高中数学必修一幂函数单元测试题
数学高一必修一《幂函数》练习题
高一数学必修一《幂函数》练习题练习一一、 选择题1、使x 2>x 3成立的x 的取值范围是 ( ) A 、x <1且x ≠0 B 、0<x <1C 、x >1D 、x <12、若四个幂函数y =ax ,y =bx ,y =cx ,y =dx 在同一坐标系中的图象如右图,则a 、b 、c 、d 的大小关系是 ( ) A 、d >c >b >a B 、a >b >c >d C 、d >c >a >bD 、a >b >d >c3、在函数y =21x,y =2x 3,y =x 2+x ,y =1中,幂函数有 ( )A 、0个B 、1个C 、2个D 、3个4、若0a >,且,m n 为整数,则下列各式中正确的是 ( )A 、m mnna a a ÷= B 、n m n m a a a ⋅=⋅ C 、()nm m n a a += D 、01n n a a -÷=5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >> 6、.若集合M={y|y=2—x}, P={y|y=1x -}, M ∩P= ( )A 、{y|y>1}B 、{y|y ≥1}C 、{y|y>0 }D 、{y|y ≥0}7、设f(x)=22x -5×2x -1+1它的最小值是 ( )A 、-0.5B 、-3C 、-169 D 、08、 如果a >1,b <-1,那么函数f(x)=a x +b 的图象在 ( )A 第一、二、三象限B 第一、三、四象限C 第二、三、四象限D 第一、二、四象限二、填空题9、已知0<a <b <1,设a a , a b , b a , b b中的最大值是M ,最小值是m ,则M = ,m = .10、已知f (x )=x 5+ax 3+bx -8,f (-2)=10,则f (2)=____、11、函数y =(x 2-2x)2-9的图象与轴交点的个数是_________。
高中数学必修1幂函数测试卷
学校:___________姓名:___________班级:___________考号:___________
题号
一
二
三
总分
得分
评卷人
得 分
一.单选题(共__小题)
1.已知幂函数f(x)过点 ,则f(4)的值为( )
A.
B.1
C.2
D.8
答案:A
解析:
解:设幂函数f(x)=xa,x>0,
A.
B.
C.
D.
答案:C
解析:
解:∵函数y= 的定义域是[0,+∞),
∴排除选项A和B,
又∵ ,∴曲线应该是下凸型递增抛物线.
故选:C.
幂函数y=x-1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),那么幂函数 的图象经过的“卦限”是( )
答案:{x|-1≤x<2}
解析:
解:设幂函数f(x)=xα,α为常数.
由于图象过点(2, ),
代入可得: ,
解得 .
∴f(x)= .
可知:函数f(x)在[0,+∞)单调递增,
∵f(a+1)<f(3),
∴0≤a+1<3,
解得-1≤a<2.
∴关于a的不等式f(a+1)<f(3)的解集是{x|-1≤x<2}.
(2)∵f(x)= ,
∴f(25)=
=
=
= ;
(3)∵f(a)= =b,
∴ ,
∴a-1=b2,
∴a= .
答案:
解:(1)设幂函数f(x)=xt,
∵图象过点(9, ),∴ ;
即32t=3-1,∴ ,
高中数学人教A版(2019)必修一 第三章 第三节 幂函数的性质及图像
高中数学人教A版(2019)必修一第三章第三节幂函数的性质及图像一、单选题(共11题;共55分)1.(5分)幂函数y=x23的大致图像是()A.B.C.D.2.(5分)如图是幂函数y=x n的部分图像,已知n取12,2,−2,−12这四个值,则于曲线C1,C2,C3,C4相对应的n依次为()A.2,12,−12,−2B.−2,−12,12,2C.−12,−2,2,12D.2,12,−2,−123.(5分)若幂函数f(x)=(m2+m−5)x m2−2m−3的图像不经过原点,则m的值为()A.2B.-3C.3D.-3或24.(5分)如图的曲线是幂函数y=x n在第一象限内的图像.已知n分别取±2,±12四个值,与曲线c1、c2、c3、c4相应的n依次为()A.2,12,−12,−2B.2,12,−2,−12C.−12,−2,2,12D.−2,−12,12,25.(5分)下图给出4个幂函数的图象,则图像与函数的大致对应是()A.①y=x13,②y=x2,③y=x12,④y=x−1B.①y=x3,②y=x2,③y=x12,④y=x−1C.①y=x2,②y=x3,③y=x12,④y=x−1D.①y=x13,②y=x12,③y=x2,④y=x−16.(5分)函数y=x53的图象大致是()A.B.C.D.7.(5分)在下列四个图形中,y=x−12的图像大致是()A.B.C.D.8.(5分)幂函数y=f(x)的图象经过点(8,2√2),则f(x)的图象是()A.B.C.D.9.(5分)函数f(x)=x−12的大致图象是()A.B.C.D.10.(5分)函数y=x23的图象是()A.B.C.D.11.(5分)函数y=x a,y=x b,y=x c的图像如图所示,则实数a、b、c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b 二、多选题(共2题;共10分)12.(5分)若函数f(x)=(3m2−10m+4)x m是幂函数,则f(x)一定()A.是偶函数B.是奇函数C.在x∈(−∞,0)上单调递减D.在x∈(−∞,0)上单调递增13.(5分)已知幂函数y=xα的图像如图所示,则a值可能为()A.13B.12C.15D.3三、填空题(共6题;共35分)14.(5分)已知幂函数f(x)=(m2−2m−2)x m2−2在(0,+∞)为减函数,则f(2)=. 15.(5分)若幂函数y=(m2−m−1)x m为偶函数,则m= .16.(5分)已知幂函数f(x)=mx n的图像过点(14,116),则mn=.17.(5分)函数y=(m2−m−1)x m2−2m−1是幂函数,且在x∈(0,+∞)上是减函数,则实数m=.18.(5分)已知幂函数f(x)=(m2+m−1)x m的图像如图所示,那么实数m的值是.19.(10分)已知幂函数y=x n的图像过点(3,19),则n=,由此,请比较下列两个数的大小:(x2−2x+5)n(−3)n.四、解答题(共1题;共10分)20.(10分)已知幂函数f(x)=xα的图像过点(2,4).(1)(5分)求函数f(x)的解析式;(2)(5分)设函数ℎ(x)=2f(x)−kx−1在[−1,1]是单调函数,求实数k的取值范围.答案解析部分1.【答案】B【解析】【解答】解:∵23>0,∴幂函数在第一象限内的图象为增函数,排除A,C,D,故答案为:B.【分析】利用幂函数的单调性进行判断,可得答案。
高中数学必修一《对数函数、幂函数》单元测试卷及答案2套
高中数学必修一《对数函数、幂函数》单元测试卷及答案2套单元测试卷一(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=lg(x -1)的定义域是( )A .(2,+∞) B.(1,+∞) C.1,+∞) D.2,+∞) 2.下列函数中,既是奇函数,又在定义域内为减函数的是( )A .y =⎝ ⎛⎭⎪⎫12xB .y =1xC .y =-x 3D .y =log 3(-x )3.设y 1=40.9,y 2=log 124.3,y 3=⎝ ⎛⎭⎪⎫13 1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 24.函数y =⎝ ⎛⎭⎪⎫12x的反函数的图象为( )5.已知f (x n)=ln x ,则f (2)的值为( ) A .ln 2 B.1nln 2C.12ln 2 D .2ln 26.幂函数y =(m 2-m -1)x m 2-2m -3,当x ∈(0,+∞)时为减函数,则实数m 的值为( )A .m =2B .m =-1C .m =-1或2D .m ≠1±527.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .-1,2]B .0,2]C .1,+∞)D .0,+∞)8.若0<a <1,在区间(-1,0)上函数f (x )=log a (x +1)是( ) A .增函数且f (x )>0 B .增函数且f (x )<0 C .减函数且f (x )>0D .减函数且f (x )<09.已知函数f (x )=a x+log a x (a >0,且a ≠1)在1,2]上的最大值与最小值之和为log a 2+6,则a 的值为( )A.12B.14C .2D .4 10.若偶函数f (x )在(-∞,0)内单调递减,则不等式f (-1)<f (lg x )的解集是( ) A .(0,10)B.⎝⎛⎭⎪⎫110,10C.⎝ ⎛⎭⎪⎫110,+∞D.⎝ ⎛⎭⎪⎫0,110∪(10,+∞)11.已知f (x )=a x(a >0,且a ≠1),g (x )=log a x (a >0,且a ≠1),若f (3)g (3)<0,则f (x )与g (x )在同一平面直角坐标系内的图象可能是( )12.设f (x )是定义在(-∞,+∞)上的偶函数,且它在0,+∞)上单调递增,若,c =f (-2),则a ,b ,c 的大小关系是( )A .a >b >cB .b >c >aC .c >a >bD .c >b >a第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.若函数y =f (x )的定义域是⎣⎢⎡⎦⎥⎤12,2,则函数y =f (log 2x )的定义域为________.14.给出函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +1,x <4,则f (log 23)=________.15.已知函数y =log a (x +b )的图象如图所示,则a =________,b =________.16.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分) 计算下列各题:18.(本小题满分12分) 已知函数f (x )=-2x 12. (1)求f (x )的定义域;(2)证明:f (x )在定义域内是减函数.19.(本小题满分12分)已知-3≤log 0.5x ≤-32,求函数f (x )=log 2x 2·log 2x4的最大值和最小值.20.(本小题满分12分)设f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,1],log 3x 3·log 3x9,x ∈1,+∞.(1)求f ⎝ ⎛⎭⎪⎫log 232的值; (2)求f (x )的最小值.21.(本小题满分12分)已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1. (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.22.(本小题满分12分)已知函数f (x )=log 4(ax 2+2x +3)(a ∈R ). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,请说明理由.答案1.B 解析:由x -1>0,得x >1. 解题技巧:真数大于零.2.C 解析:y =⎝ ⎛⎭⎪⎫12x与y =log 3(-x )都为非奇非偶,排除A ,D.y =1x 在(-∞,0)与(0,+∞)上都为减函数,但在定义域内不是减函数,排除B.3.D 解析:因为y 1=40.9>40=1,y 2=log 12 4.3<log 121=0,0<y 3=⎝ ⎛⎭⎪⎫13 1.5<⎝ ⎛⎭⎪⎫130=1,所以y 1>y 3>y 2.4.D 解析:函数y =⎝ ⎛⎭⎪⎫12x的反函数为y =log 12x ,故选D.5.B 解析:令t =x n,则x =t 1n ,f (t )=ln t 1n =1nln t ,则f (2)=1nln 2,故选B.6.A 解析:由y =(m 2-m -1)x m 2-2m -3为幂函数,得m 2-m -1=1,解得m =2或m=-1.当m =2时,m 2-2m -3=-3,y =x -3在(0,+∞)上为减函数;当m =-1时,m 2-2m -3=0,y =x 0=1(x ≠0)在(0,+∞)上为常数函数(舍去),所以m =2,故选A.7.D 解析:当x ≤1时,由21-x≤2知,x ≥0,即0≤x ≤1;当x >1时,由1-log 2x ≤2知x ≥12,即x >1.