D) .3、注释a)并不是任何函数都有反函数,从映射的观点看,函数 f 有反函数,意味着 f 是D与 f (D) 之间的一个一一映射,称 f -1为映射 f 的逆映射,它把 f (D) →D ;b) 函数 f 与f -1 互为反函数,并有: f -1( f (x)) ≡x, x ∈D, f ( f -1(x)) ≡y, y ∈f (D).c)在反函数的表示x =f -1( y), y ∈f (D) 中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数 f 的反函数 f -1可以改写为y =f -1(x), x ∈f (D).应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六、初等函数1.基本初等函数(6类)常量函数y=C(C为常数);幂函数y =x(∈R) ;指数函数y =a x(a > 0, a ≠ 1) ;对数函数y = logx(a > 0, a ≠ 1) ;a三角函数y = sin x, y = cos x, y =tgx, y = c tgx ;反三角函数y = arcsin x, y = arccos x, y =arctgx, y =arcctgx .注:幂函数y =x(∈R) 和指数函数y =a x(a > 0, a ≠ 1) 都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数a > 0, a ≠ 1 ,设x 为无理数,我们规定:⎨ ⎩ { } sin( ), y a ⎧ a x = ⎪sup {a r | r 为有理数},当a > 1时, r < x ⎪i nf a r | r 为有理数 ,当0 < a < 1时. r <x这样解决了中学数学仅对有理数x定义a x 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如: y = 2 sin x + cos 2 x , y = 1 = l o g x + x e sinx -1 x 2, y =| x | . 不是初等函数的函数,称为非初等函数.如 Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y =(2) y = ln | sin x | . 3. 初等函数的几个特例: 设函数 f (x ) 和 g (x ) 都是初等函数, 则(1) f (x ) 是初等函数, 因为 f (x ) = ( f (x ))2 .(2) Φ(x ) = max {f (x ) , g (x )} 和 (x ) = min {f (x ) , g (x )}都是初等函数, 因为 Φ(x ) = max {f (x ) , g (x )} =1 [f (x ) + g (x ) +2 f (x ) - g (x ) ] , (x ) = min {f (x ) , g (x )} = 1 [f (x ) + g (x ) - 2f (x ) -g (x ) ] . x x -1(3)幂指函数(f(x))g ( x)(f (x) > 0)是初等函数,因为(f(x))g(x)=e ln(f ( x) )g(x)=e g ( x) ln f ( x) .[作业]P:3;4:(2)、(3);5:(2);7:(3);11 15§4具有某些特性的函数授课章节:第一章实数集与函数——§4 具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义 1 设f 为定义在 D 上的函数,若存在数M (L) ,使得对每一个x ∈D 有f (x) ≤M ( f (x) ≥L) ,则称f 为D 上的有上(下)界函数,M (L) 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域f (D) 是一个有上(下)界的数集;(2又)若M(L)为f在D 上的一个(上下)界则,任何大于(M小于L)的数也是 f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:y=sin x,1 是其一个上界,下界为-1,则易见任何小于-1 的数都可作为其下界;任何大于 1 的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;6 5 x 5 2 6(4) 由(1)及“有界集”定义,可类比给出“有界函数” 定义:f 在 D 上有界⇔ f (D ) 是一个有界集⇔ f 在 D 上既有上界又有下 界⇔ f 在 D 上的有上界函数,也为 D 上的有下界函数.2、有界函数定义定义 2 设 f 为定义在 D 上的函数.若存在正数M,使得对每一个 x ∈ D 有| f (x ) |≤ M ,则称 f 为 D 上的有界函数.注:(1)几何意义: f 为 D 上的有界函数,则 f 的图象完全落在 y = M 和 y = -M 之间;(2) f 在 D 上有界⇔ f 在 D 上既有上界又有下界;例子: y = sin x , y = cos x ;(3)关于函数 f 在 D 上无上界、无下界或无界的定义.3、 例题例 1 证明 f : X → R 有界的充要条件为: ∃ M , m ,使得对∀x ∈ X , m ≤ f (x ) ≤ M . 证明 如果 f : X → R 有界,按定义∃ M >0,∀x ∈ X 有f (x ) ≤ M ,即 -M ≤ f (x ) ≤ M ,取m = -M ,M = M 即可. 反之如果∃ M , m 使得∀x ∈ X , m ≤ f (x ) ≤ M ,令M 0 = max { M +1, m },则 f (x ) ≤ M 0 ,即∃ M 0 > 0 ,使得对∀x ∈ X 有界.f (x ) ≤ M 0 ,即 f : X → R 有 例 2.证明 例 3. 设 f (x ) = 1 为(0,1] 上的无上界函数. x f ,g 为 D 上 的 有 界 函 数 . 证 明 : ( 1)inf f (x ) + inf g (x ) ≤ inf { f (x ) + g (x )} ;x ∈D x ∈D x ∈D(2) s up { f (x ) + g (x )} ≤ sup f (x ) + sup g (x ) .x ∈D x ∈D x ∈D例 4 验证函数 f (x ) = 5x 2x 2+ 3在R 内有界. 解法一 由2x 2 + 3 = ( 2x )2 + ( 3)2 ≥ 2 2x ⋅ = 2 x , 当x ≠ 0 时,有f (x ) = = 2x 2 + 3 ≤ = ≤ 3. f (0) ∴ 对 = 0 ≤ 3 ,∀x ∈ R , 总有 f (x ) ≤ 3,即 f (x ) 在R 内有界.解法二 令实数根.y =5x , ⇒ 2x 2 + 3 关于x 的二次方程 2 yx 2 - 5x + 3y = 0 有 3 5x 2x 2 + 3 5 x 2 6 x5 3 tgt 3 2 tg 2t + 1 5 sin t 16 cos t sec 2 t 5 2 6 2 2 ∴ ∆ = 52 - 24 y 2 ≥ 0, ⇒ y 2 ≤ 25 ≤ 4, ⇒ 24 y ≤ 2. 解法三 令 x = 3tgt , t ∈ ⎛- ⎫ 对应x ∈ ( - ∞ , + ∞ ). 于是f (x ) = 2 5x = 2x 2 + 3 ⎛ 3 , ⎪ ⎝ ⎭= = = ⎫2 2 tgt ⎪ + 3⎝ 2 ⎭= sin 2t , ⇒ f (x ) = sin 2t ≤ 5 . 2 6二、单调函数定义 3 设 f 为定义在 D 上的函数, ∀x 1 , x 2 ∈ D , x 1 < x 2 , ( 1) 若 f (x 1 ) ≤ f (x 2 ) ,则称 f 为 D 上的增函数;若 f (x 1 ) < f (x 2 ) ,则称 f 为 D 上 的严格增函数.( 2) 若 f (x 1 ) ≥ f (x 2 ) , 则称 f 为 D 上的减函数; 若 f (x 1 ) > f (x 2 ) ,则称 f 为 D 上的严格减函数.例 5.证明: y = x 3 在(-∞, +∞) 上是严格增函数.证明:设x < x , x 3 - x 3 = (x - x )(x 2 + x x + x 2 ) 1 2 1 2 1 2 1 1 2 2如x x < 0 ,则x > 0 > x ⇒ x 3 < x 3 1 2 2 1 1 2如x x > 0 ,则x 2 + x x + x 2 > 0, ⇒ x 3 < x 3 1 2 1 1 2 2 1 2故x 3 - x 3 < 0 即得证. 1 2例 6.讨论函数 y = [x ] 在R 上的单调性.∀x 1, x 2 ∈ R ,当x 1 < x 2 时,有[x 1] ≤ [x 2 ] ,但此函数在R 上的不是严格 增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分, f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于 x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理 1.设 y = f (x ), x ∈ D 为严格增(减)函数,则 f 必有反函数 f -1 , 且 f -1 在其定义域 f (D ) 上也是严格增(减)函数. 证明:设 f 在D 上严格增函数.对∀y ∈ f (D ), 一x ∈ D , 一f (x ) = y .下面 证明这样的 x 只有一个.事实上,对于D 内任一 x 1 ≠ x , 由于 f 在D 上严格增函数,当 x 1 < x 时 f (x 1 ) < y ,当 x 1 > x 时 f (x 1 ) > y ,总之 f (x 1 ) ≠ y .即 5 3tgt 2 5 2 6⎨ ∀y ∈ f (D ), 一 一 一 一 一一 一 一x ∈ D , 一一 f (x ) = y ,从而例 7 讨论函数 y = x 2 在(-∞, +∞) 上反函数的存在性;如果 y = x 2 在 (-∞, +∞) 上不存在反函数,在(-∞, +∞) 的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明: y = a x 当a > 1 时在R上严格增,当0 < a < 1时在R 上严格递减.三、奇函数和偶函数定义 4. 设 D 为对称于原点的数集, f 为定义在 D 上的函数.若 对每一个 x ∈ D 有(1) f (-x ) = - f (x ) ,则称 f 为 D 上的奇函数;(2) f (-x ) = f (x ) ,则称 f 为 D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心 对称),偶函数的图象关于 y 轴对称;(2)奇偶性的前提是定义域对称,因此 f (x ) = x , x ∈[0,1] 没有必要讨论奇偶性.⎧ ⎪ (3) 从奇偶性角度对函数分类: ⎪ 奇函数: y=si nx 偶函数: y=sgnx ;⎪非奇非偶函数: y=si nx+cosx⎩⎪ 既奇又偶函数: y ≡ 0(4) 由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数1、定义设 f 为定义在数集 D 上的函数,若存在> 0 ,使得对一切x ∈ D 有 f (x ±) = f (x ) ,则称 f 为周期函数,称为 f 的一个周期.2、几点说明:(1) 若是 f 的周期,则n (n ∈ N + ) 也是 f 的周期,所以周期若存在,则不唯一.如 y = sin x ,= 2, 4, .因此有如下“基本周期”的说法,即若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的“基本周期”,简称“周期”.如 y = sin x ,周期为2;(2) 任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1) y = x +1,不是周期函数;2) y = C (C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的。

