高等数学第一次习题课2

合集下载

高等数学课后习题答案--第一章

高等数学课后习题答案--第一章

《高等数学》习题参考资料第一篇 一元函数微积分第一章 极限与连续§1 函 数习 题1.确定下列初等函数的定义域:(1) 21)(2−−+=x x x x f ;(2)4)(2−=x x f ;(3) 21arcsin )(−=x x f ;(4)2)5lg()(x x x f −=;(5) 4lg )5lg()(2−−=x x x f ;(6)x x x f cos sin )(−=。

1. 【答案】(1) )},2()2,1()1,(|{:+∞∪−∪−−∞∈=x x D (2) )},2[]2,(|{:+∞∪−−∞∈=x x D (3) ]}3,1[|{:;−∈=x x D (4) )}5,0()0,(|{:∪−∞∈=x x D (5) ]}4,1[|{:∈=x x D (6)+ +∈=+∞−∞=U k k k x x D ππ452,412|:.2. 作出下列函数的图象:(1)|sin |sin )(x x x f −=;(2)|1|2)(−−=x x f ;(3)+−−=,1,1,21)(x x x x f .12,21,1||−<<−<<≤x x x 2 【答案】 (1)2(2)2 (3)3.判断下列函数的奇偶性:(1)x x x f ++−=11)(;(2)xxx f x x +−+−=11lg110110)(;(3)x x a a x f x x sin )(++=−;(4))1lg()(2x x x f ++=。

3. 【答案】 (1) 偶函数; (2) 偶函数; (3) 偶函数; (4) 奇函数 .4.证明:两个奇函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数。

4. 【答案】 设)(x f ,)(x h 是奇函数, )(x g 是偶函数,)()()(x h x f x f =,)()()(x g x f x G =, 于是)()()(x h x f x F −−=−))())(((x h x f −−=)()()(x F x h x f ==, 因此)(x F 是偶函数.)()()(x g x f x G −−=−)()(x g x f −=)(x G −=, 因此)(x G 是奇函数.5.设函数f 满足:D (f )关于原点对称,且()xc x bf x af =+1)(,其中a ,b ,c 都是常数,||||b a ≠,试证明f 是奇函数。

《高等数学习题课二》PPT课件

《高等数学习题课二》PPT课件

( C ) 与 y 轴 相 垂 直 ;( D ) 与x 轴 即 不 平 行 也 不 垂 直 :
h
1
3、 若 函 数 f (x) 在 点 x0 不 连 续 , 则 f (x) 在x0 ( )
( A) 必 不 可 导 ;
( B) 必 定 可 导 ;
(C)不一定可导; (D)必无定义 .
4 、 如 果 f ( x ) = ( ), 那 么 f ( x ) 0 .
x;
4、 6 x tan( 10 3 x 2 ) ;
5、 x y ; x y
6、
1
.
3(2 y 1)( 2 x 1) x 2 x
h
8
四、1、a g(0);
2、f
(
x)
x[
g(
x)
sin x] x2
[
g(
x)
cosx]
,
x
0 .
12(g(0) 1), x 0
五、 f (n) (1) (1)n2 (n 2)!.
六、2.09.
七、20 8.16(公里/小时). 6
h
9
x x0
x
( D ) lim f ( x ) f ( x 0 ) ;
x x0
x x0
2、 若 函 数 y f ( x ) 在 点 x 0 处 的 导 数 f ( x 0 ) 0 , 则
曲 线 y f (x)在 点 ( x0, f (x0))处 的 法 线 ( )
( A ) 与 x 轴 相 平 行 ;( B ) 与x 轴 垂 直 ;
cos x
x
,
x
0 其中g( x)
有二阶连
a, x 0
续导数,且 g(0) 1,

高等数学习题:习题课2

高等数学习题:习题课2
(2)证明对任何正数 a, b, c ,有 abc3 27( abc )5 。 5
设f ( x , y )与( x , y )均为可微函数,且 y ( x , y ) 0 已知( x0 , y0 )是在约束条件( x , y ) 0下的一个极 值 点,下 列 选 项 正 确 的 是: ( A )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( B )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( C )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0; ( D )若f x ( x0 , y0 ) 0,则f y ( x0 , y0 ) 0. ( 2006年考研题)
0
(2) f(z) z2 , z 0
z 0 ,z0
z0
(3) f(z) 3x3 3y3i
(4)f (z)
x2
x y2
i
x2
y
y2
5. 设my3 nx2y i(x3 lxy2)为解析函数,试求l, m, n。
6. 已知u ex (x cosy y sin y),求解析函数f (z) u iv, 并满足f (0) 0.
一、选择题
习题课
1.曲面 2xy4zez 3 在点 (1,2,0) 处的法线与直线
x1 y z2 的夹角( ) 1 1 2
(A) ; (B) ; (C) ; (D)0.
4
3
2
2. 设函数 f ( x, y) 在点(0, 0) 附近有定义,且 f x (0,0)3 , f y (0,0)1 ,则( )
(C)(0,2);
(D)(2,0)。
2. 若函数 f ( x,y) 在点(0,0) 的某个邻域内连续,且满足

同济大学版高等数学课后习题答案第2章

同济大学版高等数学课后习题答案第2章

习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t ). 如果旋转是匀速的, 那么称t θω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度? 解 在时间间隔[t 0, t 0+∆t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆.2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度? 解 物体在时间间隔[t 0, t 0+∆t ]内, 温度的改变量为 ∆T =T (t +∆t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆.3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f '(x )在经济学中称为边际成本. 试说明边际成本f '(x )的实际意义.解 f (x +∆x )-f (x )表示当产量由x 改变到x +∆x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +∆x 时单位产量的成本.xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本.4. 设f (x )=10x 2, 试按定义, 求f '(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim)1()1(lim )1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x xx x x x .5. 证明(cos x )'=-sin x .解 xxx x x x ∆-∆+='→∆cos )cos(lim )(cos 0xxx x x ∆∆∆+-=→∆2sin )2sin(2lim0 x x xx x x sin ]22sin )2sin([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000;解 xx f x x f A x ∆-∆-=→∆)()(lim 000)()()(lim 0000x f x x f x x f x '-=∆--∆--=→∆-.(2)A xx f x =→)(lim 0, 其中f (0)=0, 且f '(0)存在;解 )0()0()0(lim )(lim 00f x f x f x x f A x x '=-+==→→.(3)A hh x f h x f h =--+→)()(lim 000.解 hh x f h x f A h )()(lim 000--+=→hx f h x f x f h x f h )]()([)]()([lim 00000----+=→hx f h x f h x f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6;(4)xy 1=;(5)21x y =;(6)53x x y =;(7)5322x x x y =; 解 (1)y '=(x 4)'=4x 4-1=4x 3 . (2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x x y . (6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s )时的速度. 解v =(s )'=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0. 证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→,从而有2f '(0)=0, 即f '(0)=0. 10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =π.解 因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x , 233sin 3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1⋅(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线? 解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=0001sin 2x x xx y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 0=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-xx x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续.又因为01sin lim 01sin lim 0)0()(lim0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数⎩⎨⎧>+≤=1 1)(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值? 解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111,所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解 因为f -'(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x ,f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x ,而f -'(0)≠f +'(0), 所以f '(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0sin x x x x , 求f '(x ) .解 当x <0时, f (x )=sin x , f '(x )=cos x ; 当x >0时, f (x )=x , f '(x )=1;因为 f -'(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x ,f +'(0)=10lim )0()(lim 00=-=-++→→x x x f x f x x , 所以f '(0)=1, 从而f '(x )=⎩⎨⎧≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-.令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x 轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x )'=-csc 2x ; (csc x )'=-csc x cot x .解 x x x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222csc sin 1sin cos sin -=-=+-=. x x xx x x cot csc sin cos)sin 1()(csc 2⋅-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xx x y ;(2) y =5x 3-2x +3e x ; (3) y =2tan x +sec x -1; (4) y =sin x ⋅cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)x x y ln =;(8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3e x .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ⋅tan x =sec x (2sec x +tan x ). (4) y '=(sin x ⋅cos x )'=(sin x )'⋅cos x +sin x ⋅(cos x )' =cos x ⋅cos x +sin x ⋅(-sin x )=cos 2x . (5) y '=(x 2ln x )'=2x ⋅ln x +x 2⋅x1=x (2ln x +1) .(6) y '=(3e x cos x )'=3e x ⋅cos x +3e x ⋅(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x xx x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y '=(x 2ln x cos x )'=2x ⋅ln x cos x +x 2⋅x1⋅cos x +x 2 ln x ⋅(-sin x )2x ln x cos x +x cos x -x 2 ln x sin x . (10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=d d .(3)553)(2x x x f +-=, 求f '(0)和f '(2) . 解 (1)y '=cos x +sin x ,21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=.求:(1)该物体的速度v (t ); (2)该物体达到最高点的时刻. 解 (1)v (t )=s '(t )=v 0-gt . (2)令v (t )=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x ); (3)23x e y -=; (4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=; (7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x )2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1⋅(2x +5)'=4(2x +5)3⋅2=8(2x +5)3. (2) y '=-sin(4-3x )⋅(4-3x )'=-sin(4-3x )⋅(-3)=3sin(4-3x ). (3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='. (4)222212211)1(11xx x x x x y +=⋅+='+⋅+='.(5) y '=2sin x ⋅(sin x )'=2sin x ⋅cos x =sin 2x . (6))()(21])[(22121222122'-⋅-='-='-x a x a x a y222122)2()(21xa x x x a --=-⋅-=-.(7) y '=sec 2(x 2)⋅(x 2)'=2x sec 2(x 2). (8)xx x x e e e e y 221)()(11+='⋅+='.(9) y '21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='.7. 求下列函数的导数: (1) y =arcsin(1-2x ); (2)211x y -=; (3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)xx y ln 1ln 1+-=;(6)x x y 2sin =;(7)x y arcsin =; (8))ln(22x a x y ++=; (9) y =ln(sec x +tan x ); (10) y =ln(csc x -cot x ). 解 (1)2221)21(12)21()21(11xx x x x y --=---='-⋅--='.(2))1()1(21])1[(21212212'-⋅--='-='---x x x y222321)1()2()1(21xx x x x --=-⋅--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3sin 63(cos 213sin 33cos 21222x x e x e x e xxx +-=--=---.(4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1xa x x a x a x +=++⋅++=. (9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ; (9)x x x x y -++--+1111;(10)xx y +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(arcsin 22'⋅-⋅=x x x 21)2(11)2(arcsin 22⋅-⋅=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x csc 212sec 2tan 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x x x y )(ln ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+=x x x 2ln 1ln +=.(4))(arctan arctan '⋅='x e y x )()(112arctan '⋅+⋅=x x e x)1(221)(11arctan 2arctan x x e x x exx+=⋅+⋅=.(5) y '=n sin n -1x ⋅(sin x )'⋅cos nx +sin n x ⋅(-sin nx )⋅(nx )' =n sin n -1x ⋅cos x ⋅cos nx +sin n x ⋅(-sin nx )⋅n=n sin n -1x ⋅(cos x ⋅cos nx -sin x ⋅sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(arccos arcsin arccos 11x x x x +⋅-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )≠0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ).解 (1) y '=f '(x 2)⋅(x 2)'= f '(x 2)⋅2x =2x ⋅f '(x 2). (2) y '=f '(sin 2x )⋅(sin 2x )'+f '(cos 2x )⋅(cos 2x )'= f '(sin 2x )⋅2sin x ⋅cos x +f '(cos 2x )⋅2cos x ⋅(-sin x ) =sin 2x [f '(sin 2x )- f '(cos 2x )]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ⋅e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x ); (9)xx y 2ch 21ch ln +=;(10))11(ch 2+-=x x y解 (1) y '=sh(sh x )⋅(sh x )'=sh(sh x )⋅ch x . (2) y '=ch x ⋅e ch x +sh x ⋅e ch x ⋅sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='.(4) y '=3sh 2x ⋅ch x +2ch x ⋅sh x =sh x ⋅ch x ⋅(3sh x +2) . (5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y .(7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=.(9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xxx x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ⋅sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee e e y --+-=; (6)xy 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=;(10)212arcsin tt y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ⋅cos x ⋅sin(x 2)+sin 2x ⋅cos(x 2)⋅2x =sin2x ⋅sin(x 2)+2x ⋅sin 2x ⋅cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .(6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x ey x x -⋅⋅-⋅='-⋅='--x e x x1sin 222sin 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=.习题 2-31. 求函数的二阶导数: (1) y =2x 2+ln x ; (2) y =e 2x -1; (3) y =x cos x ; (4) y =e -t sin t ; (5)22x a y -=; (6) y =ln(1-x 2) (7) y =tan x ;(8)113+=x y ;(9) y =(1+x 2)arctan x ;(10)xe y x =; (11)2x xe y =;(12))1ln(2x x y ++=. 解 (1)x x y 14+=', 214xy -=''.(2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1. (3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x . (4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a xa x a xx x a y ---=---⋅---=''.(6) 22212)1(11x x x x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''.(7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y ,333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y ,212arctan 2xx x y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''. (12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=',xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222.2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3, f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxyd :(1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2). (2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=.4. 试从y dy dx '=1导出:(1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy xd ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω.解 t A dt ds ωωcos =,t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式: y ''-λ2y =0 . 解 y '=C 1λe λx -C 2λe -λx , y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx ) =(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式: y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x =2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数); (2) y =sin 2x ; (3) y =x ln x ; (4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1,y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! . (2) y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(3) 1ln +='x y , 11-==''x x y ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) . 9. 求下列函数所指定的阶的导数: (1) y =e x cos x , 求y (4) ; (2) y =x sh x , 求y (100) ; (3) y =x 2sin 2x , 求y (50) . 解 (1)令u =e x , v =cos x , 有 u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x , 所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x . (2)令u =x , v =sh x , 则有 u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x ,所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x . (3)令u =x 2 , v =sin 2x , 则有 u '=2x , u ''=2, u '''=0;x x v 2sin 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''= )2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题 2-31. 求函数的二阶导数: (1) y =2x 2+ln x ; (2) y =e 2x -1; (3) y =x cos x ; (4) y =e -t sin t ; (5)22x a y -=; (6) y =ln(1-x 2) (7) y =tan x ; (8)113+=x y ;(9) y =(1+x 2)arctan x ;(10)xe y x =;(11)2x xe y =;(12))1ln(2x x y ++=. 解 (1)x x y 14+=', 214xy -=''.(2) y '=e 2x -1 ⋅2=2e 2x -1, y ''=2e 2x -1 ⋅2=4e 2x -1. (3) y =x cos x ; y '=cos x -x sin x ,y ''=-sin x -sin x -x cos x =-2sin x -x cos x . (4) y '=-e -t sin t +e -t cos t =e -t (cos t -sin t )y ''=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t . (5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a xa x a xx x a y ---=---⋅---=''.(6) 22212)1(11xx x x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y '=sec 2 x ,y ''=2sec x ⋅(sec x )'=2sec x ⋅sec x ⋅tan x =2sec 2x ⋅tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y .(9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y ,212arctan 2xx x y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=',3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''. (12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=',xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f '''(2)=?解f '(x )=6(x +10)5, f ''(x )=30(x +10)4, f '''(x )=120(x +10)3, f '''(2)=120(2+10)3=207360.3. 若f ''(x )存在, 求下列函数y 的二阶导数22dxyd :(1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y '= f '(x 2)⋅(x 2)'=2xf '(x 2),y ''=2f '(x 2)+2x ⋅2xf ''(x 2)=2f '(x 2)+4x 2f ''(x 2). (2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=.4. 试从y dy dx '=1导出:(1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==.(2)(())(())dy dx y y dx d y y dy d dy xd ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin ωt (A 、ω是常数), 求物体运动的加速度, 并验证:0222=+s dts d ω. 解 t A dt ds ωωcos =,t A dts d ωωsin 222-=. 22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e λx +C 2e -λx (λ,C 1, C 2是常数)满足关系式:y ''-λ2y =0 . 解 y '=C 1λe λx -C 2λe -λx , y ''=C 1λ2e λx +C 2λ2e -λx .y ''-λ2y =(C 1λ2e λx +C 2λ2e -λx )-λ2(C 1e λx +C 2e -λx ) =(C 1λ2e λx +C 2λ2e -λx )-(C 1λ2e λx +C 2λ2e -λx )=0 . 7. 验证函数y =e x sin x 满足关系式: y ''-2y '+2y =0 .解 y '=e x sin x +e x cos x =e x (sin x +cos x ),y ''=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y ''-2y '+2y =2e x cos x -2e x (sin x +cos x )+2e x sin x =2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ ⋅ ⋅ ⋅ +a n -1x +a n (a 1, a 2, ⋅ ⋅ ⋅, a n 都是常数); (2) y =sin 2x ;(3) y =x ln x ; (4) y =xe x .解 (1) y '=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ ⋅ ⋅ ⋅ +a n -1,y ''=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ ⋅ ⋅ ⋅ +a n -2, ⋅ ⋅ ⋅,y (n )=n (n -1)(n -2)⋅ ⋅ ⋅2⋅1x 0=n ! . (2) y '=2sin x cos x =sin2x , )22sin(22cos 2π+==''x x y ,)222sin(2)22cos(222ππ⋅+=+='''x x y ,)232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y ,⋅ ⋅ ⋅,]2)1(2sin[21)(π⋅-+=-n x y n n .(3) 1ln +='x y , 11-==''x x y ,y '''=(-1)x -2, y (4)=(-1)(-2)x -3, ⋅ ⋅ ⋅,y (n )=(-1)(-2)(-3)⋅ ⋅ ⋅(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y '=e x +xe x ,y ''=e x +e x +xe x =2e x +xe x , y '''=2e x +e x +xe x =3e x +xe x , ⋅ ⋅ ⋅,y (n )=ne x +xe x =e x (n +x ) . 9. 求下列函数所指定的阶的导数: (1) y =e x cos x , 求y (4) ; (2) y =x sh x , 求y (100) ; (3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有 u '=u ''=u '''=u (4)=e x ;v '=-sin x , v ''=-cos x , v '''=sin x , v (4)=cos x , 所以 y (4)=u (4)⋅v +4u '''⋅v '+6u ''⋅v ''+4u '⋅v '''+u ⋅v (4)=e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x . (2)令u =x , v =sh x , 则有 u '=1, u ''=0;v '=ch x , v ''=sh x , ⋅ ⋅ ⋅ , v (99)=ch x , v (100)=sh x , 所以)100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x . (3)令u =x 2 , v =sin 2x , 则有 u '=2x , u ''=2, u '''=0;x x v 2sin 2)2482sin(24848)48(=⋅+=π,v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅= )50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''= )2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy : (1) y 2-2x y +9=0; (2) x 3+y 3-3axy =0; (3) xy =e x +y ; (4) y =1-xe y .解 (1)方程两边求导数得2y y '-2y -2x y ' =0 , 于是 (y -x )y '=y , xy y y -='. (2)方程两边求导数得3x 2+3y 2y '-2ay -3axy '=0, 于是 (y 2-ax )y '=ay -x 2 ,axy x ay y --='22.(3)方程两边求导数得 y +xy '=e x +y (1+y '), 于是 (x -e x +y )y '=e x +y -y ,yx y x e x ye y ++--='.(4)方程两边求导数得 y '=-e y -xe y y ', 于是 (1+xe y )y '=-e y ,yy xe e y +-='1. 2.求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程.解 方程两边求导数得 032323131='+--y y x ,于是 3131---='y x y ,在点)42 ,42(a a 处y '=-1.所求切线方程为)42(42a x a y --=-, 即a y x 22=+.所求法线方程为)42(42a x a y -=-, 即x -y =0.3. 求由下列方程所确定的隐函数y 的二阶导数22dxyd :(1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2; (3) y =tan(x +y ); (4) y =1+xe y .解 (1)方程两边求导数得 2x -2yy '=0, y '=y x ,3322221)(y y x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy '=0,yx a b y ⋅-='22, 22222222)(y yx a b x y a b y y x y a b y ⋅--⋅-='-⋅-=''32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y '=sec 2(x +y )⋅(1+y '),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin y y x y x y x --=+-+++=, 52233)1(2)11(22yy y y y y y +-=--='=''. (4)方程两边求导数得y '=e y +xe y y ',ye y e xe e y y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''.4. 用对数求导法求下列函数的导数:(1) x xx y )1(+=;(2)55225+-=x x y ;(3)54)1()3(2+-+=x x x y ;(4)x e x x y -=1sin . 解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |, 两边求导得xx x x x x y y +⋅-+-⋅+='11)1ln(1ln 1,于是 ]111[ln )1(xx x x x y x ++++='.(2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y ,两边求导得22251515112+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y .(3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y ,于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y。

