人教版七年级数学上册 有理数 精ppt课件

合集下载

人教版七年级数学上册第1章第2节有理数(共38张PPT)

人教版七年级数学上册第1章第2节有理数(共38张PPT)
• 最大的自然数. • 2.自然数与整数的关系:自然数(都是)整数,但
整数(不都是)自然数. • 3.分数的概念:把(单位“1)”平均分成若干份,表
示这样的一份或几份的数,叫做(分数 ).
一、相反意义的量
在日常生活中我们会遇到这样一些量:
前进100米和后退70米;收入700元和支出600 元;零上6℃ 和零下6℃ …… 这里出现的每一对量,虽然有着不同的内容,但有着一个 共同的特点:
则早晨6时温度为___4__℃,若早晨4时气温比中午11时低13℃, 则早晨4时温度为___—__2__℃。
1、如果全班某次数学测试的平均成绩为83分,某同学考
了85分,记作+2分,得90分应记作_+_7__分__,得80分应 记作_—___3_分_ 。
2、若将28计为0,则可以将27计为-1,试猜想若将27计
• 2.下列说法正确的是( C )
• A.整数包括正数和负数 • B.有理数包括正有理数和负有理数 • C.负整数是整数也是有理数 • D.有理数就是分数
例 1 下列说法正确的是( ) A.一个有理数不是整数就是分数 B.正整数和负整数统称整数 C.正整数、负整数、正分数、负分数统称有理 数 D.0不是有理数
负分数:如,
1 2
,-3.5,…
整数与分数统称为有理数
按数系扩张的自然顺序
有理数还可以这样分类: (按认识有理数的先后顺序) 正整数
有理数
正有理数

负有理数
正分数 负整数 负分数
注意:
1.正数与整数的区别:正数是相对负数 而言的,而整数是相对于分数而言的.
2.0既不是正数也不是负数,而是整数.
(3)在某次乒乓球质量检测中,一只乒乓球超出 标准质量0. 02克记作+0.02,那么-0.03克表示什么?

2.1.1 有理数的加法 第2课时课件 (共16张PPT) 数学人教版七年级上册

2.1.1 有理数的加法 第2课时课件 (共16张PPT) 数学人教版七年级上册
典例精析
使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
归纳总结
例2 小明遥控一辆玩具赛车,让它从A地出发,先向东行驶15m,再向西行驶25m,然后又向东行驶20m,再向西行驶35m,问玩具赛车最后停在何处?一共行驶了多少米?




拓展探究
一、加法的运算律1、加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变.2、加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)二、使用运算律通常有下列情形:(1)互为相反数的两个数可先相加;(2)几个数相加得整数时,可先相加;(3)同分母的分数可以先相加;(4)符号相同的数可以先相加。
(1)[8+(-5)]+(-4)(2)8+[(-5)+(-4)](3)[(-7)+(-10)]+(-11)(4)(-7)+[(-10)+(-11)](5)[(-22)+(-27)]+(+27)(6)(-22)+[(-27)+(+27)]
= -1
= -1
= -28
= -28
= -22
= -22
计算并观察下列各式
加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变
(a+b)+c=a+(b+c)
一般地,任意若干个数相加,无论各数相加的先后次序如何,其和都不变。
例1 计算(1)15+(-13)+18(2)(-2.48)+4.33+(-7.52)+(-4.33)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.

人教版七年级数学上册有理数的乘法精品课件PPT

人教版七年级数学上册有理数的乘法精品课件PPT

判断下列各式的积是正的还是负的?
2×3×4×(-5)

2×3×(-4)×(-5)

2×(-3)×(-4)×(-5)

(-2)×(-3)×(-4)×(-5) 正
思考:
几个不是0的数相乘,积的符号与负因数的个数之间有什 么关系?
知识讲解
归纳
几个不是0的数相乘,积的符号由_负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积是负数;
1, 6
-1, 6
4, -3 7
知识讲解
3.有理数乘法的应用
例3 用正负数表示气温的变化量,上升为正,下降为负.登 山队攀登一座山峰,每登高1km,气温的变化量为-6℃,攀登 3km后,气温有什么变化?
解:(-6)×3=-18 答:气温下降18℃.
随堂训练
1.填表:
被乘数
-4 9
-3 4
乘数
7 6 -6 -25
3×3=9; 3×2=6; 3×1=3; 3×0=0.
3×3=9; 2×3=6; 1×3=3; 0×3=0.
正数乘正数,积为正数;正数乘 负数,积是负数; 负数乘正数,积也是负数。积的 绝对值等于各乘数绝对值的积。 0乘正数或负数,积都是0
知识讲解
问题3 根据上面得出的结论计算下面的算式,你发现有什么规律? (-3)×3= -9 ; (-3)×2= -6 ; (-3)×1= -3 ; (-3)×0= 0 .
随堂训练
1.下列各式变形各用了哪些运算律?
(1) 1.25×(-4)×(-25)×8=(1.25×8)×[(-4)×(-25)]
(乘法交换律和结合律)
(2) ( =(
1 4 1
+ 2 - 6 )×(-8)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第3课时绝对值)

