三重四级杆质谱仪原理详解[业界优制]
三重四极杆质谱原理
三重四极杆质谱原理
三重四极杆质谱原理是质谱仪中常用的一种工作模式,通过三个四极电场作用下的粒子筛选,实现对样品中不同离子的质荷比的分离和检测。
质谱仪中的三重四极杆由三根平行排列的四极电极组成,其中两个电极被称为焦点极,另一个电极被称为偏转极。
其中一个焦点极上施加一定的射频电压,在偏转极上施加直流电压,通过调节这些电压可以改变质谱仪的分辨率和灵敏度。
在质谱仪工作时,离子束经过入口孔进入四极杆,先经过第一个焦点极的筛选,只有符合特定质荷比范围的离子才能通过。
然后,通过调节射频电压和直流电压,使通过的离子束重新聚焦。
接着,离子束通过偏转极的筛选,根据离子在偏转极上的轨迹来区分不同质荷比的离子,并最终到达检测器进行电流检测。
通过调节焦点极、偏转极的电压和频率,可以控制通过离子束的特定质荷比离子的种类和数量,实现对样品中离子的分析和检测。
三重四极杆质谱原理可广泛应用于各种离子分离和质谱分析的领域。
三重四极杆串联质谱
三重四极杆串联质谱一、三重四极杆串联质谱的原理三重四极杆串联质谱是一种基于离子激发和离子分析的技术。
它由三个四极杆组成,每个四极杆都具有一个电场和一个磁场,可以对离子进行加速、分离和聚焦。
首先,样品通过离子源产生离子,然后进入第一个四极杆,通过调节电场和磁场来筛选离子。
接着,离子经过激发,激发成不稳定的离子态,然后再进入第二个四极杆进行进一步的分离和筛选。
最后,离子进入质谱仪进行质谱分析,得到样品的质谱图谱。
二、三重四极杆串联质谱的应用三重四极杆串联质谱在化学、生物和医药领域有着广泛的应用。
在化学领域,它可以用于分析复杂的有机化合物、无机化合物和高分子化合物,如蛋白质、DNA和RNA。
在生物领域,它可以用于分析生物样品的代谢产物、蛋白质组学、脂质组学和糖类组学。
在医药领域,它可以用于药物分析、代谢物分析和药物代谢动力学研究。
此外,三重四极杆串联质谱还可以结合其他分析技术,如色谱和电泳,进行多维分析,提高分析的灵敏度和分辨率。
三、三重四极杆串联质谱的发展趋势随着科学技术的不断发展,三重四极杆串联质谱也在不断改进和创新。
一方面,质谱仪器的灵敏度和分辨率不断提高,可以检测到更多的化合物和离子。
另一方面,质谱数据处理和分析的软件也不断升级,可以更方便地进行质谱数据的解释和应用。
此外,随着生物技术和医学技术的快速发展,三重四极杆串联质谱将会更多地应用于生物医学研究和临床诊断。
总之,三重四极杆串联质谱是一种重要的分析技术,它具有高灵敏度、高分辨率和广泛的应用领域。
随着科学技术的不断进步,三重四极杆串联质谱将会在化学、生物和医药领域发挥越来越重要的作用。
希望本文对读者对三重四极杆串联质谱有更深入的了解,并对相关研究和应用提供帮助。
三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪是一种分析仪器,结合了气相色谱(GC)和质谱(MS)技术,用于分析复杂样品中的组分。
三重四级杆气相色谱质谱联用仪的工作原理如下:
1. 气相色谱(GC)分离:样品经过预处理后,通过进样口注
入气相色谱柱中。
然后,样品在高温条件下挥发,并通过气流带动进样口中的挥发物进入气相色谱柱。
在气相色谱柱中,样品中的成分会因为不同的亲和性而在柱上发生分离。
2. 离子化与分析:GC柱分离出的组分进入质谱部分。
首先,
离子源将分离出的化合物离子化,通常使用电子轰击(EI)或化学电离(CI)方法。
离子化后的化合物会形成离子云。
3. 气体四级杆质量分析器:离子云被引入到四级杆质量分析器中,在四级杆中通过运动激发进行质量分析。
通过调节四级杆中的偏压和交变电场的频率,只有质量-电荷比(m/z)在指定
范围内的离子可以穿过四级杆,其他离子则被排除。
4. 超过磁扇质谱仪:离子从四级杆进一步进入超过磁扇质谱仪。
在这里,离子会被分离成不同的mm/z比。
质谱仪会测量这些
离子的强度,从而得到样品中的各种成分及其相对丰度。
5. 数据分析和识别:质谱仪测量得到的数据可以通过计算机进行分析和识别。
根据谱图中离子的相对强度和m/z比,可以确定各个组分的存在和相对丰度。
通过气相色谱质谱联用仪的工作原理,可以实现对复杂样品中微量成分的快速准确分析和鉴定。
三重四级杆质谱仪原理详解
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可能 不是最低同位素质量。注意这个变化是同位素分布,它将影响你分析 的结果。
4
质量分析器的性能特点
分辨率= M/ΔM 分辨率为200时,准确率是~2000ppm 分辨率为2500时,准确率是~100ppm
5
准确率(PPM级误差的例子)
6
一个单四极杆质谱仪
7
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
8
四极杆质量过滤器如何工作的?