大学高数第一章习题课

大学高数第一章习题课
tgx − sin x
解 原式 = lim
x→0
x( 1 + sin2 x −1)( 1 + tgx + 1 + sin x )
1 sin x( −1) cos x = lim x→0 sin2 x x 2 2
1 − cos x = lim 2 x→0 x cos x
x2 2 =1 = lim 2 x→0 x 2
解:
lim 1−x x → sinπ x 1
−t(t+2) = lim t(t+2) = lim 1 0 t→ sinπ (t+ ) t→ sinπ t 0 t(t+2) 2 = lim = t→ 0 πt π
令 t = x −1
2
1+x )cot x (3) lim ( 1−x x→ 0
1


1+ x cot x 2x cot x lim( ) = lim (1+ ) x →0 1− x x→ 0 1− 1− x 1 x 1 2x x tgx 2x x = lim (1+ = lim (1+ ) ) x→ 0 x→ 0 1−x 1−x 1x 2 − 2x 2x 1−x 2 = lim (1+ ) =e x→ 0 1−x
求下列极限: 例. 求下列极限
(1) lim (sin x +1−sin x)
x→ +∞
解:
(1) sin x +1−sin x
x +1− x x +1+ x = 2sin cos 2 2 1 x +1+ x = 2sin cos 2( x +1+ x) 2

高等数学第六版课后习题及答案 第一章第二节

高等数学第六版课后习题及答案 第一章第二节

高等数学第六版课后习题及答案 第一章第二节 习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n.解 当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε . 取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).。

