专题2.13 利用导数求函数的单调性、极值、最值(解析版)

合集下载

高二数学 利用导数研究函数的单调性 极值 最值 (不含参)

高二数学 利用导数研究函数的单调性  极值  最值  (不含参)

§3.2导数与函数的单调性、极值、最值1.函数的单调性在某个区间(a,b)内,如果f′(x) >0,那么函数y=f(x)在这个区间内单调递增;如果f′(x) <0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)f′(x)>0是f(x)为增函数的充要条件.()(2)函数在某区间上或定义域内极大值是唯一的.()(3)函数的极大值不一定比极小值大.()(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()(6)函数f(x)=x sin x有无数个极值点.() 2.函数f(x)=x2-2ln x的单调减区间是() A.(0,1) B.(1,+∞)C.(-∞,1) D.(-1,1)3.已知e为自然对数的底数,设函数f(x)=(e x-1)(x-1)k(k=1,2),则() A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值4.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为() A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)5.函数f(x)=x3+ax-2在(1,+∞)上是增函数,则实数a的取值范围是________.答案[-3,+∞)解析f′(x)=3x2+a,f′(x)在区间(1,+∞)上是增函数,则f′(x)=3x2+a≥0在(1,+∞)上恒成立,即a≥-3x2在(1,+∞)上恒成立.∴a≥-3.题型一利用导数研究函数的单调性例1 已知α,[,]22βππ∈-,且sin sin 0ααββ->,则下列结论正确的是 A .αβ>B .0αβ+>C .αβ<D .22αβ>变式训练⑴已知函数2()2cos f x x x =+,若()f x '是()f x 的导函数,则函数()f x '的图象大致是 A . B .C .D .⑵已知函数384()ln 33f x x x =--,则函数()f x 的零点个数为______________. ⑶.已知函数2()ln f x x x x =--的导函数为()f 'x . ①解不等式()2f 'x <;②求函数()()4x x g f x =-的单调区间.题型二 利用导数求函数的极值例2 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.例3如图是函数f(x)=x3+bx2+cx+d的大致图象,则x21+x22等于()A.89B.109C.169D.289变式训练⑴.设函数f(x)在R 上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是 ( )⑵.函数y=x 3-3x 2-9x(-2<x<2)有 ( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值⑶.函数f(x)=mln x-cos x 在x=1处取得极值,则m 的值为 () A.sin 1 B.-sin 1C.cos 1D.-cos 1⑷.设函数f(x)=xe x ,则 ( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=-1为f(x)的极大值点D.x=-1为f(x)的极小值点⑸.若a>0,b>0,且函数f(x)=4x3-ax2-2bx在x=1处有极值,则+的最小值为( )A. B. C. D.⑹.已知a∈R,且函数y=e x+ax(x∈R)有大于零的极值点,则( )A.a<-1B.a>-1C.a<-D.a>-⑺.函数f(x)=x3-x4在区间上的极值点为.⑻.若函数y=-x3+6x2+m的极大值为13,则实数m等于.1.设函数f(x)=e x(sin x-cos x)(0≤x≤2 015π),则函数f(x)的各极大值之和为( )A. B.C. D.2.已知函数f(x)=x4+9x+5,则f(x)的图象在(-1,3)内与x轴的交点的个数为.3已知函数f(x)=x ln x ,求函数f(x)的极值点题型三利用导数求函数的最值例3已知函数f(x)=ax2+1(a>0),g(x)=x3+bx.(1)若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线,求a,b的值;(2)当a=3,b=-9时,若函数f(x)+g(x)在区间[k,2]上的最大值为28,求k的取值范围.变式训练1.函数f(x)=x2e x+1,x∈[-2,1]的最大值为( )A.4e-1B.1C.e2D.3e2.2.函数f(x)=2+,x∈(0,5]的最小值为( )A.2B.3C.D.2+3 若函数y=x3+x2+m在[-2,1]上的最大值为,则m等于( )A.0B.1C.2D.4.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为( )A.0≤a<1B.0<a<1C.-1<a<1D.0<a<5.已知函数f(x),g(x)均为[a,b]上的可导函数,在[a,b]上连续且f′(x)<g′(x),则f(x)-g(x)的最大值为( )A.f(a)-g(a)B.f(b)-g(b)C.f(a)-g(b)D.f(b)-g(a)6.函数f(x)=x3-3x2+2在区间[-1,1]上的最大值为.7设函数f(x)=x3-3x+1,x∈[-2,2]的最大值为M,最小值为m,则M+m= .8.已知函数f(x)=+ln x,求f(x)在上的最大值和最小值.9.设f(x)=ln x,g(x)=f(x)+f′(x).(1)求g(x)的单调区间和最小值.(2)求a的取值范围,使得g(a)-g(x)<对任意x>0恒成立.1.(5分)设动直线x=m与函数f(x)=x3,g(x)=ln x的图象分别交于点M,N,则|MN|的最小值为( )A.(1+ln 3)B.ln 3C.1+ln 3D.ln 3-12函数f(x)=x3-3x-1,若对于区间[-3,2]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,则实数t的最小值是 ( )A.20B.18C.3D.0。

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值知识点讲解+例题讲解(含解析)

利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。

用导数解决函数的单调性、极值、最值的方法步骤

用导数解决函数的单调性、极值、最值的方法步骤

用导数解决函数的单调性、极值、最值的方法步骤极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是并不意味着它在函数的整个的定义域内最大或最小函数的极值不是唯一的 即一个函数在某区间上或定义域内极大值或极小值可以不止一个极大值与极小值之即一个函数的极大值未必大于极小值. 函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点用导数判别f (x 0)是极大、极小值的思路: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) (2)求方程f ′(x )=0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值;在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 函数的最值是比较整个定义域内的函数值得出的,函数的极值是比较极值点附近函数值得出的. 函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值例1 求列函数的极值:(1)22)2()1(--=x x y ;(2)2122-+=x x y解:(1)2/22)2)(75)(1()(,)2()1()(---=∴--=x x x x f x x x f令0)(/=x f ,得驻点2,57,1321===x x x0)1(=∴f 是函数的极大值;3125108)57(-=f 是函数的极小值. (2)22222/2)1()1)(1(2)1(22)1(2)(,212)(x x x x xx x x f x x x f ++-=+⋅-+=∴-+=令0)(/=x f ,得驻点121,1x x =-=∴当1-=x 时,f极小=-3;当1=x 时,f极大=-1值。

专题13 利用导数解决函数的极值、最值

专题13 利用导数解决函数的极值、最值

专题13利用导数解决函数的极值、最值【高考地位】导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大.类型一利用导数研究函数的极值万能模板内容使用场景一般函数类型解题模板第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ;第二步求方程'()0f x =的根;第三步判断'()f x 在方程的根的左、右两侧值的符号;第四步利用结论写出极值.例1已知函数x xx f ln 1)(+=,求函数()f x 的极值.【答案】极小值为1,无极大值.试题解析:第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :因为x xx f ln 1)(+=,所以()f x 的定义域为()0+∞,,所以()22111'x f x x x x -=-+=;第二步,求方程'()0f x =的根:令()'0f x =得,1x =;第三步,判断'()f x 在方程的根的左、右两侧值的符号:当01x <<时()'0f x <,当1x >时,()'0f x >;第四步,利用结论写出极值:所以1x =时,()f x 有极小值为1,无极大值.【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值.【变式演练1】(极值概念)下列说法正确的是()A .当0'()0f x =时,则0()f x 为()f x 的极大值B .当0'()0f x =时,则0()f x 为()f x 的极小值C .当0'()0f x =时,则0()f x 为()f x 的极值D .当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =【答案】D 【解析】【分析】由导函数及极值定义得解.【详解】不妨设函数3()f x x =则可排除ABC由导数求极值的方法知当0()f x 为()f x 的极值且0'()f x 存在时,则有0'()0f x =故选:D【变式演练2】(图像与极值)已知函数()3()ln (,,)f x ax bx c a b c =++∈R 的定义域为(3,)-+∞,其图象大致如图所示,则()A .b a c <<B .b c a <<C .a b c <<D .a c b<<【答案】A 【分析】设3()g x ax bx c =++,利用导数求得函数的单调性,以及结合图象中的函数单调性,即可求得,,a b c 的大小关系,得到答案.【详解】设3()g x ax bx c =++,可得2()3g x ax b '=+,由图象可知,函数()f x 先递增,再递减,最后递增,且当1x =时,()g x 取得极小值,所以函数()g x 既有极大值,也有极小值,所以2()30g x ax b '=+=有两个根,即3a x b=-31ab=-,可得0,0a b ><且3a b =-,又由()0ln 0f c =>,可得1c >,由()1ln()0ln1f a b c =++>=,可得1a b c ++>,所以11312c a b a a a a >--=-+=+>,所以c a b >>.故选:A.【变式演练3】(解析式中不含参的极值)已知函数()ln xf x x x=-,则()A .()f x 的单调递减区间为()0,1B .()f x 的极小值点为1C .()f x 的极大值为1-D .()f x 的最小值为1-【答案】C【分析】先对函数求导()221ln x x f x x --'=,令()21ln x x x ϕ=--,再利用导数判断其单调性,而()1=0ϕ,从而可求出()f x 的单调区间和极值【详解】()2221ln 1ln 1x f x x x x x ---=='-.令()21ln x x x ϕ=--,则()120x x x ϕ'=--<,所以()21ln x x x ϕ=--在()0,∞+上单调递减.因为()1=0ϕ,所以当01x <<时,()0x ϕ>;当1x >时,()0x ϕ<.所以()f x 的单调递增区间为()0,1,单调递减区间为()1,+∞,故()f x 的极大值点为1,()f x 的极大值为()11f =-故选:C【变式演练4】(解析式中含参数的极值)已知函数()2ln 2f x ax x =--,()4xg x axe x =-.(1)求函数()f x 的极值;(2)当0a >时,证明:()()()2ln 12ln ln 2g x x x a --+≥-.【答案】(1)答案见解析;(2)证明见解析.【解析】【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形讨论单调性即可得极值;(2)令()()()2ln 1h x g x x x =--+,根据导数判断函数的单调性证明即可.【详解】(1)∵()2ln 2f x ax x =--,()0x >,∴()22ax f x a x x-'=-=,当0a ≤时,()0f x '<恒成立,函数()f x 单调递减,函数()f x 无极值;当0a >时,20,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,函数()f x 单调递减;2,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,函数()f x 单调递增;故函数()f x 的极小值为2222=2ln 22ln f a a a a a ⎛⎫⨯--=-⎪⎝⎭,无极大值.(2)证明:令()()42ln 2222ln 20,0xxh x axe x x x axe x x a x =--+-=--->>,()()()211=22x x x x h x a e xe ae x x x +'+--=+-,故()()=21xh x x ae x '+-⎛⎫ ⎪⎝⎭,令()0h x '=的根为0x ,即02=x ae x ,两边求对数得:00ln ln 2ln a x x +=-,即00ln ln 2ln x x a +=-,∴当()0x x ∈+∞,时,()0h x '>,()h x 单调递增;当()00,x x ∈时,()0h x '<,()h x 单调递减;∴()()()0000000min 22ln 222ln 2ln 2ln xh x h x ax e x x x x a =---=-=--=-,∴()2ln 2ln 2h x a ≥-,即原不等式成立.【变式演练5】(由极值求参数范围)若函数()221e e 22x x f m x x m=--有两个极值点,则实数m 的取值范围是()A .1,2⎛⎫+∞ ⎪⎝⎭B .()1,+∞C .e ,2⎛⎫+∞ ⎪⎝⎭D .()e,+∞【答案】B 【分析】依题意,()2e e xxm f m x x =--'有两个变号零点,由()0f x '=,可得21e e xx x m +=,设()2e ex x g x x +=,求出函数()g x 的单调性及取值情况即可得解.【详解】解:依题意,()2e e x xm f m x x =--'有两个变号零点,令()0f x '=,即2e e 0x x m mx --=,则()2e e x xm x =+,显然0m ≠,则21e ex x xm +=,设()2e e x x g x x+=,则()()22421212()x x x x x x x e e e x e e x g x e e+⋅-+⋅--='=,设()1e 2x x h x =--,则()e 20xh x -'=-<,∴()h x 在R 上单调递减,又()00h =,∴当(),0x ∈-∞时,()0h x >,()0g x '>,()g x 单调递增,当()0,x ∈+∞时,()0h x <,()0g x '<,()g x 单调递减,∴()()max 01g x g ==,且x →-∞时,()g x →-∞,x →+∞时,()0g x →,∴101m<<,解得1m >.故选:B .【点睛】方法点睛:函数零点问题的求解常用的方法有:(1)方程法(直接解方程求解);(2)图象法(画出函数()f x 的图象分析得解);(3)方程+图象法(令()=0f x 得()()g x h x =,分析函数(),()g x h x 的图象得解).要根据已知条件灵活选择方法求解.【变式演练6】(由极值求其他)已知函数321()(,)3f x x ax bx a b R =++∈在3x =-处取得极大值为9.(1)求a ,b 的值;(2)求函数()f x 在区间[4,4]-上的最大值与最小值.【答案】(1)13a b =⎧⎨=-⎩;(2)最大值为763,最小值为53-.【解析】【分析】(1)先对函数求导()22f x x ax b '=++,根据题意,列出方程组求解,即可得出结果;(2)根据(1)的结果,确定函数极大值与极小值,再计算出端点值,比较大小,即可得出结果.【详解】(1)由题意得:()22f x x ax b '=++,()()396039939f a b f a b ⎧-=-+=⎪∴⎨-=-+='-⎪⎩,解得:13a b =⎧⎨=-⎩.当13a b =⎧⎨=-⎩时,()32133f x x x x =+-,()()()22331f x x x x x '=+-=+-,∴当(),3x ∈-∞-和()1,+∞时,()0f x '>;当()3,1x ∈-时,()0f x '<,()f x ∴在(),3-∞-,()1,+∞上单调递增,在()3,1-上单调递减,()f x ∴的极大值为()39f -=,满足题意.(2)由(1)得:()f x 的极大值为()39f -=,极小值为()1511333f =+-=-,又()2043f -=,()7643f =,()f x ∴在区间[]4,4-上的最大值为763,最小值为53-.类型二求函数在闭区间上的最值例2已知函数()ln f x x x =-,()22g x ax x =+()0a <.(1)求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最值;(2)求函数()()()h x f x g x =+的极值点.【答案】(1)最大值为1-,最小值为1e -;(2)见解析.【解析】试题分析:(1)对函数()f x 进行求导可得()11f x x'=-,求出极值,比较端点值和极值即可得函数的最大值和最小值;(2)对()h x 进行求导可得()h x '=221ax x x++,利用求根公式求出导函数的零点,得到导数与0的关系,判断单调性得其极值.试题解析:第一步,求出函数()f x 在开区间(,)a b 内所有极值点:依题意,()11f x x '=-,令110x-=,解得1x =;第二步,计算函数()f x 在极值点和端点的函数值:()11f =-,111e e f ⎛⎫=-- ⎪⎝⎭,()e 1ef =-;第三步,比较其大小关系,其中最大的一个为最大值,最小的一个为最小值:因为11e 11e -<--<-,故函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值为1-,最小值为1e -.(2)第一步,计算函数()f x 的定义域并求出函数()f x 的导函数'()f x :依题意,()()()h x f x g x =+=2ln x ax x ++,()121h x ax x =++'=221ax x x++,第二步,求方程'()0f x =的根:当0a <时,令()0h x '=,则2210ax x ++=.因为180a ∆=->,所以()221ax x h x x'++==()()122a x x x x x--,其中11184x a =-,21184x a+=-第三步,判断'()f x 在方程的根的左、右两侧值的符号:.因为0a <,所以10x <,20x >,所以当20x x <<时,()0h x '>,当2x x >时,()0h x '<,所以函数()h x 在()20,x 上是增函数,在()2,x +∞上是减函数,第四步,利用结论写出极值:故214x a+=-为函数()h x 的极大值点,函数()h x 无极小值点.【变式演练7】(极值与最值关系)已知函数()f x 在区间(),a b 上可导,则“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A 【解析】【分析】由开区间最小值点必为极小值点可知极小值点导数值为0,充分性成立;利用()3f x x =可验证出必要性不成立,由此得到结论.【详解】(),a b 为开区间∴最小值点一定是极小值点∴极小值点处的导数值为0∴充分性成立当()3f x x =,00x =时,()00f x '=,结合幂函数图象知()f x 无最小值,必要性不成立∴“函数()f x 在区间(),a b 上有最小值”是“存在()0,x a b ∈,满足()00f x '=”的充分不必要条件故选:A【变式演练8】(由最值求参数范围)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为()A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B 【解析】由12f a -=-+(),可得222alnx x a --≤-+在0x >恒成立,即为a (1-lnx )≥-x 2,当x e =时,0e->2显然成立;当0x e <<时,有10lnx ->,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==--由0x e <<时,223lnx <<,则0g x g x ()<,()'在0e (,)递减,且0g x ()<,可得0a ≥;当x e >时,有10lnx -<,可得21x a lnx ≤-,设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(),由32e x e <<时,0gx g x ()<,()'在32e e (,)递减,由32x e >时,0g x g x '()>,()在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增,即有)g x (在32x e =处取得极小值,且为最小值32e ,可得32a e ≤,综上可得302a e ≤≤.故选B .【变式演练9】(不含参数最值)已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为()A .338B .32C .334D .233【答案】C 【解析】【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项.【详解】3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =,又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数;若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤ ⎥⎝⎦为减函数;故()max 27256h t =,故2max 27()64f x =,所以max ()8f x =,min ()8f x =-,当且仅当1sin 415cos 4x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 415cos 4x x ⎧=-⎪⎪⎨⎪=-⎪⎩时取最小值,故4M ≥即M的最小值4.故选:C.【变式演练10】(含参最值)已知函数121()(1),02x f x x a ex ax x -=---+>(1)若()f x 为单调增函数,求实数a 的值;(2)若函数()f x 无最小值,求整数a 的最小值与最大值之和.【答案】(1)1a =.(2)3【解析】【分析】(1)求出()f x ',再令()0f x '=,求出两个根,函数()f x 为单调函数,所以()f x 有两个相同的根,得到1a =,再进行检验即可;(2)由()0f x '=得11x =,或2x a =和a Z ∈,分别当0a ≤、1a =和1a >三种情况进行讨论;0a ≤时不成立,1a =时成立,1a >时,利用函数单调性,当()f x 无最小值时,(0)()f f a <,构造关于a 的函数,求出a 的范围,即可得到答案.【详解】(1)由题意,11()()()(1)x x f x x a e x a x a e --'=--+=--,()0f x '=,解得11x =,或2x a =,因为函数()f x 为单调函数,所以()f x 有两个相同的根,即1a =,1a =时,()0f x '≥,()f x 为增函数,故1a =适合题意;(2)由(1)知,()0f x '=,解得11x =,或2x a =,①当0a ≤时,则(0,1)()0x f x '∈⇒<⇒()f x 在(0,1]上为减函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,当1x =时,()f x 有最小值1(1)2f =-,故0a ≤不适合题意;②当1a =时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x f x '∈+∞⇒>⇒()f x 在[1,)+∞上为增函数,∴()f x 在(0,)+∞上为增函数,()f x 无最小值,故1a =适合题意;③当1a >时,则(0,1)()0x f x '∈⇒>⇒()f x 在(0,1]上为增函数,(1,)()0x a f x '∈⇒<⇒()f x 在[1,]a 上为减函数,(,)()0x a f x '∈+∞⇒>⇒()f x 在[,)a +∞上为增函数,因为()f x 无最小值,所以(0)()f f a <21121111(1)022a a a a e e a e a e -----⇒<-⇒--+<,()()()121111112a a g a e a a e a g a e a e ----'=--+>⇒=--,,由()110a g a e -''=->在()1+∞,上恒成立,()11a g a e a e --'=--在()1+∞,上单调递增,且110g e -'=-<(),()()12200g e e g a ->''=--⇒=存在唯一的实根()112a ∈,() g a ⇒在()11a ,上单调递减;() g a 在()1a +∞,上单调递增增,且()()()2e 439410220302e 2g g e g e e e-=<=--<=-->,,()0g a ⇒=存在唯一的实根()223a ∈,,由()12121102a e a a e a a ----+<⇒<,()f x 无最小值,则21a a <<,()223a ∈,,综上,21a a ≤<,()223a ∈,,a Z ∈ ,123min max a a +=+=.【变式演练11】(恒成立转求最值)已知函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,则实数a 的取值范围是()A .(,e]-∞B .(,2]-∞-C .[2,e]D .[2,2]-【答案】B【分析】由()0f x ≥转化为3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,利用3ln ln (3ln 1)ln x x e x x x x x x --+-≥--++-,即可求解.【详解】由题意,函数32()ln x f x e x x x ax -=+--满足()0f x ≥恒成立,可得32ln x ax e x x x -≤+-恒成立,即3ln x e a x x x -≤+-,设33ln ()ln ln x x x e g x x x e x x x---=+-=+-,又由函数()(1)1x x h x e x e x =-+=--,可得()1x h x e '=-,当0x >时,可得()10x h x e '=->,所以()h x 为单调递增函数,且(0)0h =,所以0x >时,可得()(0)0h x h >=,即1x e x >+,则3ln ()ln (3ln 1)ln 2x x g x e x x x x x x --=+-≥--++-=-,当且仅当3ln 0x x --=,即3ln x x =+时取“=”号,所以2a ≤-,即实数a 的取值范围是(,2]-∞-.故选:B.【点睛】对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分类参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.【变式演练12】(构造函数求最值)函数()22(0)f x x x =-+<,()ln x g x x x =+.若()()12f x g x =,则212x x -的最小值为()A .1-B .24e -C .2D .1【答案】C【分析】让()()12f x g x =,得到212222ln x x x x -+=+,再构造22122222ln x x x x x -=+-,然后令()22ln x u x x x =+-,研究()u x 的最小值即可.【详解】由题120x x <<,且()()12f x g x =,2120x x ->.有212222ln x x x x -+=+,则22122222ln x x x x x -=+-,令()22ln x u x x x=+-(0x >且1x ≠,()0u x >).(1)当01x <<时,易知()0u x <,不满足条件.(2)当1x >时,知()0u x >,由222ln ln 1(2ln 1)(ln 1)()ln ln 2x x x x u x x +--+'==,令()0u x '=,则1 x =,212x =(舍去),若1x <<()0u x '<;若x >()0u x '>,则 x =时取得极小值2u=-,也为最小值,则()u x u ≥,即21242x x -≥-,所以212x x -的最小值为2.故选:C.【点睛】关键点睛:解决本题的关键一是构造出212x x 的表达式并要统一变量,二是对构造的函数求最小值.。