综上得x 的取值范围是0,+∞).8.C 解析:当0<a <1时,f (x )=log a (x +1)为减函数,∵x ∈(-1,0),∴x +1∈(0,1),∴log a (x +1)>0.9.C 解析:当a >1时,函数y =a x和y =log a x 在1,2]上都是增函数, 所以f (x )=a x+log a x 在1,2]上是增函数,当0<a <1时,函数y =a x 和y =log a x 在1,2]上都是减函数,所以f (x )=a x+log a x 在1,2]上是减函数,由题意得f (1)+f (2)=a +a 2+log a 2=6+log a 2, 即a +a 2=6,解得a =2或a =-3(舍去).10.D 解析:因为f (x )为偶函数,所以f (x )=f (|x |),因为f (x )在(-∞,0)内单调递减,所以f (x )在(0,+∞)内单调递增,由f (-1)<f (lg x ),得|lg x |>1,即lg x >1或lgx <-1,解得x >10或0<x <110.11.C 解析:∵f (3)=a 3>0,由f (3)·g (3)<0得g (3)<0, ∴0<a <1,∴f (x )与g (x )均为单调递减函数,故选C.13.2,4] 解析:由题意知,12≤log 2x ≤2,即log 22≤log 2x ≤log 24,∴2≤x ≤4.14.124解析:∵log 23<4,∴f (log 23)=f (log 23+1)=f (log 23+3)=f (log 224),∵log 224>4,∴f (log 224)=⎝ ⎛⎭⎪⎫12log 224=124.15. 3 3 解析:由图象过点(-2,0),(0,2),知⎩⎪⎨⎪⎧log a -2+b=0,log a b =2,∴⎩⎪⎨⎪⎧-2+b =1,b =a 2.解得⎩⎪⎨⎪⎧b =3,a 2=3.由a >0,知a = 3.∴a =3,b =3.16.(-1,0)∪(1,+∞) 解析:根据题意画出f (x )的草图,由图象可知,f (x )>0的x 的取值范围是-1<x <0或x >1.解题技巧:数形结合确定取值范围.19.解:∵f (x )=log 2x 2·log 2x4=(log 2x -1)(log 2x -2) =(log 2x )2-3log 2x +2 =⎝⎛⎭⎪⎫log 2x -322-14,又∵ -3≤log 0.5x ≤-32,∴ -3≤log 12 x ≤-32.∴ 32≤log 2x ≤3.∴当log 2x =32,即x =22时,f (x )有最小值-14;当log 2x =3,即x =8时,f (x )有最大值2. 20.解:(1)因为log 232<log 22=1,(2)当x ∈(-∞,1]时,f (x )=2-x=⎝ ⎛⎭⎪⎫12x 在(-∞,1]上是减函数,所以f (x )的最小值为f (1)=12.当x ∈(1,+∞)时,f (x )=(log 3x -1)(log 3x -2), 令t =log 3x ,则t ∈(0,+∞),f (x )=g (t )=(t -1)(t -2)=⎝⎛⎭⎪⎫t -322-14,所以f (x )的最小值为g ⎝ ⎛⎭⎪⎫32=-14. 综上知,f (x )的最小值为-14.21.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解之得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)]=log a (-x 2-2x +3) =log a -(x +1)2+4],∵-3<x <1,∴0<-(x +1)2+4≤4. ∵0<a <1,∴log a -(x +1)2+4]≥log a 4, 即f (x )min =log a 4.由log a 4=-4,得a -4=4,∴a =4- 14 =22.22.解:(1)∵f (1)=1,∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).由-x 2+2x +3>0,得-1<x <3,函数定义域为(-1,3). ∴f (x )的单调递增区间是(-1,1),单调递减区间是(1,3).(2)假设存在实数a ,使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,因此应有⎩⎪⎨⎪⎧a >0,12a -44a=1,解得a =12.故存在实数a =12,使f (x )的最小值为0.解题技巧:存在性问题的求解办法:先假设符合题意的实数存在,从这个假设出发,利用已知条件看看能不能求出这个实数.(单元测试卷二 (时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =log a (x +2)+1的图象过定点( ) A .(1,2) B .(2,1) C .(-2,1)D .(-1,1)2.若2lg(x -2y )=lg x +lg y (x >0,y >0)则y x的值为( )A .4B .1或14C .1或4 D.143.下列函数中与函数y =x 相等的函数是( ) A .y =(x )2B .y =x 2C .y =2log 2xD .y =log 22x4.函数y =lg ⎝⎛⎭⎪⎫21+x -1的图象关于( )A .原点对称B .y 轴对称C .x 轴对称D .直线y =x 对称5.下列关系中正确的是( ) A .log 76<ln 12<log 3πB .log 3π<ln 12<log 76C .ln 12<log 76<log 3πD .ln 12<log 3π<log 766.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x,x ≤0.则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫127的值为( ) A.18 B .4 C .2 D.147.函数y =ax 2+bx 与y =log bax (ab ≠0,|a |≠|b |)在同一直角坐标系中的图象可能是( )8.若函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,则m 的值为( ) A .1 B .-3 C .-1 D .39.若函数y =f (x )是函数y =a x(a >0且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )=( )A .log 2xB .log 12x C.12x D .x 210.函数f (x )=log 12(x 2-3x +2)的递减区间为( )A.⎝⎛⎭⎪⎫-∞,32 B .(1,2)C.⎝ ⎛⎭⎪⎫32,+∞ D .(2,+∞)11.函数f (x )=lg(kx 2+4kx +3)的定义域为R ,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34B.⎣⎢⎡⎭⎪⎫0,34 C.⎣⎢⎡⎦⎥⎤0,34 D .(-∞,0]∪⎝ ⎛⎭⎪⎫34,+∞ 12.设a >0且a ≠1,函数f (x )=log a |ax 2-x |在3,4]上是增函数,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫16,14∪(1,+∞)B.⎣⎢⎡⎦⎥⎤18,14∪(1,+∞) C.⎣⎢⎡⎭⎪⎫18,16∪(1,+∞) D.⎝ ⎛⎭⎪⎫0,14∪(1,+∞) 第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.计算27- 13 +lg 0.01-ln e +3log 32=________. 14.函数f (x )=lg(x -1)+5-x 的定义域为________.15.已知函数f (x )=log 3(x 2+ax +a +5),f (x )在区间(-∞,1)上是递减函数,则实数a 的取值范围为________.16.已知下列四个命题:①函数f (x )=2x满足:对任意x 1,x 2∈R 且x 1≠x 2都有f ⎝⎛⎭⎪⎫x 1+x 22<12f (x 1)+f (x 2)];②函数f (x )=log 2(x +1+x 2),g (x )=1+22x -1不都是奇函数;③若函数f (x )满足f (x -1)=-f (x +1),且f (1)=2,则f (7)=-2;④设x 1,x 2是关于x 的方程|log a x |=k (a >0且a ≠1)的两根,则x 1x 2=1.其中正确命题的序号是________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)(1)计算lg 25+lg 2×lg 500-12lg 125-log 29×log 32;(2)已知lg 2=a ,lg 3=b ,试用a ,b 表示log 125.18.(本小题满分12分)已知函数f (x )=lg(3x-3). (1)求函数f (x )的定义域和值域;(2)设函数h (x )=f (x )-lg(3x+3),若不等式h (x )>t 无解,求实数t 的取值范围.19.(本小题满分12分)已知函数f (x )=x -2m 2+m +3(m ∈Z )为偶函数,且f (3)<f (5). (1)求m 的值,并确定f (x )的解析式;(2)若g (x )=log a f (x )-2x ](a >0且a ≠1),求g (x )在(2,3]上的值域.20.(本小题满分12分) 已知函数f (x )=lgkx -1x -1(k ∈R ). (1)若y =f (x )是奇函数,求k 的值,并求该函数的定义域; (2)若函数y =f (x )在10,+∞)上是增函数,求k 的取值范围.21.(本小题满分12分)已知函数f (x )=log 31-x1-mx (m ≠1)是奇函数.(1)求函数y =f (x )的解析式;(2)设g (x )=1-x1-mx ,用函数单调性的定义证明:函数y =g (x )在区间(-1,1)上单调递减;(3)解不等式f (t +3)<0.22.(本小题满分12分)已知函数f (x )=log 4(4x+1)+kx (k ∈R )是偶函数. (1)求实数k 的值;(2)设g (x )=log 4(a ·2x +a ),若f (x )=g (x )有且只有一个实数解,求实数a 的取值范围.答案1.D 解析:由对数函数恒过定点(1,0)知,函数y =log a (x +2)+1的图象过定点(-1,1).2.B 解析:由对数的性质及运算知,2lg(x -2y )=lg x +lg y 化简为lg(x -2y )2=lgxy ,即(x -2y )2=xy ,解得x =y 或x =4y .所以y x 的值为1或14.故选B.3.D 解析:函数y =x 的定义域为R .A 中,y =(x )2定义域为0,+∞);B 中,y =x 2=|x |;C 中,y =2log 2x=x ,定义域为(0,+∞);D 中,y =log 22x=x ,定义域为R .所以与函数y =x 相等的函数为y =log 22x.4.A 解析:函数y =lg ⎝ ⎛⎭⎪⎫21+x -1的定义域为(-1,1).又设f (x )=y =lg ⎝ ⎛⎭⎪⎫21+x -1=lg 1-x 1+x ,所以f (-x )=lg ⎝⎛⎭⎪⎫1+x 1-x =-lg ⎝ ⎛⎭⎪⎫1-x 1+x =-f (x ), 所以函数为奇函数,故关于原点对称.5.C 解析:由对数函数图象和性质,得0<log 76<1,ln 12<0,log 3π>1.所以ln 12<log 76<log 3π.故选C.6.A 解析:∵127>0∴f ⎝ ⎛⎭⎪⎫127=log 3127=-3,∵-3<0,f (-3)=2-3=18.故选A.7.D 解析:A 中,由y =ax 2+bx 的图象知,a >0,ba<0,由y =log b ax 知,b a>0,所以A错;B 中,由y =ax 2+bx 的图象知,a <0,b a<0,由y =log b ax 知,b a>0,所以B 错;C 中,由y =ax 2+bx 的图象知,a <0,-b a<-1,∴b a>1,由y =log b ax 知0<b a<1,所以C错.故选D.8.A 解析:因为函数y =(m 2+2m -2)x m为幂函数且在第一象限为增函数,所以⎩⎪⎨⎪⎧m 2+2m -2=1,m >0,解得m =1.故选A.9.B 解析:因为函数y =f (x )图象经过点(a ,a ),所以函数y =a x(a >0且a ≠1)过点(a ,a ),所以a =a a即a =12,故f (x )=log 12x .10.D 解析:令t =x 2-3x +2,则当t =x 2-3x +2>0时,解得x ∈(-∞,1)∪(2,+∞).且t =x 2-3x +2在区间(-∞,1)上单调递减,在区间(2,+∞)上单调递增;又y =log 12 t 在其定义域上为单调递减的,所以由复合函数的单调性知,f (x )=log 12(x 2-3x +2)单调递减区间是(2,+∞).11.B 解析:因为函数f (x )=lg(kx 2+4kx +3)的定义域为R ,所以kx 2+4kx +3>0,x ∈R 恒成立.