9
四极杆质量过滤器稳定性图表
马修稳定图
10
选择性离子监测与全扫描对比
11
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最 好的仪器。
式具有最好的灵敏性和准确性。 三重四极杆不是最好的获取质谱图的仪器,平行测量的质谱系统 会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那
么 有说服力(定性)
49
质量分析器的性能特点
• 质量范围 – 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
38
内容
• 质量分析 – 基础知识 – 质量分析器的性能特点 • 分辨率 • 准确率 • 质量范围
• 多级质量分析 – 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式 • SRM • MRM
• QQQ的优点(选择性、灵敏度和速度
39
质量分析: 基本基础知识
• 在质量分析器里所产生的离子是根据他们的质荷 比(m/z).进行分离的
三重四级杆质谱仪工作原理
三重四级杆质谱仪是一种高灵敏度、高分辨率的质谱仪,广泛应用于生物医学、环境监测、食品安全等领域。
其工作原理如下:
离子源:将待测样品离子化,通常采用电子轰击(EI)或化学电离(CI)等方式。
质量分析器:将离子源产生的离子按质量分离,通常采用四级杆质量分析器。
碰撞室:在离子进入质量分析器之前,将其与惰性气体(如氮气)碰撞,使其失去部分能量并碎裂成更小的离子。
三重四级杆质量分析器:由三个四级杆组成,其中第一个四级杆(Q1)用于选择特定的离子,第二个四级杆(Q2)用于碎裂离子,第三个四级杆(Q3)用于检测碎裂后的离子。
检测器:将离子转化为电信号,并记录下来。
通过上述过程,三重四级杆质谱仪可以实现对复杂混合物中特定化合物的定性和定量分析。
三重四级杆质谱仪原理(全)
酸性氯代除草剂的基本知识
• 常用于除去草地和谷类农作物中阔叶杂草 • 潜在的地下水污染物 • 公众的误用 • 需要对痕量级别定量
传统方法
• 液-液萃取 • 重氮甲烷衍生化 • 气相色谱方法和选择性检测器(例如电子捕获检测器) • 仪器二次运行确认 • 存在问题 • 溶剂的过量使用 • 问题数据的解释 • 甲基化试剂的安全关注
三重四级杆质谱仪原理
内容
质量分析
– 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
多级质量分析
– 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
• SRM • MRM
QQQ的优点(选择性、灵敏度和速度)
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
三重四极杆不是最好的获取质谱图的仪器,平行测量 的质谱系统会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那么
有说服力(定性)
质量分析器的性能特点
• 质量范围
– 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性 最好的仪器。
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和 母子扫描模式具有最好的灵敏性和准确性。
三重四级杆液质联用仪原理
三重四级杆液质联用仪原理三重四级杆液质联用仪是一种高分辨率的分析仪器,常用于生物分析、药物代谢研究、环境分析等领域。
它结合了质谱仪与色谱仪的优势,能够提供更高的灵敏度、更好的分辨率和更广泛的分析范围。