用导数研究函数的性质单调性极值和最大最小值

用导数研究函数的性质单调性极值和最大最小值
x
y ex x 1
下降
上升
单调区间
函数在整个定义域内不是单调的,但在子区间 上单调.
如何求函数的单调区间?
函数的驻点和不可导点,可能是函数 单调区间的分界点.
求单调区间的方法:
用方程 f ( x ) 0的根及 f ( x ) 不存在的 点来划分函数 f ( x )的定义区间 , 然后判断 区间内导数的符号.
x0是驻点
驻点中哪些是极值点呢?
x0 f ( x 0 ) 0
f ( x)
下面我们来介绍两种判别方法
判 别 法 则 I( 第 一 充 分 条 件 ) 设函数f ( x )满足
(1)在点x0的邻域内可导; (2) f ( x0 ) 0, 那么, 1。 若在x0左侧附近f ( x ) 0, 在x0右侧附近 f ( x ) 0, 则f ( x0 )为极大值; 2 若在x0左侧附近f ( x ) 0, 在x0右侧附近
解 设 房 租 每 月 为 x元 ,
x 1000 那么租出去的房子有50 ( )套, 50 每月总收入为
x 1000 ) R ( x ) ( x 100) (50 50
x R( x ) ( x 100)(70 ), 50
x x 1 , R( x ) (70 ) ( x 100)( ) 72 50 50 25 R( x ) 0 x 1800, (唯一驻点)
例3 求 函 数 y ( x 1) 2 4的 单 调 区 间 .

y 2( x 1),D ( , ).
在( ,1)内, y 0, 函数单调减少;
在(1, )内, y 0, 函数单调增加.
故函数 y ( x 1) 4的单调区间为

专题02 利用导数求函数单调区间与单调性(解析版)

专题02 利用导数求函数单调区间与单调性(解析版)