①当k =0时,3>0恒成立,所以k =0适合题意.②⎩⎪⎨⎪⎧k >0,Δ<0,即0<k <34.由①②得0≤k <34.故选B.解题技巧:本题实际上考查了恒成立问题,解决本题的关键是让真数kx 2+4kx +3>0,x ∈R 恒成立.12.A 解析:令u (x )=|ax 2-x |,则y =log a u ,所以u (x )的图象如图所示.当a >1时,由复合函数的单调性可知,区间3,4]落在⎝ ⎛⎦⎥⎤0,12a 或⎝ ⎛⎭⎪⎫1a ,+∞上,所以4≤12a 或1a<3,故有a >1;当0<a <1时,由复合函数的单调性可知,3,4]⊆⎣⎢⎡⎭⎪⎫12a ,1a ,所以12a ≤3且1a >4,解得16≤a <14.综上所述,a 的取值范围是⎣⎢⎡⎭⎪⎫16,14∪(1,+∞).13.-16 解析:原式=13-2-12+2=-16.14.(1,5] 解析:要使函数f (x )=lg(x -1)+5-x 有意义,只需满足⎩⎪⎨⎪⎧x -1>0,5-x ≥0即可.解得1<x ≤5,所以函数f (x )=lg(x -1)+5-x 的定义域为(1,5].15.-3,-2] 解析:令g (x )=x 2+ax +a +5,g (x )在x ∈⎝⎛⎦⎥⎤-∞,-a 2是减函数,x∈⎣⎢⎡⎭⎪⎫-a2,+∞是增函数.而f (x )=log 3t ,t ∈(0,+∞)是增函数.由复合函数的单调性,得⎩⎪⎨⎪⎧-a 2≥1,g 1≥0,解得-3≤a ≤-2.解题技巧:本题主要考查了复合函数的单调性,解决本题的关键是在保证真数g (x )>0的条件下,求出g (x )的单调增区间.16.①③④ 解析:①∵指数函数的图象为凹函数,∴①正确;②函数f (x )=log 2(x +1+x 2)定义域为R ,且f (x )+f (-x )=log 2(x +1+x 2)+log 2(-x +1+x 2)=log 21=0,∴f (x )=-f (-x ),∴f (x )为奇函数.g (x )的定义域为(-∞,0)∪(0,+∞),且g (x )=1+22x -1=2x +12x -1,g (-x )=2-x+12-x -1=1+2x1-2x =-g (x ),∴g (x )是奇函数.②错误; ③∵f (x -1)=-f (x +1),∴f (7)=f (6+1)=-f (6-1)=-f (5),f (5)=f (4+1)=-f (4-1)=-f (3),f (3)=-f (1),∴f (7)=-f (1),③正确;④|log a x |=k (a >0且a ≠1)的两根,则log a x 1=-log a x 2,∴log a x 1+log a x 2=0,∴x 1·x 2=1.∴④正确.17.解:(1)原式=lg 25+lg 5·lg 2+2lg 2+lg 5-log 39 =lg 5(lg 5+lg 2)+2lg 2+lg 5-2 =2(lg 5+lg 2)-2 =0.(2)log 125=lg 5lg 12=lg102lg 3×4=lg 10-lg 2lg 3+lg 4=1-lg 2lg 3+2lg 2,lg 2=a ,lg 3=b ,log 125=1-lg 2lg 3+2lg 2=1-ab +2a.18.解:(1)由3x-3>0解得x >1,所以函数f (x )的定义域为(1,+∞). 因为(3x-3)∈(0,+∞),所以函数f (x )的值域为R .(2)因为h (x )=lg(3x-3)-lg(3x+3)=lg ⎝ ⎛⎭⎪⎫3x-33x +3 =lg ⎝ ⎛⎭⎪⎫1-63x +3的定义域为(1,+∞),且在(1,+∞)上是增函数,所以函数的值域为(-∞,0).所以若不等式h (x )>t 无解,则t 的取值范围为0,+∞).19.解:(1)因为f (3)<f (5),所以由幂函数的性质得,-2m 2+m +3>0,解得-1<m <32.因为m ∈Z ,所以m =0或m =1. 当m =0时,f (x )=x 3它不是偶函数. 当m =1时,f (x )=x 2是偶函数. 所以m =1,f (x )=x 2.(2)由(1)知g (x )=log a (x 2-2x ), 设t =x 2-2x ,x ∈(2,3],则t ∈(0,3],此时g (x )在(2,3]上的值域就是函数y =log a t 在t ∈(0,3]上的值域. 当a >1时,y =log a t 在区间(0,3]上是增函数,所以y ∈(-∞,log a 3]; 当0<a <1时,y =log a t 在区间(0,3]上是减函数,所以y ∈log a 3,+∞).所以当a >1时,函数g (x )的值域为(-∞,log a 3];当0<a <1时,g (x )的值域为log a 3,+∞).20.解:(1)因为f (x )是奇函数,∴f (-x )=-f (x ),即lg -kx -1-x -1=-lg kx -1x -1,∴-kx -1-x -1=x -1kx -1,1-k 2x 2=1-x 2, ∴k 2=1,k =±1, 而k =1不合题意舍去, ∴k =-1.由-x -1x -1>0,得函数y =f (x )的定义域为(-1,1). (2)∵f (x )在10,+∞)上是增函数,∴10k -110-1>0,∴k >110.又f (x )=lgkx -1x -1=lg ⎝ ⎛⎭⎪⎫k +k -1x -1,故对任意的x 1,x 2,当10≤x 1<x 2时,恒有f (x 1)<f (x 2), 即lg ⎝⎛⎭⎪⎫k +k -1x 1-1<lg ⎝ ⎛⎭⎪⎫k +k -1x 2-1, ∴k -1x 1-1<k -1x 2-1,∴(k -1)·⎝ ⎛⎭⎪⎫1x 1-1-1x 2-1<0,又∵1x 1-1>1x 2-1,∴k -1<0,∴k <1. 综上可知k ∈⎝ ⎛⎭⎪⎫110,1. 解题技巧:本题主要考查了对数型函数的性质,解决本题的关键是充分利用好奇偶性和单调性.21.(1)解:由题意得f (-x )+f (x )=0对定义域中的x 都成立, 所以log 31+x 1+mx +log 31-x 1-mx =0,即1+x 1+mx ·1-x1-mx =1,所以1-x 2=1-m 2x 2对定义域中的x 都成立, 所以m 2=1,又m ≠1,所以m =-1, 所以f (x )=log 31-x1+x.(2)证明:由(1)知,g (x )=1-x1+x,设x 1,x 2∈(-1,1),且x 1<x 2,则x 1+1>0,x 2+1>0,x 2-x 1>0. 因为g (x 1)-g (x 2)=2x 2-x 11+x 11+x 2>0,所以g (x 1)>g (x 2),所以函数y =g (x )在区间(-1,1)上单调递减. (3)解:函数y =f (x )的定义域为(-1,1),设x 1,x 2∈(-1,1),且x 1<x 2,由(2)得g (x 1)>g (x 2), 所以log 3g (x 1)>log 3g (x 2),即f (x 1)>f (x 2), 所以y =f (x )在区间(-1,1)上单调递减.因为f (t +3)<0=f (0),所以⎩⎪⎨⎪⎧-1<t +3<1,t +3>0,解得-3<t <-2.故不等式的解集为(-3,-2). 22.解:(1)由函数f (x )是偶函数可知f (x )=f (-x ), ∴log 4(4x +1)+kx =log 4(4-x+1)-kx , 化简得log 44x+14-x +1=-2kx ,即x =-2kx 对一切x ∈R 恒成立,∴k =-12.(2)函数f (x )与g (x )的图象有且只有一个公共点,即方程log 4(4x +1)-12x =log 4(a ·2x+a )有且只有一个实根,化简得方程2x +12x =a ·2x +a 有且只有一个实根,且a ·2x+a >0成立,则a >0.令t =2x >0,则(a -1)t 2+at -1=0有且只有一个正根. 设g (t )=(a -1)t 2+at -1,注意到g (0)=-1<0,所以 ①当a =1时,有t =1,符合题意;②当0<a <1时,g (t )图象开口向下,且g (0)=-1<0,则需满足⎩⎪⎨⎪⎧t 对称轴=-a 2a -1>0,Δ=0,此时有a =-2+22或a =-2-22(舍去);③当a >1时,又g (0)=-1,方程恒有一个正根与一个负根,符合题意. 综上可知,a 的取值范围是{-2+22}∪1,+∞).。
高中数学必修1 必修一幂函数专项练习题
必修一幂函数专项练习题1. 下列命题中正确的是( )A. 当α=0时,幂函数y =x α的图象是一条直线B. 幂函数的图象都经过(0,0)、(1,1)两点C. 若幂函数y =x α的图象关于原点对称,则在定义域内y 随x 的增大而增大D. 幂函数的图象不可能在第四象限 2. 幂函数y =x 43,y =x 31,y =x -43的定义域分别是M 、N 、P ,则( )A. M ⊂N ⊂PB. N ⊂M ⊂PC. M ⊂P ⊂ND. A 、B 、C 都不对3. (湖南高考,文)函数f (x )=x 21-的定义域是( ) A. (-∞,0] B. [0,+∞) C. (-∞,0) D. (-∞,+∞)4. (唐山十县联考)函数y =(-21+x )-21的定义域是( ) A. (-∞,-1) B. (-∞,-1] C. (1,+∞) D. [1,+∞) 5. (江西高考,理)已知实数a 、b 满足等式(21)a =(31)b ,下列五个关系式: ①0<b<a ;②a<b<0;③0<a<b ;④b<a<0;⑤a =b ,其中不可能成立的有( )A. 1个B. 2个C. 3个D. 4个6. 下列函数中,是幂函数的为( ) A. y =x x B. y =3x 21 C. y =x 21+1 D. y =x 2-7. 若T1=(21)32,T 2=(51)32,T 3=(21)31,则下列关系式正确的是( ) A. T 1<T 2<T 3 B. T 3< T 1< T 2 C. T 2< T 3< T 1 D. T 2< T 1<T 38. (经典回放)对于幂函数f (x )=x 54,若0<x 1<x 2,则f (221x x +),x x f x f )()(21+的大小关系是( )A. f (221x x +)>x x f x f )()(21+ B. f (221x x +)<x x f x f )()(21+C. f (221x x +)=x x f x f )()(21+D. 无法确定9. 已知函数f (x )=x a +m 的图象经过点(1,3),又其反函数图象经过点(10,2),则f (x )的解析式为_________。
高中数学-幂函数测试题及答案详解
-,-,,- 若)()(12N n xx f n n∈=++,则)(x f 是( )与图像的交点坐标为 .y=设,则使幂函数的....“或③已知幂函数的图象经过点则的值等于④已知向量,则向量在向量影是已知函数若关于的方程有三个不相等的实数根,则实数的取值范围是(.幂函数的图象过点,那么函数的单调..,集合且,则实数的取值范围是f(x) =<f为偶函数,且的值,并确定的解析式;在上值域.已知幂函数)求函数设函数其中仅在处有极值,求,四值,则相应,,-,.-,,-过点,为已知函数(...为方程的解,即为方的根,即的零点,因为据零点存在性定理可得的大致区间为则使幂函数为奇函数且在若是幂函数为奇函数;,上单调递增的,;函数”且或③已知幂函数的图象经过点的值等于④已知向量,,则向量在向量方向上的投影是.”对于任意”③由幂函数的图象经过点(),所以,所以幂函数为,所以④向量方向上的投影是,是已知函数若关于的方程的取值范围是(..线的斜率联立解得,分析图像知,>0,再由图像分析知D答案:D幂函数的图象过点,那么函数的单调递增区.因为函数过点,所以,故函数解析式为,单调增区间为:,集合,则实数的取值范围是f(x) =f(x) >1;则<f.所有正确命题的序号是已知函数.的值,并确定)若,求上值域.) .已知幂函数为偶函数,且在区间)求函数)设函数,其中仅在处有极值,求)f(x)=(2,(2,=即=m=1,f(x)=.∴)1≤a<。
高中数学必修一同步练习题库:幂函数(简答题:一般)
幂函数(简答题:一般)1、已知幂函数的图象经过点.(1)求函数的解析式,并画出图象;(2)证明:函数在上是减函数.2、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围.3、比较大小:1.20.5,1.20.6,0.51.2,0.61.2.4、若,求a的取值范围.5、已知幂函数f(x)=x (m∈N*).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数还经过点(2,),试确定m的值,并求满足条件f(2-a)>f(a-1)的实数a的取值范围.6、点(,2)与点分别在幂函数f(x),g(x)的图象上,问:当x为何值时,有:①f(x)>g(x)?②f(x)=g(x)?③f(x)<g(x)?7、计算下列各式:(1)(2)8、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.9、已知,且。