人教版七年级数学上册《有理数及其大小比较》有理数PPT课件(第3课时绝对值)

探究新知
素养考点 3 利用绝对值求字母的值
例3 已知|x–4|+|y–3|=0,求x+y的值.
解:根据题意可知 x - 4=0,y - 3=0,
所以x=4,y=3,故x+y=7. 归纳总结: 几个非负数的和为0,则这几个数都为0.
巩固练习
已知|x-6|+|y-3|=0,求
x y
的值.
解:由绝对值的非负性得|x-6| ≥ 0,|y-3| ≥ 0,
互为相反数的两个数的绝对值相等.
绝对值相等
|+5|=5 |-5|=5
互为相反数,符号相反
绝对值相等,符号相反的两个数互为相反数.
探究新知
素养考点 1 求已知数的绝对值
例1 求下列各数的绝对值. 12, - 3 , -7.5, 0.
5
解: |12|=12; 正数的绝对值等于它本身.
-3 3;
55
负数的绝对值等于它的相反数.
…..
|3.5|= 3.5 |50|=50
|0|=0
探究新知
【思考】 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?
探究新知
结论1:一个正数的绝对值是正数. 一个负数的绝对值是正数. 0的绝对值是0.
|a|≥0
任何一个有理数的绝对值都是非负数!
结论2:一个正数的绝对值是它本身. 一个负数的绝对值是它的相反数.
探究新知
归纳总结 绝对值的性质
(1)任何有理数都有绝对值,且只有一个. (2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任 何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝 对值越小,离原点越远,绝对值越大. (3)互为相反数的两个数的绝对值相等. (4)绝对值相等的两个数相等或互为相反数.

人教版初中数学七年级上册第一章有理数ppt课件

人教版初中数学七年级上册第一章有理数ppt课件

乘 方
求n个相同因数的积 的运算,叫做乘方, 乘方的结果叫做幂。 在an中,a叫做底数, n叫做指数,当an看 作a的n次方的结果时, 也可读作“a的n次 幂”。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

对值相加;符号相反的两 个数相加,结果的符号与

绝对值较大的加数的符号

相有理数加法中可以使用

加法交换律、结合律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有理数的乘法
负数乘负数,积为正数,乘积的 绝对值等于各乘数绝对值的积。
有理数乘法法则: 两数相乘,同号得正,异号得负,
并把绝对值相乘。 任何数与0相乘,都得0.
注意:有理数的乘法可以使用: 乘法交换律、结合律、分配律
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
有 理 数 知 识 结 构 图
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
正 数 和 负 数
正数:大于0的数叫做正数
负数:小于0的数叫做负数
数0既不是正数,也不是 负数,它是正、负数的届限, 表示“基准”的数,零不是 表示“没有”,它表示一个 实际存在的数量。正数负数 的“+”“-”的符号是表示 性质相反的量,符号写在数 字前面,这种符号叫做性质 符号。

人教版七年级数学上册 有理数ppt课件

人教版七年级数学上册 有理数ppt课件
4、若2mn (3n6)2 0, 则( 2 mn)的值是多少?
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
例5计算: (1) 10010
(2)
2 5
11 3
例6:比较下列各对数的大小:
(1)-0.1与-2;
(2)
1 3

3
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
32 mam xa3 2 x,(1)m , in 4 3, (3 2) =
选一选:
(1)、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
4
负数: 2,4,11,40.03
33
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。
解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
. -1。.5 . 1.5
-3
3
例3:填空题
2
2
5
2
5
5
2

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)

这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.







(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:

(1)
; 解:原式=-9;


(2)


56 7
原式=48=6;

(3)
; 原式=-30=-2;

45
3

(4) ;
.
原式=-30.
总结归纳

一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3

分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0

人教版(2024)数学七年级上册1.2.1有理数课件(共15张PPT)

