数字信号处理课后答案第6节
数字信号处理课后习题答案(全)1-7章
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
所以 T[ax1(n)+bx2(n)]=aT[x1(n)]+bT[x2(n)]
第 1 章 时域离散信号和时域离散系统
(2) 令输入为
输出为
x(n-n0)
y′(n)=2x(n-n0)+3 y(n-n0)=2x(n-n0)+3=y′(n) 故该系统是非时变的。 由于
T[ax1(n)+bx2(n)]=2ax1(n)+2bx2(n)+3 T[ax1(n)]=2ax1(n)+3 T[bx2(n)]=2bx2(n)+3 T[ax1(n)+bx2(n)]≠aT[x1(n)]+bT[x2(n)] 故该系统是非线性系统。
=2x(n)+x(n-1)+ x(n-2)
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离散信号和时域离散系统
8. 设线性时不变系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
(3) 如果|x(n)|≤M, 则|y(n)|≤ nn0|x(k)|≤|2n0+1|M, 因 k nn0
数字信号处理课后习题答案 第六章习题与答案
1.用冲激响应不变法将以下 )(s H a 变换为 )(z H ,抽样周期为T。
为任意正整数 ,)()( )2()()( )1(022n s s As H b a s a s s H na a -=+++=分析:①冲激响应不变法满足)()()(nT h t h n h a nT t a ===,T 为抽样间隔。
这种变换法必须)(s H a 先用部分分式展开。
②第(2)小题要复习拉普拉斯变换公式1!][+=n n S n t L ,n a n t s a S S As H t u n t Ae t h )()()()!1()(010-=⇔-=-,可求出)()()(kT Th t Th k h a kT t a ===,又dz z dX zk kx )()(-⇔,则可递推求解。
解: (1)22111()()2a s a H s s a b s a jb s a jb ⎡⎤+==+⎢⎥+++++-⎣⎦[])( 21)()()(t u e e t h tjb a t jb a a --+-+=由冲激响应不变法可得:[]()()()() ()2a jb nTa jb nT a T h n Th nT ee u n -+--==+ 11011() () 211n aT jbT aT jbT n T H z h n z e e z e e z ∞------=⎡⎤==+⎢⎥--⎣⎦∑2211cos 21cos 1 ------+--⋅=ze bT z e bTz e T aT aT aT(2) 先引用拉氏变换的结论[]1!+=n n sn t L可得: na s s As H )()(0-=)()!1()(10t u n t Ae t h n t s a -=-则)()!1()()()(10k u n kT Ae T Tk Th k h n kT s a -⋅==-dzz dX zk kx azk u a ZZk )()( , 11)( 1-−→←-−→←-且按)11()()!1( )()!1( )()(111111000--∞=---∞=----=-==∑∑ze dz d z n AT e z k n T TA z k h z H T s n n k kT s n n k k可得⎪⎪⎩⎪⎪⎨⎧=-=-=•••---,3,2)1(1,1)(111000n z e z e AT n z e AT z H n T s T S n T s ,可以递推求得:2. 已知模拟二阶巴特沃思低通滤波器的归一化系统函数为:2'4142136.111)(ss s H a ++=而3dB 截止频率为50Hz 的模拟滤波器,需将归一化的)('s H a 中的s 变量用502⨯πs来代替424'108696044.928830.444108696044.9)100()(⨯++⨯==s s s H s H a a π 设系统抽样频率为Hz f s 500=,要求从这一低通模拟滤波器设计一个低通数字滤波器,采用阶跃响应不变法。
数字信号处理(吴镇扬)课后习题答案(比较详细的解答过程)chap6
至今, 至今,我们讨论的信号处理的各种理论与算法 视为恒定值, 都是把抽样频率 f s 视为恒定值,即在一个数字系 统中只有一个采样率。 统中只有一个采样率。 在实际数字信号处理系统中, 在实际数字信号处理系统中,经常会遇到采样 率转换问题。 率转换问题 。 或者要求一个数字系统能工作在 多采样率”状态, “多采样率”状态,或者要求其将采样信号转换 为新的采样率下工作。 为新的采样率下工作。