求满足的实数的取值范围。
10、已知函数的图象与x、y轴都无公共点,且关于y轴对称,求p的值,并画出图象。
11、已知函数为幂函数,且为奇函数.(1)求的值;(2)求函数在的值域.12、已知幂函数在上是增函数,又(),(1)求函数的解析式;(2)当时,的值域为,试求与的值.13、已知幂函数为偶函数,且在区间上是单调递增函数。
(Ⅰ)求函数的解析式;(Ⅱ)设,若能取遍内的所有实数,求实数的取值范围.14、已知幂函数f(x)=,其中−2<m<2,m∈Z,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.15、已知点在幂函数f(x)的图象上,点在幂函数g(x)的图象上,问当x为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).16、已知函数f(x)=−且f(4)=.(1)求的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.17、已知幂函数为偶函数.(1)求的解析式;(2)若函数在区间上为单调函数,求实数的取值范围.18、如图,幂函数的图象关于轴对称,且与轴,轴均无交点,求此函数的解析式及不等式的解集.19、已知函数()是偶函数,且(1)求的解析式;(2)若(,)在区间上为增函数,求实数的取值范围20、已知(是常数)为幂函数,且在第一象限单调递增.(1)求的表达式;(2)讨论函数在上的单调性,并证之.21、已知函数y= (n∈Z)的图像与两坐标轴都无公共点,且其图像关于y轴对称,求n的值,并画出函数图像.22、(本题满分12分)已知幂函数在上单调递增,函数.(1)求的值;(2)当时,记、的值域分别为集合、,若,求实数的取值范围.23、(本小题满分10分)已知幂函数在上单调递增,函数(1)求的值;(2)当时,记的值域分别为,若,求实数的取值范围.24、已知命题P:若幂函数过点,实数满足。
人教版高中数学必修一《幂函数》综合练习题含答案
数学1(必修)第三章 函数的应用(含幂函数)[基础训练A 组] 一、选择题1.若)1(,,)1(,1,4,)21(,2522>==-=+====a a y x y x y x y x y y x y xx 上述函数是幂函数的个数是( )A .0个B .1个C .2个D .3个2.已知)(x f 唯一的零点在区间(1,3)、(1,4)、(1,5)内,那么下面命题错误的( ) A .函数)(x f 在(1,2)或[)2,3内有零点 B .函数)(x f 在(3,5)内无零点 C .函数)(x f 在(2,5)内有零点 D .函数)(x f 在(2,4)内不一定有零点3.若0,0,1a b ab >>>,12log ln 2a =,则log a b 与a 21log 的关系是( )A .12log log a b a < B .12log log a b a =C .12log log a b a > D .12log log a b a ≤4. 求函数132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .45.已知函数)(x f y =有反函数,则方程0)(=x f ( ) A .有且仅有一个根 B .至多有一个根 C .至少有一个根 D .以上结论都不对6.如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞7.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林( ) A .14400亩 B .172800亩 C .17280亩 D .20736亩二、填空题1.若函数()x f 既是幂函数又是反比例函数,则这个函数是()x f = 。
2.幂函数()f x 的图象过点(,则()f x 的解析式是_____________。
湘教版高中数学必修一2.3《幂函数》同步测试
高中数学学习材料金戈铁骑整理制作数学:2.3《幂函数》同步测试(湘教版必修1)一、填空:1.当0>n 时,幂函数n x y =的图像都通过 , 两点,在第一象限内,函数值随x 的增大而 。
2.当0<n 时,幂函数n x y =的图像都通过 这一点,在第一象限内,函数值随x 的增大而 。
3.已知)(x f y =是指数函数,若34)32(=-f ,则)21(-f = 。
4.函数1321-=-x y 的定义域为 。
5.已知310log log =+a b b a ,则=-a b b a log log 。
6.函数)1(,11≥+-=x x y 的反函数是 。
7.函数321+=-x y 的反函数是 。
8.若函数1+=x a y 的反函数的图像过点)1,21(,则a = 。
9.函数]1,0[,523421∈+⨯-=-x y x x 的最小值为 。
10.若曲线12||+=x y 与直线b y =无公共点,则b 的取值范围是 。
11.给出下列命题:(1)函数2)1(2+-=x y 在[2,3]上的值域为[3,6]; (2)函数]1,1(,3-∈=x x y 是奇函数;(3)||2x y =在)0,(-∞上是减函数,在),0(+∞上是增函数.其中正确的命题是 。
二、选择:12.函数x e y -=的图像( ) A.与x e y = 的图像关于y 轴对称; B. 与x e y = 的图像关于原点对称 C.与x e y -= 的图像关于y 轴对称; D.与x e y -= 的图像关于原点对称13.为了得到函数123-=-x y 的图像,只需要把函数x y 2=的图像上所有的点( )A.向右平移3个单位长度,再向下平移1个单位长度;B.向左平移3个单位长度,再向下平移1个单位长度;C.向右平移3个单位长度,再向上平移1个单位长度;D.向左平移3个单位长度,再向上平移1个单位长度。
二、解答题:14.求下列函数的反函数(1))21(,22≤≤-=x x x y ; (2)x e y 2=15.已知函数⎪⎩⎪⎨⎧>≤-=-)0(,)0(,12)(21x x x x f x , 解不等式1)(>x f .16.已知5)5.2(,5)5.12(==yx ,求证:111=-y x17.设cb a ,,为不等于1的正数,10≠>N N 且,且ac b =2, 求证:N c N a N c N b N b N a log log log log log log =--。
2023-2024学年高一上数学必修一:幂函数及函数的应用(附答案解析)
第1页共8页2023-2024学年高中数学必修一:幂函数及函数的应用
一、选择题(每小题5分,共40分)
1.下列所给出的函数中,是幂函数的是(B )
A .y =-x 3
B .y =x -3
C .y =2x 3
D .y =x 3-1
解析:由幂函数的定义可得y =x -3是幂函数.
2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是(B
)
A .310元
B .300元
C .290元
D .280元
解析:由题意可知,收入y 是销售量x 的一次函数,设y =ax +b (a ≠0),将(1,800),
(2,1300)代入得a =500,b =300.故y =500x +300,当x =0时,y =300.
3.若f (x )为偶函数,且当x ≥0时,f (x )≥2,则当x ≤0时有
(B )
A .f (x )≤2
B .f (x )≥2
C .f (x )≤-2
D .f (x )≥-2
解析:当x ≤0时,-x ≥0,f (x )=f (-x ),所以f (-x )≥2,所以当x ≤0时,f (x )≥2.故选B.
4.在同一坐标系内,函数y =x a (a ≠0)和y =ax -1a
的图象可能是(C )。
高中数学(必修一)第三章 函数的概念与性质幂函数 练习题
高中数学(必修一)第三章 函数的概念与性质幂函数 练习题(含答案解析)学校:___________姓名:___________班级:_____________一、单选题1.下列幂函数中,定义域为R 的是( ) A .1y x -= B .12y x -=C .13y x =D .12y x = 2.已知幂函数n y x =在第一象限内的图像如图所示,若112,2,,22n ⎧⎫∈--⎨⎬⎩⎭则与曲线1C 、2C 、3C、4C 对应的n 的值依次为( )A .12-、2-、2、12B .2、12、2-、12-C .2、12、12-、2-D .12-、2-、12、23.四个幂函数在同一平面直角坐标系中第一象限内的图象如图所示,则幂函数12y x =的图象是( )A .①B .①C .①D .①4.下列函数中,既是偶函数,又满足值域为R 的是( ) A .y =x 2B .1||||y x x =+C .y =tan|x |D .y =|sin x |5.如下图所示曲线是幂函数y =xα在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12 D ..2,12,-2,-126.若幂函数()f x 经过点,且()8f a =,则=a ( )A .2B .3C .128D .5127.函数()0a y x x =≥和函数()0xy a x =≥在同一坐标系下的图像可能是( )A .B .C .D .8.式子)A .1633- B .1633--C .1633+D .1633-+9.对,a b ∈R ,记{},max ,,a a ba b b a b ≥⎧=⎨<⎩,函数()}2maxf x x -=的图象可能是( )A .B .C .D .二、解答题10.设函数()222f x x x =-+,[],1,x t t t R ∈+∈(1)求实数t 的取值范围,使()y f x =在区间[],1t t +上是单调函数; (2)求函数()f x 的最小值. 11.已知幂函数()223m m y x m --=∈Z 的图像与x 、y 轴都无交点,且关于y 轴对称,求m 的值,并画出它的草图.12.已知幂函数()()25mf x m m x =+-在()0,∞+上单调递增.(1)求()f x 的解析式;(2)若()31f x x k >+-在[1,1]-上恒成立,求实数k 的取值范围. 13.设函数()f x 是定义在R 上的奇函数,且()21x ax b f x x +=++.(1)求实数a ,b 的值;(2)当x ∈⎤⎦,不等式()()22f x mx x ≥-有解,求实数m 的取值范围.三、填空题14.若点(2,4)P ,0(3,)Q y 均在幂函数()y f x =的图象上,则实数0y =_____.15.已知实数a ,b 满足等式a 12=b 13,下列五个关系式:①0<b<a<1;①-1<a<b<0;①1<a<b ;①-1<b<a<0;①a =b.其中可能成立的式子有________.(填上所有可能成立式子的序号) 16.函数3223125y x x x =--+在[0,3]上的最大值等于__________.17.定义{}()max ,()a ab a b b a b ≥⎧=⎨<⎩,则{}2max 1,2x x x +--的最小值为_________.参考答案:1.C【分析】直接根据幂函数的定义域可直接判断,偶次根式被开方式必须大于等于0才有意义,分式则必须分母不为0【详解】对选项A,则有:0x≠对选项B,则有:0x>对选项C,定义域为:R对选项D,则有:0x≥故答案选:C2.C【解析】本题可根据幂函数的图像与性质并结合题目中的图像即可得出结果.【详解】由幂函数的图像与性质可知:在第一象限内,在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,故曲线1C、2C、3C、4C对应的n的值依次为:2、12、12-、2-,故选:C.【点睛】本题考查幂函数的图像与性质,在第一象限内,幂函数在1x=的右侧部分的图像,图像由下至上,幂的指数依次增大,考查数形结合思想,是简单题.3.D【解析】由幂函数12y x=为增函数,且增加的速度比较缓慢作答.【详解】幂函数12y x=为增函数,且增加的速度比较缓慢,只有①符合.故选:D.【点睛】本题考查幂函数的图象与性质,属于基础题.4.C【分析】由函数的值域首先排除ABD,对C进行检验可得.【详解】选项A,B中函数值不能为负,值域不能R,故AB错误,选项D值域为[]0,1,故D也错误,那么选项C为偶函数,当3(,)22xππ∈时,tan tany x x==,值域是R,因此在定义域内函数值域为R,故选:C5.B【分析】在图象中,作出直线1x m =>,根据直线x m =和曲线交点的纵坐标的大小,可得曲线1C ,2C ,3C ,4C 相应的α应是从大到小排列.