专题02 利用导数求函数单调区间与单调性专项突破一 利用导数判断或证明函数单调性一、多选题1.若函数f (x )的导函数在定义域内单调递增,则f (x )的解析式可以是( )A .()2sin f x x x =+B .()2f x x =C .()1cos f x x =+D .()2ln f x x x =+【解析】A :由()()2sin 2cos f x x x f x x x '=+⇒=-,令()()2cos g x f x x x '==-,因为()2sin 0g x x '=+>,所以函数()f x '是实数集上的增函数,符合题意;B :由()()22f x x f x x '=⇒=,因为一次函数()2f x x '=是实数集上的增函数,所以符合题意;C :由()()1cos sin f x x f x x '=+⇒=-,因为函数()sin f x x '=-是周期函数,所以函数()sin f x x '=-不是实数集上的增函数,因此不符合题意;D :由()()21ln 2f x x x f x x x '=+⇒=+,令()()12g x f x x x'==+,则()2221212x g x x x -'=-=,当2x ∈时,()()0,g x g x '<单调递减,因此不符合题意, 故选:AB 二、解答题2.已知函数()()21e xf x x x a -=++-.(1)讨论()f x 的单调性;(2)若()f x 至少有两个零点,求a 的取值范围.【解析】(1)由2()(21)e (1)e (1)e x x x f x x x x x x ---'=+-++=-, 在(,0)-∞,(1,)+∞上()0f x '<,在(0,1)上()0f x '>, 所以()f x 在(,0)-∞上递减,(0,1)上递增,(1,)+∞上递减.(2)由(1)知:()f x 极小值为(0)1f a =-,极大值为3(1)ef a =-,要使()f x 至少有两个零点,则1030ea a -≤⎧⎪⎨-≥⎪⎩,可得31e a ≤≤.3.设函数()323f x x ax b =-+.(1)若曲线()y f x =在点()()22f ,处与直线8y =相切,求a ,b 的值; (2)讨论函数()y f x =的单调性.【解析】(1)由题意知,2()36f x x ax '=-,又(2)8(2)0f f '==,即322232832620a b a ⎧-⨯+=⎨⨯-⨯=⎩,解得112a b ==,; (2)已知2()36f x x ax '=-,令()0f x '=,知1202x x a ==, 当0a =时,2()30f x x '=≥,此时函数()f x 在R 单调递增当0a >时,令()00f x x '>⇒<或2x a >,令()002f x x a '<⇒<<, 所以函数()f x 在(0)(2)a ∞∞-+,、,上单调递增,在(02)a ,上单调递减, 当0a <时,令()02f x x a '>⇒<或0x >,令()020f x a x '<⇒<<, 所以函数()f x 在(2)(0)a ∞∞-+,、,上单调递增,在(20)a ,上单调递减. 4.已知函数()1()x f x e axlnx a R =--∈,2()x g x xe x =-.当1a =时,求证:()f x 在(0,)+∞上单调递增. 【解析】证明:当1a =时,()ln 1x f x e x x =--,(0,)x ∈+∞,则()1x f x e lnx '=--,又1()x f x e x ''=-在(0,)+∞上单调递增,且1()202f ''<,且f ''(1)10e =->,01,12x ⎛⎫∴∃∈ ⎪⎝⎭,使得0001()0xf x e x ''=-=,当0(0,)x x ∈时,()0f x ''<,当0(x x ∈,)+∞时,()0f x ''>,()f x ∴'在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,000()()1x f x f x e lnx ∴'≥'=--,0010x e x -=,∴001x e x =,00ln x x =-,001()10f x x x ∴'=+->,()f x ∴在(0,)+∞上单调递增.5.已知函数()()()()211422ln f x x x a a x =-+-+-,讨论()f x 的单调性;【解析】因为2()(1)(14)(22)ln f x x x a a x =-+-+-,所以[][]2'2(1)(1)22()24(0)x a x a a f x x a x x x---+-=-+=>, 当1a ≤-时,110a a -<+≤,'()0f x >,()f x 在(0,)+∞上单调递增.当11a -<≤时,10a -≤,10a +>,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若(0,1)x a ∈-,则'()0f x >,()f x 单调递增.当1a >时,110a a +>->,若(1,1)x a a ∈-+,则'()0f x <,()f x 单调递减,若 (0,1)x a ∈-或(1,)x a ∈++∞,则'()0f x >,()f x 单调递增.综上可得,当1a ≤-时,()f x 在(0,)+∞上单调递增;当11a -<≤时()f x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增;当1a >时,()f x 在(1,1)a a -+上单调递减,在(0,1)a -,(1,)a ++∞上单调递增. 6.已知a ∈R ,设函数()()ln ln f x a x a x =++. (1)讨论函数()f x 的单调性; (2)若()2ln xf x a x a≤+恒成立,求实数a 的取值范围. 【解析】(1)()()()11a x a a f x x a x x x a ++'=+=++,0x >且x a >-, ①0a ≥,()0f x '>,()f x 单调递增;②1a ≤-,()0f x '<,()f x 单调递减; ③10a -<<,01aa a ->->+, ,1a x a a ⎛⎫∈-- ⎪+⎝⎭时,()0f x '<,()f x 单调递减,,1a x a ⎛⎫∈-+∞ ⎪+⎝⎭时,()0f x '>,()f x 单调递增; 综上,当0a ≥时,()f x 在(0,)+∞上单调递增;当1a ≤-时,()f x 在(,)a -+∞单调递减; 当10a -<<时,()f x 在,1a a a ⎛⎫-- ⎪+⎝⎭单调递减,在,1a a ⎛⎫-+∞ ⎪+⎝⎭单调递增 (2)()()2ln ln lnxf x a x a x a x a=++≤+, 即()2ln ln 0a x a a x a +-+≤,令()()2ln ln h x a x a a x a =+-+, 则()232a a x a a h x a x a x a -+-'=-=++,令()0h x '=,可得21a x a-=, 当1a ≥时,()0h x '≤,则()h x 在()0,∞+单调递减,则只需满足()0ln ln 0h a a a =+≤,∴ln 0≤a ,解得01a <≤,∴1a =;当01a <<时,可得()h x 在210,a a ⎛⎫- ⎪⎝⎭单调递增,在21,a a ⎛⎫-+∞⎪⎝⎭单调递减,则()()22max11ln 1ln 0a h x h a a a a a a ⎛⎫-==--+≤ ⎪⎝⎭,整理可得2ln 0a a a --≤,令()2ln a a a a ϕ=--,则()()()121121a a a a a aϕ-+-'=--=, ()1002a a ϕ'>⇒<<,()1012a a ϕ'<⇒>>,则可得()a ϕ在10,2⎛⎫ ⎪⎝⎭单调递增,在1,12⎛⎫⎪⎝⎭单调递减,则()max 13ln 2024a ϕϕ⎛⎫==--< ⎪⎝⎭,故01a <<时,()0h x ≤恒成立,综上,01a <≤;7.已知函数()3211,32f x x ax a =-∈R .(1)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值. 【解析】(1)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x =-', 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(2)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+---()()sin x x a x a x =---()(sin )x a x x =--, 令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增,因为(0)0h =, 所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--.综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-;当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.专项突破二 利用导数求函数单调区间(不含参)一、单选题1.函数()1e 2xf x x =-的单调减区间是( )A .(2),ln -∞B .(ln2,)+∞C .(–),2∞D .(2,)+∞【解析】1()1e 2xf x '=-,由()0f x '<,得ln 2x >,所以()f x 的单调递减区间为(ln2,)+∞.故选:B2.函数()()2ln 2f x x x =-的单调递减区间为( ) A .10,2⎛⎫ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .112⎛⎫⎪⎝⎭, D .10,4⎛⎫ ⎪⎝⎭【解析】由题得函数的定义域为(0,)+∞.()121222x f x x x-'=-⨯=, 令1()0,02f x x '<∴<<.所以函数的单调递减区间为10,2⎛⎫⎪⎝⎭.故选:A 3.已知函数()f x 的导函数为()f x ',()()2ln 1f x x f x '=+,则函数()f x 的单调递增区间为( )A .⎛ ⎝⎭B .,⎛-∞ ⎝⎭,⎫+∞⎪⎪⎝⎭C .⎛ ⎝⎭D .⎫+∞⎪⎪⎝⎭【解析】由()()2ln 1f x x f x '=+得1()2(1)f x f x x''=+,所以(1)12(1)f f ''=+,(1)1f '=-, 2112()2x f x x x x -'=-=,因为0x >,所以由212()0x f x x -'=>得0x <<C . 4.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0)B .(1,+∞)C .(-∞,1)D .(0,+∞)【解析】由题设()()()22e 0x f x f f x -''=-+,则()()()2202f f f ''=-+,可得()02f =,而()()2022e f f -'==,则()2e 22f '=,所以()212e 22xf x x x =-+,即()2e 2x f x x '=-+,则()00f '=且fx 递增,当0x <时0f x,即()f x 递减,故()f x 递减区间为(-∞,0).故选:A二、多选题 5.函数()1ln f x x x=的一个单调递减区间是( ) A .(e ,+∞)B .1,e ⎛⎫+∞ ⎪⎝⎭C .(0,1e )D .(1e,1)【解析】()f x 的定义域为()()0,11,+∞,()()()'2210ln 1ln ln ln x x x x f x x x x x ⎛⎫-+⨯ ⎪+⎝⎭==-, 所以()f x 在区间()1,1,1,e ⎛⎫+∞ ⎪⎝⎭上()'0f x <,()f x 递减,所以AD 选项符合题意.故选:AD三、填空题6.函数()2ln f x x x x =+-的单调递增区间是______.【解析】()2ln f x x x x=+-的定义域为()0,∞+,()()()2222211221x x x x f x x x x x -+--='=--=,令()0f x '>,解得:2x >或1x <-, 因为定义域为()0,∞+,所以单调递增区间为()2,+∞.7.函数()2cos f x x x =+,π0,2x ⎛⎫∈ ⎪⎝⎭的增区间为___________.【解析】由已知得()12sin f x x =-',π0,2x ⎛⎫∈ ⎪⎝⎭,令()0f x '>,即12sin 0x ->,解得π06x <<,令()0f x '<,即12sin 0x -<,解得ππ62x <<, 则()f x 的单调递增区间为π0,6⎛⎫ ⎪⎝⎭,单调递减区间为ππ,62⎛⎫⎪⎝⎭,故答案为:π0,6⎛⎫ ⎪⎝⎭.四、解答题8.已知函数2()ln 3f x x x x=++. (1)求函数()f x 的单调区间;(2)求曲线()y f x =在点(1,(1))f 处的切线方程.【解析】(1),()0x ∈+∞,22221232(32)(1)()3x x x x f x x x x x +--+=-+==', 解()0f x '<得20,3x <<解()0f x '>得2,3x >所以()f x 的单调减区间是20,,()3f x ⎛⎤ ⎥⎝⎦的单调增区间是2,3⎡⎫+∞⎪⎢⎣⎭.(2)由(1)知(1)2f '=,而(1)5f =,所以曲线()y f x =在点(1,(1))f 处的切线方程为52(1)y x -=-,即23y x =+.专项突破三 利用导数求函数单调区间(含参)1.设函数()e 2xf x ax =--,求()f x 的单调区间.【解析】()f x 的定义域为(),-∞+∞,()e xf x a '=-.若0a ≤,则()0f x '>,所以()f x 在(),-∞+∞上单调递增.若0a >,则当(),ln x a ∈-∞时,()0f x '<;当()ln ,x a ∈+∞时,()0f x '>. 所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 综上所述,当0a ≤时,函数()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增. 2.已知函数()()21ln 12f x a x x a x =+-+. (1)求函数f (x )的单调区间;(2)若f (x )≥ 0对定义域内的任意x 恒成立,求实数a 的取值范围. 【解析】(1)求导可得()(1)()(0)>'--=x a x f x x x①0a ≤时,令()0f x '<可得1x <,由于0x >知01x <<;令()0f x '>,得1x > ∴函数()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;②01a <<时,令()0f x '<可得1<<a x ;令()0f x '>,得1x >或x a <,由于0x >知0x a <<或1x >;∴函数()f x 在(,1)a 上单调递减,在(0,),(1,)+∞a 上单调递增; ③1a =时,()0f x '≥,函数()y f x =在(0,)+∞上单调递增;④1a >时,令()0f x '<可得1x a <<;令()0f x '>,得x a >或1x <,由于0x >知01x <<或x a > ∴函数()f x 在(1,)a 上单调递减,在(0,1),(,)+∞a 上单调递增; (2)由(1)0a ≥时,1(1)02f a =--<,(不符合,舍去)当0a <时,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增,故函数在1x =处取得最小值,所以函数()0f x ≥对定义域内的任意x 恒成立时,只需要(1)0f ≥即可 ,∴12a ≤-.综上,12a ≤-.3.设函数()()32211,3f x x x m x =-++-其中0m >.(1)当1m =时,求曲线()y f x =在点()()1,1f 处的切线斜率; (2)求函数()f x 的单调区间.【解析】(1)由题设,()3213f x x x =-+,则()22f x x x '=-,∴()11f '=,故点()()1,1f 处的切线斜率为1.(2)由题设,()()2221f x x x m '=-++-,又2244(1)40m m ∆=+-=>,∴()(1)(1)f x x m x m '=-+++-,且11m m -<+, 当0f x 时,11m x m -<<+,()f x 单调递增; 当0fx时,1x m <-或1x m >+,()f x 单调递减;∴()f x 在(1,1)m m -+上递增,在(,1)m -∞-、(1,)m ++∞上递减.4.已知函数()()22x xf x ae a e x =+--,讨论()f x 的单调性.【解析】()f x 的定义域为R ,()()()22211(21)x x x xf x ae a e ae e '=+--=-+,若0a ≤,则()0f x '<恒成立,故()f x 在(),-∞+∞上为减函数; 若0a >,则当ln x a <-时,()0f x '<,当ln x a >-时,()0f x '>, 故()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数,综上,当0a ≤时,()f x 在(),-∞+∞上为减函数;当0a >时,()f x 在()ln ,a -+∞上为增函数,在(),ln a -∞-上为减函数. 5.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.【解析】(1)()()21a f x x a x ax a x x'=--=--,令()0f x '=,得20x ax a --=.因为0a >,则240a a ∆=+>,即原方程有两根设为12,x x 0x >,所以10x =<(舍去),2x =则当x ⎛∈ ⎝⎭时,()0f x '<,当x ⎫∈+∞⎪⎪⎝⎭时,()0f x '> ()f x在⎛ ⎝⎭上是减函数,在⎫+∞⎪⎪⎝⎭上是增函数.(2)由(1)可知()()2min f x f x =.①若()20f x =,则()()220,0,f x f x ⎧=⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--=⎪⎨⎪--=⎩,可得2212ln 0x x --=,设()12ln h x x x =--,()h x 在()0,∞+上单调递减所以()0h x =至多有一解且()10h =,则21x =,代入解得12a =. ②若()20f x <,则()()220,0,f x f x ⎧<⎪⎨='⎪⎩,即222222210,20,x alnx ax x ax a ⎧--<⎪⎨⎪--=⎩,可得2212ln 0x x --<,结合①可得21>x ,因为211ex <<,21111ln e 2ee ef a a ⎛⎫=-- ⎪⎝⎭2102e e a a =+->,所以()y f x =在21,ex ⎛⎫⎪⎝⎭存在一个零点.当4x a >时,()2ln f x ax a x ax >--()ln 0a x x =->,所以()y f x =在()2,x +∞存在一个零点.因此()y f x =存在两个零点,不合题意 综上所述:12a =.6.已知函数()()e 1xf x m x =++()m ∈R .(1)当1m =时,求()f x 在()()22f ,处的切线方程; (2)讨论()f x 的单调性.【解析】(1)当1m =时,()e 2x f x x =+,()22e 4f =+,()e 2x f x '=+,()22e 2f '=+,故()f x 在()()22f ,处的切线方程为()()()22e 4e 22y x -+=+-,即()22e 2e 0x y +--=;(2)()e 1xx m f =++',当10m +≥,即1m ≥-时,()0f x '>,()f x 在R 上单调递增; 当10+<m ,即1m <-时,由()0f x '>,得()ln 1x m >--,由()0f x '<,得()ln 1x m <--, ∴()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 综上所述,当1m ≥-时,()f x 在R 上单调递增;当1m <-时,()f x 在()()ln ,1m -∞--上单调递减,在()(),ln 1m --+∞上单调递增. 7.设函数2()(2)ln ()f x x a x a x a R =+--∈. (1)若1a =,求()f x 的极值; (2)讨论函数()f x 的单调性.【解析】(1)当1a =时,2()ln f x x x x =--(0)x >, 所以2121(21)(1)()21x x x x f x x x x x--+-'=--==, 当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减, 所以当1x =时,该函数有极小值(1)0f =,无极大值. (2)由2()(2)ln (0)f x x a x a x x =+-->,22(2)(2)(1)()2(2)a x a x a x a x f x x a x x x+--+-'⇒=+--==,当0a ≥时,当1x >时,()0,()f x f x '>单调递增,当01x <<时,()0,()f x f x '<单调递减; 当0a <时,1()02af x x '=⇒=-,或21x =,当2a =-时,22(1)()0x f x x-'=≥,函数在0x >时,单调递增, 当2a <-时,12a ->, 当01x <<时,()0,()f x f x '>单调递增,当12a x <<-时,()0,()f x f x '<单调递减, 当2a x >-时,()0,()f x f x '>单调递增, 当20a -<<时,12a -<, 当02a x <<-时,()0,()f x f x '>单调递增, 当12a x -<<时,()0,()f x f x '<单调递减, 当1x >时,()0,()f x f x '>单调递增,综上所述:当0a ≥时, ()f x 在(1,)+∞上单调递增,在(0,1)上单调递减;当2a =-时,()f x 在(0,)+∞上单调递增;当2a <-时,()f x 在(0,1)单调递增,在(1,)2a -单调递减,在(,)2a -+∞上单调递增; 当20a -<<时,()f x 在(0,)2a -单调递增,在(,1)2a -单调递减,在(1,)+∞上单调递增 8.已知函数()2()ln(1)2f x x a x x =++++(其中常数0a >),讨论()f x 的单调性; 【解析】21231()(21)11ax ax a f x a x x x +++=++=++, 记2()231g x ax ax a =+++,28a a ∆=-,①当0∆≤,即08a <≤时,()0g x ≥,故'()0f x ≥,所以()f x 在(1,)-+∞单调递增.②当0∆>,即当8a >时,()0g x =有两个实根1x ,2x 注意到(0)10g a =+>, (1)610g a =+>且对称轴3(1,0)4x =-∈-,故12(),1,0x x ∈-,所以当11x x -<<或2x x >时,()0>g x ,()0f x '>,()f x 单调递增;当2i x x x <<时,()0g x <,()0f x '<,()f x 单调递减.综上所述,当08a <≤时,()f x 在(1,)-+∞单调递增;当8a >时,()f x 在(-和)+∞上单调递增,在上单调递减.专项突破四 利用函数单调性比较大小一、单选题1.已知ln 33a =,1e b =,ln 55c =,则以下不等式正确的是( ) A .c b a >> B .a b c >>C .b a c >>D .b c a >> 【解析】令()ln x f x x =,则()21ln x f x x -'=, 当0e x <<时,()()0,f x f x '>单调递增,当e x >时,()()0,f x f x '<单调递减,因为e<35<,所以()()()e 35f f f >>,所以b a c >>故选:C2.设11011,ln2,10a b c e ===,则( ) A .c a b >> B .a c b >> C .c b a >> D .a b c >> 【解析】根据题意,111,ln2110a b =>=<,则a b >, 构造函数()1(0)x f x e x x =-->,所以()10x f e x ='->恒成立,所以()1xf x e x =--在()0,∞+上单调递增,所以()110111001010f e f ⎛⎫=-->= ⎪⎝⎭,即1101110e >,所以c a >,故c a b >>.故选:A3.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .b c a >> C .c a b >> D .b a c >>【解析】根据题意,ln55a =,1ln =e b e e -=,ln88c =. 令()ln x f x x =,则()21ln x f x x -'=,由()0f x '<得x e >;由()0f x '>得0x e <<; 则函数()f x 在()0e ,上单调递增,在(),e +∞上单调递减,又58e <<,所以()()()58f e f f >>,因此b a c >>.故选:D .4.已知函数()sin f x x x =,ln 22a f ⎛⎫= ⎪⎝⎭,sin 3b f π⎛⎫= ⎪⎝⎭,(ln )c f π=,则a ,b ,c 大小( ) A .a c b <<B .a b c <<C .b a c <<D .c b a <<【解析】由题意,函数()sin f x x x =,可得()sin cos f x x x x '=+,当(0,)2x π∈时,可得()0f x '>,()f x 单调递增,又由ln 21,sin ln 1223e ππ==>=,且3ln 2π<=, 所以ln 20sin ln 232πππ<<<<,所以a b c <<.故选:B. 5.已知()232ln 3ln 31,,e 3ea b c -===,则a 、b 、c 的大小关系为( ) A .c b a >> B .c a b >> C .b c a >> D .a b c >> 【解析】由题可知22e ln ln 3ln e 3,,e 33a b c e ===,构造函数ln ()x f x x=,则21ln ()x f x x -'=, 所以()f x 在()0,e 单调递增,()e,∞+单调递减,所以()()max e f x f =,即c 最大;对于a 、b ,构造函数()()2e ,(e)g x f x f x x ⎛⎫=-> ⎪⎝⎭, 因为()222222e e ln ln 2ln e e e e x x x x x f x x-⎛⎫=== ⎪⎝⎭,令()()22ln e x x h x -=,得()21ln e x h x -'=, 在(,)e +∞上,()()22221ln 1ln 111ln 0e e x x g x x x x--⎛⎫=-=--> ⎪⎝⎭',()g x 单调递增; 所以()()3e 0g g >=,从而()2e 303f f ⎛⎫-> ⎪⎝⎭,(3)b f =,2()3e a f =,即b a >,综上,c b a >>.故选:A 6.若2e 2e x x y y ---<-,则( )A .()ln 10y x -+<B .()ln 10y x -+>C .ln 0x y ->D .ln 0x y -<【解析】令()2e x x f x -=-,则()2ln 2e 0x x f x -'=+>恒成立,故()2e x x f x -=-单调递增,由2e 2e x x y y ---<-可得:x y <,故()ln 1ln10y x -+>=,A 错误,B 正确;x y 可能比1大,可能等于1,也可能()0,1x y -∈,故不能确定ln x y -与0的大小关系,CD 错误. 故选:B7.已知21ln 2ln3,,e 49a b c ===,则( ) A .a b c <<B .c a b <<C .b a c <<D .c b a <<【解析】设2ln ()x f x x =,则()()()e ,2,3a f b f c f ===,又312ln ()-'=x f x x ,于是当)x ∞∈+时,()0f x '<,故2ln ()x f x x =2e 3=<<,则有()()()3e 2f f f <<,即c a b <<.故选:B. 8.已知函数()f x '为函数()f x 的导函数,满足()tan ()x f x f x '⋅>,6a π⎛⎫= ⎪⎝⎭,4b π⎛⎫= ⎪⎝⎭,3c π⎛⎫= ⎪⎝⎭,则下面大小关系正确的是( )A .a b c <<B .a c b <<C .b a c <<D .c b a <<【解析】根据题意,()()tan ()tan ()0x f x f x x f x f x ''⋅>⇔⋅->,变换可得:()()()()cos tan 0tan 0tan sin f x f x x x f x x f x x x ⋅⎛⎫⎛⎫''->⇔-> ⎪ ⎪⎝⎭⎝⎭2sin ()0cos sin x f x x x '⎛⎫⇔> ⎪⎝⎭, 解析可得,0,2x π⎛⎫∈ ⎪⎝⎭,cos 0x >,()0sin f x x '⎛⎫> ⎪⎝⎭,,2x ππ⎛⎫∈ ⎪⎝⎭, cos 0x <,()0sin f x x '⎛⎫< ⎪⎝⎭,所以函数()()sin f x g x x =在0,2π⎛⎫ ⎪⎝⎭上单调递增, 所以643sin sin sin 643f f f ππππππ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,即2643f f πππ⎛⎫⎛⎫⎛⎫< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:A. 9.已知ln a ππ=,2ln 2b =,c e =,则a ,b ,c 的大小关系为( ) A .a c b <<B .c a b <<C .c b a <<D .b a c << 【解析】ln a ππ=,2ln 2b =,ln e c e e ∴== 构造函数()ln x f x x=且()2ln 1()ln x f x x -'= 当1x e <<时ln 1x <,此时()2ln 1()0ln x f x x -'=<;当x e >时ln 1x >,此时()2ln 1()0ln x f x x -'=>. 故()ln x f x x=当()1,x e ∈单调递减,当(,)x e ∈+∞单调递增. 故min ()()f x f e e c === 故,a c b c >> ,2224(4)ln 22ln 2ln 4b f ⋅==== 又40(4)()f f ππ>>∴> 即b a > ,故c a b <<,故选: B10.若01a b <<<,则( )A .e e ln ln b a b a -<-B .e e ln ln b a b a -≥-C .e e a b b a ≤D .e e a b b a >【解析】对于A,B,令()e ln x f x x =- ,则1()e x f x x'=-, 当01x <<时,1()e x f x x'=-单调递增,且2132123()e 20,()e 0232f f ''=-<=-=>> 故存在012(,)23x ∈ ,使得0()0f x '=, 则当0(0,)x x ∈时,()e ln x f x x =-递减,当0(,1)x x ∈时,()e ln x f x x =-递增,由于01a b <<<,此时()e ln ,()e ln a b f a a f b b =-=-大小关系不确定,故A,B 均不正确;对于C,D,设e g()=x x x ,则e (1)g ()=x x x x-', 当01x <<时,()0g x '<,故e g()=xx x 单调递减, 所以当01a b <<<时,()()g a g b > ,即e e a b a b> ,即e e a b b a >, 故C 错误,D 正确,故选:D 11.设20222020a =,20212021b =,20202022c =,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 【解析】∵ln2020ln 2022ln20202021ln2021ln 2021ln20212022a b ==,构造函数()()2ln 1x f x x e x =≥+,()()21ln 1x x x f x x x +-'=+, 令()1ln g x x x x =+-,则()ln 0g x x '=-<,∴()g x 在)2,e ⎡+∞⎣上单减,∴()()2210g x g e e ≤=-<,故()0f x '<, ∴()f x 在)2,e ⎡+∞⎣上单减,∴()()202020210f f >>,∴()()2020ln 1ln 2021f a b f => ∴ln ln a b >.∴a b >,同理可得ln ln b c >,b c >,故a b c >>,故选:A二、多选题12.下列命题为真命题的个数是( )A.ln3< B.ln π<C.15< D.3eln2<【解析】设函数()0f x x =>,则()f x '==当20e x <≤时,()0f x '>,当2e x >时,()0f x '<,故()0f x x =>在2(0,e ) 上递增,在2(e ,)+∞ 上递减, 对于A ,由234e << ,故(3)(4)f f <,<, 即2ln 2,ln 322<<,A 正确; 对于B ,2e<π <e ,故(e)(π)f f <<ln πB 错误; 对于C ,21615e >> ,故(16)(15)f f <4ln 24<<故ln 22ln15<<,则ln 15<<,故C 正确; 对于D ,28e > ,故2(8)(e )f f <22e<,即3eln2<D 正确,故选:ACD专项突破五 函数与导函数图像关系一、单选题1.函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,图像如图所示,记()y f x =的导函数为()y f x '=,则不等式()0f x '≥的解集为( )A .[)1,12,33⎡⎤-⎢⎥⎣⎦B .1481,,233⎡⎤⎡⎤-⋃⎢⎥⎢⎥⎣⎦⎣⎦C .[]31,1,223⎛⎤--⋃ ⎥⎝⎦D .3148,,2333⎛⎤⎡⎤--⋃ ⎥⎢⎥⎝⎦⎣⎦ 【解析】()0f x '≥的解集即为()y f x =单调递增区间结合图像可得()y f x =单调递增区间为[]31,,1,223⎛⎤-- ⎥⎝⎦则()0f x '≥的解集为[]31,1,223⎛⎤--⋃ ⎥⎝⎦,故选:C . 2.如图是函数y =f (x )的导函数()y f x '=的图象,则下列判断正确的是( )A .在区间()2,1-上f (x )单调递增B .在区间(1,3)上f (x )单调递减C .在区间()4,5上f (x )单调递增D .在区间(3,5)上f (x )单调递增 【解析】由导数图象知,在区间32,2⎛⎫-- ⎪⎝⎭上小于0,在3,12⎛⎫- ⎪⎝⎭上大于0,函数f (x )先减后增,A 错误; 在区间()1,2上大于0,在()2,3上小于0,函数f (x )先增后减,B 错误;在区间()4,5上大于0,函数f (x )单调递增,C 正确;在区间()3,4上小于0,在()4,5上大于0,函数f (x )先减后增,D 错误.故选:C.3.函数f (x )的图象如图所示,则()0x f x '⋅<的解集为( )A .()()320,1--,B .()(),13,-∞-⋃+∞C .()()2,10,--⋃+∞D .()(),31,-∞-⋃+∞ 【解析】由函数图象与导函数大小的关系可知:当()(),3,2,1x x ∞∈--∈-时,()0f x '<,当()()3,2,1,x x ∞∈--∈+时,()0f x '>,故当()()(),3,2,0,1,,x x x ∞∈--∈-∈+∞时,()0x f x '⋅>;当()0,1x ∈时,()0x f x '⋅<;当()3,2x ∈--时,()0x f x '⋅<,故()0x f x '⋅<的解集为()()320,1--,.故选:A4.若函数()y f x =的导函数图象如图所示,则该函数图象大致是( )A .B .C .D .【解析】由导函数图像可知,原函数的单调性为先单增后单减再单增,符合的只有A 选项. 故选:A5.已知()21cos 4f x x x =+,()f x '为()f x 的导函数,则()y f x '=的图像大致是( ) A .B .C . D . 【解析】1()sin 2f x x x '=-,()'f x 为奇函数,则函数()f x '的图像关于原点对称,排除选项A 、D ,令()()g x f x '=,1()cos 2g x x '=-,当0,3x π⎛⎫∈ ⎪⎝⎭,()0g x '<,()g x 在0,3π⎛⎫ ⎪⎝⎭递减,故选B . 6.已知函数()y f x =的图象如图所示,()f x '是函数()f x 的导函数,则下列数值排序正确的是( )A .()()()()224224f f f f ''<-<B .()()()()222242f f f f '<<-C .()()()()222442f f f f ''<<-D .()()()()422422f f f f ''-<<【解析】由函数()f x 的图象可知,当0x ≥时,()f x 单调递增,所以(2)0f '>,(4)0f '>,(4)(2)0f f ->,由此可知,()'f x 在(0,)+∞上恒大于0,因为直线的斜率逐渐增大,所以()'f x 单调递增,结合导数的几何意义, 故(4)(2)(2)(4)42f f f f -''<<-,所以()()()()224224f f f f ''<-<,故选:A .。