中国人民大学出版社(第四版)高等数学一第1章课后习题详解

中国人民大学出版社(第四版)高等数学一第1章课后习题详解

中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

同济大学数学系《高等数学》(第7版)(上册)-课后习题详解-第二章 导数与微分【圣才出品】

第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。

同济大学版高等数学课后习题答案第2章

同济大学版高等数学课后习题答案第2章

习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t ]内转过的角度为q , 从而转角q 是t 的函数: q =q (t ). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解 在时间间隔[t 0, t 0+D t ]内的平均角速度ω为tt t t t ∆-∆+=∆∆=)()(00θθθω, 故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t t t t t θθθθωω'=∆-∆+=∆∆==→∆→∆→∆. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T (t ), 应怎样确定该物体在时刻t 的冷却速度?解 物体在时间间隔[t 0, t 0+D t ]内, 温度的改变量为D T =T (t +D t )-T (t ),平均冷却速度为tt T t t T t T ∆-∆+=∆∆)()(, 故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=∆-∆+=∆∆→∆→∆. 3. 设某工厂生产x 单位产品所花费的成本是f (x )元, 此函数f (x )称为成本函数, 成本函数f (x )的导数f ¢(x )在经济学中称为边际成本. 试说明边际成本f ¢(x )的实际意义.解 f (x +D x )-f (x )表示当产量由x 改变到x +D x 时成本的改变量.xx f x x f ∆-∆+)()(表示当产量由x 改变到x +D x 时单位产量的成本. xx f x x f x f x ∆-∆+='→∆)()(lim )(0表示当产量为x 时单位产量的成本. 4. 设f (x )=10x 2, 试按定义, 求f ¢(-1).解 xx x f x f f x x ∆--∆+-=∆--∆+-=-'→∆→∆2200)1(10)1(10lim )1()1(lim )1( 20)2(lim 102lim 10020-=∆+-=∆∆+∆-=→∆→∆x xx x x x .5. 证明(cos x )¢=-sin x .解 x x x x x x ∆-∆+='→∆cos )cos(lim )(cos 0 xxx x x ∆∆∆+-=→∆2sin )2sin(2lim 0 x x xx x x sin ]22sin )2sin([lim 0-=∆∆∆+-=→∆. 6. 下列各题中均假定f ¢(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =∆-∆-→∆)()(lim000; 解 xx f x x f A x ∆-∆-=→∆)()(lim 000 )()()(lim 0000x f xx f x x f x '-=∆--∆--=→∆-. (2)A xx f x =→)(lim 0, 其中f (0)=0, 且f ¢(0)存在; 解 )0()0()0(lim )(lim 00f xf x f x x f A x x '=-+==→→. (3)A hh x f h x f h =--+→)()(lim 000. 解 hh x f h x f A h )()(lim 000--+=→ hx f h x f x f h x f h )]()([)]()([lim 00000----+=→ h x f h x f h x f h x f h h )()(lim )()(lim 000000----+=→→ =f ¢(x 0)-[-f ¢(x 0)]=2f ¢(x 0).7. 求下列函数的导数:(1)y =x 4;(2)32x y =;(3)y =x 1 6;(4)x y 1=; (5)21x y =; (6)53x x y =;(7)5322x x x y =; 解 (1)y ¢=(x 4)¢=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y ¢=(x 1 6)¢=1.6x 16-1=1.6x 0 6. (4)23121212121)()1(-----=-='='='x x x xy . (5)3222)()1(---='='='x x xy . (6)511151651653516516)()(x x x x x y =='='='-. (7)651616153226161)()(--=='='='x x x x x x y . 8. 已知物体的运动规律为s =t 3(m) 求这物体在t =2秒(s )时的速度. 解v =(s )¢=3t 2, v |t =2=12(米/秒).9. 如果f (x )为偶函数, 且f (0)存在, 证明f (0)=0.证明 当f (x )为偶函数时, f (-x )=f (x ), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim )0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f ¢(0)=0, 即f ¢(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率: π32=x , x =p . 解 因为y ¢=cos x , 所以斜率分别为2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式. 解y ¢=-sin x , 233sin 3-=-='=ππx y , 故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y , 法线方程为)3(3221π--=-x y . 12. 求曲线y =e x 在点(0,1)处的切线方程.解y ¢=e x , y ¢|x =0=1, 故在(0, 1)处的切线方程为y -1=1×(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y ¢=2x , 割线斜率为421913)1()3(=-=--=y y k . 令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线.14. 讨论下列函数在x =0处的连续性与可导性:(1)y =|sin x |;(2)⎪⎩⎪⎨⎧=≠=000 1sin 2x x x x y . 解 (1)因为y (0)=0, 0)sin (lim |sin |lim lim 000=-==---→→→x x y x x x , 0sin lim |sin |lim lim 000===+++→→→x x y x x x , 所以函数在x =0处连续.又因为1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-xx x x x y x y y x x x , 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y -(0)y +(0), 所以函数在x =0处不可导.解 因为01sin lim )(lim 200==→→xx x y x x , 又y (0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim 0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y (0)=0.15. 设函数⎩⎨⎧>+≤=1 1 )(2x b ax x x x f 为了使函数f (x )在x =1处连续且可导, a , b 应取什么值?解 因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f (1)=a +b , 所以要使函数在x =1处连续, 必须a +b =1 .又因为当a +b =1时211lim )1(21=--='-→-x x f x , a x x a x b a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1.16. 已知⎩⎨⎧<-≥=0 0 )(2x x x x x f 求f +¢(0)及f -¢(0), 又f ¢(0)是否存在? 解 因为f -¢(0)=10lim )0()(lim 00-=--=---→→xx x f x f x x , f +¢(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -¢(0)¹f +¢(0), 所以f ¢(0)不存在. 17. 已知f (x )=⎩⎨⎧≥<0 0 sin x x x x , 求f ¢(x ) . 解 当x <0时, f (x )=sin x , f ¢(x )=cos x ;当x >0时, f (x )=x , f ¢(x )=1;因为 f -¢(0)=10sin lim )0()(lim 00=-=---→→xx x f x f x x , f +¢(0)=10lim )0()(lim 00=-=-++→→x x x f x f x x , 所以f ¢(0)=1, 从而 f ¢(x )=⎩⎨⎧≥<0 10 cos x x x . 18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解 由xy =a 2得x a y 2=, 22xa y k -='=. 设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为 )(02020x x x ay y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x a x y x =+=, 为切线在x 轴上的距. 令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距. 此切线与二坐标轴构成的三角形的面积为200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式:(cot x )¢=-csc 2x ; (csc x )¢=-csc x cot x .解 xx x x x x x x 2sin cos cos sin sin )sin cos ()(cot ⋅-⋅-='=' x xx x x 22222csc sin 1sin cos sin -=-=+-=. x x xx x x cot csc sin cos)sin 1()(csc 2⋅-=-='='. 2. 求下列函数的导数:(1)1227445+-+=xx x y ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1;(4) y =sin x ×cos x ;(5) y =x 2ln x ;(6) y =3e x cos x ;(7)x x y ln =; (8)3ln 2+=xe y x ; (9) y =x 2ln x cos x ;(10)tt s cos 1sin 1++=; 解 (1))12274()12274(14545'+-+='+-+='---x x x xx x y 2562562282022820x x x x x x +--=+--=---. (2) y =(5x 3-2x +3e x )=15x 2-2x ln2+3e x .(3) y=(2tan x +sec x -1)=2sec 2x +sec x tan x =sec x (2sec x +tan x ). (4) y =(sin x ×cos x )=(sin x )×cos x +sin x ×(cos x ) =cos x ×cos x +sin x ×(-sin x )=cos 2x . (5) y=(x 2ln x )=2x ×ln x +x 2×x 1=x (2ln x +1) . (6) y =(3e x cos x )=3e x ×cos x +3e x ×(-sin x )=3e x (cos x -sin x ).(7)22ln 1ln 1)ln (x x x x x x x x y -=-⋅='='. (8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=⋅-⋅='+='. (9) y =(x 2ln x cos x )=2x ×ln x cos x +x 2×x1×cos x +x 2 ln x ×(-sin x ) 2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t t t t t t t t t t s +++=+-+-+='++='.3. 求下列函数在给定点处的导数:(1) y =sin x -cos x , 求6π='x y 和4π='x y . (2)θθθρcos 21sin +=,求4πθθρ=d d . (3)553)(2x x x f +-=, 求f (0)和f(2) . 解 (1)y =cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y , 222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d , )21(4222422214cos 44sin 214πππππθρπθ+=⋅+⋅=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求: (1)该物体的速度v (t );(2)该物体达到最高点的时刻.解 (1)v (t )=s (t )=v 0-gt .(2)令v (t )=0, 即v 0-gt =0, 得g v t 0=, 这就是物体达到最高点的时刻. 5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程. 解 因为y =2cos x +2x , y|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为y =2x ,所求的法线方程为x y 21-=, 即x +2y =0. 6. 求下列函数的导数:(1) y =(2x +5)4(2) y =cos(4-3x );(3)23x e y -=;(4) y =ln(1+x 2);(5) y =sin 2x ;(6)22x a y -=;(7) y =tan(x 2);(8) y =arctan(e x );(9) y =(arcsin x )2;(10) y =lncos x .解 (1) y=4(2x +5)4-1×(2x +5)=4(2x +5)3×2=8(2x +5)3. (2) y =-sin(4-3x )×(4-3x )=-sin(4-3x )×(-3)=3sin(4-3x ).(3)22233236)6()3(x x x xe x e x e y ----=-⋅='-⋅='.(4)222212211)1(11xxx x x x y +=⋅+='+⋅+='. (5) y =2sin x ×(sin x )=2sin x ×cos x =sin 2x .(6))()(21])[(22121222122'-⋅-='-='-x a x a x a y 222122)2()(21x a x x x a --=-⋅-=-. (7) y =sec 2(x 2)×(x 2)=2x sec 2(x 2).(8)xx x x e e e e y 221)()(11+='⋅+='. (9) y 21arcsin 2)(arcsin arcsin 2x x x x -='⋅=.(10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='⋅='. 7. 求下列函数的导数:(1) y =arcsin(1-2x );(2)211x y -=; (3)x e y x3cos 2-=;(4)xy 1arccos =; (5)xx y ln 1ln 1+-=; (6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x );(10) y =ln(csc x -cot x ).解 (1)2221)21(12)21()21(11x x x x x y --=---='-⋅--='. (2))1()1(21])1[(21212212'-⋅--='-='---x x x y 222321)1()2()1(21xx x x x --=-⋅--=-. (3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xxx x )3sin 63(cos 213sin 33cos 21222x x e x e x e xx x +-=--=---.(4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x x y +-=+--+-='. (6)222sin 2cos 212sin 22cos x x x x x x x x y -=⋅-⋅⋅='. (7)2222121)(11)()(11x x x x x x y -=⋅-='⋅-='. (8)])(211[1)(12222222222'+++⋅++='++⋅++='x a x a x a x x a x x a x y 2222221)]2(211[1xa x x a x a x +=++⋅++=.(9) x xx x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12=++='+⋅+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12=-+-='-⋅-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=; (4)xe y arctan=;(5)y =sin n x cos nx ;(6)11arctan -+=x x y ;(7)x x y arccos arcsin =;(8) y =ln[ln(ln x )] ; (9)x x x x y -++--+1111;(10)xx y +-=11arcsin .解 (1)'⋅=')2(arcsin )2(arcsin 2x x y)2()2(11)2(arcsin 22'⋅-⋅=x x x 21)2(11)2(arcsin 22⋅-⋅=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'⋅⋅='⋅='x x x x x yx x x csc 212sec 2tan 12=⋅⋅=.(3))ln 1(ln 121ln 1222'+⋅+=+='x xx y )(ln ln 2ln 1212'⋅⋅+=x x x x x x1ln 2ln 1212⋅⋅+= x x x 2ln 1ln +=.(4))(arctan arctan'⋅='x e y x)()(112arctan'⋅+⋅=x x e x)1(221)(11arctan 2arctan x x e x x e xx+=⋅+⋅=. (5) y=n sin n -1x ×(sin x )×cos nx +sin n x ×(-sin nx )×(nx )=n sin n -1x ×cos x ×cos nx +sin n x ×(-sin nx )×n=n sin n -1x ×(cos x ×cos nx -sin x ×sin nx )= n sin n -1x cos(n +1)x . (6)222211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--⋅-++='-+⋅-++='. (7)222)(arccos arcsin 11arccos 11x x x x x y -+-=' 22)(arccos arcsin arccos 11x x x x +⋅-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'⋅⋅='⋅='x xx x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ⋅=⋅⋅=.(9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111xx -+-=. (10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-⋅+--='+-⋅+--=' )1(2)1(1x x x -+-=. 9. 设函数f (x )和g (x )可导, 且f 2(x )+g 2(x )0, 试求函数)()(22x g x f y +=的导数.解 ])()([)()(212222'+⋅+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'⋅+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f (x )可导, 求下列函数y 的导数dxdy : (1) y =f (x 2);(2) y =f (sin 2x )+f (cos 2x ). 解 (1) y =f(x 2)×(x 2)= f(x 2)×2x =2x ×f (x 2).(2) y =f (sin 2x )×(sin 2x )+f (cos 2x )×(cos 2x ) = f(sin 2x )×2sin x ×cos x +f(cos 2x )×2cos x ×(-sin x )=sin 2x [f(sin 2x )- f(cos 2x )].11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x e ch x ; (3) y =th(ln x ); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x );(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y =sh(sh x )×(sh x )=sh(sh x )×ch x . (2) y=ch x ×e ch x +sh x ×e ch x ×sh x =e ch x (ch x +sh 2x ) .(3))(ln ch 1)(ln )(ln ch 122x x x x y ⋅='⋅='.(4) y =3sh 2x ×ch x +2ch x ×sh x =sh x ×ch x ×(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-⋅-='.(6)222)1()1(112422++='+⋅++='x x x x x y . (7)12)(1)(142222-='⋅-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11⋅+=⋅+='⋅+=' xx x 222sh 211sh ch 1+=+=.(9))ch (ch 21)ch (ch 124'⋅-'⋅='x xx x yx x xx x sh ch 2ch 21ch sh 4⋅⋅-=x x x x x x x x 323ch sh ch sh ch sh ch sh -⋅=-= x xx x x x 33332th ch sh ch )1ch (sh ==-⋅=. (10)'+-⋅+-⋅+-='+-⋅+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-⋅+=+--+⋅+-⋅=x x x x x x x x . 12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x sin(x 2); (3)2)2(arctan x y =;(4)n x x y ln =;(5)t t t t ee ee y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=;(8)x x y +=;(9) 242arcsin x x x y -+=; (10)212arcsin tt y +=.解 (1) y =-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5). (2) y=2sin x ×cos x ×sin(x 2)+sin 2x ×cos(x 2)×2x=sin2x ×sin(x 2)+2x ×sin 2x ×cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=⋅+⋅='.(4)121ln 1ln 1+--=⋅-⋅='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----tt t t t t t t t t t t e e e e e e e e e e e e y . (6)x x x x x x x y 1tan 1)1()1sin (1sec )1(cos 1sec 22=-⋅-⋅='⋅='. (7))1(1cos )1sin 2()1sin (21sin 21sin 22x x x e x ey x x -⋅⋅-⋅='-⋅='--x ex x1sin 222sin 1-⋅⋅=. (8))211(21)(21x xx x x x x y +⋅+='+⋅+='xx x x +⋅+=412.(9)2arcsin )2(421214112arcsin 22x x x x x x y =-⋅-+⋅-⋅+='.(10)22222222)1()2(2)1(2)12(11)12()12(11t t t t tt t t t t y +⋅-+⋅⋅+-='+⋅+-=' )1(|1|)1(2)1()1(2)1(1222222222t t t t t t t +--=+-⋅-+=. 习题 2-31. 求函数的二阶导数: (1) y =2x 2+ln x ; (2) y =e 2x -1; (3) y =x cos x ; (4) y =e -t sin t ; (5)22x a y -=; (6) y =ln(1-x 2) (7) y =tan x ; (8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)xey x =;(11)2x xe y =;(12))1ln(2x x y ++=. 解 (1)x x y 14+=', 214x y -=''.(2) y =e 2x -1 ×2=2e 2x -1, y=2e 2x -1 ×2=4e 2x -1.(3) y =x cos x ; y =cos x -x sin x ,y =-sin x -sin x -x cos x =-2sin x -x cos x . (4) y =-e -t sin t +e -t cos t =e -t (cos t -sin t )y=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t .(5)222222)(21xa x x a x a y --='-⋅-=', 22222222222)(xa x a a xa x a xx x a y ---=---⋅---=''.(6) 22212)1(11x x x x y --='-⋅-=',222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y =sec 2 x ,y=2sec x ×(sec x )=2sec x ×sec x ×tan x =2sec 2x ×tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y ,333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y ,212arctan 2xx x y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([x x x e x x x e x e x e y x x x x +-=⋅--⋅+-=''.(11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''. (12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=',xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222.2. 设f (x )=(x +10)6, f (2)=?解f (x )=6(x +10)5, f (x )=30(x +10)4, f(x )=120(x +10)3,f(2)=120(2+10)3=207360.3. 若f (x )存在, 求下列函数y 的二阶导数22dxyd :(1) y =f (x 2);(2) y =ln[f (x )] . 解 (1)y = f (x 2)×(x 2)=2xf (x 2), y =2f(x 2)+2x ×2xf(x 2)=2f(x 2)+4x 2f(x 2).(2))()(1x f x f y '=',2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=. 解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy xd '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sin t (A 、是常数), 求物体运动的加速度, 并验证:222=+s dts d ω.解 t A dtds ωωcos =,tA dts d ωωsin 222-=.22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω.6. 验证函数y =C 1e lx +C 2e -lx (l ,C 1 C 2是常数)满足关系式: y -l 2y =0 .解 y =C 1le lx -C 2le -lx ,y =C 1l 2e lx +C 2l 2e -lx .y-l 2y =(C 1l 2e lx +C 2l 2e -lx )-l 2(C 1e lx +C 2e -lx )=(C 1l 2e lx +C 2l 2e -lx )-(C 1l 2e lx +C 2l 2e -lx )=0 . 7. 验证函数y =e x sin x 满足关系式: y -2y+2y =0 .解 y =e x sin x +e x cos x =e x (sin x +cos x ),y =e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y-2y +2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 . 8. 求下列函数的n 阶导数的一般表达式: (1) y =x n +a 1x n -1+a 2x n -2++a n -1x +a n (a 1, a 2,, a n 都是常数);(2) y =sin 2x ; (3) y =x ln x ; (4) y =xe x . 解 (1) y =nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3++a n -1,y =n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4++a n -2,,y (n )=n (n -1)(n -2)2×1x 0=n ! .(2) y=2sin x cos x =sin2x ,)22sin(22cos 2π+==''x x y , )222sin(2)22cos(222ππ⋅+=+='''x x y , )232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ,]2)1(2sin[21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y=(-1)x -2, y (4)=(-1)(-2)x -3, , y (n )=(-1)(-2)(-3)(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y =e x +xe x ,y=e x +e x +xe x =2e x +xe x , y=2e x +e x +xe x =3e x +xe x , ,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u =u=u =u (4)=e x ; v =-sin x , v =-cos x , v=sin x , v (4)=cos x , 所以 y (4)=u (4)×v +4u×v +6u ×v +4u ×v +u ×v (4) =e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x .(2)令u =x , v =sh x , 则有u =1, u =0;v =ch x , v =sh x , , v (99)=ch x , v (100)=sh x ,所以 )100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u =2x , u =2, u =0;x x v 2sin 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅=)50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题 2-31. 求函数的二阶导数:(1) y =2x 2+ln x ;(2) y =e 2x -1;(3) y =x cos x ;(4) y =e -t sin t ;(5)22x a y -=;(6) y =ln(1-x 2)(7) y =tan x ;(8)113+=x y ; (9) y =(1+x 2)arctan x ;(10)x e y x =; (11)2x xe y =;(12))1ln(2x x y ++=.解 (1)x x y 14+=', 214xy -=''. (2) y=e 2x -1 ×2=2e 2x -1, y =2e 2x -1 ×2=4e 2x -1. (3) y =x cos x ; y =cos x -x sin x , y=-sin x -sin x -x cos x =-2sin x -x cos x . (4) y=-e -t sin t +e -t cos t =e -t (cos t -sin t ) y=-e -t (cos t -sin t )+e -t (-sin t -cos t )=-2e -t cos t . (5)222222)(21x a x x a x a y --='-⋅-=', 22222222222)(xa x a a x a x a x x x a y ---=---⋅---=''. (6) 22212)1(11xxx x y --='-⋅-=', 222222)1()1(2)1()2(2)1(2x x x x x x y -+-=--⋅---=''. (7) y=sec 2 x , y =2sec x ×(sec x )=2sec x ×sec x ×tan x =2sec 2x ×tan x .(8)232233)1(3)1()1(+-=+'+-='x x x x y , 333433223)1()12(6)1(3)1(23)1(6+-=+⋅+⋅-+⋅-=''x x x x x x x x x y . (9)1arctan 211)1(arctan 222+=+⋅++='x x xx x x y , 212arctan 2xxx y ++=''.(10)22)1(1x x e x e x e y x x x -=⋅-⋅=', 3242)22(2)1(])1([xx x e x x x e x e x e y x x x x +-=⋅--⋅+-=''. (11))21()2(2222x e x e x e y x x x +=⋅⋅+=',)23(24)21(222222x xe x e x x e y x x x +=⋅++⋅⋅=''.(12)2222211)1221(11)1(11x x x x x x x x x y +=++⋅++='++⋅++=', xx x x x x x x y ++-=+⋅+-='⋅+⋅+-=''1)1()12211)1(1122222. 2. 设f (x )=(x +10)6, f(2)=? 解f (x )=6(x +10)5, f(x )=30(x +10)4, f (x )=120(x +10)3, f (2)=120(2+10)3=207360.3. 若f (x )存在, 求下列函数y 的二阶导数22dxy d : (1) y =f (x 2);(2) y =ln[f (x )] .解 (1)y= f (x 2)×(x 2)=2xf (x 2), y=2f (x 2)+2x ×2xf (x 2)=2f (x 2)+4x 2f (x 2). (2))()(1x f x f y '=', 2)]([)()()()(x f x f x f x f x f y ''-''=''22)]([)]([)()(x f x f x f x f '-''=. 4. 试从y dy dx '=1导出: (1)322)(y y dy x d '''-=; (2)5233)()(3y y y y dy x d '''''-''=.解 (1)()()()3222)(1)(11y y y y y dy dx y dx d y dy d dy dx dy d dy x d '''-='⋅'''-=⋅'='==. (2)(())(())dy dx y y dx d y y dy d dy x d ⋅'''-='''-=3333 52623)()(31)()(3)(y y y y y y y y y y y '''''-''='⋅''''⋅''-''''-=.5. 已知物体的运动规律为s =A sint (A 、是常数), 求物体运动的加速度, 并验证:0222=+s dt s d ω. 解 t A dtds ωωcos =, t A dts dωωsin 222-=. 22dt s d 就是物体运动的加速度. 0sin sin 22222=+-=+t A t A s dts d ωωωωω. 6. 验证函数y =C 1e lx +C 2e -lx (l ,C 1 C 2是常数)满足关系式: y-l 2y =0 . 解 y =C 1le lx -C 2le -lx , y=C 1l 2e lx +C 2l 2e -lx . y -l 2y =(C 1l 2e lx +C 2l 2e -lx )-l 2(C 1e lx +C 2e -lx )=(C 1l 2e lx +C 2l 2e -lx )-(C 1l 2e lx +C 2l 2e -lx )=0 .7. 验证函数y =e x sin x 满足关系式:y-2y +2y =0 . 解 y =e x sin x +e x cos x =e x (sin x +cos x ), y=e x (sin x +cos x )+e x (cos x -sin x )=2e x cos x . y -2y +2y =2e x cos x -2e x (sin x +cos x )+2e x sin x=2e x cos x -2e x sin x -2e x cos x +2e x sin x =0 .8. 求下列函数的n 阶导数的一般表达式:(1) y =x n +a 1x n -1+a 2x n -2+ +a n -1x +a n (a 1, a 2, , a n 都是常数); (2) y =sin 2x ;(3) y =x ln x ;(4) y =xe x .解 (1) y=nx n -1+(n -1)a 1x n -2+(n -2)a 2x n -3+ +a n -1, y=n (n -1)x n -2+(n -1)(n -2)a 1x n -3+(n -2)(n -3)a 2x n -4+ +a n -2, , y (n )=n (n -1)(n -2) 2×1x 0=n ! . (2) y =2sin x cos x =sin2x ,)22sin(22cos 2π+==''x x y , )222sin(2)22cos(222ππ⋅+=+='''x x y , )232sin(2)222cos(233)4(ππ⋅+=⋅+=x x y , ,]2)1(2sin[21)(π⋅-+=-n x y n n . (3) 1ln +='x y ,11-==''x xy , y=(-1)x -2, y (4)=(-1)(-2)x -3, ,y (n )=(-1)(-2)(-3)(-n +2)x -n +1112)!2()1()!2()1(-----=--=n n n n x n x n . (4) y =e x +xe x ,y=e x +e x +xe x =2e x +xe x , y=2e x +e x +xe x =3e x +xe x , ,y (n )=ne x +xe x =e x (n +x ) .9. 求下列函数所指定的阶的导数:(1) y =e x cos x , 求y (4) ;(2) y =x sh x , 求y (100) ;(3) y =x 2sin 2x , 求y (50) .解 (1)令u =e x , v =cos x , 有u =u=u =u (4)=e x ; v =-sin x , v =-cos x , v=sin x , v (4)=cos x , 所以 y (4)=u (4)×v +4u×v +6u ×v +4u ×v +u ×v (4) =e x [cos x +4(-sin x )+6(-cos x )+4sin x +cos x ]=-4e x cos x . (2)令u =x , v =sh x , 则有u =1, u=0; v =ch x , v =sh x , , v (99)=ch x , v (100)=sh x ,所以 )100()99(99100)98(98100)98(2100)99(1100)100()100( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅==100ch x +x sh x .(3)令u =x 2 , v =sin 2x , 则有u =2x , u =2, u =0;x x v 2sin 2)2482sin(24848)48(=⋅+=π, v (49)=249cos 2x , v (50)=-250sin 2x ,所以 )50()49(4950)48(4850)48(250)49(1150)50()50( v u v u C v u C v u C v u C v u y ⋅+⋅'+⋅''⋅⋅⋅+''⋅+'⋅+⋅=)50()49(4950)48(4850v u v u C v u C ⋅+⋅'+⋅''=)2sin 2(2cos 22502sin 22249505024928x x x x x -⋅+⋅⋅+⋅⋅⋅= )2sin 212252cos 502sin (2250x x x x x ++-=.习题2-41. 求由下列方程所确定的隐函数y 的导数dxdy :(1) y 2-2x y +9=0;(2) x 3+y 3-3axy =0;(3) xy =e x +y ;(4) y =1-xe y .解 (1)方程两边求导数得2y y -2y -2x y =0 ,于是 (y -x )y =y ,x y y y -='. (2)方程两边求导数得 3x 2+3y 2y -2ay -3axy =0,于是 (y 2-ax )y =ay -x 2 ,axy x ay y --='22. (3)方程两边求导数得y +xy =e x +y (1+y ),于是 (x -e x +y )y =e x +y -y ,yx y x e x y e y ++--='. (4)方程两边求导数得y =-e y -xe y y ,于是 (1+xe y )y =-e y ,yy xe e y +-='1. 2. 求曲线323232a y x =+在点)42 ,42(a a 处的切线方程和法线方程. 解 方程两边求导数得032323131='+--y y x , 于是 3131---='y x y ,在点)42 ,42(a a 处y =-1. 所求切线方程为)42(42a x a y --=-, 即a y x 22=+. 所求法线方程为 )42(42a x a y -=-, 即x -y =0. 3. 求由下列方程所确定的隐函数y 的二阶导数22dx y d : (1) x 2-y 2=1;(2) b 2x 2+a 2y 2=a 2b 2;(3) y =tan(x +y );(4) y =1+xe y .解 (1)方程两边求导数得2x -2yy =0,y =yx , 3322221)(y y x y y y xx y y y x y y x y -=-=-='-='=''. (2)方程两边求导数得2b 2x +2a 2yy =0,yx a b y ⋅-='22, 22222222)(y y x a b x y a b y y x y a b y ⋅--⋅-='-⋅-='' 32432222222ya b y a x b y a a b -=+⋅-=. (3)方程两边求导数得y =sec 2(x +y )(1+y ),1)(cos 1)(sec 1)(sec 222-+=+-+='y x y x y x y 222211)(sin )(cos )(sin yy x y x y x --=+-+++=,52233)1(2)11(22y y y y y y y +-=--='=''. (4)方程两边求导数得y =e y +xe y y ,ye y exe ey y y y y -=--=-='2)1(11, 3222)2()3()2()3()2()()2(y y e y y y e y y e y y e y y y y y --=-'-=-'---'=''. 4. 用对数求导法求下列函数的导数: (1) x xx y )1(+=;(2)55225+-=x x y ; (3)54)1()3(2+-+=x x x y ; (4)x e x x y -=1sin .解 (1)两边取对数得ln y =x ln|x |-x ln|1+x |,两边求导得xx x x x x y y +⋅-+-⋅+='11)1ln(1ln 1, 于是 ]111[ln )1(xx x x x y x ++++='. (2)两边取对数得)2ln(251|5|ln 51ln 2+--=x x y , 两边求导得 22251515112+⋅--⋅='x x x y y , 于是 ]225151[25512552+⋅--=+-='x x x x x y . (3)两边取对数得)1ln(5)3ln(4)2ln(21ln +--++=x x x y ,两边求导得1534)2(211+---+='x x x y y , 于是 ]1534)2(21[)1()3(254+--+++-+='x x x x x x y (4)两边取对数得)1ln(41sin ln 21ln 21ln x e x x y -++=, 两边求导得)1(4cot 21211x x e e x x y y --+=', 于是 ])1(4cot 2121[1sin x x xe e x x e x x y --+-=' ]1cot 22[1sin 41-++-=x x x e e x x e x x . 5. 求下列参数方程所确定的函数的导数dxdy : (1) ⎩⎨⎧==22bt y at x ; (2) ⎩⎨⎧=-=θθθθcos )sin 1(y x . 解 (1)t ab at bt x y dx dy t t 23232==''=. (2)θθθθθθθθcos sin 1sin cos ---=''=x y dx dy . 6. 已知⎩⎨⎧==.cos ,sin t e y t e x t t 求当3π=t 时dx dy 的值. 解 tt t t t e t e t e t e x y dx dy t t t t t t cos sin sin cos cos sin sin cos +-=+-=''=, 当3π=t 时, 23313123212321-=+-=+-=dx dy . 7. 写出下列曲线在所给参数值相应的点处的切线方程和法线方程:(1) ⎩⎨⎧==ty t x 2cos sin , 在4π=t 处;(2) ⎪⎩⎪⎨⎧+=+=2221313taty t atx , 在t =2处.解 (1)tt x y dx dy t t cos 2sin 2-=''=. 当4π=t 时, 222224cos )42sin(2-=-=⋅-=ππdx dy , 220=x , 00=y , 所求切线方程为)22(22--=x y , 即0222=-+y x ; 所求法线方程为)22(221---=x y , 即0142=--y x . (2)222222)1(6)1(23)1(6t at t t at t at y t +=+⋅-+=', 222222)1(33)1(23)1(3t at a t t at t a x t +-=+⋅-+=', 2212336ttat a atx y dx dy t t -=-=''=. 当t =2时, 3421222-=-⋅=dx dy , a x 560=, a y 5120=, 所求切线方程为)56(34512a x a y --=-, 即4x +3y -12a =0; 所求法线方程为)56(43512a x a y -=-, 即3x -4y +6a =0. 8. 求下列参数方程所确定的函数的二阶导数22dxy d : (1) ⎪⎩⎪⎨⎧-==.122t y t x ;(2) ⎩⎨⎧==t b y t a x sin cos ; (3) ⎩⎨⎧==-t t ey e x 23;。