大学考研数学分析笔记

大学考研数学分析笔记

在定义域 上既有上界又有下界,则称 为 上的有界函数。这个定义显
然等价于,对一切
,恒有
请同学们利用有界函数的定义给出无界函数的定义。

是无界函数。
证明 对任意的
,存在
,取
,则
2. 单调函数
奇函数与偶函数 (1)定义域关于原点对称 周期函数 1) 通常我们所说的周期总是指函数的最小周期 2) 有的周期函数不一定有最小周期 ,例如常函数是周期函数, 狄里克雷函数,它们显然没有最小 周期
定 理 2.4 设

. 则对
(或
例1 设
证明:若

(证)
定理 2.5 设 (注意“ = ” ;并注意


的情况 ).
推论 若 4. 定理( 迫敛性 ) 5. 绝对值收敛性:
则对 (证)
( 注意反之不确 ).
(证) 推论 设数列{ }和{ }收敛, 则
(或 ,
6.四则运算性质: 7. 子列收敛性: 子列概念.
目录
第二模块 笔记.................................................................................................................................3 第一部分 实数集与函数.........................................................................................................3 第二部分 数列极限................................................................................................................8 第三部分 函数极限..............................................................................................................10 第四部分 函数连续性...........................................................................................................15 第五部分 导数与微分..........................................................................................................30 第六部分 微分中值定理及其应用.......................................................................................36 第八部分 不定积分...............................................................................................................51 第九部分 定积分..................................................................................................................54 第十部分 定积分的应用.......................................................................................................60 第十一部分 反常积分...........................................................................................................68 第十二部分 数项级数...........................................................................................................72 第十三部分 函数列与函数项级数.......................................................................................90 第十四部分 幂级数.............................................................................................................101 第十五部分 傅里叶级数..................................................................................................... 116 第十六部分 多元函数的极限与连续.................................................................................131 第十七部分 多元函数微分学.............................................................................................136 第十八部分 隐函数定理及其应用.....................................................................................148 第十九部分 含参量积分.....................................................................................................152 第二十部分 曲线积分.........................................................................................................163 第二十一部分 重积分.........................................................................................................166 第二十二部分 曲面积分.....................................................................................................175

1-2数集 确界原理

1-2数集  确界原理

定义3 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集, η 满足: 若数 满足: (1) x ∈ S , 有x ≥ η ,即 η 是S的一 ) 的一 ∀ 个下界, 个下界, (2) a >η, ∃x0 ∈S, 使 x0 < a ,即η ) ∀ 是S的最大下界, 的最大下界, 记作infS. 则称η 是S的下确界 记作 的下确界,记作
有上( 若S有上(下)界,则一定有无限多个 有上 上(下)界。
任意的数 , 若对于任意的 若对于任意的数M,都存在一个 x 0∈S,使得 x 0 >M, 则称 是一个无上 则称S是一个无上 使得 界的数集。 界的数集。
如:S1 = { x | x = n!, n ∈ N + } 有下界(可取 ),无上界。 ),无上界 有下界(可取1),无上界。
定义2 是实数集R中的一个数集 定义 设S是实数集 中的一个数集, 是实数集 中的一个数集,
若存在数L,使得对一切的x 若存在数 ,使得对一切的 ∈S, 都有 一切的 x ≥ L,则称 为有下界的数集,称L为S的一个 则称S为有下界的数集 则称 为有下界的数集, 为 的一个 下界。 下界。 若S为既有上界、又有下界的数集,则称S 为 有上界、 有下界的数集,则称 为有界集。 为有界集。 若S没有上界或没有下界,则称S为无界集。 没有上界或没有下界,则称 为无界集。 没有上界 为无界集
1 S2 = { x | x = 1 − n , n ∈ N + } 2
下界可取1/2,上界可取1。 下界可取 ,上界可取 。
S 3 = { x | x = sin t , −
π
≤t≤ } 2 2
π
下界可取-1,上界可取 。 下界可取 ,上界可取1。