导数的单调性极值最值

导数的单调性极值最值

第十三讲 利用导数求函数的单调性、极值 、最值一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当,)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<当()22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,-∞和)+∞,单调递减区间为(.(2)函数2()ln f x x x =-的定义域为(0,)+∞.1()2f x x x '=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<. 故函数2()ln f x x x =-的单调递增区间为(,)2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2]. f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【解析】 由y =4x 2+1x ,得y ′=8x -1x 2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 2.函数f (x )=x ·e x -e x+1的单调增区间是________.【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型二:利用导数研究函数的极值、最值

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型二:利用导数研究函数的极值、最值

题型二:利用导数研究函数的极值、最值1.设函数()32f x x ax bx c =-+++的导数()f x '满足()10f '-=,()29f '=.(1)求()f x 的单调区间;(2)()f x 在区间[]22-,上的最大值为20,求c 的值. (3)若函数()f x 的图象与x 轴有三个交点,求c 的范围.【答案】(1)递增区间为()1,3-,递减区间为(),1-∞-,()3,+∞(2)2-(3)()27,5-(1)由()32f x x ax bx c =-+++可得()232x x x b f a '=-++,因为()10f '-=,()29f '=,所以3201249a b a b --+=⎧⎨-++=⎩,解得:3a =,9b =, 所以()3239f x x x x c =-+++,()()22369323x x f x x x =-++=---',由()0f x '>即2230x x --<可得:13x ,由()0f x '<即2230x x -->可得:1x <-或3x >,所以()f x 的单调递增区间为()1,3-,单减区间为(),1-∞-和()3,+∞.(2)由(1)知,()f x 在()2,1--上单调递减,在()1,2-上单调递增,所以当1x =-时,()f x 取得极小值()()()()321131915f c c -=--+⨯-+⨯-+=-, ()()()()322232922f c c -=--+⨯-+⨯-+=+, ()3222329222f c c =-+⨯+⨯+=+,则()f x 在区间[]22-,上的最大值为()22220f c =+=, 所以2c =-.(3)由(1)知当1x =-时,()f x 取得极小值()()()()321131915f c c -=--+⨯-+⨯-+=-, 当3x =时,()f x 取得极大值()3233339327f c c =-+⨯+⨯+=+,若函数()f x 的图象与x 轴有三个交点,则(1)50(3)270f c f c -=-<⎧⎨=+>⎩得527c c <⎧⎨>-⎩,解得275c -<<, 即c 的范围是()27,5-.2.已知函数()ln 2f x x x =-.(1)求函数()f x 在()()1,1f 处的切线方程;(2)求函数()f x 的单调区间和极值.【答案】(1)30x y --=(2)单调递增区间是1e ⎛⎫+∞ ⎪⎝⎭,,单调减区间是()10e ,,极小值12e --,无极大值 (1)()f x 的定义域为()0,∞+,由()ln 2f x x x =-可得()ln 1f x x '=+,所以()11f '=,12f ,切点为()1,2-,所以所求切线方程为21y x +=-,即30x y --=.(2)由()ln 10f x x '=+=,得ln 1x =-解得:1ex =, 当10ex <<时,()0f x '<,()f x 递减, 当1ex >时,()0f x '>,()f x 递增, 所以()f x 的单调递增区间是1e ⎛⎫+∞ ⎪⎝⎭,,单调减区间是()10e ,; 当1e x =时,函数()f x 取得极小值112e e f ⎛⎫=-- ⎪⎝⎭,无极大值. 3.已知函数()322133f x x ax a x =+-. (1)当1a =时,求函数()f x 在x ∈[]0,2时的最大值和最小值;(2)若函数()f x 在区间()1,2存在极小值,求a 的取值范围.【答案】(1)最大值为23,最小值为53- (2)()21,313,2⎛⎫⋃-- ⎪⎝⎭(1)当1a =时,()32133f x x x x =+-,则()()()22331f x x x x x '=+-=+-, 由()0f x '>,可得3x <-或1x >,由()0f x '<,可得31x -<<,所以()f x 在()0,1上()f x 单调递减,在()1,2上单调递增;()00f =,()1511333f =+-=-,()122843233f =⨯+-⨯=, 所以函数()f x 在x ∈[]0,2时的最大值为23,最小值为53-. (2) ()()()22233f x x ax a x a x a '=+-=+-,当0a =时,知()f x 单调递增,函数()f x 没有极值;当0a >时,3x a <-时,()0f x '>,()f x 单调递增;3a x a -<<时,()0f x '<,()f x 单调递减;x a >时,()0f x '>,()f x 单调递增,则()f x 在3x a =-取得极大值,在x a =取得极小值,若函数()f x 在区间()1,2存在极小值,则12a <<,当0a <时x a <时,()0f x '>,()f x 单调递增,3a x a <<-时,()0f x '<,()f x 单调递减,3x a >-时,()0f x '>,()f x 单调递增,则()f x 在x a =取得极大值,在3x a =-取得极小值,若函数()f x 在区间()1,2存在极小值,则132a <-<可得:2133a -<<-. 综上所述:实数a 的取值范围是()21,313,2⎛⎫⋃-- ⎪⎝⎭. 4.已知函数2()(2)21x f x x e x ax =---+,a ∈R .(1)当1a =-时,求()f x 的单调区间;(2)若函数()f x 不存在极值点,求证:1a <-.【答案】(1)增区间是(,ln 2)-∞和(1,)+∞,减区间是(ln 2,1)(2)证明见解析(1)解:当1a =-时,2()(2)21x f x x e x x =--++,则()()(1)2(1)(1)2x x f x x e x x e '=---=--令0f x 得:1x >或ln 2x < 令0f x 得: ln 21x <<所以()f x 的单调增区间是(,ln 2)-∞和(1,)+∞,单调减区间是(ln 2,1)(2)解:()(1)22x f x x e x a '=---,因为函数()f x 无极值点,故f x 无变号零点,,令()(1)22x g x x e x a =---,则2()x g x xe =-',当(,0)x ∈-∞时,恒有()0g x '<,当[0,)x ∈+∞时,显然()'g x 是单调增加的,又因为(0)2g '=-,(1)20g e '=->,故0(0,1)x ∃∈,使得()00g x '=,即002x x e =,故()g x 在()0,x -∞上单调递减,在()0,x +∞上单调递增,则()0()min g x g x =,所以()00g x ≥,即000(1)220x x e x a ---≥,又002x x e = 可得0011a x x ⎛⎫≤-+ ⎪⎝⎭, 又因为0(0,1)x ∈, 所以0012x x +> 故1a <-5.已知函数()32f x ax bx cx d =+++的两个极值点为1-,2,且在0x =处的切线方程为210x y +-=.(1)求函数()f x 的表达式;(2)当1,33x ⎡⎤∈-⎢⎥⎣⎦时,()56f x kx >+恒成立,求实数k 的取值范围. 【答案】(1)()32112132f x x x x =--+ (2)62,227⎛⎫-- ⎪⎝⎭(1)由()32f x ax bx cx d =+++可得()232f x ax bx c '=++,则1-,2是方程()2320f x ax bx c '=++=的两根,所以()()132021240f a b c f a b c ⎧-=-+=⎪⎨=++=''⎪⎩,(*) 因为又因为0x =处的切线方程为210x y +-=故()01f d ==,()02f c '==-代入(*)式解得13a =,12b =- 故()32112132f x x x x =--+ (2)由(1)知:()32112132f x x x x =--+, ①当0x =时,()56f x kx >+即516>恒成立,此时R k ∈, ②当(]0,3x ∈时,由()56f x kx >+即3211521326x x x kx --+>+, 分离参数k 可得:21112326k x x x<--+, 设()21112326g x x x x=--+,则()min k g x <, ()()()23222214121143132666x x x x x g x x x x x -++--'=--==, 故()g x 在(),0-∞上单调递减,()0,1上单调递减,()1,+∞上单调递增, 故当(]0,3x ∈时,()g x 在()0,1上单调递减,()1,3上单调递增,所以()g x 的最小值为()()2min 11111231226g x g =⨯-⨯-+==-, 所以2k <-, ③当1,03x ⎡⎫∈-⎪⎢⎣⎭时,由()56f x kx >+分离参数可得21112326k x x x >--+ 设()21112326g x x x x=--+,则()max k g x >, 由②过程知()g x 在1,03⎡⎫-⎪⎢⎣⎭上单调递减, 故()2max 1111116221333232763g x g ⎛⎫⎛⎫⎛⎫=-=⨯--⨯--+=- ⎪ ⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭⨯- ⎪⎝⎭, 所以6227k >-,综上所述:k 的取值范围为62,227⎛⎫-- ⎪⎝⎭. 6.已知函数()()1ln 0f x a x a x=+>. (1)求函数()f x 的极值;(2)是否存在实数a ,使得函数()f x 在区间[]1,e 上的最小值为2e?若存在,求出a 的值;若不存在,请说明理由. 【答案】(1)极小值ln a a a -,无极大值;(2)存在,1a e=. 【详解】(1)函数()1ln f x a x x =+定义域为()0,∞+,()21-='ax f x x ,其中0a >, 由()0f x '>,得1x a >;由()0f x '<,得10x a<<. 所以函数()f x 的单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为10,a ⎛⎫ ⎪⎝⎭, 所以,函数()f x 的极小值为11ln ln f a a a a a a a ⎛⎫=+=- ⎪⎝⎭,无极大值; (2)①当101a<≤时,即1a ≥时,函数()f x 在[]1,e 上为增函数, 故函数()f x 的最小值为()11f =,显然21e ≠,故不满足条件; ②当11e a <<时,即11a e <<时,函数()f x 在11,a ⎡⎤⎢⎥⎣⎦上为减函数,在1,e a ⎛⎤ ⎥⎝⎦上为增函数, 故函数()f x 的最小值为11ln ln f a a a a a a a ⎛⎫=+=- ⎪⎝⎭, 令()ln g a a a a =-,1,1a e ⎛⎫∈ ⎪⎝⎭,则12g e e⎛⎫= ⎪⎝⎭, 其导函数()ln 0g a a =->',可知()g a 在1,1e⎛⎫ ⎪⎝⎭单调递增, 因为()min 2f x e =,有2ln a a a e -=,可得1a e =不符合题意; ③当1e a ≥时,即10a e<≤时,函数()f x 在[]1,e 上为减函数, 故函数()f x 的最小值为()11ln f e a e a e e =+=+,由12a e e +=,得1a e=满足条件. 综上所述:存在1a e=符合题意.。