6.2 信号的插值
如果将 x(n) 的抽样频率 f s 增加 L 倍, w(n), w(n) 即 得 的插值,用符号↑ 表示。插值的方法很多, 是对 x(n) 的插值,用符号↑L 表示。插值的方法很多, 一个简单的方法就是信号抽取的逆处理过程。 一个简单的方法就是信号抽取的逆处理过程。 回想信号抽取前后的傅立叶变换关系
而 X 1 (e ) =
jω n = −∞
∞
∑ x ( n ) p ( n)e
− jωn
1 M −1 j 2πnk / M − jωn = ∑ [ x ( n) ]e ∑e n = −∞ M k =0 1 M −1 = X (e j (ω − 2πk / M ) ) (6.3b (6.3b) ∑ M k =0
信号抽取示意图,M=3, 图6.1.1 信号抽取示意图,M=3,横坐标为抽样点数 原信号; 中间信号; (a)原信号;(b)中间信号;(c)抽取后的信号
显然
X ′(e ) = ∑ x′(n)e
jω n = −∞ ∞ n = −∞ ∞
∞
− j ωn
= ∑ x( Mn)e
n = −∞
∞
− j ωn
= ∑ x1 ( Mn)e − jωn = X 1 (e jω / M ) (6.3a) (6.3a
数字信号处理课后习题答案(全)1-7章
将x(n)的表示式代入上式, 得到 1 y(n)=-2δ(n+2)-δ(n+1)-0.5δ(2n)+2δ(n-1)+δ(n-2)
+4.5δ(n-3)+2δ(n-4)+δ(n-5)
第 1 章 时域离系统的单位脉冲响应h(n)和输入x(n)分别有以下三种情况,
+6δ(n-1)+6δ(n-2)+6δ(n-3)+6δ(n-4)
1
4
(2m 5) (n m) 6 (n m)
m4
m0
第 1 章 时域离散信号和时域离散系统
(3) x1(n)的波形是x(n)的波形右移2位, 再乘以2, 画出图形如题2解图 (二)所示。
(4) x2(n)的波形是x(n)的波形左移2位, 再乘以2, 画出图形如题2解图(三) 所示。
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题2解图(四)
第 1 章 时域离散信号和时域离散系统
3. 判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1) x(n) Acos 3 πn A是常数
7 8
(2)
j( 1 n )
x(n) e 8
数字信号处理课后习题答案(全)1-7章
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
(5)y(n)=x2(n)
(6)y(n)=x(n2)
(7)y(n)=
n
(8)y(n)=x(n)sin(ωxn(m) )
m0
解: (1) 令输入为
输出为
x(n-n0)
y′(n)=x(n-n0)+2x(n-n0-1)+3x(n-n0-2) y(n-n0)=x(n-n0)+2x(n—n0—1)+3(n-n0-2)
第 1 章 时域离散信号和时域离散系统
题8解图(一)
第 1 章 时域离散信号和时域离散系统
(5) 画x3(n)时, 先画x(-n)的波形(即将x(n)的波形以纵轴为中心翻转180°), 然后再右移2位, x3(n)波形如题2解图(四)所示。
第 1 章 时域离散信号和时域离散系统
题2解图(一)
第 1 章 时域离散信号和时域离散系统
题2解图(二)
第 1 章 时域离散信号和时域离散系统
题2解图(三)
分别求出输出y(n)。
(1) h(n)=R4(n), x(n)=R5(n) (2) h(n)=2R4(n), x(n)=δ(n)-δ(n-2) (3) h(n)=0.5nu(n), xn=R5(n)
解: (1) y(n)=x(n)*h(n)=
数字信号处理第6章答案 史林 赵树杰编著
第六章练习题答案%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6.3 设计一个满足下列指标要求的模拟低通巴特沃斯滤波器,并求出其系统函数的极点。
通带截止频率 2.1p f kH Z =,阻带截止频率8s f kHZ =,通带最大衰减0.5p dB α=,阻带最小衰减30s dB α=。
解:巴特沃斯模拟低通滤波器的设计步骤为:(1)根据模拟滤波器的设计指标p α,p Ω和s α,s Ω,由(6.3.16)式确定滤波器的阶数N 。
(2)由(6.3.17)式确定滤波器的3dB 截止频率c Ω。