数学分析知识点总结

数学分析知识点总结

第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引 言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质1、实数(,q p q p ⎧≠⎪⎪⎨⎪⎪⎩有理数:任何有理数都可以用分数形式为整数且q 0)表示,也可以用有限十进小数或无限十进小数来表示.无理数:用无限十进不循环小数表示.{}|R x x =为实数--全体实数的集合.[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例: 2.001 2.0009999→L ;利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1)定义1给定两个非负实数01.n x a a a =L L ,01.n y b b b =L L . 其中00,a b 为非负整数,,k k a b (1,2,)k =L 为整数,09,09k k a b ≤≤≤≤.若有,0,1,2,k k a b k ==L ,则称x 与y 相等,记为x y =;若00a b >或存在非负整数l ,使得,0,1,2,,k k a b k l ==L ,而11l l a b ++>,则称x 大于y 或y 小于x ,分别记为x y >或y x <.对于负实数x 、y ,若按上述规定分别有x y -=-或x y ->-,则分别称为x y =与x y <(或y x >).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义2(不足近似与过剩近似):01.n x a a a =L L 为非负实数,称有理数01.n n x a a a =L 为实数x 的n 位不足近似;110n n n x x =+称为实数x 的n 位过剩近似,0,1,2,n =L .对于负实数01.n x a a a =-L L ,其n 位不足近似011.10n n n x a a a =--L ;n 位过剩近似01.n n x a a a =-L .注:实数x 的不足近似n x 当n 增大时不减,即有012x x x ≤≤≤L ; 过剩近似n x 当n 增大时不增,即有012x x x ≥≥≥L .命题:记01.n x a a a =L L ,01.n y b b b =L L 为两个实数,则x y >的等价条件是:存在非负整数n ,使n n x y >(其中n x 为x 的n 位不足近似,n y 为y 的n 位过剩近似).命题应用例1.设,x y 为实数,x y <,证明存在有理数r ,满足x r y <<.3 2.99992.001 2.0099993 2.9999→-→--→-L L L;;证明:由x y <,知:存在非负整数n ,使得n n x y <.令()12n n r x y =+,则r 为有理数,且 n n x x r y y ≤<<≤.即x r y <<.3、实数常用性质(详见附录Ⅱ.289302P P -).1)封闭性(实数集R 对,,,+-⨯÷)四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为0)仍是实数.2)有序性:,a b R ∀∈,关系,,a b a b a b <>=,三者必居其一,也只居其一.3)传递性:a b c R ∀∈,,,,a b b c a c >>>若,则.4)阿基米德性:,,0a b R b a n N ∀∈>>⇒∃∈使得na b >.5)稠密性:两个不等的实数之间总有另一个实数.6)一一对应关系:实数集R 与数轴上的点有着一一对应关系.例2.设,a b R ∀∈,证明:若对任何正数ε,有a b ε<+,则a b ≤.(提示:反证法.利用“有序性”,取a b ε=-)二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为,0||0a a a a a ≥⎧=⎨-<⎩. 2、几何意义从数轴看,数a 的绝对值||a 就是点a 到原点的距离.||x a -表示就是数轴上点x 与a 之间的距离.3、性质1)||||0;||00a a a a =-≥=⇔=(非负性);2)||||a a a -≤≤;3)||a h h a h <⇔-<<,||.(0)a h h a h h ≤⇔-≤≤>;4)对任何,a b R ∈有||||||||||a b a b a b -≤±≤+(三角不等式);5)||||||ab a b =⋅;6)||||a a b b =(0b ≠).三、几个重要不等式1、,222ab b a ≥+ .1 sin ≤x . sin x x ≤2、均值不等式:对,,,,21+∈∀R n a a a Λ记 ,1 )(121∑==+++=ni i n i a n n a a a a M Λ (算术平均值) ,)(1121n n i i n n i a a a a a G ⎪⎪⎭⎫ ⎝⎛==∏=Λ (几何平均值) .1111111)(1121∑∑====+++=n i i n i i n i a n a n a a a na H Λ (调和平均值)有平均值不等式:),( )( )(i i i a M a G a H ≤≤即:1212111n n a a a nna a a +++≤≤+++L L 等号当且仅当n a a a ===Λ21时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过),1->∀x 有不等式(1)1, .n x nx n +≥+∈N当1->x 且0≠x ,N ∈n 且2≥n 时,有严格不等式.1)1(nx x n +>+证:由01>+x 且>+++++=-++⇒≠+111)1(1)1( ,01Λn n x n x x ).1( )1( x n x n n n +=+>.1)1( nx x n +>+⇒4、利用二项展开式得到的不等式:对,0>∀h 由二项展开式 ,!3)2)(1(!2)1(1)1(32n n h h n n n h n n nh h ++--+-++=+Λ 有 >+n h )1( 上式右端任何一项.[练习]P4.5[课堂小结]:实数:⎧⎨⎩一 实数及其性质二 绝对值与不等式. [作业]P4.1.(1),2.(2)、(3),3§2数集和确界原理授课章节:第一章实数集与函数——§2数集和确界原理教学目的:使学生掌握确界原理,建立起实数确界的清晰概念.教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1实数的相关内容.下面,我们先来检验一下自学的效果如何!1、证明:对任何x R ∈有:(1)|1||2|1x x -+-≥;(2) |1||2||3|2x x x -+-+-≥. (111(2)12,121x x x x x -=+-≥--∴-+-≥Q ()) (2121,231,23 2.x x x x x x -+-≥-+-≥-+-≥()三式相加化简即可)2、证明:||||||x y x y -≤-.3、设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.4、设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一 、区间与邻域1、区间(用来表示变量的变化范围)设,a b R ∈且a b <.⎧⎨⎩有限区间区间无限区间,其中{}{}{}{}|(,)|[,]|[,)|(,]x R a x b a b x R a x b a b x R a x b a b x R a x b a b ⎧∈<<=⎪⎪⎪∈≤≤=⎪⎨⎪⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩开区间: 闭区间: 有限区间闭开区间:半开半闭区间开闭区间:{}{}{}{}{}|[,).|(,].|(,).|(,).|.x R x a a x R x a a x R x a a x R x a a x R x R ⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩无限区间2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1)a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻域,记作(;)U a δ,或简记为()U a ,即{}(;)||(,)U a x x a a a δδδδ=-<=-+.其中a δ称为该邻域的中心,称为该邻域的半径.(2)点a 的空心δ邻域{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-⋃+@.(3)a 的δ右邻域和点a 的空心δ右邻域{}{}00(;)[,)();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+@@(4)点a 的δ左邻域和点a 的空心δ左邻域{}{}00(;)(,]();(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<@@(5)∞邻域,+∞邻域,-∞邻域{}()||,U x x M ∞=>(其中M 为充分大的正数);{}(),U x x M +∞=>{}()U x x M -∞=<-二 、有界集与无界集1、 定义1(上、下界):设S 为R 中的一个数集.若存在数()M L ,使得一切x S∈都有()x M x L ≤≥,则称S 为有上(下)界的数集.数()M L 称为S 的上界(下界);若数集S 既有上界,又有下界,则称S 为有界集.闭区间[],a b 、开区间b a b a ,( ),(为有限数)、邻域等都是有界数集, 集合 {}) , ( ,sin ∞+∞-∈==x x y y E 也是有界数集.若数集S 不是有界集,则称S 为无界集.) , 0 ( , ) 0 , ( , ) , (∞+∞-∞+∞-等都是无界数集,集合 ⎭⎬⎫⎩⎨⎧∈==) 1 , 0 ( ,1 x x y y E 也是无界数集. 注:1)上(下)界若存在,不唯一;2)上(下)界与S 的关系如何?看下例:例1 讨论数集{}|N n n +=为正整数的有界性.解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界.因为假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取[]0[]1n M M M =+(符号表示不超过的最大整数),则0n N +∈,且0n M >.综上所述知:N +是有下界无上界的数集,因而是无界集.例2证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一 ,有无穷多个).三 、确界与确界原理1、定义定义2(上确界) 设S 是R 中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S 的上界); (2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S 的上界中最小的一个),则称数η为数集S 的上确界,记作sup .S η= 从定义中可以得出:上确界就是上界中的最小者.命题1sup M E = 充要条件1),x E x M ∀∈≤;2)00,,o x S x M εε∀>∃∈>-使得.证明:必要性,用反证法.设2)不成立,则00,,o x E x M εε∃>∀∈≤-使得均有,与M 是上界中最小的一个矛盾.充分性(用反证法),设M 不是E 的上确界,即0M ∃是上界,但0M M >.令00M M ε=->,由2),0x E ∃∈,使得00x M M ε>-=,与0M 是E 的上界矛盾.定义3(下确界)设S 是R 中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S 的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S 的下界中最大的一个),则称数ξ为数集S 的下确界,记作inf S ξ=.从定义中可以得出:下确界就是下界中的最大者.命题2 inf S ξ=的充要条件:1),x E x ξ∀∈≥;2)ε∀>0,00,x S x ∈有<.ξε+上确界与下确界统称为确界.例3(1),) 1(1⎭⎬⎫⎩⎨⎧-+=n S n 则sup S = 1 ;inf S = 0 . (2){}.),0( ,sin π∈==x x y y E 则sup S = 1 ;inf S = 0 . 注:非空有界数集的上(或下)确界是唯一的.命题3:设数集A 有上(下)确界,则这上(下)确界必是唯一的. 