高数第一章习题课 [兼容模式]

高数第一章习题课 [兼容模式]

1 1 1 lim [ 2 + + ⋅⋅⋅ + ] 2 2 8. (n + 1) ( 2n) n →∞ n 1 1 1 解:令 xn = 2 + +⋅ ⋅ ⋅ + 2 n (n+1) (2n)2 n+1 n+1 则有: ≤ xn ≤ 2 则有: 2 (n + n) n
=0
9.
求极限
n+1 n+1 a + b lim , ( 0 < a < b) n→ ∞ n n a +b
=b
10.
[ ( x + a )( x + b) − x ] 求极限 xlim →∞ 1
= (a + b) 2
11. 当a取何值时, cos x , x < 0, 函数 f ( x ) = 在 x = 0处连续. a + x , x ≥ 0, 解 ∵ f ( 0) = a ,
− +
无穷间断点 振荡间断点
至少一个不存在
4. 闭区间上连续函数的性质 有界定理 ; 最值定理 ; 零点定理 ; 介值定理 . (与这一内容有关的往往是证明题) 与这一内容有关的往往是证明题)
3x + 1 , x < 1 , 例1. 设函数 f ( x) = x ≥1 x,
解:

f [ f ( x)] .
3 f ( x) + 1 , f [ f ( x)] = f ( x) ,
f ( x) < 1 f ( x) ≥ 1
x<0
3(3x + 1) + 1
= 3x + 1 , x,

高数上1-习题课

高数上1-习题课

lim f ( x) A 或
x x0
f ( x) A(当x x0 )
" "定义 0, 0,使当0 x x0 时, 恒有 f (x) A .
左极限 0, 0,使当x0 x x0时, 恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0
两个重要 极限
等价无穷小 及其性质
无穷小 的性质
唯一性
求极限的常用方法
极限的性质
1、极限的定义
定义 如果对于任意给定的正数(不论它多么
小),总存在正数N ,使得对于n N 时的一切xn ,不
等式 xn a 都成立,那末就称常数a 是数列xn
的极限,或者称数列 xn 收敛于a ,记为
lim
n
2、函数的性质
(1) 单值性与多值性:
若对于每一个x D ,仅有一个值y f ( x) 与之对 应,则称 f ( x)为单值函数,否则就是多值函数.
y
y
( x 1)2 y2 1
y ex
o
x
o
x
(2) 函数的奇偶性:
设D关于原点对称, 对于x D,有
f ( x) f ( x) 称f ( x)为偶函数;
f (x) f (x)
y
称f ( x)为奇函数;
y
y x
y x3
o
x
偶函数
o
x
奇函数
(3) 函数的单调性:
设函数f(x)的定义域为D,区间I D,如果对于区间I上
任意两点 x1及 x2,当 x1 x2时,恒有:
(1) f (x1) f (x2 ),则称函数 f (x) 在区间I上是单调增加的; 或(2) f (x1) f (x2 ), 则称函数 f (x)在区间I上是单调递减的;

高等数学课后习题及参考答案(第一章)

高等数学课后习题及参考答案(第一章)