(3)按照(6.3.13)式,求出N 个极点(1,2,,)k p k N = ,将极点k p 代入(6.3.14)式得滤波器的系统函数()a H s 。
****************0.110.11(10)lg (10) 3.36832lg(/)p s a a p s N --⎡⎤⎢⎥⎣⎦==ΩΩ2ppfπΩ= 2s s f πΩ= 取4N =3dB 截止频率:cp ΩΩ== 212,1,2,,k N j Nk c p e k N π+-=Ω=11()()n Nnk k H s s p ==-去归一化()()a n cs H s H =Ω%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 6.10 利用二阶模拟低通巴特沃斯滤波器,设计一个中心频率为020/rad s Ω=,通带3dB 带宽为4/B rad s =的模拟带通滤波器。
解: 根据滤波器的阶数N ,直接查表 6.3.1,得到归一化(1c Ω=)的极点(1,2,,)k p k N = 和归一化的系统函数11()()n Nnk k H s s p ==-∏ 2101211N NN a a s a s a ss--=+++++然后利用(6.3.9)式,得到3dB 截止频率为c Ω的巴特沃斯模拟低通滤波器的系统函数()a H s 。
数字信号处理_刘顺兰 第6章 完整版习题解答
其系统的频率响应为
H (e j )
n
h(n)e j n e j n
n 0 j n
2
1 e j 3 sin(3 / 2) e j j 1 e sin( / 2)
H (e )
j
n
h(n)e
2 n 0
e
j j
e j , c c , H d (e ) 0 , c , c
j
则
hd (n)
1 H d (e j )e jn d 2 1 c j jn e e d 2 c sin[ c (n )] (n )
n 0
2
j n
1 e j 3 sin(3 / 2) e j j 1 e sin( / 2)
或
H (e j ) e j n 1 e j e j 2 e j (e j 1 e j ) e j (1 2 cos )
1 0 n 6 ; 0 其它n
1 0 n 3 ; 0 其它n
(1) 分别判断是否为线性相位 FIR 滤波器?如是,请问是哪一类线性相位滤波器? (2) 如果是线性相位滤波器,写出它们的相位函数,群延迟。 解:(a) h( n) ( n) ( n 3) 则
H ( z ) 1 z 3 H (e ) 1 e
4
(2)
(1)
n 0
5
n
h( n) 0
j / 4
。
(3)在 z 0.7e (4)
处 H ( z ) 等于零。 。
5
H (e
数字信号处理课后习题答案(全)1-7章
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2
故
第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
数字信号处理课后答案课件
傅里叶变换的性质
线性性质
若离散信号x(n)和y(n)的 傅里叶变换分别为 X(e^jωn)和Y(e^jωn), 则对于任意实数a和b,有 aX(e^jωn) + bY(e^jωn) 的傅里叶变换等于 aX(e^jωn)和bY(e^jωn) 的傅里叶变换之和。
从而实现信号的分离、抑制或提 取。
滤波器分类
根据不同的特性,滤波器可分为 低通、高通、带通和带阻滤波器,
每种滤波器都有各自的应用场景 和特点。
滤波器原理
滤波器的原理是基于频率响应, 即不同频率的信号经过滤波器后, 其幅度和相位会发生不同的变化。
IIR滤波器设计
IIR滤波器概述
IIR滤波器设计方法
IIR滤波器稳定性
在设计IIR滤波器时,需要考虑其稳定 性。如果系统函数的极点位于单位圆 外,则系统不稳定,可能会导致无穷 大的输出。因此,在设计过程中需要 进行稳定性分析。
FIR滤波器设计
FIR滤波器概述
FIR(Finite Impulse Response)滤 波器是一种具有有限冲击响应的数字 滤波器,其系统函数可以表示为有限 项之和。
插值法
对于非周期性的连续时间信号,可以通过插值法得到离散时间信号。常用的插值方法包括 线性插值、多项式插值、样条插值等。
傅里叶变换法
对于任何连续时间信号,可以通过傅里叶变换将其转换为频域表示形式,然后对频域表示 形式进行采样,得到离散时间信号。再通过逆傅里叶变换将其转换回时域表示形式。
05 第五章 信号的分 析与合成
抽样定理的充分性
对于任何连续时间信号,如果其最高频率分量小于等于fmax,则可 以通过其抽样信号无失真地重建出原信号。
《数字信号处理》第二版课后答案