证明:设sup A η=,sup A η'=且ηη'≠,则不妨设ηη'<A sup =η⇒A x ∈∀有η≤xsup A η'=⇒对ηη'<,0x A ∃∈使0x η<,矛盾.例:sup 0R -= ,sup 11n Z n n +∈⎛⎫= ⎪+⎝⎭ ,1inf 12n Z n n +∈⎛⎫= ⎪+⎝⎭ {}5,0,3,9,11E =-则有inf 5E =-.开区间(),a b 与闭区间[],a b 有相同的上确界b 与下确界a例4设S 和A 是非空数集,且有.A S ⊃则有.inf inf ,sup sup A S A S ≤≥. 例5设A 和B 是非空数集.若对A x ∈∀和,B y ∈∀都有,y x ≤则有.inf sup B A ≤证明:,B y ∈∀y 是A 的上界,.sup y A ≤⇒A sup ⇒是B 的下界,.inf sup B A ≤⇒例6A 和B 为非空数集,.B A S Y =试证明:{}. inf , inf m in inf B A S = 证明:,S x ∈∀有A x ∈或,B x ∈由A inf 和B inf 分别是A 和B 的下界,有A x inf ≥或{}. inf , inf m in .infB A x B x ≥⇒≥即{} inf , inf m in B A 是数集S 的下界,{}. inf , inf m in inf B A S ≥⇒又S A S ,⇒⊃的下界就是A 的下界,S inf 是S 的下界,S inf ⇒是A 的下界,;inf inf A S ≤⇒同理有.inf inf B S ≤于是有{} inf , inf m in inf B A S ≤.综上,有{} inf , inf m in inf B A S =.1. 数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2. 确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若E max 存在,必有.sup max E E =对下确界有类似的结论.4. 确界原理:Th1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 ,E R E ⊂非空,E x ∈∃,我们可以找到一个整数p ,使得p 不是E 上界,而1p +是E 的上界.然后我们遍查9.,,2.,1.p p p Λ和1+p ,我们可以找到一个0q ,900≤≤q ,使得0.q p 不是E 上界,)1.(0+q p 是E 上界,如果再找第二位小数1q ,,Λ如此下去,最后得到Λ210.q q q p ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明)不妨设S 中的元素都为非负数,则存在非负整数n ,使得1)S x ∈∀,有n x >;2)存在S x ∈1,有1+≤n x ;把区间]1,(+n n 10等分,分点为n.1,n.2,...,n.9, 存在1n ,使得 1)S ∈∀,有;1.n n x >;2)存在S x ∈2,使得10112.+≤n n x . 再对开区间111(.,.]10n n n n +10等分,同理存在2n ,使得 1)对任何S x ∈,有21.n n n x >;2)存在2x ,使2101212.+≤n n n x 继续重复此步骤,知对任何Λ,2,1=k ,存在k n 使得1)对任何S x ∈,k k n n n n x 10121.->Λ; 2)存在S x k ∈,k k n n n n x Λ21.≤.因此得到ΛΛk n n n n 21.=η.以下证明S inf =η.(ⅰ)对任意S x ∈,η>x ;(ⅱ)对任何ηα>,存在S x ∈'使x '>α.[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3函数概念授课章节:第一章实数集与函数——§3 函数概念教学目的:使学生深刻理解函数概念.教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引 言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1 设,D M R ⊂,如果存在对应法则f ,使对x D ∀∈,存在唯一的一个数y M ∈与之对应,则称f 是定义在数集D 上的函数,记作:f D M →|x y → .数集D 称为函数f 的定义域,x 所对应的y ,称为f 在点x 的函数值,记为()f x .全体函数值的集合称为函数f 的值域,记作()f D .即{}()|(),f D y y f x x D ==∈.2.几点说明(1)函数定义的记号中“:f D M →”表示按法则f 建立D 到M 的函数关系,|x y →表示这两个数集中元素之间的对应关系,也记作|()x f x →.习惯上称x 自变量,y 为因变量.(2) 函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:(),y f x x D =∈.由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)()1,,f x x R =∈ {}()1,\0.g x x R =∈(不相同,对应法则相同,定义域不同)2)()||,,x x x R ϕ=∈ ().x x R ψ=∈(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则f 来表示一个函数.即“函数()y f x =”或“函数f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a D ∈,()f a 称为映射f 下a 的象.a 称为()f a 的原象.(5)函数定义中,x D ∀∈,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x 值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二 、函数的表示方法1 主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2 可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.例如 1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩,(符号函数)(借助于sgnx 可表示()||,f x x =即()||sgn f x x x x ==).2)用语言叙述的函数.(注意;以下函数不是分段函数)例 1)[]y x =(取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [][]1x x x ≤<+, 即[]01x x ≤-<.与此有关一个的函数[]{}y x x x =-@(非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数1,()0,x D x x ⎧=⎨⎩当为有理数,当为无理数, 这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数 1,(,,()0,0,1(0,1)p p x p q N q q q R x x +⎧=∈⎪=⎨⎪=⎩当为既约分数),当和内的无理数.三 函数的四则运算给定两个函数12,,,f x D g x D ∈∈,记12D D D =U ,并设D φ≠,定义f 与g 在D 上的和、差、积运算如下:()()(),F x f x g x x D=+∈;()()(),G x f x g x x D =-∈;()()(),H x f x g x x D =∈.若在D 中除去使()0g x =的值,即令{}2\()0,D D x g x x D φ=≠∈≠g ,可在D g 上定义f 与g 的商运算如下;()(),()f x L x x Dg x =∈g . 注:1)若12D D D φ==U ,则f 与g 不能进行四则运算.2)为叙述方便,函数f 与g 的和、差、积、商常分别写为:,,,f f g f g fg g+-. 四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为m 的物体自由下落,速度为v ,则功率E 为2221122E mv E mg t v gt ⎫=⎪⇒=⎬⎪=⎭. 抽去该问题的实际意义,我们得到两个函数21(),2f v mv v gt ==,把()v t 代入f ,即得221(())2f v t mg t =. 这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例; 2()arcsin ,[1,1],()2,y f u u u D u g x x x E R ==∈=-==+∈=.就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数(),,(),y f u u D u g x x E =∈=∈,{}()E x f x D E =∈g I ,若E φ≠g ,则对每一个x E ∈g ,通过g 对应D 内唯一一个值u ,而u 又通过f 对应唯一一个值y ,这就确定了一个定义在E g 上的函数,它以x 为自变量,y 因变量,记作(()),y f g x x E =∈g 或()(),y f g x x E =∈g o .简记为f g o .称为函数f 和g 的复合函数,并称f 为外函数,g 为内函数,u 为中间变量.3. 例子例 .1)( ,)(2x x g u u u f y -==== 求 ()[]).()(x g f x g f =ο并求定义域.例 ⑴._______________)( ,1)1(2=++=-x f x x x f⑵.1122x x x x f +=⎪⎭⎫ ⎝⎛+ 则) ( )(=x f A. ,2x B. ,12+x C. ,22-x D. .22+x例 讨论函数()[0,)y f u u ==∈+∞与函数()u g x x R ==∈能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么?例如:2sin ,1y u u v x ===-,复合成:[1,1]y x =∈-.2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函数,在分解时也要注意定义域的变化.①2log (0,1)log ,1.a a y x y u u z x =∈→===-②2arcsin , 1.y y u u v x ====+③2sin 222,,sin .x u y y u v v x =→===五、反函数1.引言在函数()y f x =中把x 叫做自变量,y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:2()1,f u u t ==+ 那么u 对于f 来讲是自变量,但对t 来讲,u 是因变量.习惯上说函数()y f x =中x 是自变量,y 是因变量,是基于y 随x 的变化现时变化.但有时我们不仅要研究y 随x 的变化状况,也要研究x 随y 的变化的状况.对此,我们引入反函数的概念.2.反函数概念定义设→X f :R 是一函数,如果∀1x ,X x ∈2, 由)()(2121x f x f x x ≠⇒≠(或由2121)()(x x x f x f =⇒=),则称f 在X 上是 1-1 的.若Y X f →:,)(X f Y =,称f 为满的.若 Y X f →:是满的 1-1 的,则称f 为1-1对应.→X f :R 是1-1 的意味着)(x f y =对固定y 至多有一个解x ,Y X f →:是1-1 的意味着对Y y ∈,)(x f y =有且仅有一个解x .定义 设Y X f →:是1-1对应.Y y ∈∀, 由)(x f y =唯一确定一个X x ∈, 由这种对应法则所确定的函数称为)(x f y =的反函数,记为)(1y f x -=.反函数的定义域和值域恰为原函数的值域和定义域Y X f →:X Y f →-:1显然有X X I f f→=-:1ο(恒等变换) Y Y I f f →=-:1ο (恒等变换) Y X f f →=--:)(11.从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 )(1x f y -=, 这样它的图形与)(x f y =的图形是关于对角线x y =对称的.严格单调函数是1-1对应的,所以严格单调函数有反函数.