高等数学课后习题及参考答案(第一章)习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞),A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C .证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明(1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ).证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B )⇔ y ∈f (A )⋃f (B ),所以 f (A ⋃B )=f (A )⋃f (B ).(2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明:(1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )),所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域:(1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-. (2)211xy -=; 解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞).(3)211x xy --=; 解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1].(4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2).(5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞).(6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4].(8)xx y 1arctan 3+-=; 解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞).(10)x e y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么?(1)f (x )=lg x 2, g (x )=2lg x ;(2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x .解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x .(3)相同. 因为定义域、对应法则均相相同.(4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y ,所以函数xx y -=1在区间(-∞, 1)内是单调增加的. (2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0ln )()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2.因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的和是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ),所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数.如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个奇函数的积是偶函数.如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ),所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2);(2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数.(2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数. 13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期:(1)y =cos(x -2);解 是周期函数, 周期为l =2π.(2)y =cos 4x ;解 是周期函数, 周期为2π=l . (3)y =1+sin πx ;解 是周期函数, 周期为l =2.(4)y =x cos x ;解 不是周期函数.(5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1.(2)xx y +-=11; 解 由x x y +-=11得y y x +-=11, 所以x x y +-=11的反函数为xx y +-=11. (3)dcx b ax y ++=(ad -bc ≠0); 解 由d cx b ax y ++=得a cy b dy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=. (4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31y x =, 所以y =2sin3x 的反函数为2arcsin 31x y =. (5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x x y . 解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为x x y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy . (2) y =sin u , u =2x , 81π=x ,42π=x ; 解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy .(3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y .(4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1.解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域:(1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1].(2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为[2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) .(3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ].(4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义. 18. 设⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形.解 ⎪⎩⎪⎨⎧>-=<=1|| 11||01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 00 1)]([x x x x g f . ⎪⎩⎪⎨⎧>=<==-1|| 1||e 1|| )]([101)(x e x x e e xfg x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g .19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin h DC AB ==, 又从0)]40cot 2([21S h BC BC h =⋅++ 得h hS BC ⋅-= 40cot 0, 所以 h h S L40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0, 040cot 0>⋅-h hS 确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数;(2)将厂方所获的利润P 表示成订购量x 的函数;(3)某一商行订购了1000台, 厂方可获利润多少?解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75.当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x .综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.0911000 90x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 151600100 01.0311000 30)60(2x x x x x x x x p P .(3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→nn . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|, 所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ;分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x , 所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x , 所以要使ε<-+-212413x x , 只须ε21|)21(|<--x .证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x x x ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有ε<-+212133x x , 所以2121lim 33=+∞→x x x . (2)0sin lim =+∞→xx x .分析 因为xx x x x 1|sin |0sin ≤=-. 所以要使ε<-0sin x x , 只须ε<x1, 即21ε>x .证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0sin xx ,所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X .5. 证明函数f (x )=|x |当x →0时极限为零.证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(xx x f = x x x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在. 证明 因为11lim lim )(lim 000===---→→→x x x x x x f ,11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim ||lim )(lim 000===+++→→→x x x x x x x x ϕ,)(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0, ∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ;∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有|f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε ,即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x x y 当x →3时为无穷小; (2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x x y 为无穷小. (2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数xx y 21+=为当x →0时的无穷大. 问x 应满足什么条件,能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由: (1)xx x 12lim +∞→;(2)xx x --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x xx +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数xx y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M .习题1-51. 计算下列极限:(1)35lim 22-+→x x x ; 解 9325235lim 222-=-+=-+→x x x .(2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx x x x x 2324lim2230++-→; 解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ; 解 2111211lim 121lim 2222=---=---∞→∞→xx x x x xx x . (8)13lim 242--+∞→x x x x x ; 解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→x x x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limnn n -+⋅⋅⋅+++∞→; 解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n nn n n n n n . (13)35)3)(2)(1(limn n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim 3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31x x x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112lim21-=+++-=→x x x x . 2. 计算下列极限: (1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x x x ;解 ∞=+∞→12lim 2x x x (因为分子次数高于分母次数).(3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限: (1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x xx x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量).4. 证明本节定理3中的(2).习题1-61. 计算下列极限: (1)xx x ωsin lim 0→;解 ωωωωω==→→x x xx x x sin lim sin lim 00.(2)xx x 3tan lim 0→;解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x .(3)xx x 5sin 2sin lim 0→;解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x .(4)x x x cot lim 0→;解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x .(5)xx x x sin 2cos 1lim 0-→;解 2)sin (lim 2sin 2lim 2cos 1lim sin 2cos 1lim 20220200===-=-→→→→x x x x x x x x x x x x x . 或 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→xx x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xx x nn n n nn =⋅=∞→∞→22sin lim2sin 2lim . 2. 计算下列极限:(1)x x x 1)1(lim -→; 解 11)(1)1()(101})](1[lim {)](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x .(2)x x x 1)21(lim +→;解 2221221010])21(lim [)21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 222])11(lim [)1(lim e xx x x x x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数).解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim .3. 根据函数极限的定义, 证明极限存在的准则I '. 证明 仅对x →x 0的情形加以证明.设ε为任一给定的正数, 由于A x g x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ1>0, 使得当0<|x -x 0|<δ1时, 恒有|g (x )-A |<ε, 即A -ε<g (x )<A +ε.由于A x h x x =→)(lim 0, 故由定义知, 对ε>0, 存在δ2>0, 使得当0<|x -x 0|<δ2时, 恒有|h (x )-A |<ε, 即A -ε<h (x )<A +ε.取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ时, A -ε<g (x )<A +ε与A -ε<h (x )<A +ε 同时成立, 又因为g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.证明 仅对x →x 0的情形加以证明. 因为A x g x x =→)(lim 0, A x h x x =→)(lim 0,所以对任一给定的ε>0, 存在δ>0, 使得当0<|x -x 0|<δ时, 恒有 |g (x )-A |<ε及|h (x )-A |<ε,即 A -ε<g (x )<A +ε及A -ε<h (x )<A +ε.又因为 g (x )≤f (x )≤h (x ), 所以 A -ε<f (x )<A +ε, 即 |f (x )-A |<ε, 因此A x f x x =→)(lim 0.4. 利用极限存在准则证明: (1)111lim =+∞→nn ;证明 因为n n 11111+<+<,而 11lim =∞→n 且1)11(lim =+∞→n n ,由极限存在准则I , 111lim =+∞→nn .(2)1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n ;证明 因为πππππ+<++⋅⋅⋅++++<+2222222)1 211(n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 1)1 211(lim 222=++⋅⋅⋅++++∞→πππn n n n n n .(3)数列2,22+, 222++, ⋅ ⋅ ⋅ 的极限存在;证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界.当n =1时221<=x , 假定n =k 时x k <2, 则当n =k +1时, 22221=+<+=+k k x x , 所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增. 因为nn n n n n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221, 而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增.因为数列{x n }单调增加有上界, 所以此数列是有极限的. (4)11lim 0=+→n x x ;证明 当|x |≤1时, 则有 1+x ≤1+|x |≤(1+|x |)n , 1+x ≥1-|x |≥(1-|x |)n , 从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 0=+=-→→x x x x ,根据夹逼准则, 有 11lim 0=+→n x x .(5)1]1[lim 0=+→xx x .证明 因为x x x 1]1[11≤<-, 所以1]1[1≤<-xx x .又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有1]1[lim 0=+→xx x .习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim 202320=--=--→→xx x x x x x x x ,所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim 212131=++=-++-=--→→→x x xx x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2x x -. 证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0),所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1sec 2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x .解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2sin tan 2)1(cos tan tan sin x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~sin ~1sin 1sin 1sin 1++=-+(x →0), 所以 33121lim )1sin 1)(11(tan sin lim 230320-=⋅-=-+-+-→→x x x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim=αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim limlim =⋅=βαγβγα. 因此α~γ. 习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x .所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11lim )(lim 11-≠==---→-→f x f x x ,)1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续. 在x =1处, 因为f (1)=1, 并且1lim )(lim 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1),所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x x y , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x x y x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的. (2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim0=→xx x , 0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点.又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点.(4)⎩⎨⎧>-≤-=1 311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim )(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1||1|| 01|| 11lim)(22x x x x x x x x x f nn n .在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0. 5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点;解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=QQx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Qx x x x x f )(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞). 在函数的连续点x =0处, 21)0()(lim 0==→f x f x .在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim )(lim 33-=-+-=-→-→x x x x f x x .2. 设函数f (x )与g (x )在点x 0连续, 证明函数ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;(2)34)2(sin lim x x π→;(3))2cos 2ln(lim 6x x π→;(4)xx x 11lim 0-+→;(5)145lim 1---→x x x x ;(6)a x a x a x --→sin sin lim ;(7))(lim 22x x x x x --++∞→.解 (1)因为函数52)(2+-=x x x f 是初等函数, f (x )在点x =0有定义, 所以 55020)0(52lim 220=+⋅-==+-→f x x x .(2)因为函数f (x )=(sin 2x )3是初等函数, f (x )在点4π=x 有定义, 所以1)42(sin )4()2(sin lim 334=⋅==→πππf x x .(3)因为函数f (x )=ln(2cos2x )是初等函数, f (x )在点6π=x 有定义, 所以0)62cos 2ln()6()2cos 2ln(lim 6=⋅==→πππf x x .(4))11(lim)11()11)(11(lim 11lim 000++=++++-+=-+→→→x x x x x x x x x x x x 211101111lim=++=++=→x x .(5))45)(1()45)(45(lim 145lim 11x x x x x x x x x x x x +--+---=---→→)45)(1(44lim 1x x x x x +---=→214154454lim 1=+-⋅=+-=→x x x .。

高等数学(1)-2习题册8章答案

高等数学(1)-2习题册8章答案

第八章 空间解析几何与向量代数第1次课 空间直角坐标系 向量及其线性运算1.在x 轴上求与点(3,1,7)A -及(7,5,5)B -等距离的点. 解:设所求点为(,0,0)x ,据题意知:22(3)149(7)2525x x --++=-++得2x =,于是所求点为(2,0,0).2.把ABC ∆的BC 边三等分,设分点依次为12,D D ,再把各分点与点A 连接起来,试以,AB c BC a −−→→−−→→==表示向量−→−−→−A D A D 21,.解:113D A c a −−→=-- ,2D A −−→23c a =-- .3.已知两点)1,2,4(1M 和)2,0,3(2M ,计算向量123M M -的模、方向角.解:1236M M -= ,2,,343πππαβγ===.4.求平行于向量(3,2,1)a →=-的单位向量.解:0(aa→=5.已知||3a →=,其方向余弦31cos ,32cos ==βα,求向量a →的坐标表示式.解:设(,,)x y z a a a a →=,则2cos 3x aaα==,1cos 3y a a β== ,所以2x a =,1y a =. 又222cos cos cos 1αβγ++=,得24cos 9γ=,2cos 3γ=±. 2cos 3z a aγ==± ,所以2z a =±,于是,所求向量a →的坐标表示式为(2,1,2)a →=±.6.一向量的终点为)7,1,2(-B ,它在x 轴,y 轴和z 轴上的投影依次为4,4-和1,求该向量的起点A 的坐标.解:设起点A 的坐标为(,,)x y z ,则由24,14,71x y z -=--=--=可得(,,)(2,3,6)x y z =-.7.设32a i j k →→→→=--,2b i j k →→→→=+-,求(1)→→→→⨯⋅b a b a ,;(2) ,3)2(→→⋅-b a →→⨯b a 2;(3) ),cos(→∧→b a ;(4)b prj a →.解:(1)3,57a b a b i j k →→→→⋅=⨯=++ ;(2)(2)318a b →→-⋅=-,210214a b i j k →→⨯=++ ;(3)cos(,)14a ba b a b→→→∧→→→⋅==; (4)cos 14b prj a a ϕ→→===.8.已知)2,1,1(M 1-,)1,3,3(M 2,)3,1,3(M 3,求与−→−21M M 、−→−32M M 同时垂直的单位向量.解:设所求单位向量(,,)a x y z →=.12(2,4,1)M M −−→=-,23(0,2,2)M M −−→=-.1223M M M M ⨯241644022i j ki j k =-=---所求单位向量a →=12231223M M M M M M M M ⨯⨯=±. 9.已知(3,0,4),(5,2,14)OA OB =-=--,求AOB ∠平分线上的单位向量.解:AOB ∠平分线上的一个向量为011(3,0,4)(5,2,14)515OC OA OB =+=-+-- 2(2,1,1)15=-.所以,所求的AOB ∠平分线上的单位向量为OC OC= . 10.若向量3a b + 垂直于75a b - ,4a b - 垂直于72a b - ,求a 和b之间的夹角.解:由题意知:(3)(75)0a b a b +⋅-= ,(4)(72)0a b a b -⋅-=22716150a a b b +⋅-= ,2273080a a b b -⋅+=整理得:24623a b b ⋅= ,22a b b ⋅= ,将22a b b ⋅= 代入22716150a a b b +⋅-= 得,a b = ,又22112cos(,)2b a b a b a b b→→→→∧→→→→⋅===故1(,)arccos23a b π→∧→==. 11.在Oxy 面上,求垂直于(5,3,4)a =-,并与a 等长的向量b .解:设b (,,0)x y =,则b ===2250x y +=又由a b ⊥ ,可得 530x y -=.于是解方程组2250x y +=,530x y -=得1717x y ==或,1717x y =-=- 即b(,1717=或b(,0)1717=--. 12.求向量(3,12,4)a =- 在向量(1,0,2)(1,3,4)b =-⨯-上的投影.解:(1,0,2)(1,3,4)b =-⨯-102(6,2,3)134i j k=-=-.b prj a→(3,12,4)a b →→=⋅=-67=13.设向量4=α,3=β,6),(^πβα=,求以βα2+和βα3-为边的平行四边形的面积.解:以βα2+和βα3-为边的平行四边形的面积为22(2)(3)3()2()6S αβαβααββαβ=+⨯-=-⨯+⨯-^55s i n (,)543s i n6παβαβαβ=⨯=⋅⋅=⨯⨯30=提高题:设(2,1,2),(1,1,)a b z =--=,问z 为何值时^(,)a b 最小?并求出此最小值. 解:记^(,)a b ϕ=,则cos a ba bϕ→→→→⋅==所以,ϕ=d1d3zϕ==当4z<-时,dd zϕ<;当4z>-,dd zϕ<.所以,当4z=-时,^(,)a bϕ=有最小值,且min4πϕ==.第2次课平面及其方程空间直线及其方程1.求满足下列条件的平面方程:(1)过点1(1,2,0)M和2(2,1,1)M且垂直于平面П:1=-xy.解:所求平面的法向量()1,1,0(1,1,1)110111i j kn=-⨯-=--i j=+.所求平面方程为1(1)1(2)0x y⋅-+⋅-=,即30x y+-=.(2)过点(2,3,0)A -,(1,1,2)B -且与向量{4,5,1}a →=平行.解:所求平面的法向量()3,4,2(4,5,1)342451i j kn =-⨯=- 14531i j k =-++所求平面方程为14(2)5(3)310x y z -⋅++⋅-+=,即14531430x y z --+=(3)过(1,1,1),(2,2,2)A B ---和(1,1,2)C -.解:所求平面的法向量()3,3,3(0,2,3)333023i j kn =--⨯-=--- 396i j k =-++.所求平面方程为3(1)9(1)6(1)0x y z -⋅-+⋅-++=,即320x y z -++=.2.求平行于平面6650x y z +++=,而与三坐标面所构成的四面体体积为一个单位的平面.解:设所求平面方程为1x y za b c++=.由题意知 116111/6/1/6abc t ab c ⎧=⎪⎪⎨⎪===⎪⎩得111,,66a b c t t t ===,将其代入116abc =,得16t =.所以 1,6,1a b c ===故所求平面方程为116x y z ++=. 3.一平面通过Oz轴与平面27x y +=的夹角为3π,试求此平面方程. 解:因为所求平面过Oz ,所以可设平面方程为0Ax By += (1) 则其法向量为(,,)A B O .平面27x y +=的法向量为(2,1,.因为所求平面与已知平面的夹角为3π,所以cos 3π=223830A AB B +-= (2) 联立(1)、(2)解得 13A B =再由A B 、不同时为零,代入式(1)可得所求平面方程为 30x y +=或30x y -=.4.求与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行、且过原点的平面方程. 解:{}{}120,1,1,1,2,1s s ==由题意所求平面平行于两直线,则平面的法向量n与该两直线的方向向量垂直,即12011121i j kn s s i j k =⨯==-+-又平面过原点,所以所求平面方程为 即 0x y z -+=.5.求满足下列条件的直线方程:(1)过点(4,1,3)-且平行于直线31122-=-=-z y x . 解:方向向量(2,1,3)s =- ,故所求直线方程为413213x y z -+-==-.(2)过点(5,2,3)-且垂直于平面132=+-z y x 的直线方程.解:方向向量(2,3,1)s = ,故所求直线方程为523213x y z --+==-.(3)过点(0,2,4)且与直线⎩⎨⎧=-=+2312z y z x 平行.解:12(1,0,2),(0,1,3)n n ==-.方向向量s = 12102(2,3,1)013i j kn n ⨯==--故所求直线方程为34221x y z --==-.6.试求直线21:24x y z L x y z ++=⎧⎨++=⎩的对称式方程和参数方程.解:直线L 的方向向量为{}11321112121--==⨯=,,kj i n n v 点(-2,0,3)在直线L 上,所求直线L 的对称式方程:13132--=-=+z y x7.求直线⎩⎨⎧=--=++003z y x z y x 与平面220x y z -+=的夹角.解:12(1,1,3),(1,1,1),(2,2,1)n n n ==--=-.方向向量s = 12113(2,4,2)111i j kn n ⨯==---.则sin s n s nϕ⨯==⋅故所求夹角为arcsin6. 8.求直线⎩⎨⎧=++-=--+0220532:z y x z y x l 在平面14=+-z y x 上的投影直线方程.解:包含l 的平面束方程为235(22)0x y z x y z λ+--+-++=.(12)(2)(3)520x y z λλλλ++-+--+= 12(4,1,1),(12,2,3)n n λλλ=-=+--则124(12)(2)(3)1010n n λλλλ⋅=+--+-=-= ,得110λ=.故所求投影直线方程为12192948041x y z x y z +--=⎧⎨-+=⎩.提高题:1.已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1),线段AB 绕z 轴旋转一周所成的旋转曲面为S ,求由S 及两平面0,1z z ==所围成的立体体积.第3次课 曲面及其方程 空间曲线及其方程1.建立以点(1,3,2)-为球心,且通过坐标原点的球面方程. 解:2222(1)(3)(2)x y z R -+-++= 因为过原点,得214R =.所求球面方程为222(1)(3)(2)14x y z -+-++=.2.一动点与两定点)1,3,2(和)6,5,4(等距离,求该动点的轨迹方程. 解:设该点坐标为(,,)x y z ,则=所以该动点的轨迹方程为441063x y z ++=.3.求下列旋转曲面的方程:(1)xOy 面上的椭圆22221x y a b+=绕x 轴旋转所形成的旋转面的方程为( 122222=++bz y a x ).(2)zOx 面上的抛物线22x z =绕x 轴旋转的旋转抛物面方程是( 222y z x += ).(3)yOz 面上曲线22yz =绕z 轴旋转一周所得旋转曲面方程为( 222()z x y =+ ). (4)xOy 面上曲线9422=+y x 绕x 轴旋转一周所得旋转曲面方程为( 222()94x z y ++= ). 4.方程222y z x +=表示的二次曲面是( 圆锥面 ).5.方程221x y +=在空间所表示的图形是( 圆柱面 ). 6.方程22201x y x x z ⎧+-=⎨+=⎩代表的图形是( 椭圆 ).7.曲线22251x y z z ⎧++=⎨=⎩在xOy 面上的投影曲线方程为( ⎩⎨⎧==+0422z y x ). 8.曲线222112x y z z ⎧++=⎪⎨=⎪⎩在xOy 面上的投影曲线方程为( ⎪⎩⎪⎨⎧==+04322z y x ). 9.下列曲面是否是旋转曲面?若是,它是如何产生的?(1)z y x 422=+ (2)14425222=--z y x 解:(1)是,由xOz 面上曲线24x z =绕z 轴旋转而成,或yOz 面上曲线24y z =绕z 轴旋转而成. (2)是,由xOy 面上曲线221254x y -=绕x 轴旋转而成,或xOz 面上曲线221254x z -=绕x 轴旋转而成.10.画出下列曲面(或立体)的图形:(1))(222y x z += (2)Rz z y x 2222=++(3)22y x z +=与222y x z --=所围的立体11.求以直线113:234x y z L ---==为中心轴,底半径为2的圆柱面方程. 解:圆柱面是到直线L 的距离为2的动点轨迹,设所求圆柱面上点的坐标为(,,)x y z ,由点到直线的距离公式知2=将上式两边平方,整理即得所求圆柱面方程为16(1)(3)12(1)(1)580x z x y --+--+=2.证明:直线0:x z l a c y b ⎧+=⎪⎨⎪=⎩在曲面2222221x y z a b c +-=上. 证明:曲面2222221x y z a b c+-=是一个单叶双曲面,要证明直线l 在该曲面上,只需证明只需l 上的每一点都在该曲面上.直线l 的参数方程为:x at l y b z ct =⎧⎪=⎨⎪=-⎩将上式代入曲面方程,满足曲面2222221x y z a b c+-=方程,故直线l 在曲面上.13.求曲线222222:x y z l z x y⎧++=⎪⎨=+⎪⎩,在xOy 平面上的投影曲线的方程. 解:在曲线l 方程中消去z ,即得曲线l 在xOy 平面上的投影柱面方程为22222()2x y x y +++=即 2222(2)(1)0x y x y +++-=因为2220x y ++≠,所以有2210x y +-=,故所求投影曲线方程为 2210x y z ⎧+=⎨=⎩提高题:1. 椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是经过点(4,0)且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1) 求1S 及2S 的方程;(2) 求1S 及2S 之间的立体体积.第4次课 第八章 总复习题1.设3,4a b == ,且a b ⊥ ,求()()a b a b +⨯- .解:因为a b ⊥ ,^sin(,)sin 12a b π== 故^()()22sin(,)243124a b a b b a b a a b +⨯-=⨯==⨯⨯⨯=2.设(2,3,1),(1,2,5),,a b c a c b =-=-⊥⊥ ,且(27)10c i j k ⋅+-= ,求 c .解:设(,,)c x y z = ,由,c a c b ⊥⊥ 有230250270x y z x y z x y z -+=⎧⎪-+=⎨⎪+-=⎩,得65155,,12412x y z ===,所以65155(,,)12412c = . 3.设()2a b c ⨯⋅= ,求[()()]()a b b c c a +⨯+⋅+ .解:[()()]()a b b c c a +⨯+⋅+()()a b b b a c b c c a =⨯+⨯+⨯+⨯⋅+()()a b a c b c c a =⨯+⨯+⨯⋅+()()()()()()a b c a c c b c c a b a a c a b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅()()a b c b c a =⨯⋅+⨯⋅2()a b c =⨯⋅4=4.直线过点(3,5,9)A --,且与两直线135:23y x L z x =+⎧⎨=-⎩和247:510y x L z x =-⎧⎨=+⎩相交,求此直线方程. 解:设所求直线方程3:59x lt L y mt z nt =-+⎧⎪=+⎨⎪=-+⎩因为直线L 与1L 和2L 相交,所以59359623mt lt nt lt +=-++⎧⎨-+=-+-⎩,即(3)92m l t n l-=-⎧⎨=⎩ 51247915510mt lt nt lt +=-+-⎧⎨-+=-++⎩即(4)24(5)4m l t n l t -=-⎧⎨-=⎩得2,22n l m l ==.令1l =,则2,22n m ==.故所求直线方程为3:52292x t L y t z t =-+⎧⎪=+⎨⎪=-+⎩.5.求过点(1,0,4)-,平行于平面340x y z -+=,且与直线132z x y +=-=相交的直线方程. 解:设所求直线方程为1,(,,)4x lt y mts l m n z nt =-+⎧⎪==⎨⎪=+⎩. 平面的法向量(3,4,1)n =- ,由于直线与平面平行,所以n s ⊥ ,即340l m n -+= 因为两直线相交,故有432nt lt mt +=-+=. ()3(2)4m l t l n t -=⎧⎨-=⎩,即43100m n l +-= 于是得419,728l n m n ==. 令28n =,得16,19l m ==.故所求直线方程为31619428x t y t z t =-+⎧⎪=⎨⎪=+⎩.6.求通过下列两平面1:220x y z ∏+--=和2:32210x y z ∏--+=的交线,且与平面3:32360x y z ∏++-=垂直的平面方程.解:设所求平面方程为(22)(3221)x y z x y z λμ+--+--+= 即 (23)(2)(2)(2)x y z λμλμλμλμ++-+--+-+= 由于该平面⊥平面2∏,所以它们的法向量一点互相垂直,于是3(23)2(2)3(2)0λμλμλμ++-+--=得50λμ-=.取1,5λμ==,代入(22)(3221)0x y z x y z λμ+--+--+=,得 所求平面方程为1791130x y z --+=.7.求与两平面632350x y z ---=和632630x y z ---=相切的球面方程,其中的一个切点为(5,1,1)--.解:由两平行平面的距离公式4d ==所以,球半径为2.求出另一个切点,过点作平面的法线方程561312x t y t z t =+⎧⎪=--⎨⎪=--⎩代入另一个平面方程,得47t =.从而得到球心坐标为471311(,,)777--.故所求球面方程为 222471311()()()4777x y z -++++= 8.求曲线22222(1)(1)z x y z x y ⎧=--⎪⎨=-+-⎪⎩在三个坐标面上的投影曲线的方程. 解:方程组消z ,得22x y x y +=+,故曲线在xOy 面上的投影为 2200x y x y z ⎧+--=⎨=⎩ 同理可得曲线在yOz 面上和xOz 面上的投影为222243200y z yz y z x ⎧++--+=⎨=⎩和222243200x z xz x z y ⎧++--+=⎨=⎩。