【详解】在图象中,作出直线1x m =>,直线x m =和曲线的交点依次为,,,A B C D , 所以A B C D y y y y >>>,所以C A B D m m m m αααα>>>, 所以A B C D αααα>>>,所以可得曲线1C ,2C ,3C ,4C 相应的α依次为 2,12,-12,-2 故选:B【点睛】本题主要考查幂函数的图象和性质,意在考查学生对这些知识的理解掌握水平. 6.A【解析】设幂函数()f x x α=,代入点求出3α=,即可求解.【详解】设()f x x α=,因为幂函数()f x 经过点,所以f α==, 解得3α=,所以()38f a a ==,解得2a =, 故选:A 7.C【分析】按照x y a =和a y x =的图像特征依次判断4个选项即可.【详解】()0a y x x =≥必过(0,0),()0xy a x =≥必过(0,1),D 错误;A 选项:由x y a =图像知1a >,由a y x =图像可知01a <<,A 错误;B 选项:由x y a =图像知01a <<,由a y x =图像可知1a >,B 错误;C 选项:由x y a =图像知01a <<,由a y x =图像可知01a <<,C 正确. 故选:C. 8.A【分析】利用根式与分数指数幂互化和指数幂运算求解.【详解】231322333⎛⎫=-÷ ⎪⎝⎭, 21131326223333--=-=-,故选:A 9.A【分析】由()}2maxf x x -=2x -的较大者,在同一平面直角坐标系中作出两个函数的图象,取图象较高者即可得()f x 的图象.【详解】y =2y x 都是偶函数,当0x >时,12y x =在()0,∞+上单调递增,2yx 在()0,∞+上单调递减,当1x =2x -=在同一平面直角坐标系中作出y =和2yx 的图象,如图:()}2maxf x x -=2x -的较大者,所以()f x 图象是两个图象较高的,故选:A.10.(1)(][),01,-∞⋃+∞;(2)()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩【解析】(1)由题可得11t +≤或1t ≥,解出即可;(2)讨论对称轴在区间[],1t t +的位置,根据单调性即可求出. 【详解】(1)()f x 的对称轴为1x =,要使()y f x =在区间[],1t t +上是单调函数, 则11t +≤或1t ≥,解得0t ≤或1t ≥, 即t 的取值范围为(][),01,-∞⋃+∞;(2)()f x 的对称轴为1x =,开口向上,则当1t ≥时,()f x 在[],1t t +单调递增,()()2min 22f x f t t t ∴==-+,当11t t <<+,即01t <<时,()()min 11f x f ==,当11t +≤,即0t ≤时,()f x 在[],1t t +单调递减,()()2min 11f x f t t ∴=+=+,综上,()2min21,01,0122,1t t f x t t t t ⎧+≤⎪=<<⎨⎪-+≥⎩. 11.1m = ;草图见祥解【分析】根据幂函数的性质,可得到2230m m --<,再有图像关于y 对称,即可求得m 的值. 【详解】因为幂函数223()m m y x m Z --=∈的图像与坐标轴无交点,所以2230m m --<,解得13m -<<,又因为m Z ∈,所以0,1,2m =,因为图像关于y 对称,所以幂函数为偶函数, 当0m =时,则3y x -=为奇函数,不满足题意; 当1m =时,则4y x -= 为偶函数,满足题意; 当2m =时,则3y x -=为奇函数,不满足题意; 综上所述:1m = 草图(如下)【点睛】本题考查幂函数的性质和图像,需熟练掌握幂函数的性质和图像. 12.(1)2()f x x = (2)(),1-∞-【分析】(1)根据幂函数的定义和()f x 的单调性,求出m 得值; (2)结合第一问求出的2()f x x =,利用函数的单调性,解决恒成立问题. (1)()f x 是幂函数,则251m m +-=,2m ∴=或-3,()f x 在(0,)+∞上单调递增,则2m =所以2()f x x =; (2)()31f x x k >+-即2310x x k -+->,要使此不等式在[1,1]-上恒成立,只需使函数()231g x x x k =-+-在[1,1]-上的最小值大于0即可.①()231g x x x k =-+-在[1,1]-上单调递减,①()()11min g x g k ==--, 由10k -->,得1k <-.因此满足条件的实数k 的取值范围是(),1-∞-. 13.(1)0a =,0b = (2)1,4⎛⎤-∞ ⎥⎝⎦【分析】(1)根据定义在R 上的奇函数的性质以及定义即可解出;(2)由(1)可知,()21x f x x =+,根据分离参数法可得()()22112m x x ≤+-,再求出()()22112x x +-的最大值,即得解. (1)因为函数()f x 是定义在R 上的奇函数,所以()00f a ==,()()1111022f f b b-+-=+=+-,解得0b =,检验可知函数()21xf x x =+为奇函数,故0a =,0b =. (2)由(1)可知,()21x f x x =+,而x ∈⎤⎦,所以 ()()22f x mx x ≥-可化为()()22112m x x ≤+-,设[]23,4t x =∈,则()()()()[]222219121224,1024x x t t t t t ⎛⎫+-=+-=--=--∈ ⎪⎝⎭,而不等式()()22f x mx x ≥-有解等价于()()22max11412m x x ⎡⎤⎢⎥≤=+-⎢⎥⎣⎦,故实数m 的取值范围为1,4⎛⎤-∞ ⎥⎝⎦.14.9【分析】设出幂函数的解析式,代入P 点坐标求得这个解析式,然后令3x =求得0y 的值.【详解】设幂函数为()f x x α=,将()2,4P 代入得24,2αα==,所以()2f x x =,令3x =,求得2039y ==.【点睛】本小题主要考查幂函数解析式的求法,考查幂函数上点的坐标,属于基础题. 15.①①①【分析】在同一坐标系中画出函数121y x =,132y x =的图象,结合函数图象,进行动态分析可得,当01b a <<<时,当1a b <<时,当1a b ==时,1132a b =可能成立,10b a -<<<、10a b -<<<时,12a 没意义,进而即可得到结论【详解】10b a -<<<、10a b -<<<时,12a 没意义,①①不可能成立;’画出121y x =与132y x =的图象(如图), 已知1132x x m ==,作直线y m =, 若0m =或1,则a b =,①能成立; 若01m <<,则01b a <<<,①能成立;若1m ,则1a b <<,①能成立,所以可能成立的式子有①①①,故答案为①①①.【点睛】本题主要考查幂函数的图象与性质,意在考查灵活应用所学知识解答问题的能力,以及数形结合思想的应用,属于中档题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.16.5【分析】对3223125y x x x =--+求导,根据单调性求最大值.【详解】3223125y x x x =--+,则266126(2)(1)y x x x x '=--=-+当2x >时,0y '>,此时函数3223125y x x x =--+单调递增;当12x -<<时,0y '<,此时函数3223125y x x x =--+单调递减;当1x <-时,0y '>,此时函数3223125y x x x =--+单调递增.则函数3223125y x x x =--+在区间[0,2]内单调递减,在区间[2,3]内单调递增当0x =时,5y =,当3x =时,4y =-所以函数3223125y x x x =--+在0x =处取到最大值5所以函数3223125y x x x =--+在区间[0,3]上的最大值是5.故答案为:5.17.1【分析】根据题干中max 函数的定义,可以得到所求函数为分段函数,求出每一段的最小值,取其中的最小值即可 【详解】令212x x x +-=-得:3x =-或1x =,由题意可得:{}2221,3max 1,22,311,1x x x x x x x x x x x ⎧+-≤-⎪+--=--<<⎨⎪+-≥⎩,画出函数对应的图像如下:由图可得:当1x =时,{}2max 1,2x x x +--最小,代入解析式可得:最小值为1故答案为:1。
高一数学必修第一册2019(A版)_3.3_幂函数_练习(解析版)
3.3 幂函数【本节明细表】基础巩固1.已知幂函数的图象通过点,则该函数的解析式为()A. B. C. D.【答案】C【解析】设幂函数的解析式为.∵幂函数的图象过点,∴,∴,∴该函数的解析式为.2.在下列幂函数中,是偶函数且在(0,+∞)上是增函数的是( )A.y=x-2B.C.D.【答案】D【解析】对于A,有f(-x)=f(x),是偶函数,但在(0,+∞)上递减,则A不满足;对于B,定义域为[0,+∞),不关于原点对称,不具有奇偶性,则B不满足;对于C,有f(-x)=-f(x),为奇函数,则C不满足;对于D,定义域R关于原点对称,f(-x)=f(x),则为偶函数,且在(0,+∞)上递增,则D满足. 故选:D.3.已知幂函数过点,则()A.B.C.D.【答案】B【解析】设幂函数,∵过点,∴,∴,故选B.4.幂函数的图象如图所示,则的值为( )A.-1B.0C.1D.2【答案】C【解析】由图象上看,图象不过原点,且在第一象限下降,故,即且;又从图象看,函数是偶函数,故为负偶数,将分别代入,可知当时,,满足要求.故选C.5.设∈,则使函数y=的定义域为R且为奇函数的所有的值为()A.,1,3 B.,1 C.,3 D.1,3【答案】D【解析】当=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当=1时,函数y=的定义域为R且为奇函数,满足要求;当函数的定义域为{x|x≥0},不满足定义域为R;当=3时,函数y=的定义域为R且为奇函数,满足要求;故选:D.6.幂函数的图象关于轴对称,则实数_______.【答案】2【解析】函数是幂函数,解得:或,当时,函数的图象不关于轴对称,舍去,当时,函数的图象关于轴对称,∴实数.7.已知幂函数的图象过,那么在上的最大值为_____________。
【答案】【解析】设,因为的图象过,,解得,在上是单调递增的在上的最大值为,故答案为。
8.比较下列各题中两个幂的值的大小:(1)2.3,2.4;(2) ,;(3)(-0.31) ,0.35.【答案】(1)2.3<2.4.(2) >;(3)(-0.31) <0.35.【解析】(1)∵y=为R上的增函数,又2.3<2.4,∴2.3<2.4.(2)∵y=为(0,+∞)上的减函数,又<,∴()>().(3)∵y=为R上的偶函数,∴=.又函数y=为[0,+∞)上的增函数,且0.31<0.35,∴0.31<0.35,即(-0.31) <0.35.能力提升9.已知函数的图象如图所示,则的大小关系为()A.B.C.D.【答案】A【解析】由图像可知,,得,故选:A..10.对幂函数有以下结论(1)的定义域是;(2)的值域是;(3)的图象只在第一象限;(4)在上递减;(5)是奇函数.则所有正确结论的序号是______.【答案】(2)(3)(4)【解析】解:对幂函数,以下结论(1)的定义域是,因此不正确;(2)的值域是,正确;(3)的图象只在第一象限,正确;(4)在上递减,正确;(5)是非奇非偶函数,因此不正确.则所有正确结论的序号是(2)(3)(4).故答案为:(2)(3)(4).11.已知幂函数的图象经过点.(1)求实数的值;(2)求证:在区间(0,+∞)上是减函数.【答案】(1);(2)见解析.【解析】(1)∵的图象经过点,∴,即,解得.(2)证明:由(1)可知,,任取,且,则,∴,即.∴在区间(0,+∞)上是减函数.素养达成12.讨论函数的定义域、奇偶性,并作出它的简图,根据图象说明它的单调性.【答案】定义域R;偶函数;图象略;在区间(-∞,0]上是减函数,[0,+∞)上是增函数.【解析】函数定义域为R,因为,所以函数为偶函数,作出函数图象可知,在单减,在[0,+∞)上单增.。
北师版新课标高中数学必修一同步练习题幂函数同步练习题
解得
α=
1,所以
2
f(x)=
-1
x 2,
f
25
=
-1
25 2
=
52
-1 2
=
5-1
=
1
.
5
【答案】 1
5
同步测试
6 . 求下列幂函数的定义域,并指出其奇偶性 .
2
(1) y=x-2. (2) y= x 3 .
【解析】(1) y = x-2 = x12,定义域是{x|x≠0},是偶函数 .
2
(2) y = x 3 = 3 x2,定义域是 R,是偶函数 .