本文将从仪器的结构、工作原理和应用领域三个方面详细介绍三重四级杆液质联用仪。
三重四级杆液质联用仪的结构包括样品处理系统、色谱分离系统、质谱检测系统和数据处理系统。
样品处理系统用于样品的前处理,如样品的制备、提取和净化。
色谱分离系统采用高效液相色谱(HPLC)技术,通过液相色谱柱的分离能力将样品中的化合物分离出来。
质谱检测系统则通过质谱技术将分离出来的化合物进行检测和分析。
数据处理系统用于对质谱数据进行处理和分析,以获得有关样品组成和结构的信息。
三重四级杆液质联用仪的工作原理基于质谱仪的基本原理。
质谱仪通过将样品中的化合物转化为离子并对其进行质荷比(m/z)的分析,从而得到有关化合物的信息。
在三重四级杆液质联用仪中,样品分离后的化合物从液相色谱柱中进入质谱检测系统。
在质谱检测系统中,化合物首先经过一个四级杆组成的离子源,其中三个杆为驱动电极,一个杆为静电能量筛。
通过加入电场和射频场使得化合物被离子化,形成碎片离子。
离子经过杆组之后,进入到一个四级杆组成的质量分析器,这个质量分析器通过调整杆组之间的电压和扫描序列,可以选择特定质荷比的离子,进而进行质量分析。
最后,离子通过一个四级杆组成的解离器,通过改变杆组之间的电压和扫描序列,将离子解离成质量较小的碎片离子,这些碎片离子可用于进一步的结构分析。
三重四级杆液质联用仪有许多优点。
首先,它具有较高的灵敏度,可以检测到十分微量的化合物,通常在纳克/毫升(ppt)至百克/毫升(ppb)范围内。
其次,它具有较好的分辨率,不仅可以对复杂的混合物进行分离,还可以对类似化合物进行区分。
此外,三重四级杆液质联用仪可用于对样品进行定性和定量分析,通过质谱技术可以获得化合物的结构和组成信息。
三重四级杆质谱仪原理
开发新型电离源和检测器
电离源
研究新型电离源,如大气压化学 电离源和基质辅助激光解吸电离 源,以适应不同类型样品的离子 化需求。
检测器
开发高灵敏度和高动态范围的检 测器,以捕捉更多离子信息和提 供更准确的定量分析。
实现小型化和集成化
减小体积
通过优化电子和机械部件,减小仪器体积,使其更适合于现场和便携式应用。
代谢组学研究
用于检测生物体代谢产物的变化,了解生物体的生理和 病理状态。
05
三重四级杆质谱仪的发 展趋势和挑战
提高检测灵敏度和分辨率
检测灵敏度
通过优化离子传输系统和降低检测器噪音,提高对低 浓度样品的检测灵敏度。
分辨率
采用更高级的分离技术,如双四级杆或飞行时间质谱, 提高对同位素和异构体的分辨率。
三重四级杆质谱仪原 理
目录
• 质谱仪概述 • 三重四级杆质谱仪工作原理 • 三重四级杆质谱仪的组成 • 三重四级杆质谱仪的应用 • 三重四级杆质谱仪的发展趋势和挑战
01
质谱仪概述
质谱仪的定义
总结词
质谱仪是一种能够分离和测量带 电粒子(通常是分子或原子)质 量的仪器。
详细描述
质谱仪利用电场和磁场的作用, 将带电粒子按照质量大小进行分 离,并通过对粒子的性质和数量 进行测量,确定粒子的质量。
04
三重四级杆质谱仪的应 用
在环境监测中的应用
空气质量监测
三重四级杆质谱仪能够检测空气中的有害气体、挥发 性有机化合物等,为环境监测提供准确的数据。
水质监测
用于检测水体中的有毒有害物质,如重金属、农药残 留等,确保水质安全。
在食品安全检测中的应用
食品中农药残留检测
用于检测食品中农药残留量,确保食品的安 全性。
三重四极杆液质联用仪原理
三重四极杆液质联用仪原理三重四极杆液质联用仪原理是一种用于物质分析的仪器,它结合了液相色谱技术和质谱技术的优势,可以对样品中的化合物进行分离、识别和定量分析。
其原理主要包括样品的进样、分离与电离、质谱检测以及数据分析等过程。