高等数学大一教材答案第二版

高等数学大一教材答案第二版

高等数学大一教材答案第二版---【Chapter 1】概述高等数学是大一学生必修的一门重要数学课程,它是数学基础教育的核心内容之一。

本教材旨在提供高等数学课程第二版的答案,帮助学生更好地理解和掌握数学知识,提高解题能力。

以下是该教材第二版中各章节的答案概述。

---【Chapter 2】函数与极限2.1 函数和映射- 习题解答:- 1. 函数的定义是...- 2. 映射的概念是...- ...2.2 一元函数的极限与连续性- 习题解答:- 1. 极限的定义是...- 2. 函数连续的条件是...- ...2.3 极限运算与极限的性质- 习题解答:- 1. 极限运算的性质有...- 2. 极限的唯一性原理是... - ...2.4 无穷小量与无穷大量- 习题解答:- 1. 无穷小量的定义是...- 2. 无穷大量的定义是...- ...2.5 函数的连续性- 习题解答:- 1. 函数连续的判定方法有... - 2. 连续函数的性质是...---【Chapter 3】导数与微分3.1 导数的概念和几何意义- 习题解答:- 1. 导数的定义是...- 2. 导数的几何意义是...- ...3.2 函数的求导法则- 习题解答:- 1. 基本函数的导数是...- 2. 导数的四则运算法则是... - ...3.3 高阶导数与莱布尼茨公式- 习题解答:- 1. 高阶导数的定义是...- 2. 莱布尼茨公式是...- ...3.4 隐函数与参数方程的导数- 习题解答:- 1. 隐函数求导的方法是... - 2. 参数方程的导数计算是...- ...3.5 微分的概念和微分形式不变性- 习题解答:- 1. 微分的定义是...- 2. 微分形式不变性的原因是...- ...---【Chapter 4】微分中值定理与导数的应用4.1 极值与最值- 习题解答:- 1. 函数极值的判断方法是...- 2. 最值的概念与求解方法是...- ...4.2 微分中值定理- 习题解答:- 1. 罗尔定理的条件是...- 2. 拉格朗日中值定理的条件是...- ...4.3 函数的凹凸性与曲率- 习题解答:- 1. 函数凹凸的判定方法是...- 2. 曲率的定义与计算方法是...- ...4.4 导数求曲线的弧长与曲面的面积- 习题解答:- 1. 曲线弧长的计算公式是...- 2. 曲面面积的计算公式是...- ...---【Chapter 5】定积分与不定积分5.1 定积分的概念和性质- 习题解答:- 1. 定积分的定义是...- 2. 定积分的性质有...- ...5.2 定积分的计算方法- 习题解答:- 1. 换元积分法的步骤是...- 2. 分部积分法的公式是...- ...5.3 定积分的应用- 习题解答:- 1. 平均值定理的含义是...- 2. 积分中值定理的条件是...- ...5.4 不定积分的概念与性质- 习题解答:- 1. 不定积分的定义是...- 2. 不定积分的性质有...- ...5.5 不定积分的基本公式- 习题解答:- 1. 基本积分公式是...- 2. 函数的原函数的计算方法是...- ...---【Chapter 6】微分方程6.1 微分方程的概念和解的存在唯一性- 习题解答:- 1. 微分方程的定义是...- 2. 解的存在唯一性的条件是...- ...6.2 一阶微分方程的解法- 习题解答:- 1. 可分离变量方程的求解步骤是...- 2. 齐次方程的解法是...- ...6.3 高阶线性微分方程的解法- 习题解答:- 1. 齐次线性微分方程的通解形式是...- 2. 非齐次线性微分方程的特解求解方法是... - ...6.4 常系数线性微分方程及其特殊解法- 习题解答:- 1. 齐次常系数线性微分方程的特征方程求解方法是... - 2. 非齐次常系数线性微分方程的特殊解求解方法是... - ...---【Chapter 7】重积分7.1 二重积分的概念和性质- 习题解答:- 1. 二重积分的定义是...- 2. 二重积分的性质有...- ...7.2 二重积分的计算方法- 习题解答:- 1. 直角坐标系下二重积分的计算公式是...- 2. 极坐标系下二重积分的计算公式是...- ...7.3 二重积分的应用- 习题解答:- 1. 二重积分求面积的计算步骤是...- 2. 二重积分求质量的计算方法是...- ...7.4 三重积分的概念和性质- 习题解答:- 1. 三重积分的定义是...- 2. 三重积分的性质有...- ...7.5 三重积分的计算方法- 习题解答:- 1. 笛卡尔坐标系下三重积分的计算公式是...- 2. 柱面坐标系下三重积分的计算公式是...- ...---通过以上章节答案的讲解,希望读者能更好地理解和掌握高等数学的相关知识。

大一高数课件第十章10-习题课-2

大一高数课件第十章10-习题课-2

1
(C) z 2dxdy 2 z 2dxdy.

1
2、若 为 z 2 ( x 2 y 2 )在 xoy面上方部分的曲面 ,
则 ds等于( C ).
(A)
2
d
r
1 4r 2 rdr ;(B)
2
d
2
1 4r 2 rdr;
0
0


*



(
P x

Q y

R z
)dxdydz
2
o1

*
y
3
x
(8 y 1 4 y 4 y)dxdydz dv



3
dxdz 1 z2 x2 dy
Dxz
2 d
0
2 d
0
3
1 2 dy
2 0 2 (2 3 )d 2 ,
0
0
(C)
2
d
2 1 4r 2 rdr.
0
0
3、若 为球面x 2 y 2 z 2 R2 的外侧,则 x 2 y 2 zdxdy 等于( A ).
(A) 2 x2 y2 R2 x2 y2dxd;y
Dxy
(B) x 2 y 2 R2 x 2 y 2 dxdy ;
3
3
3
I