再见
ab
B. f (a)<f ( 1 )<f b<f a
b
C. f a<f b<f (1 )<f ( 1 )
ba
D. f ( 1 )<f a<f ( 1)<f b
a
b
同步测试
【解析】因为 0<a<b<1,
所以 0<a<b<1<1< 1 ,
因为
1
f(x)=x 2
在
ba
(0,+∞) 上为增函数,
所以 f a<f b<f (1 )<f ( 1 ) .
ba
【答案】C .
同步测试
4 . 已知二次函数 f(x) 是幂函数,则 f(x) 的解析式为______. 【解析】由题意得 f(x)=x2 . 【答案】 f(x)=x2
同步测试
5
.
若幂函数
y=f(x)
的图象经过点
1
(9,13
),则
f(25)
的值是____.
【解析】设 f(x)=xα,则 3=9α,3-1=32α,
1
1
第6章-6.1-幂函数高中数学必修第一册苏教版
(2 − 1 )[ 2 − 1 ] < 0.请写出满足这两个性质的一个幂函数的表达式:
− (答案不唯一)
=
__________________________.
【解析】由题意知幂函数 满足性质:对定义域中任意的,有 = − ,则
调递增,且0 < 0.31 < 0.35,∴ 0.31 < 0.35 ,即 −0.31
6
5
6
5
< 0.35 .
【学会了吗丨变式题】
2.若 =
1
2
2
3
1
5
, =
A. < <
2
3
, =
1
2
1
3
,则,,的大小关系是( D
B. < <
2
3
【解析】 = 在[0, +∞)上单调递增,∴
间 0, +∞ 上单调递减,对应图象①;函数3 在区间[0, +∞)上单调递增,对应图象②;
函数4 在区间 0, +∞ 上单调递减,对应图象④.
例10 已知点
2, 2 在幂函数 的图象上,点
当为何值时:
(1) > ;
(2) = ;
(3) < .
则( B
)
A. > > >
B. > > >
C. > > >
D. > > >
图6.1-3
【解析】由幂函数的图象特征可知, < 0, > 0, > 0, > 0.
高中数学必修1单元配套练习试题2.3 幂函数及参考答案
2.3 幂函数姓名:___________班级:______________________1.下列函数中是幂函数的是( )①y=−x 2;②y=2x ;③y=x π;④y=(x −1)3;⑤y=1x 2;⑥y=x 2+1x .A.①③⑤B.①②⑤C.③⑤ D .只有⑤ 2.幂函数f(x)的图象过点(4,12),那么f(8)的值为( )A.24 B.64 C.2 2 D. 1643.函数f(x)=(m 2−m −1)1m x-+是幂函数,且在x∈(0,+∞)上是减函数,则实数m 的取值集合是( ) A.{m|m =−1或m =2} B.{m|−1<m <2} C.{2} D.{−1} 4.下列幂函数中图象过点(0,0),(1,1),且是偶函数的是( ) A. y =12x B. y =4xC. y =2x-D. y =13x5.函数f(x)=1nx x a-+(n∈Z ,a >0且a≠1)的图象必过定点( )A.(1,1)B.(1,2)C.( −1,0)D.( −1,1) 6.下列命题中正确的是( )A.当α=0时,函数y =x α的图象是一条直线 B.幂函数的图象都经过(0,0)、(1,1)两点C.幂函数y =x 0的定义域是RD.幂函数的图象不可能在第四象限7.设α∈{−2,−1,−12,13,12,1,2,3},则使f(x)=x α为奇函数,且在(0,+∞)上递增的α的个数是( )A.1B.2C.3D.4 8.在同一坐标系内,函数y =x a(a≠0)和y =ax −1a的图象可能是( )9.比较下列各组数的大小:(1)25.1-与25.09-的大小关系是______;(2)232-⎛- ⎝⎭,23107⎛⎫-⎪⎝⎭,431.1-的大小关系是______.10.已知幂函数f(x)=12x-,若f(a+1)<f(10−2a),则实数a 的取值范围是________.11.已知实数a 、b 满足等式1132a b =,下列五个关系式:①0<b <a <1;②−1<a <b <0; ③1<a <b;④−1<b <a <0;⑤a=b. 其中可能成立的式子有________.12.已知函数f(x)=mx −2x 且f(4)=72. (1)求m 的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.13.已知点)2在幂函数f(x)的图象上,点12,4⎛⎫- ⎪⎝⎭在幂函数g(x)的图象上,问当x 为何值时,(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).14.已知幂函数f(x)=223m m x--+,其中−2<m <2,m∈Z ,满足:(1)f(x)是区间(0,+∞)上的增函数;(2)对任意的x∈R ,都有f(−x) +f(x)=0.求同时满足条件(1)、(2)的幂函数f(x)的解析式,并求x∈[0,3]时,f(x)的值域.参考答案1.C【解析】y =−x 2的系数是−1而不是1,故不是幂函数;y =2x 是指数函数;y =(x −1)3的底数是x −1而不是x,故不是幂函数;y =x 2+1x 是两个幂函数和的形式,也不是幂函数.y =1x 2=x −2和y=x π具有幂函数y =x α的形式,所以选C.考点:幂函数的概念. 2.A【解析】设幂函数的解析式为y =x α,依题意得,12=4α,即22α=2−1,∴α=−12.∴幂函数的解析式为y =12x -,∴f(8)=128-=18=122=24, 故选A. 考点:幂函数的概念.3.C【解析】由条件知211,10,m m m ⎧--=⎨-+<⎩解得m =2.考点:幂函数的概念. 4.B【解析】函数y =12x ,y =13x 不是偶函数,函数y =2x -是偶函数,但其图象不过点(0,0).函数 y =4x 的图象过点(0,0),(1,1)且是偶函数,故选B. 考点:幂函数的简单性质. 5.B【解析】因为f(1)=111na-+=1+1=2,所以f(x)=1n x x a-+(n∈Z ,a >0且a≠1)的图象必过定点(1,2),故选B.考点:幂函数的图象及应用. 6.D【解析】当α=0时,函数y =x α的定义域为{x|x≠0,x∈R},其图象不是直线,故A 和C 不 正确;当α<0时,函数y =x α的图象不过(0,0)点,故B 不正确;当x >0,α∈R 时,y =x α>0,则幂函数的图象都不在第四象限,故D 正确. 考点:幂函数的图象. 7.C【解析】f(x)为奇函数,则α=−1,13,1,3,f(x)在(0,+∞)上递增,则α=13,1,3,故选C.考点:幂函数的基本性质. 8.C【解析】当a <0时,函数y =ax −1a 是减函数,且在y 轴上的截距−1a>0,结合图象排除A,C,D,又y =x a在(0,+∞)上是减函数,∴B 项也不正确.当a >0时,y =ax −1a 是增函数,−1a<0,结合图象排除B,D 选项,当a >0时,y =x a在(0,+∞)上是增函数,故A 项不正确,故选C.考点:幂函数的单调性与奇偶性综合. 9.(1) 225.1 5.09--<(2)22433310 1.172--⎛⎛⎫->-> ⎪ ⎝⎭⎝⎭【解析】 1)∵2y x -=在(0,+∞)上为减函数,且5.1>5.09,∴225.1 5.09--<.(2))22332-⎛⎫-=⎪ ⎪⎝⎭,2233101077⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭.∵23y x =在(0,+∞)上为增函数,且1017>>,∴22331017⎛⎫>> ⎪⎝⎭.又44331.1=11--<,∴22433310 1.172--⎛⎛⎫->-> ⎪ ⎝⎭⎝⎭.考点:幂函数比较大小. 10.(3,5) 【解析】f(x)=12x-=1x(x >0),易知f(x)在(0,+∞)上为减函数,又f(a+1)<f(10−2a),∴10,1020,1102,a a a a +>⎧⎪->⎨⎪+>-⎩解得1,5,3,a a a >-⎧⎪<⎨⎪>⎩∴3<a <5. 考点:幂函数的单调性. 11.①③⑤【解析】首先画出y =12x 与y =13x 的图象(如图所示),设1132a b m ==,作直线y =m.如果 m =0或1,则a =b;如果0<m <1,则0<b <a <1;如果m >1,则1<a <b.从图象看一目了然,故可能成立的是①③⑤.考点:幂函数的图象及单调性. 12. (1)1(2)奇函数(3)略【解析】(1)因为f(4)=72,所以274=42m -,所以m =1. (2)由(1)知f(x)=2x x-,因为f(x)的定义域为{x|x≠0}, ()()22==f x x x f x x x ⎛⎫-=----- ⎪-⎝⎭,所以f(x)是奇函数. (3) f(x)在(0,+∞)上单调递增.证明如下: 设120x x >>,则()()()1212121212222=1=f x f x x x x x x x x x ⎛⎫⎛⎫----+ ⎪ ⎝⎭⎝-⎪⎭. 因为120x x >>,所以120x x ->,12210x x +>,所以()()12f x f x >, 所以f(x)在(0,+∞)上为单调递增函数. 【考点】幂函数的单调性与奇偶性综合. 13.略【解析】设f(x)=x α,由题意得2=α⇒α=2,∴f(x)=x 2.同理可求出()2g x x -=,在同一坐标系内作出y =f(x)与y =g(x)的图象,如图所示.由图象可知:(1)当x >1或x <−1时,f(x)>g(x). (2)当x =±1时,f(x)=g(x).(3)当−1<x <0或0<x <1时,f(x)<g(x). 考点:幂函数的图象. 14.略【解析】因为−2<m <2,m∈Z ,所以m =−1,0,1.因为对任意的x∈R ,都有f(−x) +f(x)=0,即f(−x)=−f(x),所以f(x)是奇函数.当m =−1时,f(x)=x 2只满足条件(1)而不满足条件(2);当m =1时,f(x)=x 0,条件(1)、(2)都不满足;当m =0时,f(x)=x 3,条件(1)、(2)都满足,当x∈[0,3]时,函数f(x)的值域为[0, 27]. 考点:幂函数的单调性与奇偶性.。
必修一 幂函数 练习题附答案
必修一 幂函数 练习题附答案一、选择题1.下列函数不是幂函数的是( ) A .y =2x B .y =x -1 C .y =x D .y =x 2[答案] A[解析] y =2x 是指数函数,不是幂函数. 2.下列函数定义域为(0,+∞)的是( ) A .y =x -2B .y =x12 C .y =x -13D .y =x-12[答案] D3.若幂函数y =x n ,对于给定的有理数n ,其定义域与值域相同,则此幂函数( )A .一定是奇函数B .一定是偶函数C .一定不是奇函数D .一定不是偶函数[答案] D[解析] 由y =x12知其定义域与值域相同,但是非奇非偶函数,故能排除A 、B ;又y =x 3的定义域与值域相同,是奇函数,故排除C.4.如果幂函数y =(m 2-3m +3)x m 2-m -2的图象不过原点,那么( )A .-1≤m ≤2B .m =1或m =2C .m =2D .m =1[答案] B[解析] 幂函数y =(m 2-3m +3)x m 2-m -2中,系数m 2-3m +3=1,∴m =2,1.又∵y =(m 2-3m +3)xm 2-m -2的图象不过原点,故m 2-m -2≤0,即-1≤m ≤2,故m =2或1.5.函数y =x a ,y =x b ,y =x c 的图象如图所示,则实数a 、b 、c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b[答案] A6.函数y =x α与y =αx (α∈{-1,12,2,3})的图象只可能是下面中的哪一个( )[答案] C[解析] 直线对应函数y =x ,曲线对应函数为y =x -1,1≠-1.故A错;直线对应函数为y =2x ,曲线对应函数为y =x12 ,2≠12.故B 错;直线对应函数为y =2x ,曲线对应函数为y =x 2,2=2.故C 对;直线对应函数为y =-x ,曲线对应函数为y =x 3,-1≠3.故D 错.7.