导数第一讲:求导、切线、单调性、极值、最值(解析版)

导数第一讲:求导、切线、单调性、极值、最值(解析版)

导数第一讲:求导、切线、单调性、极值、最值例1.(1)求曲线21xy x =-,在点()1,1处的切线方程;(2)求过点()2,3的抛物线2y x =的切线方程.解:(1)()2121y x '=--,可知所求切线的斜率1k =-故所求切线的方程为()11y x -=--,即20x y +-=.(2)设切点坐标为()200,x x ,2y x '=,可知所求切线的斜率022k x =∵切线过点()2,3和点()200,x x ,∴2000322x x x -=-,解得01x =或03x =,∴切线的斜率为2或6故所求切线的方程为()322y x -=-或()362y x -=-,即210x y --=或690x y --=.练习1.已知函数()3233f x x x bx c =-++在=0x 处取得极大值1.(1)求函数()y f x =的图象在=1x -处的切线方程;(2)求过点()1,1-与曲线()y f x =相切的直线方程.解:(1)()3233f x x x bx c =-++,则()2363f x x x b '=-+,由题意可得()()03001f b f c ⎧'==⎪⎨==⎪⎩,解得01b c =⎧⎨=⎩,即()3231f x x x =-+,()236f x x x '=-,令()0f x ¢>,解得2x >或0x <,故()f x 在()(),0,2,-∞+∞上单调递增,在()0,2上单调递减,则()f x 在=0x 处取得极大值1,即0,1b c ==符合题意.∵()()13,19f f '-=--=,则切点坐标为()1,3--,切线斜率9k =,∴函数()y f x =的图象在=1x -处的切线方程为()391y x +=+,即960x y -+=.(2)由(1)可得:()3231f x x x =-+,()236f x x x '=-,设切点坐标为()32000,31x x x -+,切线斜率20036k x x =-,则切线方程为()()()322000003136y x x x x x x --+=--,∵切线过点()1,1-,则()()()32200000131361x x x x x ---+=--,整理得()3010x -=,即01x =,∴切线方程为()131y x +=--,即320x y +-=.例2.函数32()(1)31f x x a x x =+--+.(1)当1a =时,求函数()f x 的单调区间;(2)若过原点O 可作三条直线与()f x 的图像相切,求实数a 的取值范围.解:(1)当1a =时,3()31,R f x x x x =-+∈.由2()33f x x '=-,令()0f x '>,解得1x <-或1x >;令()0f x '<,解得11x -<<.所以()f x 的单调递增区间为(,1)-∞-和(1,)+∞,单调递减区间为(1,1)-.(2)易知原点O 不在函数()f x 的图像上,设切点为(,())(0)t f t t ≠.求导得2()32(1)3f x x a x =+--',则()()f t f t t =',即322(1)3132(1)3t a t t t a t t +--+=+--,整理得322(1)10t a t +--=,所以2112a t t -=-,令21()2(0)g t t t t =-≠,则32()2g t t =+',令()0g t '>,解得0t >或1t ≤-;令()0g t '<,解得10t -<<,所以函数()g t 在区间(,1)-∞-上单调递增,在(1,0)-上单调递减,在(0,)+∞上递增,故当0t <时,max ()(1)3g t g =-=-;当t →-∞时,()g t →-∞;0t →时,()g t →-∞,当0t >时,()g t 的取值范围为R .而过原点O 可作三条直线与()f x 的图像相切,则()()f t f t t='有三个不相等的实数根,也就是直线1y a =-与函数()y g t =的图象有三个交点,则有13a -<-,即4a >.练习2.已知函数()f x =e x ,()ln g x x =.()f x 的图象与()g x 的图象是否存在公切线?如果存在,有几条公切线,请证明你的结论.解:曲线y =f (x ),y =g (x )公切线的条数是2,证明如下:设公切线与g (x )=lnx ,f (x )=ex 的切点分别为(m ,lnm ),(n ,en ),m ≠n ,∵g ′(x )1x =,f ′(x )=ex ,可得11nne mlnm e m n m ⎧=⎪⎪⎨-⎪=⎪-⎩,化简得(m ﹣1)lnm =m +1,当m =1时,(m ﹣1)lnm =m +1不成立;当m ≠1时,(m ﹣1)lnm =m +1化为lnm 11m m +=-,由lnx 11x x +==-121x +-,即lnx ﹣121x =-.分别作出y =lnx ﹣1和y 21x =-的函数图象,由图象可知:y =lnx ﹣1和y 21x =-的函数图象有两个交点,可得方程lnm 11m m +=-有两个实根,则曲线y =f (x ),y =g (x )公切线的条数是2条.例3.已知函数()()()21ln 1R 2f x x ax a x a =+-+∈.(1)当2a =时,求函数()y f x =的极值;(2)求当0a >时,函数()y f x =在区间[1,e]上的最小值()Q a .解:(1)当2a =时,函数2()ln 3(0)f x x x x x =+->.1(21)(1)()23x x f x x x x--'=+-=,令()0f x '=,得1x =或12x =,当1(0,)2x ∈时,()0f x '>,()f x 在1(0,)2上单调递增,当1(,1)2x ∈时,()0f x '<,()f x 在1(,1)2上单调递减,当(1,)x ∈+∞时,()0f x '>,()f x 在(1,)+∞上单调递增,则()f x 在12x =处取得极大值,在1x =处取得极小值.极大值为15()ln 224f =--,极小值为(1)2f =-.(2)函数()f x 的定义域是[1,e],1()(1)1()(1)(0)a x x a f x ax a a x x--'=+-+=>.当0a >时,令()0f x '=有两个解,1x =或1x a=.当10ea <≤,即1e a ≥时,()0f x '≤,()f x ∴在[1,e]上单调递减,()f x ∴在[1,e]上的最小值是(e)f 211e (1)e 2a a =+-+,当11ea <<,即11e a <<时,当1(1,)x a ∈时,()0f x '<,()f x ∴在1(1,)a上单调递减,当1(,e)x a ∈时,()0f x '>,()f x ∴在1(,e)a 上单调递增,()f x ∴在[1,e]上的最小值是11()ln 12f a a a=---,当1a ≥,即101a<≤时,[1,e]x ∈,()0f x '≥,()f x ∴在[1,e]上单调递增,()f x ∴在[1,e]上的最小值是(1)f 112a =--.综上,2111e (1)e,02e 11()ln 1,12e 11,12a a a Q a a a a a a ⎧+-+<≤⎪⎪⎪=---<<⎨⎪⎪--≥⎪⎩.练习3.已知()()2,R f x x x c c =-∈.(1)若()f x 在2x =处有极大值,求c 的值;(2)若03c <<,求()f x 在区间[1]2,上的最小值.解:(1)由题知,()()()3f x x c x c =--',由题意,()()()2260f c c '=--=,得2c =或6c =,当2c =时,在()2,,2,3⎛⎫-∞+∞ ⎪⎝⎭上()0f x ¢>,在2,23⎛⎫ ⎪⎝⎭上()0f x '<,此时,()f x 在2x =处有极小值,不符题意;当6c =时,在()(),2,6,-∞+∞上()0f x ¢>,在()2,6上()0f x '<,此时,()f x 在2x =处有极大值,符合题意.综上,6c =.(2)令()0f x '=,得3cx =或x c =,由03c <<,则在(),,,3c c ∞∞⎛⎫-+ ⎪⎝⎭上()0f x ¢>,在,3c c ⎛⎫⎪⎝⎭上()0f x '<,即()f x 在(),,,3c c ∞∞⎛⎫-+ ⎪⎝⎭上单调递增,在,3c c ⎛⎫⎪⎝⎭上单调递减.由题意,13c <,当23c ≤<时,()f x 在区间[]1,2上单调递减,则()2min ()22(2)f x f c ==-,当12c <<时,()f x 在区间()1,c 上单调递减,在(),2c 上单调递增,则()min ()0f x f c ==,当01c <≤时,()f x 在区间[]1,2上单调递增,则()2min ()1(1)f x f c ==-,综上,()()()2min21,010,1222,23c c f x c c c ⎧-<≤⎪⎪=<<⎨⎪-≤<⎪⎩.例4.已知函数()()22ln f x x x a x a =-+∈R .(1)若()f x 的单调递减区间为13,44⎡⎤⎢⎥⎣⎦,求a 的值;(2)若0x 是()f x 的极大值点,且()2002f x x a <-恒成立,求a 的取值范围.解:(1)由题可知()f x 的定义域为()0,∞+,()22222a x x af x x x x-+'=-+=.()f x 的单调递减区间为13,44⎡⎤⎢⎥⎣⎦等价于()0f x '≤的解集为13,44⎡⎤⎢⎥⎣⎦,即2220x x a -+≤的解集为13,44⎡⎤⎢⎥⎣⎦.所以方程2220x x a -+=的两个根分别为14,34,由根与系数的关系可得13244a =⨯,所以38a =.(2)若0x 是()f x 的极大值点,定义域为()0+∞,,则()0f x '=至少有一正根,即方程2220x x a -+=至少有一正根.若0a =,则方程2220x x a -+=的正根为1x =,因为当01x <<时()0f x '<,当1x >时()0f x ¢>,所以此时()f x 只有极小值点1,不符合题意.若0<a ,则方程2220x x a -+=有一正根和一负根,设为α,β,且0α>,0β<,则()()2222x x a x x αβ-+=--.因为当0x α<<时,()0f x '<,当x α>时,()0f x ¢>,所以此时()f x 只有极小值点α,不符合题意.若0a >,由题可知方程2220x x a -+=应有两个不等的正根,设为1x ,2x ,其中12x x <,则Δ48002a a =->⎧⎪⎨>⎪⎩解得102a <<.所以()()()212222x x x x x x a f x x x ---+'==.列表如下:x()10,x 1x ()12,x x 2x ()2,x +∞()f x '+-+()f x 单调递增极大值单调递减极小值单调递增所以1x 是极大值点,2x 是极小值点,则01x x =.由120x x <<,且121x x =+,得110x 2<<.由题可知()22000002ln 2f x x x a x x a =-+<-,即00ln 220a x x a -+<当0102x <<时恒成立.令()ln 22h x a x x a =-+,102x <<,则()222a x a x h x x x ⎛⎫- ⎪-⎝⎭'==.因为102a <<,所以1024a <<.所以当02a x <<时,()0h x '>,当2ax >时,()0h x '<,所以()max ln 022a a h x h a a ⎛⎫==+< ⎪⎝⎭,解得20e a <<,又102a <<,所以此时a 的取值范围是10,2⎛⎫⎪⎝⎭.综上,实数a 的取值范围是102⎛⎫⎪⎝⎭,.练习4.设函数21()3ln ,2af x x x a R x=+-∈.(1)若函数()f x 是增函数,求实数a 的取值范围;(2)是否存在实数a ,使得1x =是()f x 的极值点?若存在,求出a ;若不存在,请说明理由.解:(1)23()a f x x x x=--',∵()f x 是增函数,∴23()0a f x x x x=--≥'对0x ∀>恒成立,∴()3min3a x x ≤-,令32()3,()33g x x x g x x '=-=-,令()01g x x '=⇒=且当01x <<时,()0g x '<,()g x 单调递减;当1x >时,()0g x '>,()g x 单调递增.∴min ()(1)2g x g ==-,∴2a ≤-,即a 的取值范围为(,2]-∞-.(2)若1x =是()f x 的极值点,则必有(1)1302f a a =--=⇒=-'(必要性)当2a =-时,322222332(1)(2)()0x x x x f x x x x x x -+-+=+-='=≥∴()f x 在(0,)+∞上单调递增,()f x 无极值点,故假设不成立,即不存在这样的a .练习5.已知函数()()=ln 3R f x a x ax a --∈(1)求函数()f x 的单调区间;(2)若函数()f x 的图像在点()()2,2f 处的切线斜率为12,设()()m g x f x x=-,若函数()g x 在区间[]1,2内单调递增,求实数m 的取值范围.解:(1)(1)()(0)a a x f x a x x x-=-=>'当0a >时,()f x 的单调增区间为()0,1,减区间为()1,+∞;当0a <时,()f x 的单调增区间为(1,)+∞,减区间为()0,1;当=0a 时,()f x 不是单调函数.(2)∵1(2)2f '=,∴12122a -⋅=,解得1a =-,∴()ln 3f x x x =-+-()()()ln 30m m g x f x x x x x x =-=-+-->,又()221()10m x g x x x x x x m-+'=-++=>()g x 要在区间[1,2]上单调递增,只需()0g x '≥在[]1,2上恒成立,即20x x m -+≥在[]1,2上恒成立,即()2maxm x x≥-,又在[1,2]上()2maxx x-=∴0m ≥.练习6.已知函数()(ln 1),R f x x x k k =--∈.(1)当1x >时,求函数()f x 的单调区间和极值;(2)若对于任意2e,e x ⎡⎤∈⎣⎦,都有()4ln f x x <成立,求实数k 的取值范围;解:(1)由题知,()()ln 1,R f x x x k k =--∈,所以1()ln 1ln ,0f x x k x x k x x'=--+⋅=->,当0k ≤时,因为1x >,所以()ln 0f x x k '=->,所以()f x 的单调增区间是(1,)+∞,无单调减区间,无极值,当0k >时,令ln 0x k -=,解得e k x =,当1e k x <<时,()0f x '<,当e k x >时,()0f x '>,所以()f x 的单调减区间是()1,e k ,单调增区间是()e ,k ∞+,极小值为()()e e 1e k k kf k k =⋅--=-,无极大值.(2)因为对于任意2e,e x ⎡⎤∈⎣⎦,都有()4ln f x x <成立,所以()4ln 0f x x -<,即问题转化为(4)ln (1)0x x k x --+<,对于2e,e x ⎡⎤∈⎣⎦恒成立,即(4)ln 1x x k x -+>,对于2e,e x ⎡⎤∈⎣⎦恒成立,令(4)ln ()x x g x x -=,所以24ln 4()x x g x x +-'=,令()24ln 4,e,e t x x x x ⎡⎤=+-∈⎣⎦,所以4()10t x x'=+>,所以()t x 在区间2e,e ⎡⎤⎣⎦上单调递增,所以()()min e e 44e 0t x t ==-+=>,所以()0g x '>,所以()g x 在区间2e,e ⎡⎤⎣⎦上单调递增,所以函数()()22max 8e 2eg x g ==-,要使(4)ln 1x x k x -+>,对于2e,e x ⎡⎤∈⎣⎦恒成立,只要max 1()k g x +>,所以2812e k +>-,即281e k >-,所以实数k 的取值范围为281,e ∞⎛⎫-+ ⎪⎝⎭;备选1.设a 为实数,已知函数()()32211932f x x a x =-++(1)讨论()f x 的单调性(2)若过点()0,10有且只有两条直线与曲线()32111132y x a x ax =-+++相切,求a 的值.解:(1)因为()()32211932f x x a x =-++,则()()221f x x a x '=-+,由()0f x '=可得10x =,212a x +=,①当102a +=时,即当1a =-时,对任意的x ∈R ,()0f x '≥且()f x '不恒为零,此时,函数()f x 的增区间为(),-∞+∞,无减区间;②当102a +<时,即当1a <-时,由()0f x '<可得102a x +<<,由()0f x ¢>可得12a x +<或0x >,此时,函数()f x 的减区间为1,02a +⎛⎫⎪⎝⎭,增区间为1,2a +⎛⎫-∞ ⎪⎝⎭、()0,∞+;③当102a +>时,即当1a >-时,由()0f x '<可得102a x +<<,由()0f x ¢>可得0x <或12a x +>,此时,函数()f x 的减区间为10,2a +⎛⎫ ⎪⎝⎭,增区间为(),0∞-、1,2a +⎛⎫+∞⎪⎝⎭.综上所述,当1a =-时,函数()f x 的增区间为(),-∞+∞,无减区间;当1a <-时,函数()f x 的减区间为1,02a +⎛⎫⎪⎝⎭,增区间为1,2a +⎛⎫-∞ ⎪⎝⎭、()0,∞+;当1a >-时,函数()f x 的减区间为10,2a +⎛⎫ ⎪⎝⎭,增区间为(),0∞-、1,2a +⎛⎫+∞⎪⎝⎭.(2)解:设切点为()3211,1132t t a t at ⎛⎫-+++ ⎪⎝⎭,对函数()32111132y x a x ax =-+++求导得()21y x a x a '=-++,所以,切线方程为()()()3221111132y t a t at t a t a x t ⎡⎤⎡⎤--+++=-++-⎣⎦⎢⎥⎣⎦,将点()0,10的坐标代入切线方程整理可得()322119032t a t -++=,即()0f t =,故关于t 的方程()0f t =有两个不等的实根,①当1a =-时,函数()f t 在R 上单调递增,则方程()0f t =至多一个实根,不合乎题意;②当1a <-时,则()()090f t f ==>极小值,故当12a t +>时,()0f t >,此时方程()0f t =至多一个实根,不合乎题意;③当1a >-时,则()()090f t f ==>极大值,则()()311910224a f t f a +⎛⎫==-+= ⎪⎝⎭极大值,解得5a =,合乎题意.综上所述,5a =.备选2.已知函数()22ln 2x af x x x-=-.(1)若()f x 在()0,∞+上单调递减,求实数a 的取值范围;(2)若1a =,试问过点()0,1向曲线()y f x =可作几条切线?解:(1)依题意,因为()22ln 2x af x x x-=-,所以()f x 的定义域为()0,∞+,()()()22222222112142x x x a x a f x x x x ⨯----+-'=-=,若()f x 在()0,∞+上单调递减,则有()0f x '≤在()0,∞+上恒成立,即()21120x a --+-≤恒成立,所以()22111a x ≥--+≥,解得12a ≥,所以实数a 的取值范围为:1,2⎡⎫+∞⎪⎢⎣⎭.(2)当1a =时,()22ln 2x f x x x -=-且点()0,1不在()f x 上,所以()()22112x f x x---'=,设切线方程的斜率为k ,切点为()00,P x y ,根据导数的几何意义,则有()2020112x k x---=,又切线过点()0,1,所以切线方程可设为1y kx =+,则有001y kx =+,200002ln 2x y x x -=-,所以()2002020002112ln 21x x x x x x --=---⨯+,整理得000ln 220x x x -+=,令()ln 22g x x x x =-+()0x >,则()ln 1g x x '=-,所以在x ∈()0,e 时,()0g x '<,()g x 单调递减;在()e,x ∈+∞,()0g x '>,()g x 单调递增;所以()g x 在e x =处取得最小值,又()10g =,所以()g x 在()0,e 有一零点,又因为()0e e 2g =-<,()2222eeln e 2e 220g =-+=>,由零点存在性定理可知,在()2e,e x ∈必有一个根0x ,使得000ln 220x x x -+=成立,综上,方程000ln 220x x x -+=有两个解,所以过点()0,1向曲线()y f x =可作2条切线.备选3.已知函数1()2ln f x a x x x ⎛⎫=-- ⎪⎝⎭,其中a R ∈.(1)若()f x 是定义在(0,)+∞上的单调函数,求实数a 的取值范围;(2)当0a >时,判断()f x 与()2g x x =的图象在其公共点处是否存在公切线?若存在,求满足条件的a 值的个数;若不存在,请说明理由.解:(1)222122()1ax x a f x a x x x -+⎛⎫'=+-= ⎪⎝⎭.当0a ≤时,()0f x '<,故()f x 在(0,)+∞上单调递减,满足题意;当0a >时,要使得()f x 在(0,)+∞上单调,则恒有()0f x '≥.∴2440a ∆=-≤,解得:1a ≥.综上,1a ≥或0a ≤(2)假设()f x ,()g x 的图象在其公共点()00,x y 处存在公切线,则()()()()2000200000200002212ln ax x ax x f x g x f x g x a x x x x ⎧-+=⎪⎧=⎪⎪⇒⎨⎨=⎛⎫⎪⎩⎪--= '⎪'⎪⎝⎭⎩①②由①可得:()()32200000220120x ax x a x x a -+-=⇔+-=,∴002x a=>.将02a x =代入②,则222ln 2224a a a --=,即:28ln 82a a-=.令28()182x xh x n -=-,则11()4h x x x '=-,故()h x 在()0,2上单调递减,在(2,)+∞上单调递增.又1(2)02h =-<,且当0x →,()h x →+∞;当x →+∞,()h x →+∞∴()h x 在(0,)+∞有两个零点,即方程28ln 82a a-=在(0,)+∞有两个不同的解.所以,()f x 与2()g x x =的图象在其公共点处存在公切线,满足条件的a 值有2个。