{

1[ 3
f
( x,
y,z)
x]
1 [2 f ( x, y, z) y] 1 [ f ( x, y, z) z]}dS
3
3

1 3
(x

同济大学版高等数学课后习题答案第2章

同济大学版高等数学课后习题答案第2章

同济大学版高等数学课后习题答案第2章习题2-11. 设物体绕定轴旋转, 在时间间隔[0, t]内转过的角度为θ, 从而转角θ是t 的函数: θ=θ(t). 如果旋转是匀速的, 那么称tθω=为该物体旋转的角速度, 如果旋转是非匀速的, 应怎样确定该物体在时刻t 0的角速度?解在时间间隔[t 0, t 0+?t]内的平均角速度ω为 tt t t t-?+=??=)()(00θθθω,故t 0时刻的角速度为)()()(lim lim lim 000000t tt t t tt t t θθθθωω'=?-?+=??==→?→?→?. 2. 当物体的温度高于周围介质的温度时, 物体就不断冷却, 若物体的温度T 与时间t 的函数关系为T =T(t), 应怎样确定该物体在时刻t 的冷却速度?解物体在时间间隔[t 0, t 0+?t]内, 温度的改变量为 ?T =T(t +?t)-T(t), 平均冷却速度为tt T t t T t T ?-?+=??)()(,故物体在时刻t 的冷却速度为)()()(lim lim 00t T tt T t t T t T t t '=?-?+=??→?→?. 3. 设某工厂生产x 单位产品所花费的成本是f(x)元, 此函数f(x)称为成本函数, 成本函数f(x)的导数f '(x)在经济学中称为边际成本. 试说明边际成本f '(x)的实际意义.解 f(x +?x)-f(x)表示当产量由x 改变到x +?x 时成本的改变量.xx f x x f ?-?+)()(表示当产量由x 改变到x +?x 时单位产量的成本. xx f x x f x f x ?-?+='→?)()(lim)(0表示当产量为x 时单位产量的成本.4. 设f(x)=10x 2, 试按定义, 求f '(-1). 解 xx x f x f f x x ?--?+-=?--?+-=-'→?→?2200)1(10)1(10lim )1()1(lim)1(20)2(lim 102lim 10020-=?+-=??+?-=→?→?x xx x x x . 5. 证明(cos x)'=-sin x .解 xxx x x x ?-?+='→?cos )cos(lim )(cos 0xxx x x +-=→?2sin )2sin(2limx x xx x x sin ]22sin )2sin([lim 0-=+-=→?. 6. 下列各题中均假定f '(x 0)存在, 按照导数定义观察下列极限, 指出A 表示什么:(1)A xx f x x f x =?-?-→?)()(lim 000;解xx f x x f A x ?-?-=→?)()(lim000)()()(lim 0000x f xx f x x f x '-=?--?--=→?-. (2)A xx f x =→)(lim 0, 其中f(0)=0, 且f '(0)存在; 解)0()0()0(lim )(lim00f x f x f x x f A x x '=-+==→→. (3)A h h x f h x f h =--+→)()(lim 000. 解hh x f h x f A h )()(lim000--+=→hx f h x f x f h x f h )]()([)]()([lim00000----+=→ hx f h x f hx f h x f h h )()(lim)()(lim 000000----+=→→ =f '(x 0)-[-f '(x 0)]=2f '(x 0). 7. 求下列函数的导数: (1)y =x 4; (2)32x y =; (3)y =x 1. 6; (4)xy 1=;(5)21xy =;(6)53x x y =;(7)5322x x x y =;解 (1)y '=(x 4)'=4x 4-1=4x 3 .(2)3113232323232)()(--=='='='x x x xy . (3)y '=(x 1. 6)'=1.6x 1. 6-1=1.6x 0. 6.(4)23121212121)()1(-----=-='='='x x x xy .(5)3222)()1(---='='='x x xy .(6)511151651653516516)()(x x x x xy =='='='-.(7)651616153226161)()(--=='='='x x x x x x y .8. 已知物体的运动规律为s =t 3(m). 求这物体在t =2秒(s)时的速度.解v =(s)'=3t 2, v|t =2=12(米/秒).9. 如果f(x)为偶函数, 且f(0)存在, 证明f(0)=0. 证明当f(x)为偶函数时, f(-x)=f(x), 所以)0(0)0()(lim 0)0()(lim 0)0()(lim)0(000f x f x f x f x f x f x f f x x x '-=-----=---=--='→-→→, 从而有2f '(0)=0, 即f '(0)=0.10. 求曲线y =sin x 在具有下列横坐标的各点处切线的斜率:π32=x , x =π.解因为y '=cos x , 所以斜率分别为 2132cos 1-==πk , 1cos 2-==πk .11. 求曲线y =cos x 上点)21 ,3(π处的切线方程和法线方程式.解y '=-sin x ,233sin3-=-='=ππx y ,故在点)21 ,3(π处, 切线方程为)3(2321π--=-x y ,法线方程为)3(3221π--=-x y .12. 求曲线y =e x 在点(0,1)处的切线方程. 解y '=e x , y '|x =0=1, 故在(0, 1)处的切线方程为 y -1=1?(x -0), 即y =x +1.13. 在抛物线y =x 2上取横坐标为x 1=1及x 2=3的两点, 作过这两点的割线, 问该抛物线上哪一点的切线平行于这条割线?解 y '=2x , 割线斜率为421913)1()3(=-=--=y y k .令2x =4, 得x =2.因此抛物线y =x 2上点(2, 4)处的切线平行于这条割线. 14. 讨论下列函数在x =0处的连续性与可导性: (1)y =|sin x|;(2)=≠=0001sin 2x x xx y . 解 (1)因为 y(0)=0,0)sin (lim |sin |lim lim 00=-==---→→→x x y x x x ,0sin lim |sin |lim lim 00===+++→→→x x y x x x ,所以函数在x =0处连续. 又因为 1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000-=-=--=--='---→→→-x x x x x y x y y x x x ,1sin lim 0|0sin ||sin |lim 0)0()(lim )0(000==--=--='+++→→→+xx x x x y x y y x x x , 而y '-(0)≠y '+(0), 所以函数在x =0处不可导.解因为01sin lim )(lim 200==→→xx x y x x , 又y(0)=0, 所以函数在x =0处连续. 又因为01sin lim 01sin lim0)0()(lim 0200==-=--→→→xx x x x x y x y x x x , 所以函数在点x =0处可导, 且y '(0)=0.15. 设函数>+≤=1 1)(2x b ax x x x f 为了使函数f(x)在x =1处连续且可导, a , b 应取什么值?解因为1lim )(lim 211==--→→x x f x x , b a b ax x f x x +=+=++→→)(lim )(lim 11, f(1)=a +b ,所以要使函数在x =1处连续, 必须a +b =1 . 又因为当a +b =1时211lim )1(21=--='-→-x x f x ,a x x a xb a x a x b ax f x x x =--=--++-=--+='+++→→→+1)1(lim 11)1(lim 11lim )1(111, 所以要使函数在x =1处可导, 必须a =2, 此时b =-1. 16. 已知?<-≥=0 0)(2x x x x x f 求f +'(0)及f -'(0), 又f '(0)是否存在?解因为 f -'(0)=10lim )0()(lim00-=--=---→→xx x f x f x x , f +'(0)=00lim )0()(lim 200=-=-++→→xx x f x f x x , 而f -'(0)≠f +'(0), 所以f '(0)不存在.17. 已知f(x)=?≥<0 0sin x x x x , 求f '(x) .解当x<0时, f(x)=sin x , f '(x)=cos x ; 当x>0时, f(x)=x , f '(x)=1; 因为 f -'(0)=10sin lim )0()(lim00=-=---→→x x x f x f x x , f +'(0)=10lim )0()(lim 00=-=-++→→xx x f x f x x , 所以f '(0)=1, 从而f '(x)=?≥<0 10cos x x x .18. 证明: 双曲线xy =a 2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a 2 .解由xy =a 2得xa y 2=, 22xa y k -='=.设(x 0, y 0)为曲线上任一点, 则过该点的切线方程为)(02020x x x a y y --=-. 令y =0, 并注意x 0y 0=a 2, 解得0022002x x ax y x =+=, 为切线在x轴上的距.令x =0, 并注意x 0y 0=a 2, 解得00022y y x a y =+=, 为切线在y 轴上的距.此切线与二坐标轴构成的三角形的面积为 200002||2|2||2|21a y x y x S ===.习题 2-21. 推导余切函数及余割函数的导数公式: (cot x)'=-csc 2x ; (csc x)'=-csc xcot x .解 xx x x x xx x 2sin cos cos sin sin )sin cos ()(cot ?-?-='=' x xx x x 22222csc sin 1sin cos sin-=-=+-=. x x xx x x cot csc sin cos )sin 1()(csc 2?-=-='='. 2. 求下列函数的导数: (1)1227445+-+=xxxy ;(2) y =5x 3-2x +3e x ;(3) y =2tan x +sec x -1; (4) y =sin x ?cos x ; (5) y =x 2ln x ; (6) y =3e x cos x ; (7)xx y ln =;(8)3ln 2+=xe y x;(9) y =x 2ln x cos x ; (10)tt s cos 1sin 1++=;解 (1))12274()12274(14545'+-+='+-+='---x x x xxxy2562562282022820xxxx x x +--=+--=---. (2) y '=(5x 3-2x +3e x )'=15x 2-2x ln2+3ex .(3) y '=(2tan x +sec x -1)'=2sec 2x +sec x ?tan x =sec x(2sec x +tan x).(4) y '=(sin x ?cos x)'=(sin x)'?cos x +sin x ?(cos x)' =cos x ?cos x +sin x ?(-sin x)=cos 2x . (5) y '=(x 2ln x)'=2x ?ln x +x 2?x 1=x(2ln x +1) . (6) y '=(3e x cos x)'=3e x ?cos x +3e x ?(-sin x)=3e x (cos x -sin x).(7)22ln1ln 1)ln (x x x xx x x x y -=-?='='.(8)3422)2(2)3ln (x x e x x e x e x e y x x x x -=?-?='+='. (9) y '=(x 2ln x cos x)'=2x ?ln x cos x +x 2?x1?cos x +x 2 lnx ?(-sin x)2x ln x cos x +x cos x -x 2 ln x sin x .(10)22)cos 1(cos sin 1)cos 1()sin )(sin 1()cos 1(cos )cos 1sin 1(t tt t t t t t tt s +++=+-+-+='++='.3. 求下列函数在给定点处的导数: (1) y =sin x -cos x , 求6π='x y 和4π='x y .(2)θθθρcos 21sin +=,求4πθθρ=dd .(3)553)(2x x x f +-=, 求f '(0)和f '(2) .解 (1)y '=cos x +sin x , 21321236sin 6cos 6+=+=+='=πππx y ,222224sin 4cos 4=+=+='=πππx y . (2)θθθθθθθθρcos sin 21sin 21cos sin +=-+=d d ,)21(4222422214cos 44sin 214πππππθρπθ+=?+?=+==d d . (3)x x x f 52)5(3)(2+-=', 253)0(='f , 1517)2(='f . 4. 以初速v 0竖直上抛的物体, 其上升高度s 与时间t 的关系是2021gt t v s -=. 求:(1)该物体的速度v(t); (2)该物体达到最高点的时刻. 解(1)v(t)=s '(t)=v 0-gt .(2)令v(t)=0, 即v 0-gt =0, 得gv t 0=, 这就是物体达到最高点的时刻.5. 求曲线y =2sin x +x 2上横坐标为x =0的点处的切线方程和法线方程.解因为y '=2cos x +2x , y '|x =0=2, 又当x =0时, y =0, 所以所求的切线方程为 y =2x , 所求的法线方程为x y 21-=, 即x +2y =0.6. 求下列函数的导数: (1) y =(2x +5)4 (2) y =cos(4-3x); (3)23x e y -=;(4) y =ln(1+x 2); (5) y =sin 2x ; (6)22x a y -=;(7) y =tan(x 2); (8) y =arctan(e x ); (9) y =(arcsin x)2; (10) y =lncos x .解 (1) y '=4(2x +5)4-1?(2x +5)'=4(2x +5)3?2=8(2x +5)3. (2) y '=-sin(4-3x)?(4-3x)'=-sin(4-3x)?(-3)=3sin(4-3x). (3)22233236)6()3(xx x xe x e x e y ----=-?='-?='.(4)222212211)1(11x x x x x x y +=?+='+?+='. (5) y '=2sin x ?(sin x)'=2sin x ?cos x =sin 2x . (6))()(21])[(22121222122'-?-='-='-x a x a x a y2122)2()(21x a x x x a --=-?-=-.(7) y '=sec 2(x 2)?(x 2)'=2xsec 2(x 2).(8)xx xx e e e e y 221)()(11+='?+='. (9) y '21arcsin2)(arcsin arcsin 2xx x x -='?=. (10)x x xx x y tan )sin (cos 1)(cos cos 1-=-='?='. 7. 求下列函数的导数: (1) y =arcsin(1-2x);(2)211x y -=;(3)x e y x 3cos 2-=;(4)xy 1arccos =;(5)x x y ln 1ln 1+-=;(6)xx y 2sin =; (7)x y arcsin =;(8))ln(22x a x y ++=;(9) y =ln(sec x +tan x); (10) y =ln(csc x -cot x). 解 (1)2 221)21(12)21()21(11x x x x x y --=---='-?--='.(2))1()1(21])1[(21212212'-?--='-='---x x x y 2321)1()2()1(21x x x x x --=-?--=-.(3))3)(3sin (3cos )2()3(cos 3cos )(2222'-+'-='+'='----x x e x x e x e x e y xx x x)3sin 63(cos 213sin 33cos 21222x x e x e x e xxx+-=--=---. (4)1||)1()1(11)1()1(1122222-=---='--='x x x x x x x y . (5)22)ln 1(2)ln 1(1)ln 1()ln 1(1x x x x x x xy +-=+--+-='.(6)222sin 2cos 212sin 22cos xx x x xx x x y -=?-??='.(7)2222121)(11)()(11x x x x x x y -=?-='?-='.(8)])(211[1)(12222222222'+++?++='++?++='x a x a x a x x a x x a x y 2222221)]2(211[1x a x x a x a x +=++?++=.(9)x x x x x x x x y sec tan sec sec tan sec )tan (sec tan sec 12 =++='+?+='. (10) x xx x x x x x x x y csc cot csc csc cot csc )cot (csc cot csc 12 =-+-='-?-='.8. 求下列函数的导数: (1)2)2(arcsin x y =;(2)2tan ln x y =;(3)x y 2ln 1+=;(4)x e y arctan =; (5)y =sin n xcos nx ; (6)11arctan -+=x x y ;(7)xx y arccos arcsin =;(8) y=ln[ln(ln x)] ; (9)xx x x y-++--+1111; (10)xx y +-=11arcsin.解 (1)'?=')2(arcsin )2(arcsin 2x x y )2()2(11)2(arcsin 22'?-?=x x x21)2(11(arcsin 22-?=x x . 242arcsin 2x x-=(2))2(2sec 2tan 1)2(tan 2tan 12'??='?='x x x x x yx x x csc 212sec 2tan 12=??=.(3))ln 1(ln 121ln 1222'+?+=+='x xx y )(ln ln 2ln 1212'??+=x x x x x x 1ln 2ln 1212??+=xx x2ln 1ln +=.(4))(arctan arctan '?='x e y x)()(112arctan'?+?=x x e x)1(221)(11arctan 2arctanx x e x x e x x+=?+?=.(5) y '=n sin n -1x ?(sin x)'?cos nx +sin n x ?(-sin nx)?(nx)' =n sin n -1x ?cos x ?cos nx +sin n x ?(-sin nx)?n =n sin n -1x ?(cosx ?cos nx -sin x ?sin nx)= n sin n -1xcos(n +1)x . (6)222 211)1()1()1()11(11)11()11(11x x x x x x x x x x y +-=-+--?-++='-+?-++= '.(7)222)(arccos arcsin 11arccos 11x x x x x y -+-='22)(arccos arcsin arccos 11x x x x +?-=22)(arccos 12x x -=π.(8))(ln ln 1)ln(ln 1])[ln(ln )ln(ln 1'??='?='x x x x x y)ln(ln ln 11ln 1)ln(ln 1x x x x x x ?=??=. (9)2)11()121121)(11()11)(121121(x x x x x x x x xx y -++--+--+--++-++=' 22111x x -+-=.(10)2)1()1()1(1111)11(1111x x x xx x x x x y +--+-?+--='+-?+--=')1(2)1(1x x x -+-=.9. 设函数f(x)和g(x)可导, 且f 2(x)+g 2(x)≠0, 试求函数)()(22x g x f y +=的导数.解])()([)()(212222'+?+='x g x f x g x f y )]()(2)()(2[)()(2122x g x g x f x f x g x f '+'?+=)()()()()()(22x g x f x g x g x f x f +'+'=.10. 设f(x)可导, 求下列函数y 的导数dxdy :(1) y =f(x 2);(2) y =f(sin 2x)+f(cos 2x).解 (1) y '=f '(x 2)?(x 2)'= f '(x 2)?2x =2x ?f '(x 2). (2) y '=f '(sin 2x)?(sin 2x)'+f '(cos 2x)?(cos 2x)'= f '(sin 2x)?2sin x ?cos x +f '(cos 2x)?2cosx ?(-sin x) =sin 2x[f '(sin 2x)- f '(cos 2x)]. 11. 求下列函数的导数: (1) y =ch(sh x ); (2) y =sh x ?e ch x ; (3) y =th(ln x); (4) y =sh 3x +ch 2x ; (5) y =th(1-x 2); (6) y =arch(x 2+1); (7) y =arch(e 2x ); (8) y =arctan(th x);(9)xx y 2ch 21ch ln +=; (10))11(ch 2+-=x x y解 (1) y '=sh(sh x)?(sh x)'=sh(sh x)?ch x . (2) y '=ch x ?e ch x +sh x ?e ch x ?sh x =e ch x (ch x +sh 2x) . (3))(ln ch 1)(ln )(ln ch 122x x x x y ?='?='.(4) y '=3sh 2x ?ch x +2ch x ?sh x =sh x ?ch x ?(3sh x +2) .(5))1(ch 2)1()1(ch 122222x x x x y --=-?-='. (6)222)1()1(112422++='+?++='x x x x x y .(7)12)(1)(142222-='?-='x xx x e e e e y . (8)xxx x x x x y 222222ch 1ch sh 11ch 1th 11)th ()th (11?+=?+='?+=' x x x 222sh 211sh ch 1+=+=. (9))ch (ch 21)ch (ch 124'?-'?='x x x x y x x xx x sh ch 2ch 21ch sh 4??-= xx x x x x x x 323ch sh ch sh ch sh ch sh -?=-=x xx x x x 33332th ch sh ch )1ch (sh ==-?=. (10)'+-?+-?+-='+-?+-=')11()11(sh )11(ch 2])11(ch [)11(ch 2x x x x x x x x x x y)112(sh )1(2)1()1()1()112(sh 22+-?+=+--+?+-?=x x x x x x x x .12. 求下列函数的导数: (1) y =e -x (x 2-2x +3); (2) y =sin 2x ?sin(x 2); (3)2)2(arctan x y =;(4)n xx y ln =;(5)t t t t ee e e y --+-=;(6)xy 1cos ln =;(7)x ey 1sin 2-=; (8)xx y +=;(9)242arcsin x x x y -+=;(10)212arcsint t y +=.解 (1) y '=-e -x (x 2-2x +3)+e -x (2x -2) =e -x (-x 2+4x -5).(2) y '=2sin x ?cos x ?sin(x 2)+sin 2x ?cos(x 2)?2x =sin2x ?sin(x 2)+2x ?sin 2x ?cos(x 2). (3)2arctan 44214112arctan 222x x x x y +=?+?='. (4)121ln 1ln 1+--=?-?='n n n n x x n x nx x x xy . (5)2222)1(4)())(())((+=+---++='-----t t t t t t t t t t t t e e e e e e e e e e e e y .。