但 1-1⎩⎨⎧≤≤-<≤=21,310,)(x x x x x f 它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 Y X f →:的定义域X 和值域Y ,考虑 1-1对应条件.解方程 y x f =)( 得出 )(1y f x -=.2. 按习惯,自变量x 、因变量y 互换,得 )(1x f y -=.例 求 2)(x x e e x sh y --== :R → R 的反函数.解 固定y ,为解 2x x e e y --=,令 z e x =,方程变为122-=z zy0122=--zy z12+±=y y z ( 舍去12+-y y )得)1ln(2++=y y x ,即)()1ln(12x sh x x y -=++=,称为反双曲正弦.定理 给定函数)(x f y =,其定义域和值域分别记为X 和Y ,若在Y 上存在函数)(y g ,使得 x x f g =))((, 则有)()(1y f y g -=.分析:要证两层结论:一是)(x f y =的反函数存在,我们只要证它是 1-1 对应就行了;二是要证1()()g y f y -=.证 要证)(x f y =的反函数存在,只要证)(x f 是X 到Y 的 1-1 对应.∀1x ,X x ∈2,若)()(21x f x f =, 则由定理条件,我们有11))((x x f g = 22))((x x f g =21x x =⇒,即 Y X f →: 是 1-1 对应.再证1()()g y f y -=.∀Y y ∈,∃X x ∈,使得)(x f y =.由反函数定义 )(1y f x -=,再由定理条件()(())g y g f x x ==.1()()g y f y -⇒=例 :f R R →,若))((x f f 存在唯一(|∃)不动点,则)(x f 证 存在性,设)]([* * x f f x =,)]([)(* * x f f f x f ο=,即)(* x f 是f f ο的不动点,由唯一性* * )(x x f =,即存在)(x f 的不动点* x .唯一性: 设)(x f x =,))(()(x f f x f x ==,说明 x 是f f ο的不动点,由唯一性,x =* x .从映射的观点看函数.设函数(),y f x x D =∈.满足:对于值域()f D 且只有一个值x ,使得()f x y =,则按此对应法则得到一个定义在()f D 上的函数,称这个函数为f的反函数,记作1:(),(|)f f D D y x -→→或1(),()x f y y f D -=∈.3、注释a) 并不是任何函数都有反函数,从映射的观点看,函数f 有反函数,意味着f 是D与()f D 之间的一个一一映射,称1f -为映射f 的逆映射,它把()f D D →;b) 函数f 与1f -互为反函数,并有:1(()),,f f x x x D -≡∈ 1(()),().f f x y y f D -≡∈c) 在反函数的表示1(),()x f y y f D -=∈中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数f 的反函数1f -可以改写为1(),().y f x x f D -=∈应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六 、初等函数1.基本初等函数(6类)常量函数 y C =(C为常数);幂函数 ()y x R αα=∈;指数函数(0,1)x y a a a =>≠;对数函数 log (0,1)a y x a a =>≠;三角函数 sin ,cos ,,c y x y x y tgx y tgx ====;反三角函数 arcsin ,arccos ,,y x y x y arctgx y arcctgx ====.注:幂函数()y x R αα=∈和指数函数(0,1)x y a a a =>≠都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数0,1a a >≠,设x 为无理数,我们规定:{}{}sup |,1|,01r x r xr a r a a a r a <⎧>⎪=⎨<<⎪⎩r<x为有理数当时,inf 为有理数当时. 这样解决了中学数学仅对有理数x定义xa 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?” 2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如:22112sin cos ,sin(),l g ,||.a e y x x y y o x y x x x -=+==+= 不是初等函数的函数,称为非初等函数.如Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1)y = (2) ln |sin |.y x = 3.初等函数的几个特例: 设函数)(x f 和)(x g 都是初等函数, 则(1) )( x f 是初等函数, 因为 ().)( )( 2x f x f =(2){})( , )(m ax )(x g x f x =Φ 和 {})( , )(m in )(x g x f x =φ都是初等函数,因为 {})( , )(m ax )(x g x f x =Φ[])()()()(21x g x f x g x f -++=, {})( , )(m in )(x g x f x =φ [])()()()(21x g x f x g x f --+= . (3)幂指函数 ()()0)( )()(>x f x f x g 是初等函数,因为 ()(). )()(ln )()(ln )()(x f x g x f x g e e x f x g ==[作业] 15P : 3;4:(2)、(3); 5:(2); 7:(3);11§4具有某些特性的函数授课章节:第一章实数集与函数——§4具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引 言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义1设f 为定义在D 上的函数,若存在数()M L ,使得对每一个x D ∈有()(())f x M f x L ≤≥,则称f 为D 上的有上(下)界函数,()M L 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域()f D 是一个有上(下)界的数集;(2)又若()M L 为f 在D 上的一个上(下) 界,则任何大于M(小于L)的数也是f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:sin y x =,1是其一个上界,下界为-1,则易见任何小于-1的数都可作为其下界;任何大于1的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;(4)由(1)及“有界集”定义,可类比给出“有界函数”定义:f 在D 上有界⇔()f D 是一个有界集⇔f 在D 上既有上界又有下界⇔f 在D 上的有上界函数,也为D 上的有下界函数.2、有界函数定义定义2设f 为定义在D 上的函数.若存在正数M,使得对每一个x D ∈有|()|f x M ≤,则称f 为D 上的有界函数.注:(1)几何意义:f 为D 上的有界函数,则f 的图象完全落在y M =和y M =-之间;(2)f 在D 上有界⇔f 在D 上既有上界又有下界;例子:sin ,cos y x y x ==;(3)关于函数f 在D 上无上界、无下界或无界的定义.3、例题例 1 证明:f X R →有界的充要条件为:∃M ,m ,使得对X x ∈∀,M x f m ≤≤)(.证明 如果:f X R →有界,按定义∃M >0,X x ∈∀有()f x M ≤,即()M f x M -≤≤,取M m -=,M M =即可.反之如果∃M ,m 使得,()x X m f x M ∀∈≤≤,令{}0max 1,M M m =+,则0()f x M ≤,即∃00M >,使得对x X ∀∈有0()f x M ≤,即:f X R →有界.例2.证明 1()f x x=为(0,1]上的无上界函数. 例3.设,f g 为D 上的有界函数.证明:(1){}inf ()inf ()inf ()()x D x D x Df xg x f x g x ∈∈∈+≤+; (2){}sup ()()sup ()sup ()x D x D x Df xg x f x g x ∈∈∈+≤+.例4验证函数 325)(2+=x x x f 在R 内有界. 解法一 由,62322)3()2(32222x x x x =⋅≥+=+当0≠x 时,有 .3625625325325 )( 22≤=≤+=+=x x x x x x x f 30 )0( ≤=f ,∴ 对 ,R ∈∀x 总有 ,3 )( ≤x f 即)(x f 在R 内有界.解法二 令 ,3252⇒+=x x y 关于x 的二次方程 03522=+-y x yx 有实数根.22245 y -=∆∴.2 ,42425 ,02≤⇒≤≤⇒≥y y 解法三 令 ⎪⎭⎫ ⎝⎛-∈=2,2 ,23ππt tgt x 对应). , (∞+∞-∈x 于是 ==+=+⎪⎪⎭⎫ ⎝⎛=+=t t t t tg tgt tgt tgt x x x f 2222sec 1cos sin 65123353232235325)( .6252sin 625 )( ,2sin 625 ≤=⇒=t x f t 二、单调函数定义3设f 为定义在D 上的函数,1212,,,x x D x x ∀∈< (1)若12()()f x f x ≤,则称f 为D 上的增函数;若12()()f x f x <,则称f 为D 上的严格增函数.(2)若12()()f x f x ≥,则称f 为D 上的减函数;若12()()f x f x >,则称f 为D 上的严格减函数.例5.证明:3y x =在(,)-∞+∞上是严格增函数.证明:设21x x <,))((222121213231x x x x x x x x ++-=- 如021<x x ,则3231120x x x x <⇒>>如120x x >,则22331122120,x x x x x x ++>⇒<故03231<-x x 即得证. 例6.讨论函数[]y x =在R 上的单调性.12,x x R ∀∈Q ,当12x x <时,有[][]12x x ≤,但此函数在R 上的不是严格增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分,f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理1.设(),y f x x D =∈为严格增(减)函数,则f 必有反函数1f -,且1f -在其定义域()f D 上也是严格增(减)函数.证明:设f 在D 上严格增函数.对(),,()y f D x D f x y ∀∈∈=有使.下面证明这样的x 只有一个.事实上,对于D 内任一1,x x ≠由于f 在D 上严格增函数,当1x x <时1()f x y <,当1x x >时1()f x y >,总之1()f x y ≠.即(),,()y f D x D f x y ∀∈∈=都只存在唯一的一使得,从而例7 讨论函数2y x =在(,)-∞+∞上反函数的存在性;如果2y x =在(,)-∞+∞上不存在反函数,在(,)-∞+∞的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明:x y a =当1a >时在R上严格增,当01a <<时在R 上严格递减. 三、奇函数和偶函数定义4. 设D 为对称于原点的数集,f 为定义在D 上的函数.若对每一个x D ∈有(1)()()f x f x -=-,则称f 为D 上的奇函数;(2)()()f x f x -=,则称f 为D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心对称),偶函数的图象关于y 轴对称;(2)奇偶性的前提是定义域对称,因此(),[0,1]f x x x =∈没有必要讨论奇偶性.(3)从奇偶性角度对函数分类:⎧⎪⎪⎨⎪⎪≡⎩奇函数:y=sinx 偶函数:y=sgnx 非奇非偶函数:y=sinx+cosx 既奇又偶函数:y 0;(4)由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数 1、定义设f 为定义在数集D 上的函数,若存在0σ>,使得对一切x D ∈有()()f x f x σ±=,则称f 为周期函数,σ称为f 的一个周期. 2、几点说明:(1)若σ是f 的周期,则()n n N σ+∈也是f 的周期,所以周期若存在,则。