高考数学专题:导数的应用(单调性、最值、极值)

高考数学专题:导数的应用(单调性、最值、极值)

高考数学专题:导数的应用(单调性、最值、极值)热点一 利用导数研究函数的单调性【方法总结】求可导函数单调区间的一般步骤和方法(1)确定函数f (x )的定义域.(2)求f ′(x ),令f ′(x )=0,求出它们在定义域内的一切实数根.(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间.(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.若函数21()f x x ax x =++在1(,)2+∞是增函数,则a 的取值范围是( ) A .[1,0]- B .[1,)-+∞ C .[0,3] D .[3,)+∞ 3.函数y=12x 2-㏑x 的单调递减区间为 ( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 4.设函数()()21x f x x e kx =--(其中k ∈R ).(Ⅰ) 当1k =时,求函数()f x 的单调区间;(Ⅱ) 当1,12k ⎛⎤∈⎥⎝⎦时,求函数()f x 在[]0,k 上的最大值M .5.设函数()ln f x x ax =-,()x g x e ax =-,其中a 为实数.(1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围;A DC B(2)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论.6.7.已知函数()32=33 1.f x x ax x +++(I )当-2a =()f x 的单调性;(II )若[)2,x ∈+∞时,()0f x ≥,求a 的取值范围.8.已知函数2l ()n f x x x =.(Ⅰ) 求函数f (x )的单调区间;(Ⅱ) 证明: 对任意的t >0, 存在唯一的s , 使()t f s =.(Ⅲ) 设(Ⅱ)中所确定的s 关于t 的函数为()s g t =, 证明: 当2>e t 时, 有2ln ()15ln 2g t t <<.9.已知函数21()1x x f x e x -=+. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:当f (x 1)=f (x 2)(x 1≠x 2)时,x 1+x 2<0.10.已知a ∈R,函数3()42f x x ax a =-+ (1)求f(x)的单调区间。

第三讲利用导数求单调性、极值和最值

第三讲利用导数求单调性、极值和最值

第三讲 利用导数求单调性、极值和最值【相关知识】利用导数求单调性、极值和最值【教学过程】1.导数的正负与函数的单调性:①()0>'x f 在()b a x ,∈恒成立⇒函数()x f 区间()b a ,上单调递增;()0≥'x f 在()b a x ,∈恒成立⇐函数()x f 区间()b a ,上单调递增;②()0<'x f 在()b a x ,∈恒成立⇒函数()x f 区间()b a ,上单调递减;()0≤'x f 在()b a x ,∈恒成立⇐函数()x f 区间()b a ,上单调递减;2.利用导数求函数单调区间的步骤:①求()f x ';②求方程()0f x '=的根,设根为12,,n x x x ;③12,,n x x x 将给定区间分成n+1个子区间,再在每一个子区间内判断()f x '的符号,由此确定每一子区间的单调性。

例.函数1)1(32+-=x y 的极值点是( )A .极大值点1-=xB .极大值点0=xC .极小值点0=xD .极小值点1=x变式一:()0f x '=0是0x 为()f x 的极值点的 条件。

变式二:函数5123223+--=x x x y 在R 上的极大值、极小值分别是 ;变式三:求函数5123223+--=x x x y 在[-2,3]上的最大值、最小值分别是 ;变式四:方程109623=+-x x x 的实根的个数为 ;变式五:方程k x x x =+-9623的恰有三个不等实根,则求实数k 的取值范围;变式六:若函数()233x x x f +=在区间[]1,+m m 上单调递增,求实数m 的取值范围;变式七:已知函数x ax x x f --=23)(,抛物线y x C =2:,当)2,1(∈x 时,函数)(x f 的图象在抛物线y x C =2:的上方,求a 的取值范围。

导数与函数的单调性,极值,最值(解析版)

导数与函数的单调性,极值,最值(解析版)