(同济版高等数学上册)第一章 习题课精选题

(同济版高等数学上册)第一章  习题课精选题

(6) lim n
n
1 n 1 ; 2 n
3 单调有界:只是证明极限存在,一般适合数列以递推关系式给出; (1) 设 x1 1 , x 2 1 4 抓大头 (1)
lim n 1 3n 1 ; n n 3n 1 2
x 0 点连续,证明: f ( x ) 在任一点 x 处都连续.
证明: x , 则有 f ( x x ) f ( x ) f (x ) , f ( x ) f ( x 0) f ( x ) f (0) 故 y f ( x x ) f ( x ) f ( x )[ f (x ) f (0)]
lim f ( x) 0 lim f ( x) 0
x x0 x x0
二. 数列极限 1 公式变形化简; (1) (2)
当 x 1时, 求 lim(1 x)(1 x 2 )(1 x 4 )
n
(1 x 2 ). ;
n
1 3 2n 1 lim( 2 n ) ; n 2 2 2
x n 1 x1 , xn 1 ,求 lim x n n 1 x1 1 x n 1
5 无穷小*有界 (1)
lim(1 n
n
)cosn ;
6 (不要求掌握,有余力同学自己看看)利用如下结论 设 liman a ,则以下结果成立
n
(1)
lim
1 x 1
故 a 1;
b lim
x
x
2
x 1 x lim

1 x x2 x 1 x
x
lim
1 1
x
1 1 x x2

高等数学第一章习题

高等数学第一章习题

第一章 函数第一节 函数的概念1. 求下列函数的定义域:(1)y = (2)121y x =-(3)y =(4)sin y =(5)y =arcsin(x -3)(6)1ln(1)y x =-(7)y =(81arctan y x =)2.设f (x )的定义域是[0, 1], 求下列函数的定义域:(1) f (e x );(2) f (ln x );(3) f (arctan x );(4) f (cos x ).3.设⎪⎩⎪⎨⎧≥<=3|| 03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2)。

.4.设32(3)2251,()f x x x x f x +=-+-求;5.设⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )]。

..第二节 函数的几种特性1.试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1); (2)y =x +ln x , (0, +∞).2.设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明:(1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.3.证明21()f x x=在()0,1内无界4.下列各函数中哪些是周期函数?对于周期函数,指出其周期:(1)y=cos(x-2);(2)y=cos 4x;(3)y=1+sin πx;(4)y=x cos x;(5)y=sin2x.第三节 初等函数1.在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; (2) y =sin u , u =2x , ,81π=x ,42π=x ; (3)u y =, u =1+x 2, x 1=1, x 2= 2;(4) y =e u , u =x 2, x 1 =0, x 2=1;(5) y =u 2 , u =e x , x 1=1, x 2=-1.2.下列初等函数由哪些基本初等函数复合而成?(1)()2arccos 1y x =-(2)2sec 24y x π⎛⎫=-⎪⎝⎭(3)(sin cos y ⎡⎤=⎣⎦(4)y =3.将下列三角函数积化和差:(1)sin 2sin8αα (2)sin5cos3αα(3)cos6sin 2αβ (4)cos3cos 4αβ4.证明:(1)arcsin arccos 2x x π+=(2)arctan cot 2x arc x π+=5.证明:(1)()sh x y shxchy chxshy ±=±(2)()ch x y chxchy shxshy ±=±6.证明:(1)反双曲正弦函数(ln y arshx x ==(2)反双曲余弦函数(ln y archx x ==7.下列函数是否为初等函数?(1)y x = (2)(sin y = (3)xy x x =+ (4)311112x x x y e x ⎧--≤≤=⎨<≤⎩第四节 两个常用不等式1. 设12,,...,n a a a 是n 个正数,称12111(...)n na a a +++为12,,...,n a a a 的调和平均值,利用算术平均值与几何平均值的关系证明几何平均值与调和平均值的关系:对任意n 个正数12,,...,n a a a有12111(...)nn a a a ≤+++2.证明下列不等式:(1)1212......n n x x x x x x +++≤+++(2)1212...(...)n n x x x x x x x x ++++≥-+++总复习题一1.填空题.(1)设()f x =,则()f x 的定义域为(2)设101(),212x f x x ≤≤⎧=⎨-<≤⎩则(2)f x +的定义域为 (3)设()1f x x =+,则1f f x ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦=(4)设21()1424x x x f x xx x -∞<<⎧⎪=≤≤⎨⎪<<+∞⎩,则其反函数是2.选择题: (1)已知()f x 在[]2,2-上为偶函数 ,且()[]()222,0f x x x x =+∈-,那么当[]0,2x ∈时,()f x 的表达式为() ()()()()22222,2,2,2.A x x B x x C x x D x x +--+--(2)设()g x 在[],a b 上单调,()f x 在()(),g a g b ⎡⎤⎣⎦上单调,则()()f g x -( ) ()[]()[]()[]()[]A .在a,b 上单增,B 在a,b 上单减,C 在-b,-a 上单增,D 在-b,-a 上单减(3)下列函数中是偶函数的应为( )()()(()()[]()()()((()()()2ln ,22,sgn cos x x A f x x B f x x C f x D f x x x ===+=⋅(4)下列函数中不是周期函数的应为( )()()()()()()()()[]2sin ,sincos 23sin 2cos ,x x A f x x B f x C f x x x D f x x x π==+=+=-3.计算题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当 a = 1 时,
1 级数, 原级数为 ∑ s , p − 级数,故 n =1 n

收敛: 发散。 当s > 1时,收敛:当 s ≤ 1时,发散。
sin x (8) un = ∫ dx, 0 x +1 解:n≥2时, 时
π /n
是否收敛? ∑u 是否收敛?
n=1 n

π
x +1 dx < ∫
π /n
解 (1) 考察 )
un+1 1 ∑un , lim u = 3 n→∞ n=1 n

所以 un收敛, lim un = 0. ⇒ ∑ 收敛,
n=1 n→∞

∞ 1 1 n2 (2) 考察级数 ∑3n (1+ n) = ∑an n=1 n=1

1 1 n e 因 lim an = lim (1 + ) = < 1 为 n→∞ n→∞ 3 n 3
∞ 1 1 ⇒ ∑ f ( ) − 1收敛 ⇒ ∑( f ( ) − 1)绝对收敛 n n n=1 n=1

(2)设级数
∑(a
n=1

n ∞
收敛, ∑ − an−1 ) 收敛,且 bn为收敛的
n=1

正项级数, 正项级数,证明 anbn绝对收敛。 ∑ 绝对收敛。
证明: 证明:因sn = ∑ (ak − ak −1 ) = an − a0 , 故an = sn + a0
k =1
n
n=1
有界, 则a n → s + a 0 从而a n 有界,设 | a n |≤ M
| a n bn |≤ Mbn ,由比较法及 ∑ bn的收敛性知, 的收敛性知,
∑a
n n
b 绝对收敛。 绝对收敛。
(3)设级数

a ∑a , b 为收敛的级数, ∑ 为收敛的级数,
n=1 n n=1 n
∑u
n=0

n
= lim Sn = lim[nun − ∑k(uk − uk−1 ) = A − S.
n→∞ n→∞ k =1
n
例2 判断下列级数的敛散性
(1)∑


1
nn n n=1
方法: 方法: vn = 取
1 , 用比较法,发散. 用比较法,发散. n
(n!)2 (2)∑ 2 n=1 2n
1 n! 2 1 un = ( ) = [( n − 1)!]2 → ∞( ≠ 0), n → ∞ 2 n 2 发散
n
此级数收敛
1 1 k2 即lim ∑ k (1 + ) = s n→∞ k k =1 3
n
1 n 1 1 k2 所以 lim ∑ k (1 + ) = 0 n→∞ n k k =1 3
设偶函数f 在 例5 (1)设偶函数 (x)在x=0的某邻域二阶导数连 设偶函数 的某邻域二阶导数连 ∞ 1 续,且 f (0)=1, , 绝对收敛。 证明级数 [ f ( ) − 1] ∑ n 绝对收敛。 n=1 因为偶函数f 在 证明 因为偶函数 (x)在x=0的某邻域有连续的二阶 的某邻域有连续的二阶 导数, 导数, 故 ′(0) = 0 f ,

1 n
ln n (n → ∞) 解an = (n − 1) = e −1 ~ n ∞ ln n 发散, 不绝对收敛。 ⇒ ∑ n 发散,1 不绝对收敛。 n=2 lnn n 显然lim(e − 1) = 0
a 下验证 n = (n − 1) = e
ln x , 令f ( x) = x
n→∞ 1 n
∞ n
原级数条件收敛
(5) 若∑un收敛,则必收敛的级数 ( ) 收敛, 为 D
n=1

un ( A) ∑(−1) n n=1
n

(B)
∑u
n=1

2
n
(C)
∑(u2n−1 − u2n )
n=1

(D)
n
∑(u
n=1

n
+ un+1 )
反例:
( A)(B) : un = (−1) (C) : un = (−1)
∴ 在 (1,+∞ ) 上单增, 即
1 单减 , x − ln x
1 故 当 n > 1 时单减 , n − ln n 1 1 ∴ un = > = un+1 ( n > 1), n − ln n ( n + 1) − ln( n + 1)
所以此交错级数收敛, 故原级数是条件收敛. 所以此交错级数收敛, 故原级数是条件收敛.
对足够大的 N ,0 < a n + bn < 1, 从而(a n + bn ) < a n + bn
2
n=1
1 (3)∑ 10 n=1 ln n

1 发散。 取vn = , 用比较法,发散。 n
(4)
∑ (1 − cos n ) n =1

n =1 ∞

π
1 − cos lim
n →∞
π
n = 1, 收敛
π2
2n 2
(5)
ln n n
3 2
取v n =
1 n
4 3
, 收敛
nπ ∞ ncos 3; (6) ∑ n 2 n=1
∞ ∞
an (3) 若∑an 收敛,则 收敛, ∑ 绝对收敛 。 n=1 n=1 n
2


an 1 1 2 | |≤ [ 2 + an ], n 2 n
∞ an 1 2 Q∑an , ∑ 2 收敛, ∑| 收敛, | 收敛。 收敛。 ⇒ n=1 n=1 n n=1 n


k + n 条件收敛 (4) k > 0,,则 (−1) 。 ∑ 2 n n=1 k+n ∞ 2 k+n n = 1, ⇒ Qlim 发散, ∑ n2 发散, n→∞ 1 n=1 n ∞ n k+n 收敛, 而交错级数 (−1) 收敛, ∑ 2 n n=1


n
≤ cn ≤ bn ,
证明 cn收敛。 ∑ 收敛。
n=1
证明: 故可得证。 证明:因0 ≤ cn − an ≤ bn − an,故可得证。
(4)设正项级数

∑a , b 为收敛的级数, ∑ 为收敛的级数,
n=1 n n=1 n


也收敛。 证明 (an + bn )2也收敛。 ∑
证明: 收敛, 证明:因∑ (an + bn )收敛,故an + bn → 0,

1 而 ∑ 发散, n =1 n



n =1

∞ ( −1) n 1 =∑ 发散, n − ln n n =1 n − ln n
即原级数非绝对收敛. 即原级数非绝对收敛.
( −1) n 由莱布尼茨定理: ∑ n − ln n 是交错级数, 由莱布尼茨定理: n =1 1 1 n ∴ lim = lim = 0, n → +∞ n − ln n n → +∞ ln n 1− n 1 Q f ( x ) = x − ln x ( x > 0), f ′( x ) = 1 − > 0 ( x > 1), x
0
0 < un = ∫
π / n sin x
0
=
π
(或用极限法) 或用极限法)
ln(1 + ) < 2 n n π n π ln(1 + ) n =1 lim n 2
n→∞
π
π2
n dx 1+ x
π
∑n
n=2

π
2
2
n2 收敛,故所给级数收敛。 收敛,故所给级数收敛。
例3 判断下列级数是条 件收敛还是绝对收敛
1 (6) ∑sin(nπ + ) ln n n=2
ห้องสมุดไป่ตู้

1 解 an = (−1) sin : ln n 1
n
所给级数为交错级数。 所给级数为交错级数。
1 | a n |= sin , 而 lim n→ ∞ ln n
sin
1 ln n = 1, 发散, ∑ ln n 发散,故 1 ln n
原级数不绝对收敛。 原级数不绝对收敛。
∞ n=1
(1) 若∑an收敛,则 an 可能收敛也可能发散。 收敛, ∑ 可能收敛也可能发散。
2 n=1


例如
推出a 则结论正确。 因为a 推出 则结论正确。 因为 n<1推出 n2< an。 绝对收敛, 或∑an绝对收敛,
n=1

∑a
n=1

∞ (−1) 1 收敛, ∑ n 收敛, n2收敛. ∑ n=2 n=2 ∞ ∞ 1 (−1)n 收敛, ∑ n 收敛,∑n发散. n=2 n=2
无穷级数的第一次习题课
1 内容及要求 2 典型例题
1 内容及要求 (1) 理解常数项级数的定义及性质 (2) 掌握常数项级数敛散性的判别法
否⇒ ∑un发散

比值法、 比值法、根值法 比较法、 形式 比较法、比较法的极限 un ≥ 0 级数收敛的定义、性质 级数收敛的定义、
1 ln n n
n=2
1 n
1 lnn n
单调减。 − 1单调减。
1 − ln x f ′( x) = < 0 ( x > e) 2 x
原级数条件收敛。 原级数条件收敛。
要 只 n ≥ 3, an > an+1 .
相关文档
最新文档