首先,样品进样是三重四极杆液质联用仪中的一个重要步骤。
样品可以通过进样器经过准确的定量加入进入液相分离柱中,通常采用高效液相色谱(HPLC)系统。
同时,在进样过程中,还可以通过添加内标物,以提高定量分析的准确性。
接下来,样品在液相分离柱中进行分离与电离。
在液相分离中,样品组分会根据其化学性质被柱填充物吸附与释放,从而发生分离。
这个过程通常是在高效液相色谱柱(HPLC柱)中进行的,可以根据需要选择不同类型的柱、填料和流动相来实现样品组分的分离。
分离后的样品组分通过柱后端的电喷雾(ESI)等方式进行电离,转化为带电离子,以便在质谱中进行检测。
然后,电离后的样品组分进入质谱检测器进行分析。
三重四极杆质谱仪(Q-MS)是最常用的质谱检测器,它由一个击穿离子源和一个三重四极杆系统组成。
在击穿离子源中,通过电场将电荷交换气体(通常是氮气或甲烷)与带电样品分子碰撞,从而形成气相离子。
这些离子进入质谱仪的四极杆中,在不同的电场和磁场作用下,根据其质量/荷比,进一步进行分离、扫描和检测。
最后,得到的质谱信号通过数据采集系统与计算机进行处理和分析。
这包括峰识别、峰面积计算和定量分析等操作。
通过与已知标准物质的比对,可以确定样品中的目标化合物的含量。
三重四极杆液质联用仪的原理基于液相色谱和质谱的相结合,通过样品的分离和电离,将样品中的复杂化合物分子转化为离子,然后根据离子的质荷比进行分析。
这种手段具有高灵敏度、高选择性和高分辨率等特点,在药物分析、环境分析和食品安全等领域有着广泛的应用。
三重四级杆质谱仪原理详解
三重四级杆质谱仪原理详解
准确率(PPM级误差的例子)
一个质量为1000 道尔顿的化合物 1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)
式变成碎片然后被测定。
• 质谱/质谱试验能快速进行。
• 离子阱允许对碎片离子和碎片
片段进行多重质谱/质谱(aka MSn)实验,以获得更多的结构 信息。
• 另外一个优点就是它们能够富
集离子,以提供更好三的重四离级杆子质谱信仪原号理详。解
时间串联的多级质谱:缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢
空间串联的质谱
三重四级杆质谱仪原理详解
时间串联多级质量分析是通过同一个分析器实现的,分 离出所需的离子,使之断裂,并分析碎片离子。
三重四级杆质谱仪原理详解
时间串联的多级质谱: 离子阱(质谱N)
离子在离子阱中静电捕获(无线电频率场见下图) 通过改变阱里的电场,从而选择特定的离子留在阱里,
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
三重四级杆质谱仪原理详解
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可 能不是最低同位素质量。注意这个变化是同位素分布,它将影响你分 析的结果。
三重四级杆质谱仪原理详解
质量分析器的性能特点
三重四级杆液相色谱质谱联用仪原理
三重四级杆液相色谱质谱联用仪原理液相色谱(Liquid chromatography,LC)是一种分离方法,通过溶液中化合物的分配行为实现化合物的分离。
LC中的分离是通过样品溶液与流动相之间的相互作用进行的。
LC利用固定相和流动相的相互作用,将混合物中的各种组分分离开来。
与气相色谱相比,液相色谱对极性样品更适用。
质谱(Mass spectrometry,MS)是一种物理分析技术,利用分子或原子在电磁场中的质量和电荷特性的差异实现化学的结构鉴定和定量分析。
质谱仪将样品中的分子或原子通过电离源产生离子,然后使用磁场或电场对离子进行分离和检测。