实数集与函数数集确界原理

实数集与函数数集确界原理
前页 后页 返回
二、确界
若数集 S 有上界, 则必有无穷多个上界, 而其
中最小的一个具有重要的作用. 最小的上界称为
上确界. 同样, 若S 有下界, 则最大的下界称为下 确界. 定义2 设 S R, S . 若 R满足 :
(i ) x S , x ; (ii) , x0 S , 使得 x0 ,

x0
点击上图动画演示

x
前页 后页 返回
定义3 设 S R, S . 若 R 满足 :
(i) x S , x ;
(ii) , x0 S , x0 ; 则称 是 S 的下确界, 记为 inf S .
注1 由定义,下确界是最大的下界.
(3) 若 S 既有上界又有下界, 则称 S 为有界集.
其充要条件为 : M 0, 使 x S , 有 | x | M .
前页 后页 返回
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 使得 | x0 | M .
§2 数集 · 确界原理
确界原理本质上体现了实数的完备 性,是本章学习的重点与难点. 一、有界集 二、确界 三、确界的存在性定理
四、非正常确界
前页 后页 返回
记号与术语
U (a; ) { x | | x a | } : 点 a 的 邻域
U (a; ) { x | 0 | x a | }: 点 a 的 空心邻域

数学分析1.2数集与确界原理

数学分析1.2数集与确界原理

第一章实数集与函数2 数集·确界原理一、区间与邻域设a、b∈R,且a<b,我们称数集{x|a<x<b}为开区间,记作(a,b);数集{x|a≤x≤b}称为闭区间,记作[a,b];数集{x|a≤x<b}和{x|a<x≤b}称为半开半闭区间,记作[a,b)和(a,b],它们统称为有限区间。

(−∞,a]={x|x≤a},[a,+∞)={x|x≥a},(−∞,a)={x|x<a},(a,+∞)={x|x>a},(−∞, +∞) ={x|−∞<x<+∞}=R;它们统称为无限区间。

设a∈R,δ>0。

满足绝对值不等式|x-a|<δ的全体实数x的集合称为点a的δ邻域,记作U(a;δ),或简单地写作U(a),即有U(a;δ)={ x||x-a|<δ}=(a-δ,a+δ)点a的空心δ邻域定义为U⁰(a;δ)={ x|0<|x-a|<δ}也简单地记作U⁰ (a).点a的δ右邻域U+(a;δ)=[a, a+δ),简记为U+(a);点a的δ左邻域U-(a;δ)= (a-δ, a],简记为U-(a);去除点a后的点a的空心δ左、右邻域分别简记为U⁰+(a)和U⁰-(a).∞邻域U(∞)= { x||x|>M},其中M为充分大的正数(下同);+∞邻域U(+∞)= { x|x>M},-∞邻域U(-∞)= { x|x<-M}.二、有界集·确界原理定义1:设S为R中的一个数集。