(2010·安徽文,7)设a =(35)25 ,b =(25) 35 ,c =(25)25,则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .c >a >bD .b >c >a[答案] A[解析] 对b 和c ,∵指数函数y =(25)x 单调递减.故(25)35 <(25)25 ,即b <c .对a 和c ,∵幂函数.y =x25在(0,+∞)上单调递增,∴(35)25 >(25)25,即a >c ,∴a >c >b ,故选A.8.(2012~2013山东省临沂市临球县实验中学高一教学阶段性测试题)幂函数的图象过点(2,4),则它的单调增区间为( )A .(-∞,1)B .(-∞,0)C .(0,+∞) ) D.(-∞,+∞)[答案] C[解析] 设f (x )=x α,代入(2,4)得x =2,f (x )=x 2, ∴f (x )=x 2在(0,+∞)为增函数,故选C. 二、填空题9.(2012~2013湖南益阳模拟)已知幂函数y =f (x )过点(3,127),则f (14)=________.[答案] 8[解析] 设幂函数为y =x α,将点(3,127)代入,得127=3α,则α=-32,所以f (14)=(14)- 32=8.10.若函数y =(m 2-m -1)x m 2-2m -1是幂函数 ,且是偶函数,则m =________.[答案] -1[解析] 由题意,知m 2-m -1=1, 解得m =2,或m =-1.当m =2时,m 2-2m -1=-1,函数为y =x -1,不是偶函数;当m =-1时,m 2-2m -1=2,函数为y =x 2,是偶函数,满足题意.11.设f (x )=(m -1)xm 2-2,如果f (x )是正比例函数,那么m =________;如果f (x )是反比例函数,那么m =________;如果f (x )是幂函数,那么m =________.[答案] ±3 -1 2[解析] 若f (x )是正比例函数,则⎩⎪⎨⎪⎧m 2-2=1,m -1≠0,即m =±3;若f (x )是反比例函数,则⎩⎪⎨⎪⎧m 2-2=-1,m -1≠0,即m =-1;若f (x )是幂函数,则m -1=1,即m =2.12.(2012~2013海南中学高一测试)下列函数中,在(0,1)上单调递减,且为偶函数的是________.①y =x12 ;②y =x 4;③y =x -2;④y =-x13 .[答案] ③[解析] ①中函数y =x12不具有奇偶性;②中函数y =x 4是偶函数,但在[0,+∞)上为增函数;③中函数y =x -2是偶函数,且在(0,+∞)上为减函数;④中函数y =-x13是奇函数.故填③.三、解答题13.已知函数f (x )=(m 2-m -1)x -5m -3,m 为何值时. (1)f (x )是正比例函数; (2)f (x )是反比例函数; (3)f (x )是二次函数;(4)f (x )是幂函数.[解析] (1)若f (x )是正比例函数,则-5m -3=1,解得m =-45,此时m 2-m -1≠0,故m =-45.(2)若f (x )是反比例函数,则-5m -3=-1,解得m =-25,即m 2-m -1≠0,故m =-25.(3)若f (x )是二次函数,则-5m -3=2,即m =-1,此时m 2-m -1≠0,故m =-1.(4)∵f (x )是幂函数,故m 2-m -1=1,即时m 2-m -2=0,解得m =2或m =-1.14.已知函数y =xn 2-2n -3(n ∈Z )的图象与两坐标轴都无公共点,且其图象关于y 轴对称,求n 的值,并画出函数的图象.[解析] 因为图象与y 轴无公共点,所以n 2-2n -3≤0,又图象关于y 轴对称,则n 2-2n -3为偶数,由n 2-2n -3≤0得,-1≤n ≤3,又n ∈Z .∴n =0,±1,2,3当n =0或n =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.当n =-1或n =3时,有y =x 0,其图象如图A.当n=1时,y=x-4,其图象如图B. ∴n的取值集合为{-1,1,3}.15.已知f(x)=x -n2+2n+3(n=2k,k∈Z)的图象在[0,+∞)上单调递增,解不等式f(x2-x)>f(x+3).[解析]依题意,得-n2+2n+3>0,解得-1<n<3.又∵n=2k,k∈Z,∴n=0或2.当n=0或2时,f(x)=x3,∴f(x)在R上单调递增,∴f(x2-x)>f(x+3)可转化为x2-x>x+3.解得x<-1或x>3,∴原不等式的解集为(-∞,-1)∪(3,+∞).16.(2012~2013温州联考)已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=f(x)+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.[解析](1)∵f(x)在区间(0,+∞)上是单调增函数,∴-m2+2m+3>0,即m2-2m-3<0,作出函数y=m2-2m-3的图象(图略)观察图象知-1<m<3.又m∈Z,∴m=0,1,2,而m=0,2时,f(x)=x3不是偶函数,m=1时,f(x)=x4是偶函数.∴f(x)=x4.(2)由(1)知f(x)=x4,则g(x)=x2+2x+c=(x+1)2+(c-1).∵g(x)>2对任意的x∈R恒成立,∴g(x)min>2,且x∈R,则c-1>2,解得c>3.故实数c的取值范围是(3,+∞).。
高中数学幂函数练习题(附解析)
高中数学幂函数练习题(附解析)数学必修1(苏教版)2.4 幂函数我们差不多学习了指数函数,它是底数为常数,指数为自变量的函数,这与我们初中学习过的一些函数(如y=x,y=x2,y=x-1等)“底数为自变量,指数为常数”是否为同一类型,性质是否有区别?”基础巩固1.下列函数中,既是偶函数,又在区间(0,+)上单调递减的函数是() A.y=x-2 B.y=x-1C.y=x2 D.y=答案:A2.右图所示的是函数y=(m,nN*且m,n互质)的图象,则()A.m,n是奇数且mn1B.m是偶数,n是奇数,且mn1C.m是偶数,n是奇数,且mn1D.m,n是偶数,且mn1解析:由图象知y=为偶函数,且m、n互质,m是偶数,n是奇数,又由y=与y=x图象的位置知mn1.答案:C3.在同一坐标系内,函数y=xa(a0)和y=ax+1a的图象应是()答案:B4.下列函数中与y=13x定义域相同的函数是()A.y=1x2+x B.y=lnxxC.y=xex D.y=2xx答案:D5.下图中的曲线C1与C2分别是函数y=xp和y=xq在第一象限内的图象,则一定有()A.q0 B.p0C.q0 D.p0答案:A6.下列四类函数中,具有性质“对任意x0,y0都有f(x+y)=f(x)f(y)”的是()A.幂函数B.对数函数C.指数函数D.二次函数答案:C7.T1=,T2=,T3=,则下列关系式中正确的是()事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。
不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。
如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。
日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。
高一数学幂函数试题答案及解析
高一数学幂函数试题答案及解析1.对于幂函数f(x)=,若0<x1<x2,则,的大小关系是( )A.>B.<C.=D.无法确定【答案】A【解析】可以根据幂函数f(x)=在(0,+∞)上是增函数,函数的图象是上凸的,则当0<x1<x2时,应有>,由此可得结论.【考点】函数的性质的应用.2.下列说法正确的是()A.幂函数的图象恒过点B.指数函数的图象恒过点C.对数函数的图象恒在轴右侧D.幂函数的图象恒在轴上方【答案】C【解析】幂函数的图象恒过点,A错;指数函数的图象恒过点,B错;幂函数的图象恒在轴上方,反例,D错.【考点】本题考查指数函数、对数函数、幂函数的图像、性质.3.若幂函数在上是增函数,则=_________.【答案】【解析】因为函数为幂函数,由幂函数的定义可知,,解得或,当时,,在上是增函数,符合题意;当时,,在上是减函数,不符合题意,所以.【考点】本题考查的知识点是幂函数的定义及其性质.4.已知A有限集合,,若的子集个数分别为,且,则 __.【答案】2【解析】不妨设集合A中的元素个数为,则集合B中的元素个数有,所以,,因此,故所求的值为2.【考点】1.集合的元素个数;2.整数幂的运算.5.下列幂函数中过点,的偶函数是()A.B.C.D.【答案】B【解析】对于幂函数,当是偶数时,它是偶函数,排除A和D;当时,幂函数不通过原点,排除C.【考点】幂函数的性质6.已知幂函数为实常数)的图象过点(2,),则= .【答案】4【解析】因为幂函数为实常数)的图象过点(2,),所以,所以【考点】本小题主要考查幂函数的定义和求解.点评:幂函数是形式定义,的系数为1,经常用这条性质解题.7.已知幂函数在增函数,则的取值范围 .【答案】(0,10)【解析】根据已知表达式可知,幂函数在增函数,首先分析对数式y=lga中真数大于零,即a>0,同时要满足在增函数,说明了幂指数为正数,即1-lga>0,得到lga<1=lg10,a<10,这样结合a>0,可知实数a的取值范围是(0,10)。
高一数学幂函数专项练习(含答案)
高一数学幂函数专项练习(含答案)高一数学幂函数专项练习幂函数专项练习1.下列幂函数为偶函数的是()A.y=x12B.y=3xC.y=x2D.y=x-1解析:选C.y=x2,定义域为R,f(-x)=f(x)=x2.2.若a0,则0.5a,5a,5-a的大小关系是()A.5-a0.5aB.5a5-aC.0.5a5aD.5a0.5a解析:选B.5-a=(15)a,因为a0时y=xa单调递减,且155,所以5a5-a.3.设{-1,1,12,3},则使函数y=x的定义域为R,且为奇函数的所有值为()A.1,3B.-1,1C.-1,3D.-1,1,3解析:选A.在函数y=x-1,y=x,y=x12,y=x3中,只有函数y=x和y=x3的定义域是R,且是奇函数,故=1,3.4.已知n{-2,-1,0,1,2,3},若(-12)n(-13)n,则n=________. 解析:∵-12-13,且(-12)n(-13)n,y=xn在(-,0)上为减函数.又n{-2,-1,0,1,2,3},n=-1或n=2.答案:-1或21.函数y=(x+4)2的递减区间是()A.(-,-4)B.(-4,+)C.(4,+)D.(-,4)解析:选A.y=(x+4)2开口向上,关于x=-4对称,在(-,-4)递减.2.幂函数的图象过点(2,14),则它的单调递增区间是()A.(0,+)B.[0,+)C.(-,0)D.(-,+)解析:选C.幂函数为y=x-2=1x2,偶函数图象如图.3.给出四个说法:①当n=0时,y=xn的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y=xn在第一象限为减函数,则n0.其中正确的说法个数是()A.1B.2C.3D.4解析:选B.显然①错误;②中如y=x-12的图象就不过点(0,0).根据幂函数的图象可知③、④正确,故选B.4.设{-2,-1,-12,13,12,1,2,3},则使f(x)=x为奇函数且在(0,+)上单调递减的的值的个数是()A.1B.2C.3D.4解析:选A.∵f(x)=x为奇函数,=-1,13,1,3.又∵f(x)在(0,+)上为减函数,=-1.5.使(3-2x-x2)-34有意义的x的取值范围是()A.RB.x1且x3C.-3解析:选C.(3-2x-x2)-34=143-2x-x23,要使上式有意义,需3-2x-x20,解得-36.函数f(x)=(m2-m-1)xm2-2m-3是幂函数,且在x(0,+)上是减函数,则实数m=()A.2B.3C.4D.5解析:选A.m2-m-1=1,得m=-1或m=2,再把m=-1和m=2分别代入m2-2m-30,经检验得m=2.7.关于x的函数y=(x-1)(其中的取值范围可以是1,2,3,-1,12)的图象恒过点________.解析:当x-1=1,即x=2时,无论取何值,均有1=1,函数y=(x-1)恒过点(2,1).答案:(2,1)8.