质谱技术可以提供分子或原子的质量、结构和含量等信息。
三重四级杆液相色谱质谱联用仪的原理是将液相色谱和质谱联用,实现对样品的同时分离和鉴定。
液相色谱和质谱之间的连接方式有三种:先色谱后质谱(LC-MS),先质谱后色谱(MS-LC)和在线两步分析(LC/MS)。
1.样品的制备:将待测样品溶解在合适的溶剂中,并加入内标化合物。
2.进样:将样品注入进样器,通过进样器引入色谱柱。
3.色谱柱分离:样品进入色谱柱,根据各组分的色谱行为,它们在固定相和流动相之间进行分配和分离。
4.质谱检测:色谱柱出口的化合物进入质谱,通过电离源电离产生离子,进入四级杆进行高效分离和检测。
离子的分离过程使用四级杆的正、负、反并线性能进行高效分离。
5.数据分析:质谱信号经过质谱仪器的检测和分析,通过计算机处理得到质谱图谱和质量谱图。
利用这些谱图,可以进行化合物的鉴定和定量分析。
三重四级杆液相色谱质谱联用仪的优点在于其高灵敏度、高选择性和结构鉴定能力。
它可以同时进行多组分定性和定量分析,可以用于研究样品的成分和结构。
在生命科学、环境科学和药物研发等领域,该仪器被广泛应用于复杂样品的分析和鉴定。
三重四级杆质谱仪原理(全)
描述质谱仪同时检测不同浓度范围离子的能力。
关键参数设置方法及影响分析
离子源参数
包括电离方式、电离能量、气体流量等,影响离子产生效率和碎 片化程度。
质量分析器参数
如扫描速度、分辨率设置等,直接影响质谱图的获取质量和速度。
检测器参数
包括增益、偏置电压等,影响离子信号的检测和转换。
优化实验条件提高分辨率和灵敏度
THANKS FOR WATCHING
感谢您的观看
质量分析器类型
01
三重四级杆质谱仪采用串联的三个四级杆质量分析器,用于筛
选和分离不同质荷比的离子。
离子筛选
02
通过调节四级杆上的直流和交流电压,形成特定的电场分布,
使得只有特定质荷比的离子能够通过。
离子分离
03
经过多级筛选和分离,不同质荷比的离子被依次传输到检测器
进行检测。
检测器信号转换与放大
01
02
03
检测器类型
常用电子倍增器或离子阱 检测器等,用于将离子信 号转换为电信号。
信号转换
离子撞击检测器表面产生 二次电子,经过多级倍增 后形成可测量的电流信号。
信号放大
通过放大器对电流信号进 行放大处理,提高信噪比 和灵敏度。
数据处理系统简介
数据采集
将检测器输出的模拟信号转换为数字信号,并进 行实时采集和存储。
随着技术的不断进步,三重四级杆质谱仪的性能将不断提升,满 足更高层次的应用需求。
应用领域持续拓展
随着新方法和新技术的开发,三重四级杆质谱仪的应用领域将持续 拓展,覆盖更多行业和领域。
智能化和自动化水平提高
人工智能和自动化技术的引入将进一步提高三重四级杆质谱仪的智 能化和自动化水平,简化操作流程和提高工作效率。
三重四级杆质谱仪原理详解
其他的排除出离子阱。 • 在与惰性气体原子(氦,氩或者氮)碰撞后,所选择的离
子被激活,所产生的更大动能使它们变成碎片。 • 所得的碎片离子通过分析后,得到碎片离子谱图。
56
时间串联的多级质谱:优点
低聚核苷酸以及酯类药物类的分子等的测定。
52
什么是碰撞诱导解离(CID)?
这是一个通过中性分子的碰撞把能量传递给离子的过程。 这种能量传递足以使分子键断裂和所选择的离子重排。
❖ 为什么它那么重要?
在70年代初期McLafferty (JACS, 95, 3886, 1973) 论证 了从离子观测得的键断裂和重排,表明了CID是中性分子的 分子结构的典型代表。 ❖ 结构阐述
6
一个单四极杆质谱仪
7
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
8
四极杆质量过滤器如何工作的?