————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
数字信号处理课后答案+第6章(高西全丁美玉第三版)
4. 已知模拟滤波器的系统函数Ha(s)如下: (1)
H a (s) =
s+a ( s + a) 2 + b 2
(2)
b H a (s) = (s + a)2 + b 2
式中a、 b为常数, 设Ha(s)因果稳定, 试采用脉冲响应不变 法将其转换成数字滤波器H(z)。
7.2687 ×10 16 H a (s ) = 2 ( s − 2 Re[ s1 ]s + | s1 |2 )( s 2 − 2 Re[ s2 ]s + | s2 |2 ) = 7.2687 ×1016 ( s 2 + 1.6731 ×10 4 s + 4.7791 ×10 8)( s 2 +4.0394 × 4 s +4.7790 × 8 10 10 )
1⎞ ⎛ 3 ⎞ ⎟ +⎜ ⎜ 2 ⎟ ⎟ 2⎠ ⎝ ⎠
Ak 1/ 2 1/ 2 H ( z) = ∑ = + s k T −1 ( − a + jb )T −1 1− e z 1− e z 1 − e ( −a − jb )T z −1 k =1
按照题目要求, 上面的H(z)表达式就可作为该题的答案。 但在工程实际中, 一般用无复数乘法器的二阶基本节结构 来实现。 由于两个极点共轭对称, 所以将H(z)的两项通分 并化简整理, 可得
1 G( p) = 2 ( p + 0.618 p + 1)( p2 + 1.618 p + 1)( p + 1)
当然, 也可以先按教材(6.2.13)式计算出极点:
pk = e
《数字信号处理》第三版课后答案(完整版)
(2) ;
(4) ;
(6) ;
(8) ;
(10) 。
解:
(2)
(4)
(6)
(8)解法1直接计算
解法2由DFT的共轭对称性求解
因为
所以
即
结果与解法1所得结果相同。此题验证了共轭对称性。
(10)解法1
上式直接计算较难,可根据循环移位性质来求解X(k)。
画出级联型结构如题3解图(b)所示。
4.图中画出了四个系统,试用各子系统的单位脉冲响应分别表示各总系统的单位脉冲响应,并求其总系统函数。图d
解:
(d)
5.写出图中流图的系统函数及差分方程。图d
解:
(d)
6.写出图中流图的系统函数。图f
解:
(f)
8.已知FIR滤波器的单位脉冲响应为 ,试用频率采样结构实现该滤波器。设采样点数N=5,要求画出频率采样网络结构,写出滤波器参数的计算公式。
总结以上x(n)是实、偶函数时,对应的傅里叶变换 是实、偶函数。
(2)x(n)是实、奇函数。
上面已推出,由于x(n)是实序列, 具有共轭对称性质,即
由于x(n)是奇函数,上式中 是奇函数,那么
因此
这说明 是纯虚数,且是w的奇函数。
10.若序列 是实因果序列,其傅里叶变换的实部如下式:
求序列 及其傅里叶变换 。
因为
所以
将x(n)的表达式代入上式,得到
8.设线性时不变系统的单位取样响应 和输入 分别有以下三种情况,分别求出输出 。
(1) ;
(2) ;
(3) 。
解:
(1)
先确定求和域,由 和 确定对于m的非零区间如下:
数字信号处理》第三版课后习题答案
数字信号处理课后答案教材第一章习题解答1.用单位脉冲序列()nδ及其加权和表示题1图所示的序列。
解:2.给定信号:25,41 ()6,040,n nx n n+-≤≤-⎧⎪=≤≤⎨⎪⎩其它(1)画出()x n序列的波形,标上各序列的值;(2)试用延迟单位脉冲序列及其加权和表示()x n序列;(3)令1()2(2)x n x n=-,试画出1()x n波形;(4)令2()2(2)x n x n=+,试画出2()x n波形;(5)令3()2(2)x n x n=-,试画出3()x n波形。
解:(1)x(n)的波形如题2解图(一)所示。
(2)(3)1()x n的波形是x(n)的波形右移2位,在乘以2,画出图形如题2解图(二)所示。
(4)2()x n的波形是x(n)的波形左移2位,在乘以2,画出图形如题2解图(三)所示。
(5)画3()x n时,先画x(-n)的波形,然后再右移2位,3()x n波形如题2解图(四)所示。
3.判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A 是常数;(2)1()8()j n x n e π-=。
解:(1)3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14;(2)12,168w wππ==,这是无理数,因此是非周期序列。