导数的单调性、极值、最值1.最新考试说明:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数不超过三次).【2020年高考全国Ⅰ卷理数21】已知函数()2e xf x ax x =+-.(1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增;(2)27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【思路导引】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可; (2)首先讨论0x =的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围.【解析】(1)当1a =时,()2x x x e f x =+-,()'21x f x e x =+-,由于()''20x f x e =+>,故()'f x 单调递增,注意到()'00f =,故:当(),0x ∈-∞时,()()'0,f x f x <单调递减;当()0,x ∈+∞时,()()'0,f x f x >单调递增. (2)由()3112f x x ≥+得,23112x e ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,32112x e x x a x ----, 记()32112x e x x g x x ---=-,()()231212'x x e x x g x x ⎛⎫---- ⎪⎝⎭=-, 令()()21102xe x x h x x ---≥=,则()'1x h x e x =--,()''10x h x e =-≥,故()'h x 单调递增,()()''00h x h ≥=,故函数()h x 单调递增,()()00h x h ≥=, 由()0h x ≥可得:21102xe x x ---恒成立,故当()0,2x ∈时,()'0g x >,()g x 单调递增;当()2,x ∈+∞时,()'0g x <,()g x 单调递减; 因此,()()2max724e g x g -⎡⎤==⎣⎦.综上可得,实数a 的取值范围是27,4e ⎡⎫-+∞⎪⎢⎣⎭. 【专家解读】本题的特点是注重导数的灵活运用,本题考查了导数与函数的单调性、极值(最值),考查数形结合、分类讨论思想,考查数学运算、直观想象、逻辑推理等学科素养.解题关键是正确构造新函数,结合导函数研究构造所得的函数.【考向总结】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系; (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数; (3)利用导数求函数的最值(极值),解决生活中的优化问题; (4)考查数形结合思想的应用.【2020年高考全国Ⅱ卷文数21】已知函数()2ln 1f x x =+. (1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【答案】(1)1c ≥-;(2)()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.【思路导引】(1)不等式()2f x x c ≤+转化为()20f x x c --≤,构造新函数,利用导数求出新函数的最大值,进而进行求解即可;(2)对函数()g x 求导,把导函数()g x '的分子构成一个新函数()m x ,再求导得到()m x ',根据()m x '的正负,判断()m x 的单调性,进而确定()g x '的正负性,最后求出函数()g x 的单调性.【解析】(1)函数()f x 的定义域为(0,)+∞,()2()202ln 120()f x x c f x x c x x c ≤+⇒--≤⇒+--≤*, 设()2ln 12(0)h x x x c x =+-->,则有22(1)()2x h x x x-'=-=, 当1x >时,()0,()h x h x '<单调递减;当01x <<时,()0,()h x h x '>单调递增,∴当1x =时,函数()h x 有最大值,即max ()(1)2ln11211h x h c c ==+-⨯-=--,要想不等式()*在(0,)+∞上恒成立,只需max ()0101h x c c ≤⇒--≤⇒≥-.(2)2ln 1(2ln 1)2(ln ln )()(0x a x a g x x x a x a+---==>--且)x a ≠,因此22(ln ln )()()x a x x x a g x x x a --+'=-, 设()2(ln ln )m x x a x x x a =--+,则有()2(ln ln )m x a x '=-,当x a >时,ln ln x a >,∴()0m x '<,()m x 单调递减,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减;当0x a <<时,ln ln x a <,∴()0m x '>,()m x 单调递增,因此有()()0m x m a <=,即()0g x '<,∴()g x 单调递减,∴函数()g x 在区间(0,)a 和(,)a +∞上单调递减,没有递增区间.【专家解读】本题的特点是注重导数的灵活运用,本题考查了导数与函数单调性,考查不等式恒成立的参数取值范围问题,考查转化与化归思想,考查数学运算、逻辑推理、数学建模等学科素养.解题关键是应用参数分离法解决不等式恒成立的参数取值范围问题.2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数不超过三次).【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<, 1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增.因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---== ⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根.综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.【2020年高考天津卷20】已知函数3()ln ()f x x k x k R =+∈,()f x '为()f x 的导函数.(Ⅰ)当6k =时,(i )求曲线()y f x =在点(1,(1))f 处的切线方程; (ii )求函数9()()()g x f x f x x'=-+的单调区间和极值; 【答案】(Ⅰ)(i )98y x =-;(ii )()g x 的极小值为(1)1g =,无极大值;(Ⅱ)证明见解析. 【思路导引】(Ⅰ) (i)首先求得导函数的解析式,然后结合导数的几何意义求解切线方程即可; (ii)首先求得()g x '的解析式,然后利用导函数与原函数的关系讨论函数的单调性和函数的极值即可;【解析】(Ⅰ) (i) 当k =6时,()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-. (ii) 依题意,()()32336ln ,0,g x x x x x x =-++∈+∞.从而可得()2263'36g x x x x x=-+-,整理可得:323(1)(1)()x x g x x'-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:∴函数g (x )的单调递减区间为(0,1),单调递增区间为(1,+∞);g (x )的极小值为g (1)=1,无极大值. 【专家解读】本题的特点是注重导数的灵活运用,本题考查了导数的几何意义,考查导数与函数的单调性、极值,考查考查应用导数证明不等式,考查数形结合及分类讨论思想,考查数学运算、逻辑推理、直观想象、数学建模等学科素养.解题的关键是合理消元,构造新函数,合理放缩解决问题. 3.会求闭区间上函数的最大值、最小值(对多项式函数不超过三次). 【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围.【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3a x =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增; 若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1] 的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.【2019年高考北京文数】已知函数321()4f x x x x =-+. (1)求曲线()y f x =的斜率为1的切线方程; (2)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(3)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(1)y x =与6427y x =-;(2)见解析;(3)3a =-. 【解析】(1)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(2)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-.令()0g'x =得0x =或8x =.(),()g'x g x 的情况如下:所以()g x 的最小值为6-,最大值为0.故6()0g x -≤≤,即6()x f x x -≤≤. (3)由(2)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->;当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>;当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.4.会利用导数解决某些实际问题.【2020年高考江苏卷17】某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上,桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.己知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元),桥墩CD 每米造价32k (万元)(0k >), 问'O E 为多少米时,桥墩CD 与EF 的总造价最低?【答案】(1)桥AB 的长度为120米;(2)O E '为20米时,桥墩CD 与EF 的总造价最低. 【解析】(1)过A ,B 分别作MN 的垂线,垂足为A ',B ',则3140640160800AA BB ''==-⨯+⨯=.令2116040a =,得80a =,∴80AO '=, 8040120AB AO BO ''=+=+=. (2)设O E x '=,则80CO x '=-,由04008080x x <<<-<⎧⎨⎩得040x <<.总造价][23311160(80)160[](6)240800k y x k x x =--+--+3230160800)(800x x k +⨯=- 23360)(20)800800k k y x x x x '=-=-(,∵0k >,∴令0y '=,得0x =或20,∴当020x <<时,0y '<,y 单调递减;当2040x <<时,0y '>,y 单调递增,∴当 20x =时,y 取最小值,造价最低.【专家解读】本题的特点是注重导数在生活实际中的应用,本题考查了导数与函数的单调性、最值,考查数形结合及分类讨论思想,考查数学运算、数学建模等学科素养.解题的关键是应用导数与函数最值的关系解决生活中的最优化问题.2.命题方向预测:1.利用导数研究函数的单调性、极值是近几年高考的热点.2.选择题、填空题侧重于考查导数的运算及导数的几何意义,解答题侧重于利用导数研究函数的单调性、极值、最值等,往往与函数、解析几何、不等式、数列等交汇命题,一般难度较大.3.利用导数解决生活中的最优化问题,近几年考查也较多.3.课本结论总结:1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.4.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.5.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题.4.名师二级结论:1.f ′(x )>0是f (x )为增函数的充分不必要条件.2.函数在某区间上或定义域内极大值不是唯一的.3.函数的极大值不一定比极小值大.4.对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的既不充分也不必要条件.5.函数的最大值不一定是极大值,函数的最小值也不一定是极小值.6.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f′(x 0)=0,但当f′(x 1)=0时,x 1不一定是极值点.如f(x)=x 3,f′(0)=0,但x =0不是极值点.(2)可导函数y =f(x)在点x 0处取得极值的充要条件是f′(x 0)=0,且在x 0左侧与右侧f′(x)的符号不同. 7.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值. 8.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.5.课本经典习题:(1)(选修2—1第77页)抛物线2x y =上到直线42=-y x 的距离最小点的坐标是( ) A )41,21( B )1,1( C )49,23( D )4,2(【解析】设2x y =则x y 2'= 设距离最小点的坐标为),(00y x ,所以220=x 。

(完整版)函数的单调性与最值(含例题详解)

(完整版)函数的单调性与最值(含例题详解)

函数的单调性与最值一、知识梳理1.增函数、减函数一般地,设函数f (x )的定义域为I ,区间D ⊆I ,如果对于任意x 1,x 2∈D ,且x 1<x 2,则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格 的)单调性,区间D 叫做y =f (x )的单调区间. 3.函数的最值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集 符号“∪”联结,也不能用“或”联结.2.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但 f (x )·g (x ),()1f x 等的单调性与其正负有关,切不可盲目类比. [试一试]1.下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的,或者f (x )的图像易作出,可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值. (4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值. 提醒:在求函数的值域或最值时,应先确定函数的定义域. [练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =e -x C .y =-x 2+1 D. y =lg|x |答案:C2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________,最小值是________.答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义,则210x +>,即12x >-,而5log y u =为()0,+∞ 上的增函数,当12x >-时,u =2x +1也为R 上的增函数,故原函数的单调增区间是 1,2⎛⎫-+∞ ⎪⎝⎭.答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________.解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知,该函数的单调增区间是(-∞,1]. 答案:(-∞,1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k ,定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=,当k =12时,函数()k f x 的单调递增区间为( )A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析:选C 由f (x )>12,得-1<x <1.由f (x )≤12,得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩,故()12f x 的单调递增区间为(-∞,-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断 [典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知,函数的定义域是()(),00,-∞⋃+∞.在(0,+∞)内任取1x ,2x ,令12x x <,那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<,所以210x x ->,120x x >.故当)12,x x ∈+∞时,()()12f x f x <,即函数在)+∞上单调递增.当(12,x x ∈时,()()12f x f x >,即函数在(上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数,在关于原点对称的区间上具有相同的单调性,故在(,-∞单调递增,在()上单调递减. 综上,函数f (x )在(,-∞和)+∞上单调递增,在()和(上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时,作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时,求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1,+∞)上的单调性.解:任取x 1,x 2∈(1,+∞),且x 1<x 2, 则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----, 由于1<x 1<x 2,所以x 1-x 2<0,(x 1-1)(x 2-1)>0, 因此g (x 1)-g (x 2)<0,即g (x 1)<g (x 2). 故g (x )在(1,+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0, f (1)=-23.(1)求证:f (x )在R 上是减函数; (2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x ,y ∈R , 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0, f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2). 又∵当x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数, ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. 角度二 比较两个函数值或两个自变量的大小2.已知函数f (x )=log 2x +11-x ,若x 1∈(1,2),x 2∈(2,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0解析:选B ∵函数f (x )=log 2x +11-x 在(1,+∞)上为增函数,且f (2)=0,∴当x 1∈(1,2)时,f (x 1)<f (2)=0,当x 2∈(2,+∞) 时,f (x 2)>f (2)=0,即f (x 1)<0,f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,则实数a 的取值范围为( )A .(-∞,2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞,2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数,于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩,由此解得a ≤138, 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式,然后根据函数的单调性去掉“f ”,转化为具体的不等式(组),此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间上进行比较,对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为 f (x )在[1,+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩,若f (2-a 2)>f (a ),则实数a 的取值范围是( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)答案:C 解析:由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1. 3.用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x ,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图 象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-1,0)∪(0,1] C .(0,1)D .(0,1]答案:D 解析:f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区 间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0,∴f (-x )=-f (x ).又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2),f (x 2)>f (-x 3)=-f (x 3),f (x 3)>f (-x 1)=-f (x 1), ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f (x )是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数. 答案:[0,32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0,32].8.设0<x <1,则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x (1-x ),当0<x <1时,x (1-x )=-(x -12)2+14≤14,∴y ≥4.三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围. (1)证明:当x ∈(0,+∞)时,f (x )=a -1x ,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数. (2)解:由题意a -1x <2x 在(1,+∞)上恒成立,设h (x )=2x +1x ,则a <h (x )在(1,+∞)上恒成立.∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x 2>0,∴h (x )在(1,+∞)上单调递增.故a ≤h (1),即a ≤3. ∴a 的取值范围为(-∞,3].10.已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解:设f (x )的最小值为g (a ),则只需g (a )≥0,由题意知,f (x )的对称轴为-a2.(1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7.又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时, 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性,并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围. 解:(1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增,∴112111121111x x x x ⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x <-1.(3)∵f (1)=1,f (x )在[-1,1]上单调递增. ∴在[-1,1]上,f (x )≤1.问题转化为m2-2am+1≥1,即m2-2am≥0,对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0,则g(a)=0≥0,自然对a∈[-1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[-1,1]恒成立,必须g(-1)≥0,且g(1)≥0,∴m≤-2,或m≥2.∴m的取值范围是m=0或|m|≥2.。

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性

高考数学利用导数研究函数的单调性、极值与最值问题(解析版)题型一:利用导数研究函数的单调性

题型一:利用导数研究函数的单调性1、讨论函数的单调性(或区间)1.已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R . (1)讨论函数的单调性;【答案】(1)答案见解析;(2)0a ≤.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-= 当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增. (2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x 在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.2.已知函数32()f x x x mx =+-.(1)若函数()f x 在2x =处取到极值,求曲线()y f x =在(1,())f x 处的切线方程;(2)讨论函数()f x 的单调性.【答案】(1)113y x =--;(2)()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 【详解】(1)依题意,2()32f x x x m '=+-,(2)1240f m '=+-=,解得16m =,经检验,16m =符合题意;故32()16f x x x x =+-,2()3216f x x x '=+-,故(1)21614f =-=-,(1)11f '=-,故所求切线方程为1411(1)y x +=--,即113y x =--;(2)依题意2()32f x x x m '=+-,412m ∆=+,若0∆,即13m -时,()0f x ',()f x 在R 上单调递增;若0∆>,即13m >-时,令()0,f x x '===令12x x == 故当()1,x x ∈-∞时,()0f x '>,当()12,x x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,故函数()f x 在⎛-∞ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 3.已知函数()ln a f x x x=+(a 为常数) (1)讨论函数()f x 的单调性;【答案】(1)0a ≤时,(0,)+∞递增,0a >时,在(0,)a 递减,(,)a +∞递增;【详解】(1)函数定义域是(0,)+∞,221()a x a f x x x x-'=-=, 0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞上是增函数;0a <时,0x a <<时,()0f x '<,()f x 递减,x a >时,()0f x '>,()f x 递增.2、根据函数的单调性求参数的取值范围1.已知函数321()23f x ax x x =+-+,其中a R ∈. (1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;【答案】(1)()()1,00,a ∈-+∞; 【详解】(1)由321()23f x ax x x =+-+,得2()21f x ax x '=+-. ∵()f x 存在三个单调区间∴()0f x '=有两个不相等的实数根,即2210ax x .∴00a ≠⎧⎨∆>⎩,即0440a a ≠⎧⎨+>⎩,故()()1,00,a ∈-+∞.2.已知函数()321f x x ax =++,a R ∈. (1)讨论函数()f x 的单调区间;(2)若函数()f x 在区间2,03⎛⎫- ⎪⎝⎭内是减函数,求a 的取值范围; (3)若函数()f x 的单调减区间是2,03⎛⎫- ⎪⎝⎭,求a 的值. 【答案】(1)答案见解析(2)[)1,+∞(3)1(1) 由题意知,22()323()3a f x x ax x x '=+=+, 当0a =时,2()30f x x '=≥恒成立,所以()f x 的单调递增区间是()-∞+∞,; 当0a >时,令2()0()(0)3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(),(0)3a -∞-+∞,,,单调递减区间为2(0)3a -,, 当0a <时,令2()0(0)()3a f x x '>⇒∈-∞-+∞,,,令2()0(0)3a f x x '<⇒∈-,, 所以()f x 的单调递增区间为2(0)()3a -∞-+∞,,,,单调递减区间为2(0)3a -,; (2)由(1)知,当0a >时,有22(0)(0)33a -⊆-,,,所以2233a -≤-, 解得1a ≥,即a 的取值范围为[1)+∞,; (3)由(1)知,当0a >时,有22(0)(0)33a -=-,,,所以2233a -=-, 解得1a =.3.已知函数()3f x x ax =-+,a R ∈(1)若()f x 在)1,⎡+∞⎣上为单调减函数,求实数a 取值范围;【答案】(1)3a ≤;(2)最大值为0,最小值为16-.【详解】解:(1)因为()3f x x ax =-+,则()'23f x x a =-+.依题意得()'230f x x a =-+≤在[)1,x ∈+∞恒成立,∴23a x ≤在[)1,x ∈+∞恒成立. 因为当1≥x 时,233x ≥,所以 3a ≤.(2)当12a =时,()312f x x x =-+,()()()'2312322f x x x x =-+=-+-,令'0f x 得[]123,0x =∉-,22x =-,所以当32x -<<-时,()'0f x <,()f x 单调递减,当20x -<<时,()'>0f x ,()f x 单调递增,又()327369f -=-=-,()282416f -=-=-,()00f =.∴()f x 在[]3,0-上最大值为0,最小值为16-.。