9
四极杆质量过滤器稳定性图表
马修稳定图
10
选择性离子监测与全扫描对比
11
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最 好的仪器。
片段进行多重质谱/质谱(aka
MSn)实验,以获得更多的结构
信息。
• 另外一个优点就是它们能够富
集离子,以提供更好的离子信号。
20
时间串联的多级质谱:缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢
失 扫描的高灵敏度。
• 因为空间电荷效应的影响,离子阱的 动态范围有限。因为
如果过多的离子积累在阱里,它们的电荷相斥会对仪器的 分辨率和定量分析造成有害的影响。
三重四级杆质谱仪原理详解
农药残留检测
该仪器能够检测农产品中 农药的残留量,保障食品 安全。
兽药残留检测
在肉类食品中,兽药残留 可能对人体造成危害,三 重四级杆质谱仪能够对其 进行准确的检测。
在环境监测中的应用
大气污染物监测
通过对大气中各种污染物的成分和浓 度进行分析,三重四级杆质谱仪有助 于评估空气质量。
水质监测
通过对水体中的有机物、重金属等污 染物进行分析,该仪器有助于监测水 质状况和评估水环境健康。
在四级杆质谱仪中,粒子在电场和磁场的作用下进行稳定的 运动,通过测量粒子的运动轨道和周期,可以推算出粒子的 质量和电荷状态。
离子传输系统
离子传输系统是连接离子源和四级杆质谱仪的桥梁,其主 要功能是将离子源产生的离子传输到质谱仪中,同时保证 离子的传输效率和稳定性。
离子传输系统通常采用离子光学原理,通过控制电场和磁 场的大小和方向,实现对离子的聚焦、导向和传输,以保 证离子能够稳定地进入四级杆质谱仪。
05
三重四级杆质谱仪的发 展趋势与展望
技术改进与创新
更高的灵敏度和分辨率
通过改进离子光学系统和检测器技术,提高三重四级杆质 谱仪的灵敏度和分辨率,使其能够检测更低浓度和更小的 分子。
智能化和自动化
引入人工智能和机器学习技术,实现三重四级杆质谱仪的 智能化和自动化操作,包括自动校准、自动优化和自动诊 断等功能,提高仪器的可靠性和稳定性。
真空系统通常采用机械泵或分子泵等抽气设备,将质谱仪内部的空气抽出,以降低空气分子对离子运 动的影响,保证离子的传输效率和稳定性。同时,真空系统还能够减少空气对离子的碰撞和散射,提 高离子的检测效率和准确性。
03
三重四级杆质谱仪的应 用
在药物分析中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子被激活,所产生的更大动能使它们变成碎片。 所得的碎片离子通过分析后,得到碎片离子谱图。
扶风书屋
19
时间串联的多级质谱:优点
• 离子阱的一个优点就是它们能
够分离出某种离子,把其他的离 子排除出离子阱。
• 被分离的离子能够通过CID的方
扶风书屋
6
一个单四极杆质谱仪
扶风书屋
7
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性
是相反的。
扶风书屋
8
四极杆质量过滤器如何工作的?
扶风书屋
9
四极杆质量过滤器稳定性图表
马修稳扶风定书屋图
10
选择性离子监测与全扫描对比
扶风书屋
11
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最 好的仪器。
❖ 为什么它那么重要? 在70年代初期McLafferty (JACS, 95, 3886, 1973) 论证了从离 子观测得的键断裂和重排,表明了CID是中性分子的分子 结构 的典型代表。
❖ 结构阐述
用主要的分裂机理方式解释CID谱图。
扶风书屋
16
多级质谱分析
两种型号的质谱 时间串联的质谱
空间串联的质谱
扶风书屋
5
准确率(PPM级误差的例子)
一个质量为1000 道尔顿的化合物 1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和 母子扫描模式具有最好的灵敏性和准确性。
三重四极杆不是最好的获取质谱图的仪器,平行测 量的质谱系统会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那
么 有说服力(定性)
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