已知2.42.5,则的取值范围是________.解析:∵02.5,而2.42.5,y=x在(0,+)为减函数.答案:09.把(23)-13,(35)12,(25)12,(76)0按从小到大的顺序排列____________________.解析:(76)0=1,(23)-13(23)0=1,(35)121,(25)121,∵y=x12为增函数,(25)12(35)12(76)0(23)-13.答案:(25)12(35)12(76)0(23)-1310.求函数y=(x-1)-23的单调区间.解:y=(x-1)-23=1x-123=13x-12,定义域为x1.令t=x-1,则y=t-23,t0为偶函数.因为=-230,所以y=t-23在(0,+)上单调递减,在(-,0)上单调递增.又t=x-1单调递增,故y=(x-1)-23在(1,+)上单调递减,在(-,1)上单调递增.11.已知(m+4)-12(3-2m)-12,求m的取值范围.解:∵y=x-12的定义域为(0,+),且为减函数.原不等式化为m+403-2m3-2m,解得-13m的取值范围是(-13,32).12.已知幂函数y=xm2+2m-3(mZ)在(0,+)上是减函数,求y 的解析式,并讨论此函数的单调性和奇偶性.解:由幂函数的性质可知m2+2m-3(m-1)(m+3)-3又∵mZ,m=-2,-1,0.当m=0或m=-2时,y=x-3,定义域是(-,0)(0,+).∵-30,y=x-3在(-,0)和(0,+)上都是减函数,又∵f(-x)=(-x)-3=-x-3=-f(x),y=x-3是奇函数.当m=-1时,y=x-4,定义域是(-,0)(0,+).∵f(-x)=(-x)-4=1-x4=1x4=x-4=f(x),函数y=x-4是偶函数.∵-40,y=x-4在(0,+)上是减函数,又∵y=x-4是偶函数,y=x-4在(-,0)上是增函数.。
高一数学幂函数与指数练习
幂函数与指数练习题题型一:幂函数的定义1.(2022·全国·高一单元测试)现有下列函数:①y=x3;②y=(12)x;③24y x=;④y=x5+1;⑤y=(x−1)2;⑥y=x;⑦y=a x(a>1),其中幂函数的个数为()A.1 B.2 C.3 D.4题型二:幂函数的值域问题2.(2022·全国·高一课时练习)已知幂函数f(x)=x a的图象过点(9,3),则函数1()()1f xyf x−=+在区间[1,9]上的值域为()A.[-1,0] B.[−12,0]C.[0,2] D.[−32,1]3.已知点(n,8)在幂函数f(x)=(m−2)x m的图象上,则函数g(x)=√m−x−2√x−n的值域为()A.[0,1]B.[−2,0]C.[−1,2]D.[2,1]−题型三:幂函数的定点和图像问题4.(2022·全国·高一单元测试)下列命题正确的是()A.幂函数的图象都经过(0,0),(1,1)两点B.函数y=x−1的图象经过第二象限C.如果两个幂函数的图象有三个公共点,那么这两个函数一定相同D.如果幂函数为偶函数,则图象一定经过点(−1,1)5.(2020·凉山·高一期末)若函数y=f(x)与y=g(x)图象关于y=x对称,且f(x+2)=x a+3,则y=g(x)必过定点()A.(4,0)B.(4,1)C.(4,2)D.(4,3)6.(2021秋•西岗区校级月考)幂函数y=x−1及直线y=x,y=1,x=1将平面直角坐标系的第一象限分成八个“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如图所示),则幂函数y=x12的图象经过的“卦限”是()A.①,⑦B.④,⑧C.③,⑦D.①,⑤7.幂函数y=x m,y=x n,y=x p,y=x q的图象如图,则将m,n,p,q的大小关系用“<”连接起来结果是8.(2021秋•大连期末)已知幂函数y=x a与y=x b的部分图象如图所示,直线x=m2,x=m(0<m<1)与y=x a,y=x b分别交于A,B,C,D四点,且|AB|=|CD|,则m a+m b=()A.12B.1 C.√2D.29.幂函数y=x m(m≠0),当m取不同的正数时,在区间[0,1]上它们的图象是一簇美丽的曲线(如图).设点A(1,0),B(0,1),连结AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA,则αβ=()A.4B.3C.2D.1题型四:幂函数的单调性问题(比较大小、解不等式、参数)10.(2022春•丽江期末)若a=(12)23,b=(15)23,c=(12)13,则a、b、c的大小关系是()A.a<b<c B.c<a<b C.b<c<a D.b<a<c11.已知幂函数f(x)=x m2−2m−3(m∈N∗)的图象关于 y 轴对称,且在(0,+∞)上单调递减,求满足(a+1)−2m3<(1−2a)−2m3的a的取值范围.【练习】已知幂函数 y=x3m−9(m∈N∗)的图象关于 y 轴对称且在(0,+∞)上单调递减,求满足(a+1)−m3<(3−2a)−m3的a的取值范围.题型五:幂函数的奇偶性问题12.(2021秋•渝中区校级期末)“m2+4m=0”是“幂函数f(x)=(m3−m2−20m+1)x m−23为偶函数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件题型六:幂函数的综合性问题13.已知函数f(x)=3x5+x3+5x+2,若f(a)+f(2a−1)>4,则实数a的取值范围是()A.(13,+∞)B.(−∞,13)C.(),3−∞D.(3,+∞)14.(2021秋•徐汇区校级期末)已知函数f(x)=(m2−5m+1)x m+1(m∈Z)为幂函数,且为奇函数.(1)求m的值,并确定f(x)的解析式;(2)令g(x)=f(x)+√2x+1,求y=g(x)在x∈[−12,1]的值域.15.(2021春•韶关期末)已知幂函数f(x)=(p2−3p+3)x p2−32p−12,满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=[f(x)]2+mf(x),x∈[1,9],且g(x)的最小值为0,求实数m的取值范围. (3)若函数ℎ(x)=n−f(x+3),是否存在实数a,b(a<b),使函数ℎ(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.【练习】(2022·全国·高一课时练习)已知幂函数f(x)=(a2−3a+3)x a为偶函数,(1)求函数f(x)的解析式;(2)若函数g(x)=f(x)+(2m−1)x−3在[−1,3]上的最大值为1,求实数m的值..16.已知______,且函数g(x)=x+b2x2+a①函数f(x)=x2+(2−a)x+4在定义域[b−1,b+1]上为偶函数;②函数f(x)=ax+b(a>0)在[1,2]上的值域为[2,4].在①,②两个条件中,选择一个条件,将上面的题目补充完整,求出a,b的值,并解答本题.(1)判断g(x)的奇偶性,并证明你的结论;(2)设ℎ(x)=−x−2c,对任意的1x R,总存在x2∈[−2,2],使得g(x1)=ℎ(x2)成立,求实数c的取值范围.题型七:对勾函数的运用17. 已知函数f (x )=x +9x (x ≠0).(1)当x ∈(3,+∞)时,判断并证明f (x )的单调性; (2)求不等式f (3x 2)+f (3x )≤0的解集.18. 已知函数f (x +1)=x 2+3x+1x+1.(1)求f (x )的解析式;(2)若对任意x ∈[12,2],a ∈[0,1],不等式f (x )<ma +m 2+12恒成立,求m 的取值范围.题型八:幂的运算 1.根式⑴ 如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N ∗),则x 叫做a 的n 次方根. ⑵ 当√a n有意义的时候,√a n叫做根式,n 叫做根指数.⑶ 根式的性质:① (√a n )n =a ,(n >1,且*n ∈N )a n a n ⎧⎪=⎨⎪⎩,当为奇数,当为偶数 2.分数指数⑴ 规定正数的正分数指数幂的意义:a mn=√a m n(a >0 , m , n ∈N ∗ , 且n >1) ⑵ 规定正数的负分数指数幂的意义:a −m n =1a m n(a >0 , m , n ∈N ∗ , 且n >1)3.实数指数幂的运算法则a αa β=a α+β;(a α)β=a αβ ;(ab)α=a αb α (其中a >0,b >0,对任意实数α,β).1. 求下列各式的值:(1)√(−8)33= ,(2)√(−8)2= ,(3)√(3−π)44= ,(4)√(a −b)2=2. 化简:①a 2⋅√a 53⋅a −52⋅a 56=_______;②(√x 13x −23)−85=_______;③(xaa−b)1c−a⋅(xb b−c)1a−b ⋅(xcc−a)1b−c (x >0)=_______.3. ⑴化简求值:①12513+271324315+1;②8112−(18)−1+30.⑵若2x =132,则x =________;若1√223=2x ,则x =_______.4. ⑴计算下列各式(式中每个字母均为正数)①(2x 14y −23)⋅(−3x 14y 13)34xy −23; ②2a 14b−13÷(−18a −14b −23);③13131142422223234x x x x x −⎛⎫⎛⎫⎛⎫+−−− ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;④(目标班专用)√23−6√10−4√3+2√2; ⑤(目标班专用)a 2+b 2−a −2−b −2a 2b 2−a −2b −2+(a−a −1)(b−b −1)ab+a −1b −1.5. ⑵(目标班专用)已知a 23+b 23=4,x =a +3a 13b 23,y =b +3a 23b 13,求(x +y )23+(x −y )23的值.【练习】(1)已知,32121=+−xx 求3212323++++−−x x x x 的值.(2)化简:a 43−8a 13b4b 23+2√ab 3+a 23÷(a−23−2√b 3a)×√a⋅√a 23√√a⋅√a5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数单元测试题
一.选择题(36分)
1.下列函数是幂函数的是( )
(A) y=2x (B) y=2x -1 (C) y=(x+1)2 (D) y=32x 2.下列说法正确的是( ) (A) y=x 4是幂函数,也是偶函数; (B) y=-x 3是幂函数, 也是减函数;
(C) y=x 是增函数, 也是偶函数; (D) y=x 0不是偶函数.
3. 下列幂函数中,定义域为R 的是( )
(A) y=x -2 (B) y=21x (C) y=41x (D) y=21x
4.若A=2,B=33,则A 、B 的大小关系是( )
(A) A>B (B) A<B (C) A 2>B 3 (D) 不确定
5.下列是y=32x 的图象的是( )
(A) (B) (C) (D)
6.y=x 2与y=2x 的图象的交点个数是( )
(A )1 (B) 2 (C) 3 (D) 4 二.填空题(21分)
7.y=(m 2-2m+2)x 2m+1是一个幂函数,则m= .
8. y=x 的单调增区间为 .
9.在函数①y=x 3②y=x 2③y=x -1④y=x 中,定义域和值域相同的是 .
三.解答题(43分)
10.证明:f(x)=x 在定义域内是增函数。
(14分)
y
11.对于函数f(x)=23
-x ,
(1).求其定义域和值域;
(2).判断其奇偶性。
(14分)
12.已知幂函数y=x 3-p (p ∈N *)的图象关于y 轴对称,且在(0,+∞)上为增函数,
求满足条件(a+1)2p <(3-2a)2p 的实数a 的取值范围。
(15分)
DAABBC
一.7. 1; 8. [0,+∞] ; 9.(1),(3),(4).
二.10.定义域为[0,+∞],利用定义易证单调性。
注意分子有理化。
11.(1)定义域为(0,+∞),(2)值域为(0,+∞);
(3)非奇非偶函数。
12.因为y=f(x)为偶函数,且3-p>0,p 是正整数,则3-p=2,得p=1.
1+a <a 23-,⇒0≤a+1<3-2a, ⇒-1≤a<3
2.。