利用导数研究函数的单调性与极值和最值

利用导数研究函数的单调性与极值和最值

利用导数研究函数的单调性与极值和最值1.函数的单调性在(a ,b )内可导函数f (x ),f ′(x )在(a ,b )任意子区间内都不恒等于0.f ′(x )≥0⇔f (x )在(a ,b )上为增函数.f ′(x )≤0⇔f (x )在(a ,b )上为减函数.2.函数的极值(1)函数的极小值:函数y =f (x )在点x =a 的函数值f (a )比它在点x =a 附近其它点的函数值都小,f ′(a )=0,而且在点x =a 附近的左侧f ′(x )<0,右侧f ′(x )>0,则点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值.(2)函数的极大值:函数y =f (x )在点x =b 的函数值f (b )比它在点x =b 附近的其他点的函数值都大,f ′(b )=0,而且在点x =b 附近的左侧f ′(x )>0,右侧f ′(x )<0,则点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y =f (x )的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.4.重难点剖析(1)f ′(x )>0与f (x )为增函数的关系:f ′(x )>0能推出f (x )为增函数,但反之不一定.如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0,所以f ′(x )>0是f (x )为增函数的充分 不必要条件.(2)可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f ′(x 0)=0是可导函数f (x )在x =x 0处取得极值的必要不充分条件.例如函数y =x 3在x =0处有y ′|x =0=0,但x =0不是极值点.此外,函数不可导的点也可能是函数的极值点.(3)可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.典型例题分析:[例1] (2012·山东高考改编)已知函数f (x )=ln x +k e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.[自主解答] (1)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).例2.已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数).(1)当a =2时,求函数f (x )的单调递增区间;(2)是否存在a 使函数f (x )为R 上的单调递减函数,若存在,求出a 的取值范围;若不存在,请说明理由.解:(1)当a =2时,f (x )=(-x 2+2x )e x ,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x .令f ′(x )>0,即(-x 2+2)e x >0,∵e x >0,∴-x 2+2>0,解得-2<x < 2.∴函数f (x )的单调递增区间是(-2,2).(2)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立.∵e x >0,∴x 2-(a -2)x -a ≥0对x ∈R 都成立.∴Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的.故不存在a 使函数f (x )在R 上单调递减.基础过关1.函数f (x )=x +eln x 的单调递增区间为( )A .(0,+∞)B .(-∞,0)C .(-∞,0)和(0,+∞)D .R解析:选A 函数定义域为(0,+∞),f ′(x )=1+e x>0,故单调增区间是(0,+∞). 2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析:选C 依题意得,当x ∈(-∞,c )时,f ′(x )>0;当x ∈(c ,e )时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.因此,函数f (x )在(-∞,c )上是增函数,在(c ,e )上是减函数,在(e ,+∞)上是增函数,又a <b <c ,所以f (c )>f (b )>f (a ).3.设函数f (x )=2x+ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D 函数f (x )的定义域为(0,+∞),f ′(x )=-2x 2+1x =x -2x 2,当x =2时,f ′(x )=0;当x >2时,f ′(x )>0,函数f (x )为增函数;当0<x <2时,f ′(x )<0,函数f (x )为减函数,所以x =2为函数f (x )的极小值点.4.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =( )A .-2或2B .-9或3C .-1或1D .-3或1解析:选A 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.5.若f (x )=ln x x,e<a <b ,则( ) A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A f ′(x )=1-ln x x 2,当x >e 时,f ′(x )<0,则f (x )在(e ,+∞)上为减函数,f (a )>f (b ). 6.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)解析:选D 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数在x =-2处取得极大值,在x =2处取得极小值.7.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围是________.解析:f ′(x )=3x 2+2mx +m +6=0有两个不等实根,即Δ=4m 2-12×(m +6)>0.所以m >6或m <-3.答案:(-∞,-3)∪(6,+∞)8.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的最小值为________.9.已知函数f (x )=ax 2+b ln x 在x =1处有极值12. (1)求a ,b 的值;(2)判断函数y =f (x )的单调性并求出单调区间.解:(1)∵f ′(x )=2ax +b x. 又f (x )在x =1处有极值12. ∴⎩⎪⎨⎪⎧ f (1)=12,f ′(1)=0,即⎩⎪⎨⎪⎧a =12,2a +b =0.解得a =12,b =-1. (2)由(1)可知f (x )=12x 2-ln x ,其定义域是(0,+∞), 且f ′(x )=x -1x =(x +1)(x -1)x. 由f ′(x )<0,得0<x <1;由f ′(x )>0,得x >1.所以函数y =f (x )的单调减区间是(0,1),单调增区间是(1,+∞)10.已知函数f (x )=x 3-ax 2+3x .(1)若f (x )在x ∈[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =3是f (x )的极值点,求f (x )在x ∈[1,a ]上的最大值和最小值.解:(1)∵f ′(x )=3x 2-2ax +3≥0在[1,+∞)上恒成立,∴a ≤⎣⎡⎦⎤32⎝⎛⎭⎫x +1x min =3(当x =1时取最小值). ∴a 的取值范围为(-∞,3].(2)∵f ′(3)=0,即27-6a +3=0,∴a =5,f (x )=x 3-5x 2+3x ,x ∈[1,5],f ′(x )=3x 2-10x +3.令f ′(x )=0,得x 1=3,x 2=13(舍去). 当1<x <3时,f ′(x )<0,当3<x <5时,f ′(x )>0, 即当x =3时,f (x )取极小值f (3)=-9.又f (1)=-1,f (5)=15,∴f (x )在[1,5]上的最小值是f (3)=-9,最大值是f (5)=15.。

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析

高二数学利用导数求最值和极值试题答案及解析1.若函数在(0,1)内有极小值,则()A.0<<1B.<1C.>0D.<【答案】A【解析】,由于存在极值,因此令,得,为函数的极小值,则,解得.【考点】函数的导数与极值.2.函数的定义域为开区间,导函数在内的图象如图所示,则函数在开区间内有极小值点()A.个B.个C.个D.个【答案】A【解析】函数为增函数, 函数为减函数, 当且左侧,右侧时为极小值点,从而只有一个满足,答案选A..【考点】函数的导数与极值3.已知函数.(1)若函数在区间上存在极值点,求实数a的取值范围;(2)如果当时,不等式恒成立,求实数k的取值范围;【答案】(1)(2)【解析】(1)对函数求导,求出极值点,范围在内,得到不等式关系,解不等式即可;(2)要对恒成立问题转化,转化为求最值问题,令,求出在的最小值.试题解析:(1)当x>0时,,有;所以在(0,1)上单调递增,在上单调递减,函数在处取得唯一的极值.由题意,且,解得所求实数的取值范围为.(2)当时,令,由题意,在上恒成立令,则,当且仅当时取等号.所以在上单调递增,.因此,在上单调递增,.所以.【考点】导数运算,化归思想.4.已知函数,其中。

(1)若,求函数的极值点和极值;(2)求函数在区间上的最小值。

【答案】(1)极小值点为,极小值为;极大值点为,极大值为;(2)【解析】(1)把代入原函数,求出的导函数,令导函数等于求出根即可得极值点,把极值点代入原函数得极值。

(2)因为,所以把分两种情况来讨论,当时,函数在区间为单调递增函数,最小值为,当时,求出函数的导函数,并令得增区间,令得减区间,最后得出的最小值。

试题解析:解:(1)当时,。

2分令,得或。

所以,在区间上,,函数是增函数;在区间上,,函数是减函数;在区间上,,函数是增函数。

4分[所以,函数的极小值点为,极小值为;极大值点为,极大值为。

8分(2)当时,是R上的增函数,在区间上的最小值为。

2021学年高考复习导数专题系列《专题2.13 利用导数求函数的单调性、极值、最值》(解析版)

2021学年高考复习导数专题系列《专题2.13 利用导数求函数的单调性、极值、最值》(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值【套路秘籍】一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【套路修炼】考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<.当(22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和)2+∞,单调递减区间为(22-. (2)函数2()ln f x x x =-的定义域为(0,)+∞.1()2f x x x '=-= 令()0f x '>,解得2x >;令()0f x '<,解得02x <<. 故函数2()ln f x x x =-的单调递增区间为()2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2]. f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

专题2.13 利用导数求函数的单调性、极值、最值(解析版)

第十三讲 利用导数求函数的单调性、极值 、最值【套路秘籍】一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【套路修炼】考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<.当(22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,-∞和)+∞,单调递减区间为(. (2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x-+'=-=. 令()0f x '>,解得x >;令()0f x '<,解得0x <<. 故函数2()ln f x x x =-的单调递增区间为)2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三讲 利用导数求函数的单调性、极值 、最值【套路秘籍】一.函数的单调性在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减. 二.函数的极值(1)一般地,求函数y =f (x )的极值的方法 解方程f ′(x )=0,当f ′(x 0)=0时:①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值; ②如果在x 0附近的左侧f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程f ′(x )=0的根;③考查f ′(x )在方程f ′(x )=0的根附近的左右两侧导数值的符号.如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值. 三.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【套路修炼】考向一 单调区间【例1】求下列函数的单调区间:(1)3()23f x x x =-; (2)2()ln f x x x =-. (3))f (x )=2x -x 2. 【答案】见解析【解析】(1)由题意得2()63f x x '=-.令2()630f x x '=->,解得2x <-或2x >.当(,2x ∈-∞-时,函数为增函数;当)2x ∈+∞时,函数也为增函数.令2()630f x x '=-<,解得22x -<<.当(22x ∈-时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和)2+∞,单调递减区间为(22-. (2)函数2()ln f x x x =-的定义域为(0,)+∞.1()2f x x x '=-= 令()0f x '>,解得2x >;令()0f x '<,解得02x <<. 故函数2()ln f x x x =-的单调递增区间为()2+∞,单调递减区间为(0,)2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2]. f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x 2x -x 2>0.即⎩⎪⎨⎪⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1). 令f ′(x )<0,则1-x2x -x 2<0,即⎩⎪⎨⎪⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2). 【举一反三】1.函数y =4x 2+1x 的单调增区间为________.【答案】 ⎝⎛⎭⎫12,+∞【套路总结】用导数研究函数的单调性 (1)用导数证明函数的单调性证明函数单调递增(减),只需证明在函数的定义域内'()f x ≥(≤)0 (2)用导数求函数的单调区间 ①求函数的定义域D ②求导'()f x③解不等式'()f x >()<0得解集P④求DP ,得函数的单调递增(减)区间。

一般地,函数()f x 在某个区间可导,'()f x >0⇒()f x 在这个区间是增函数 一般地,函数()f x 在某个区间可导,'()f x <0⇒()f x 在这个区间是减函数当求得的单调区间不止一个时,单调区间要用“,”或“和”字等隔开,不要用符号“∪”连接【解析】 由y =4x 2+1x ,得y ′=8x -1x 2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞. 2.函数f (x )=x ·e x -e x+1的单调增区间是________.【答案】 (e -1,+∞)【解析】 由f (x )=x ·e x -e x +1,得f ′(x )=(x +1-e)·e x ,令f ′(x )>0,解得x >e -1, 所以函数f (x )的单调增区间是(e -1,+∞).3.已知函数f (x )=x ln x ,则f (x )的单调减区间是________. 【答案】 ⎝⎛⎭⎫0,1e 【解析】 因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1(x >0), 当f ′(x )<0时,解得0<x <1e,即函数f (x )的单调减区间为⎝⎛⎭⎫0,1e . 4.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 考向二 极值【例2】求函数f (x )=2xx 2+1-2的极值.【答案】见解析【解析】函数的定义域为R.f ′(x )=2x 2+1-4x 2x 2+12=-2x -1x +1x 2+12. 令f ′(x )=0,得x =-1或x =1.当x 变化时,f ′(x )与f (x )的变化情况如下表:x (-∞,-1)-1 (-1,1) 1 (1,+∞) f ′(x ) - 0 + 0 - f (x )↘极小值↗极大值↘由表可以看出:当x =-1时,函数有极小值,且f (-1)=-22-2=-3;当x =1时,函数有极大值,且f (1)=22-2=-1.【举一反三】1.求函数f (x )=x 3-3x 2-9x +5的极值. 【答案】见解析【解析】函数f (x )=x 3-3x 2-9x +5的定义域 为R ,且f ′(x )=3x 2-6x -9. 解方程3x 2-6x -9=0,得x 1=-1,x 2=3. 当x 变化时,f ′(x )与f (x )的变化情况如下表:因此,x =-1是函数的极大值点,极大值为f (-1)=10;x =3是函数的极小值点,极小值为f (3)=-22.考向三 最值【例3】求下列各函数的最值:(1)f (x )=13x 3-4x +4,x ∈[0,3].(2)f (x )=sin 2x -x (x ∈[-π2,π2]).【答案】见解析【解析】(1)因f (x )=13x 3-4x +4,则f ′(x )=x 2-4=(x -2)(x +2).令f ′(x )=0,得x =2或x =-2(舍去). 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以当x =2时,f (x )=13x 3-4x +4有极小值,并且极小值为f (2)=-43.又由于f (0)=4,f (3)=1,因此,函数f (x )=13x 3-4x +4在[0,3]上的最大值是4,最小值是-43.(2)f ′(x )=2cos 2x -1.令f ′(x )=2cos 2x -1=0,解得x 1=π6,x 2=-π6.当x 变化时,f ′(x )与f (x )的变化情况如下表:由上表可知f (x )的最大值是π2,最小值是-π2.【举一反三】1.求下列函数的最值:(1)f (x )=x 3+2x 2-4x +5,x ∈[-3,1]; (2)f (x )=e x (3-x 2),x ∈[2,5]. 【答案】见解析【解析】(1)∵f (x )=x 3+2x 2-4x +5,∴f ′(x )=3x 2+4x -4. 令f ′(x )=0,得x 1=-2,x 2=23.∵f (-2)=13,f (23)=9527,f (-3)=8,f (1)=4,∴函数f (x )在区间[-3,1]上的最大值为13,最小值为9527.(2)∵f (x )=3e x -e x x 2,∴f ′(x )=3e x -(e x x 2+2e x x )=-e x (x 2+2x -3)=-e x (x +3)(x -1), ∵在区间[2,5]上,f ′(x )=-e x (x +3)(x -1)<0,即函数f (x )在区间[2,5]上单调递减, ∴x =2时,函数f (x )取得最大值f (2)=-e 2;x =5时,函数f (x )取得最小值f (5)=-22e 5.考向四 利用导数判断图像【例4】已知函数()y f x =的图象如图所示,则函数()y f x '=的图象可能是【答案】B【解析】由()y f x =的图象及导数的几何意义可知,当0x <时,()0f x '>;当0x =时,()0f x '=;当0x >时,()0f x '<,故B 符合.【举一反三】3.已知f (x )=14x 2+sin (π2+x),f'(x )为f (x )的导函数,则f'(x )的图象是( )【答案】A【解析】∵f (x )=14x 2+sin (π2+x)=14x 2+cos x ,∴f'(x )=12x-sin x ,它是一个奇函数,其图象关于原点对称,故排除B,D .又[f'(x )]'=12-cos x ,当-π3<x<π3时,cos x>12,∴[f'(x )]'<0,故函数y=f'(x )在区间(-π3,π3)内单调递减,排除C .故选A .【套路运用】1.函数f (x )=13x 3-4x +4的极大值为________.【答案】283【解析】 f ′(x )=x 2-4=(x +2)(x -2),f (x )在(-∞,-2)上单调递增,在(-2,2)上单调递减, 在(2,+∞)上单调递增,所以f (x )的极大值为f (-2)=283.2.函数y =x e x 的最小值是________. 【答案】 -1e【解析】 因为y =x e x ,所以y ′=e x +x e x =(1+x )e x .当x >-1时,y ′>0;当x <-1时,y ′<0,所以当x =-1时,函数取得最小值,且y min =-1e.3.函数f (x )=12x 2-ln x 的最小值为________.【答案】 12【解析】 f ′(x )=x -1x =x 2-1x 且x >0.令f ′(x )>0,得x >1.令f ′(x )<0,得0<x <1.∴f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.4.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1); ②函数f (x )有极大值f (-2)和极小值f (1); ③函数f (x )有极大值f (2)和极小值f (-2); ④函数f (x )有极大值f (-2)和极小值f (2). 【答案】 ④【解析】 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0 当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值, 在x =2处取得极小值.5.函数f (x )=(x-3)e x 的单调递增区间是 。

相关文档
最新文档