扶风书屋
3
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可
能不是最低同位素质量。注意这个变化是同位素分布,它将影响你分
析的结果。
扶风书屋
4
质量分析器的性能特点
分辨率= M/ΔM 分辨率为200时,准确率是~2000ppm 分辨率为2500时,准确率是~100ppm
三重四级杆质谱仪原理
1
扶风书屋
内容
质量分析
– 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
多级质量分析
– 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
• SRM
• MRM
QQQ的优点(选择性、灵敏度和速度)
扶风书屋
Байду номын сангаас
2
质量分析: 基本基础知识
失 扫描的高灵敏度。
• 因为空间电荷效应的影响,离子阱的 动态范围有限。因
为如果过多的离子积累在阱里,它们的电荷相斥会对仪器 的分辨率和定量分析造成有害的影响。
扶风书屋
21
空间串联的多级质谱:通过QQQ质量分析器完成
• 空间串联的多级质谱分析通过连续的质量分析器
实现,例如QQQ。
扶风书屋
22
空间串联多级质谱:QQQ
式变成碎片然后被测定。
• 质谱/质谱试验能快速进行。
• 离子阱允许对碎片离子和碎片
片段进行多重质谱/质谱(aka
MSn)实验,以获得更多的结构
信息。
• 另外一个优点就是它们能够富
集离子,以提供更好的离扶子风书信屋 号。
20
时间串联的多级质谱:缺点
• 缺乏三重四极杆(QQQ)类型的母离子扫描和和中性丢
扶风书屋
17
时间串联多级质谱分析:通过离子阱质量分析器实现
时间串联多级质量分析是通过同一个分析器实现的,分
离出所需的离子,使之断裂,并分析碎片离子。
扶风书屋
18
时间串联的多级质谱: 离子阱(质谱N)
离子在离子阱中静电捕获(无线电频率场见下图) 通过改变阱里的电场,从而选择特定的离子留在阱里,
• 在下面的例子中,睾丸激素在母碎片(m/z 367)中
碎片m/z 97得到选择性监测,具有极高的灵敏度和精 确的定量分析。
扶风书屋
26
QQQ在多QQ级Q质中谱进:行中中性性丢丢失失扫扫描描,Q1和Q3分析器的结合使
• Q1选择了某一特定质量的母离子,Q2碰撞池产生碎片
离子,然后在Q3中分析。此过程产生典型的质谱质谱碎 片谱图。
第一个四极杆在选择性离子监测模式,第二个在全扫描监测模式
扶风书屋
25
QQQ多级质谱:母离子扫描
• 在母离子扫描中,Q1测定母离子,Q3测定某个特定
的碎片离子,因此可在非常复杂的混合物中监测某种 特定的分子。
诱 导解离(CID)。
对所得的碎片离子进行质量分析。
碎片离子被用于对原来的分子离子的结构判断。
多质谱分析可用于缩氨酸顺序,碳水化合物的结构特性, 低聚核苷酸以及酯类药物类的分子等的测定。
扶风书屋
15
什么是碰撞诱导解离(CID)?
这是一个通过中性分子的碰撞把能量传递给离子的过程。
这种能量传递足以使分子键断裂和所选择的离子重排。
• 必须通过连续放置多个分析器来实 现空间串联的多级质
谱分析。
• 对于QQQ,每个分析器有以下单独的作用:
– 第一个四极杆(Q1)根据设定的质荷比范围扫描和选择所需的离 子。
– 第二个四极杆(Q2) ,也称碰撞池,用于聚集和传送离子。在所 选 择离子的飞行途中,引入碰撞气体,例如氮气等。 – 第三个四极杆(Q3)用于分析在碰撞池中产生的碎片离子。
扶风书屋
12
质量分析器的性能特点
• 质量范围
– 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
扶风书屋
13
多级质量分析——质谱/质谱方式的介绍
14
扶风书屋
多级质量分析
通常通过由惰性气体分子,例如氮气,氩气或氦气,碰撞 所选择的分子离子来实现的。这个过程就是所谓的碰撞
扶风书屋
23
空间串联多级质谱:QQQ
• QQQ质谱仪对于液相色谱-质谱/质谱应用来说是
权威的分析工具,特别是需要精确定量时。
• 可以通过三重四极杆质谱仪可以进行如下几类试验:
– 子离子扫描 – 母离子扫描 – 中性丢失扫描 – 单个反应监测 – 多重反应监测
扶风书屋
24
QQQ多级质谱:子离子扫描