5.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; (3)0()()y n x n n =-,0n 为整常数; (5)2()()y n x n =; (7)0()()nm y n x m ==∑。
解:(1)令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。
数字信号处理课后答案第6章
A2 s1
比较分子各项系数可知, A1、 A2应满足方程:
A1A1s2A2
1 A2 s1
a
解之得, A1=1/2, A2=1/2, 所以
Ha
(s)
s
1/ 2 (a
jb)
s
1/ 2 (a
jb)
套用教材(6.3.4)式, 得到
H (z)
2
Ak
k 1 1 es k T z 1
1/ 2 1 e(a jb)T z 1
2. 设计一个切比雪夫低通滤波器, 要求通带截止频率 fp=3 kHz,通带最大衰减αp=0.2 dB,阻带截止频率fs=12 kHz, 阻带最小衰减αs=50 dB。 求出滤波器归一化系统函数G(p)和实 际的Ha(s)。
解: (1) 确定滤波器技术指标。 αp=0.2 dB, Ωp=2πfp=6π×103 rad/s αs=50 dB, Ωs=2πfs=24π×103 rad/s
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到
sp
s p
2π 12103 2π 6103
2
将ksp和λsp值代入N的计算公式, 得
N lg17.794 4.15 lg 2
所以取N=5(实际应用中, 根据具体要求, 也可能取N=4, 指标稍微差一点, 但阶数低一阶, 使系统实现电路得到 简化)。
数字信号处理第六章 习题答案
( )
H ( e jω ) = Ha ( jΩ)
又由 Ω =
ω
T
,则有
5 2 π ΩT + 3, − 2 ΩT + 5 , = π 3 0 2π π − ≤Ω≤ − 3T 3T π 2π ≤ Ω≤ 3T 3T 其他Ω
Ha ( jΩ) = H ( e jω )
ω=ΩT
Ha ( jΩ) = H ( e jω )
各极点满足下式ຫໍສະໝຸດ 1 1+ ( s Ωc )
4
sk = Ωce
π 2k −1 j + π 2 4
k = 12,4 ,3 ,
则 k = 1,2时,所得的 sk 即为 Ha ( s) 的极点
s1 = Ωce s2 = Ωce
3 j π 4
3 2 3 2 =− +j 2 2 3 2 3 2 =− −j 2 2
2
=
1−1.1683z−1 + 0.4241z−2
0.064(1+ 2z−1 + z−2 )
5.试导出二阶巴特沃思低通滤波器的系统函数。 设 Ωc = 3rad s 解:由幅度平方函数: H ( jΩ) =
2
1 1+ ( Ω Ωc )
4
令 Ω2 = −s2,则有
Ha ( s) Ha ( −s) =
∴H ( z ) = Ha ( s) s=1−z−1
1+ z−1
=
1 1− z 1− z 1+ z−1 + 1+ z−1 +1
−1 2 −1
(1+ z ) =
3 + z−2
−1 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 求归一化系统函数G(p)。 由阶数N=5直接查教材 第157页表6.2.1, 得到五阶巴特沃斯归一化低通滤波器系统函 数G(p)为
G( p)
p5
3.236 p4
1 5.2361p3 5.2361p2
3.2361p 1
或
G( p)
1
( p2 0.618 p 1)( p2 1.618 p 1)( p 1)
k 1
k 1
其中, sk=Ωppk=6π×103pk, k=1, 2, 3, 4。 因为p4=p1*, p3=p2*, 所以, s4=s1*, s3=s2*。 将两对共轭极点对应的因子相乘, 得 到分母为二阶因子的形式, 其系数全为实数。
Ha
(s)
(s2
2
7.2687 1016 Re[s1]s | s1 |2 )(s2 2
当然, 也可以先按教材(6.2.13)式计算出极点:
p ejπ
1 2
2k 1 2N
k
k 0,1, 2,3, 4
再由教材(6.2.12)式写出G(p)表达式为
1 G( p) 4
( p pk )
k 0
最后代入pk值并进行分母展开, 便可得到与查表相同的结果。
(3) 去归一化(即LP-LP频率变换), 由归一化系统 函数G(p)得到实际滤波器系统函数Ha(s)。
λp=1, ap=3 dB
s
p s
2,
as=15 dB
(3) 设计相应的归一化低通G(p)。 题目要求采用巴特沃斯 类型, 故
ksp
100.1ap 100.1as
1 1
0.18