若存在数M(L),使得对一切x∈S,都有x≤M(x≥L),则称S为有上界(下界)的数集,数M(L)称为S的一个上界(下界)。

若数集S既有上界又有下界,则称S为有界集。

若S不是有界集,则称S为无界集。

例1:证明数集N+={n|n为正整数}有下界而无上界。

证:显然,任何一个不大于1的实数都是的N+下界,故N+为有下界的数集;∀M>0,取n0=[M]+1,则n0∈N+,且n0> M,故N+为无上界的数集。

实数集与函数

实数集与函数

定义2: 设 x a .a a
0
1 2
a n , 为非负实数,称有理数
x n a0 .a1a 2 a n 为实数x的n位不足近似,而有理数 1 xn xn n 10 称为实数x的n位过剩近似,n 1, 2 , .
对于负实数x a0 .a1a2 an ,其n位不足近似与n位过 剩近似分别规定为 1 xn a0 .a1a2 an n 与 xn a0 .a1a2 an . 10
a k bk, ( k 1, 2 , , l )而a l bl , 则称x大于y或y小于x,分别记为x y或y x;
对于负实数x , y,若按上述规定分别有 x y与 x y, 则分别称x y与x y(或y x)另外,自然规定任何 非负实数 大于任何负实数.
注: (1) 定义1 给出了两个非负实数相等与不等的 定义,请注意它的定义方式.
(2) 定义2 给出非负实数的 n 位不足近似与 n 位过
剩近似,蕴含了重要的数学思想—“逼近”,应引起
同学们的注意.
同时,非负实数的 n 位不足近似与 n 位过剩近似
都是有理数,且它们分别递增、递减.
如 2 1.4142, 则 1.4, 1.5, 1.41, 1.42, 1.414, 1.4142 , , 称 为 2的 不 足 近 似 ; 1.415, 1.4143 , , 称 为 2的 过 剩 近 似 .
y b0 .b1b2 bn 其中a0 , b0为非负整数a k , bk ( k 1, 2 , ) 为整数, 0 a k 9, 0 bk 9. 若有 a k bk,k 1, 2 , , 则称x与y相等,记为 x y; 若a0 b0或存在非负整数l,使得

第一章 实数集与函数PPT

第一章 实数集与函数PPT
设 b b0 .b1b2 bn , b p为第一个不为零的正整数,
k 1
令 n 10 p k 1 , 则 nb 10k 1 a.
1 例1 若 b 0, 则 n N + , 使得 b. n 即 证 令a 1, 由阿基米德性, n N+ , 使 nb 1,
其充要条件为 : M 0, 使 x S , 有 | x | M .
(1) 若 S 不是有上界的数集, 则称 S 无上界, 即 M R, x0 S , 使得 x0 M . (2) 若 S 不是有下界的数集, 则称 S 无下界, 即 L R, x0 S , 使得 x0 L. (3) 若 S 不是有界的数集, 则称 S 无界集, 即 M 0, x0 S , 应关系反映了实数的
完备性. 我们将在后面有关章节中作进一步讨论.
七、实数的绝对值与三角形不等式
1. 实数 a 的绝对值 | a | 定义为:
a, a 0 |a| . a , a 0
2. 实数的绝对值性质:
( 1 ) | a | | a | 0; 当且仅当a 0 时 | a | 0.
a0 .a1a2 an b0 .b1b2 bn , 而an1 bn1 . x , y R , 规定 x y x y .
x R + , y R , 规定 y 0 x .
实数的大小关系有以下性质:
(1) x y , x y , x y .
第一章 实数集与函数
主要内容
§1 实数 §2 数集· 确界原理 §3 函数的概念 §4 具有某些特性的函数
§1 实数
数学分析研究的是实 数集上定义 的函数, 因此我们首先要掌握实数的 基本概念与性质.

华师大版数学分析第一章实数集与函数1.2数集与确界原理ppt

华师大版数学分析第一章实数集与函数1.2数集与确界原理ppt

2、设S为非空数集。试对下列概念给出定义: (1)S无上界;(2)S无界. 解:(1)设S为非空数集,若对任意M>0, 总存在x0∈S,使|x0|>M,则称数集S无界. (2)设S为非空数集,若对任意M>0, 总存在x0∈S,使|x0|>M,则称数集S无界.
3、证明数集S={y|y=2-x2,x∈R}有上界无下界.
设A、B为非空数集,S=AUB. 证明: 1) sup S=max{sup A, sup B}; 2) inf S=min{inf A, inf B}. 证:依题意,S为非空有界,sup S,inf S都存在. 1)对任何x∈S,有x∈A或x∈B=>x≤sup A或x≤sup B, 从而有x≤max{sup A, sup B}, 故得sup S≤max{sup A, sup B}p S.
设数集S有上确界, 证明:η=sup S∈Sη=max S. 证:设η=sup S∈S,则对一切x∈S有x≤η, ∴η=max S. 设η=max S,则对一切x∈S有x≤η, ∴η是S的上界;且η∈S。 对任何a<η,只须取x0=η∈S,则x0>a, ∴η=sup S.
1、用区间表示下列不等式的解: (1)|1-x|-x≥0;(2)|x+ |≤6; (3)sinx≥ ; (4)(x-a)(x-b)(x-c)>0 (a,b,c为常数,且a<b<c); 解:(1) 1-x≥x或1-x≤- x;即x≤ ; ∴原不等式的解为:x∈(-∞, ]. (2) -6≤x+ ≤6,且x≠0; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; 当x>0时,-6x≤x2+1≤6x;解得3-2 ≤x≤3+2 ; ∴x∈[3-2 , 3+2 ]∪[-3-2 , -3+2 ]

工科数学分析-数集和确界原理.

工科数学分析-数集和确界原理.