sp
s p
2
N lg ksp lg 0.18 2.47
lg sp
lg 2
所以, 取N=3, 查教材中表6.2.1, 得到三阶巴特沃斯归一 化低通G(p)为
解: (1) 确定滤波器技术指标。 αp=0.2 dB, Ωp=2πfp=6π×103 rad/s αs=50 dB, Ωs=2πfs=24π×103 rad/s
λp=1,
s
s p
4
(4) 求阶数N和ε。
N arch k 1
arch s
k 1
100.1as 1 100.1ap 1 1456.65
G( p)
1
p3 2 p2 2 p 1
(4) 频率变换。 将G(p)变换成实际高通滤波器系统函数H(s):
式中
s3
H (s)
G( p)
| p c s
s3
2c s 2
2c2s
c3
Ωc=2πfc=2π×20×103=4π×104 rad/s
4. 已知模拟滤波器的系统函数Ha(s)如下:
教材第6章习题与上机题解答
1. 设计一个巴特沃斯低通滤波器, 要求通带截止频率
fp=6 kHz,通带最大衰减ap=3 dB, 阻带截止频率fs=12kHz, 阻带最小衰减as=25 dB。 求出滤波器归一化系统函数G(p)以
及实际滤波器的Ha(s)。 解: (1) 求阶数N。
N lg ksp
lg sp
ksp
100.1as 100.1ap
p 1 s 1
102.5 100.3
1 1
17.794
sp
s p
2π 12103 2π 6103
2
将ksp和λsp值代入N的计算公式, 得
N lg17.794 4.15 lg 2
所以取N=5(实际应用中, 根据具体要求, 也可能取N=4, 指标稍微差一点, 但阶数低一阶, 使系统实现电路得到 简化)。
阻带最小衰减as=15 dB。 求出该高通滤波器的系统函数Ha(s)。
解: (1) 确定高通滤波器技术指标要求:
p=20 kHz, ap=3 dB fs=10 kHz, as=15 dB
(2) 求相应的归一化低通滤波器技术指标要求: 套用图 5.1.5中高通到低通频率转换公式②, λp=1, λs=Ωp/Ωs, 得到
pk
ch
sin
(2k 1)π 2N
jch
cos
(2k 1)π 2N
1 arsh 1 1 arsh 1 0.5580 N 4 0.2171
k 1, 2,3, 4
p1
ch0.5580 sin
π 8
j
ch0.5580 cos
π 8
0.4438
j1.0715
3π
3π
p2 ch0.5580sin 8 j ch0.5580 cos 8 1.0715 j0.4438
由于本题中ap=3 dB, 即Ωc=Ωp=2π×6×103 rad/s, 因此
Ha (s)
Ha ( p)
|
p
s
c
5 c
s5
3.2361 c s 4
5.2361c2
s3
5.2361c3s2
3.2361
4 c
s
5 c
对分母因式形式, 则有
Ha (s)
Ha ( p)
|
p
s
c
5 c
(s2
0.6180 c s
2 c
)(s2
1.6180 c s
2 c
)(s
c
)
如上结果中,Ωc的值未代入相乘, 这样使读者能清楚地 看到去归一化后,3 dB截止频率对归一化系统函数的改变作用。
2. 设计一个切比雪夫低通滤波器, 要求通带截止频率 fp=3 kHz,通带最大衰减αp=0.2 dB,阻带截止频率fs=12 kHz, 阻带最小衰减αs=50 dB。 求出滤波器归一化系统函数G(p)和实 际的Ha(s)。
N arch 1456.65 3.8659 arch 4
为了满足指标要求, 取N=4。
100.1ap 1 0.2171
(3) 求归一化系统函数G(p)
1
Q( p)
N
1
4
2N1 ( p pk ) 1.7368 ( p pk )
k 1
k 1
其中, 极点pk由教材(6.2.46)式求出如下:
Re[s2
]s
|
s2
|2 )
(s2
1.6731104
s
7.2687 1016 4.7791108 )(s2 4.0394104
s
4.7790 108
)
也可得到分母多项式形式, 请读者自己计算。 3. 设计一个巴特沃斯高通滤波器, 要求其通带截止频率
fp=20 kHz, 阻带截止频率fs=10 kHz, fp处最大衰减为3 dB,
p3
ch0.5580 sin
5π 8
j
ch0.5580 cos
5π 8
1.0715
j0.4438
p4
ch0.5580 sin
7π 8
j
ch0.5580 cos
7π 8
0.4438
j1.0715
(4) 将G(p)去归一化, 求得实际滤波器系统函数Ha(s):
Ha
(s)
Q(
p)
|
p
s
p
4 p(s p pk ) 1.7368 (s sk )