工科数学分析-数集和确界原理.《数学分析》上册教案第一章实数集与函数石家庄经济学院数理学院§1.2 数集和确界原理授课章节:第一章实数集与函数---§1.2数集和确界原理教学目标:使学生掌握确界原理,建立起实数确界的清晰概念.教学要求:(1) 掌握邻域的概念;(2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理).教学难点:确界的定义及其应用.教学方法:讲授为主.教学过程:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.一、区间与邻域(一) 区间(用来表示变量的变化范围)设a,b∈R且a<b.< p="">有限区间区间?,其中无限区间.?开区间: {x∈R|a<x< p="">有限区间?闭区间: {x∈R|a≤x≤b}=[a,b].闭开区间:{x∈R|a≤x< p="">间:{x∈R|a< p="">{x∈R|x≥a}=[a,+∞).{x∈R|x≤a}=(-∞,a].无限区间?{x∈R|x>a}=(a,+∞).{x∈R|x< p="">{x∈R|-∞<x< p="">(二) 邻域联想:“邻居”.字面意思:“邻近的区域”.(看左图).与a邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a的对称区间”;如何用数学语言来表达呢?1、a的δ邻域:设a∈R,δ>0,满足不等式|x-a|<δ的全体实数x 的集合称为点a的δ邻域,记作U(a;δ),或简记为U(a),即6《数学分析》上册教案第一章实数集与函数石家庄经济学院数理学院U(a;δ)={x|x-a|<δ}=(a-δ,a+δ).2、点a的空心δ邻域U(a;δ)={x0<|x-a|<δ}=(a-δ,a)?(a,a+δ) U(a). oo3、a的δ右邻域和点a的空心δ右邻域U+(a;δ)=[a,a+δ) U+(a)={xa≤x<a+δ};< p="">U+(a;δ)=(a,a+δ) U+(a)={xa<x<a+δ}.00< p="">4、点a的δ左邻域和点a的空心δ左邻域U-(a;δ)=(a-δ,a] U-(a)={xa-δ<x≤a};< p="">U(a;δ)=(a-δ,a) U+(a)={xa-δ<x<a}.0-0< p="">5、∞邻域,+∞邻域,-∞邻域U(∞)={x|x|>M}, (其中M为充分大的正数);U(+∞)={xx>M}, U(-∞)={xx<-M}二、有界集与无界集什么是“界”?定义1(上、下界):设S为R中的一个数集.若存在数M(L),使得一切x∈S都有x≤M(x≥L),则称S为有上(下)界的数集.数M(L)称为S的上界(下界);若数集S既有上界,又有下界,则称S为有界集.闭区间、(a,b) (a,b为有限数)、邻域等都是有界数集,集合E={y y=sinx, x∈ ( -∞ , +∞ )}也是有界数集.若数集S不是有界集,则称S为无界集.( -∞ , +∞ ) , ( -∞ , 0 ) , ( 0 , +∞ )等都是无界数集,集合 E=?y y=1?, x∈( 0 , 1 )?也是无界数集. x?注:1)上(下)界若存在,不唯一;2)上(下)界与S的关系如何?看下例:例1 讨论数集N+={n|n为正整数}的有界性.分析:有界或无界←上界、下界?下界显然有,如取L=1;上界似乎无,但需要证明. 7《数学分析》上册教案第一章实数集与函数石家庄经济学院数理学院解:任取n0∈N+,显然有n0≥1,所以N+有下界1;但N+无上界.证明如下:假设N+有上界M,则M>0,按定义,对任意n0∈N+,都有n0≤M,这是不可能的,如取n0=[M]+1,则n0∈N+,且n0>M.综上所述知:N+是有下界无上界的数集,因而是无界集.例2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.问题:若数集S有上界,上界是唯一的吗?对下界呢?(答:不唯一,有无穷多个).三、确界与确界原理1、定义定义2(上确界)设S是R中的一个数集,若数η满足:(1) 对一切x∈S,有x≤η(即η是S的上界); (2) 对任何α<η,存在x0∈S,使得x0>α(即η是S的上界中最小的一个),则称数η为数集S的上确界,记作η=supS.定义2'(上确界的等价定义)设E是R中的一个数集,若数M满足:1) M是E上界,2)?ε>0,?x'∈E使得x'>则称数M为数集E的上确界。

数学分析教案华东师大版上册全集110章

数学分析教案华东师大版上册全集110章

第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

秋风清,秋月明,落叶聚还散,寒鸦栖复惊。

授课章节:第一章 实数集与函数---§2数集和确界原理
教学目的:使学生掌握确界原理,建立起实数确界的清晰概念。

教学要求:(1)掌握邻域的概念;(2)理解实数确界的定义及确界原理,并在有关命题的证明中正确地加
以运用。

教学重点:确界的概念及其有关性质(确界原理)。

教学难点:确界的定义及其应用。

教学方法:讲授为主。

教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课。

引言
上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章 §1实数的相关内容。

下面,我们先来检验一下自学的效果如何!
1.证明:对任何x R ∈有(1)|1||2|1x x -+-≥;(2)|1||2||3|2x x x -+-+-≥. 2.证明:||||||x y x y -≤-.
3.设,a b R ∈,证明:若对任何正数ε有a b ε+<,则a b ≤.
4.设,,x y R x y ∈>,证明:存在有理数r 满足y r x <<.
[引申]:①由题1可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一。

而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用。

提请注意这种差别,尽快掌握本门课程的术语和工具(至此,复习告一段落)。

本节主要内容: 1.先定义实数集R中的两类主要的数集——区间邻域;2.讨论有界集与无界集;3.由有界集的界引出确界定义及确界存在性定理(确界原理)。

一 区间与邻域
1.区间(用来表示变量的变化范围)
设,a b R ∈且a b <。

{}{}{}{}{}{}{}{}{}|(,).|[,].|[,)|(,]|[,).|(,].|(,).|(,).|.x R a x b a b x R a x b a b x R a x b a b x R a x b a b x R x a a x R x a a x R x a a x R x a a x R x R ⎧⎧⎪⎪∈<<=⎪⎪⎪⎪∈≤≤=⎨⎪∈≤<=⎧⎪⎪⎨⎪∈<≤=⎪⎩⎩⎨⎧∈≥=+∞⎪∈≤=-∞⎪⎪∈>=+∞⎨⎪∈<=-∞⎪⎪∈-∞<<+∞=⎩开区间: 有限区间闭区间: 闭开区间:半开半闭区间开闭区间:区间无限区间⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
2.邻域
联想:“邻居”。

字面意思:“邻近的区域”。

(看左图)。

与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?
(1) a 的δ邻域:设,0a R δ∈>,满足不等式||x a δ-<的全体实数x 的集合称为点a 的δ邻
域,记作(;)U a δ,或简记为()U a ,即
{}(;)||(,)U a x x a a a δδδδ=-<=-+.
(2) 点a 的空心δ邻域
{}(;)0||(,)(,)()o o U a x x a a a a a U a δδδδ=<-<=-⋃+ .
(3) a 的δ右邻域和点a 的空心δ右邻域
{}{}00(;)[,)();
(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ++++=+=≤<+=+=<<+
(4) 点a 的δ左邻域和点a 的空心δ左邻域
{}{}00(;)(,]();
(;)(,)().U a a a U a x a x a U a a a U a x a x a δδδδδδ+---=-=-<≤=-=-<<
(5)∞邻域,+∞邻域,-∞邻域
{}()||,U x x M ∞=> (其中M为充分大的正数);{}(),U x x M +∞=> {}()U x x M -∞=<-
二 有界集与无界集
什么是“界”?
定义1(上、下界): 设S 为R 中的一个数集。

若存在数()M L ,使得一切x S ∈都有()x M x L ≤≥,则称S为有上(下)界的数集。

数()M L 称为S的上界(下界);若数集S既有上界,又有下界,则称S为有界集。

若数集S不是有界集,则称S为无界集。

注:1)上(下)界若存在,不唯一;2)上(下)界与S的关系如何?看下例:
例1 讨论数集{}|N n n +=为正整数的有界性。

分析:有界或无界←上界、下界?下界显然有,如取1L =;上界似乎无,但需要证明。

解:任取0n N +∈,显然有01n ≥,所以N +有下界1;但N +无上界。

证明如下:假设N +有上界M,则M>0,按定义,对任意0n N +∈,都有0n M ≤,这是不可能的,如取0[]1,n M =+则0n N +∈,且0n M >.
综上所述知:N +是有下界无上界的数集,因而是无界集。

例2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集。

[问题]:若数集S有上界,上界是唯一的吗?对下界呢?(答:不唯一 ,有无穷多个)。

三 确界与确界原理
1、定义
定义2(上确界) 设S是R中的一个数集,若数η满足:(1) 对一切,x S ∈有x η≤(即η是S的上界);
(2) 对任何αη<,存在0x S ∈,使得0x α>(即η是S的上界中最小的一个),则称数η为数集S的上确界,记作 sup .S η=
定义3(下确界)设S是R中的一个数集,若数ξ满足:(1)对一切,x S ∈有x ξ≥(即ξ是S的下界);(2)对任何βξ>,存在0x S ∈,使得0x β<(即ξ是S的下界中最大的一个),则称数ξ为数集S的下确界,记作inf S ξ=.
上确界与下确界统称为确界。

[作业]:P9 1(1),(2); 2; 4 (2)、(4);7。

相关文档
最新文档