人教版(2024)数学七年级上册1.2.1有理数课件(共15张PPT)
集和,把下面的有理数填入它们属于的集合内: 16, 1 ,-5,7,0.5,-80,12,-4.2,2.3.
9
正有理数集合:{ 16,7,0.5,12,2.3... , 负有理数集合:{ 1 ,-5,-80,-4.2 ... ,
9
2.指出下列各数中的正有理数、负有理数、整数:
-15,+6,-2,-0.4. ,1,
3
,8.5%,
-30
,-12%,
1
. ,-7.5,20,-60,1.2.
8
9
解:正有理数:13,4.3,8.5%,
1
. ,20,1.2;
9
其中正整数有:13,20;
负有理数: 3,- 30,- 12%,- 7.5,- 60;
8
其中负整数有:- 30,-60.
随堂练习
1、所有正有理数组成正有理数集合,所有负有理数组成负有理数
正整数 正分数(正小数) 正无限循环小数
负整数 负分数(负小数) 负无限循环小数
注:1.无限循环的小数是有理数,比如:0.666666(它可以写成
分数的形式
2 3
);
2.无限不循环的小数不是无理数,比如:圆周率π(它不可以写成分数的形式).
32 2
63
正数:1,2,4.5,0.75,8.5,
7 3
,50%

5 3
,9

负数:-1,-0.5,-3.14,-6,-
3 2
,-
1 2

5;
6
既不是正数也不是负数:0.
除了以上的分类方式, 还可以怎么分类?
新知学习
思考 在小学阶段和上一节中,我们认识了很多数,到目前为,我们认识了 哪些数?

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文

最新人教版七年级数学上册全套PPT课件-七年级数学上ppt精选全文
*
1.什么是负数?
我们将前面带有“-”的数叫负数,那么为什么要引入负数?通常我们在日常生活中用正数和负数分别表示怎样的量呢?.
*
中国男蓝在雅典奥运会上: 58:83负于西班牙 69:62战胜新西兰 57:82负于阿根廷 52:89负于意大利 积分:5分 67:66战胜塞黑
*
比标准重量多出5克
比标准重量少出5克
*
1.2.1有理数
*
复习与回顾:
上一节课我们讲了些什么内容?
1,正数和负数。 2,0既不是正数,也不是负数。 3,正数与负数通常用来表示具有相反意义的 量。 4,“0”所表示的意思。 5,在生产中,通常用正负数来表示允许误差;
*
1、粮食每袋标准重量是50千克,先测得甲、乙、丙三袋粮 食重量如下:52千克,49千克,49.8千克,如果超重部分 用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的 超重数和不足数;
*
“不是正数的数一定是负数,不是负数的数一定是正数”的说法对吗?
答案肯定是不对的,还有0的存在.
*
在生活中,我们将海平面高度计为0米,根据图的标识,你能说出我国的最高峰珠穆朗玛峰和吐鲁番盆地的海拔高度吗?
8848
-155
类似题中0可以都有怎样的意义?
0只是一个基准,它具有丰富的意义,不是简简单单的只表示没有.
2、国际乒联在正式比赛中采用打球,对大球的直径有严格的标准,现有5个乒乓球,测量它们的直径,超过标准的毫米数记为正数,不足的记为负数,测量结果如下: A.-0.1mm B.-0.2mm C.+0.25mm D.-0.05mm E.+0.15mm 你认为应该选哪一个4,7,142,-12,0,-37, 中,负整数共有( ) A.3个 B.2个 C.1 个 D.0个

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

人教版七年级上册数学课件:第一章有理数复习(共98张PPT)

则a= ±5 ,b= -8 。
科学记数法、近似数
1. 把一个大于10的数记成a×10n的形式,其中a是整数 数位只有一位的数,这种记数法叫做科学记数法 .
2..与实际完全符合的数是准确数,接近实际但又与实际 数值有差别的数叫近似数。
3.精确度: 一个近似数四舍五入到哪一位,就称这个数
精确到哪一位.
2)0的相反数是0.
3)若a、b互为相反数,则a+b=0.
-4
4
-2 2
-4 -3 –2 –1 0 1 2 3 4
相反数
1、-5的相反数是 5 ; 2、-((-17))如的果相a反=数-是1-37,那;么-a=__1__3__;
(2)如果-x=-6,那么x=___6___; 3、 a+2的相反数是_-_(_a__+_2;)或-a-2
分数有:-3.14,- 2 , -(- 2 ), 1 ,- 1 5 924
正整数有:12,|-8|
非负整数集有
负分数有:-3.14,- 2 ,- 1 54
非负数有:12,0,-(- 2 ),|-8|, 1 92
数轴定义及性质
规定了原点、正方向和单位长度的直线.
-3 –2 –1 0 1 2 3 4
1) 在数轴上表示的两个数,右边的数总比左边的数大;
(2)原式=(-3)+(-18)=-21 (3)原式=0 +(+3)= 3 (4)原式= (-3) +(+18)= 15
加减法可以统一成加法
把下式写成省略加号的和的形式,并把它读出来 (-3)+(-8)-(-6)+(-7)
解:原式=-3-8+6-7 读作“-3,-8,+6,-7的和 或负3减8加6减7

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)

人教版七年级数学上册第一章 有理数概念 教学课件(共61张PPT)
1用科学计数法表示数只是改变数的形式并没有改变数的大小2负数用科学计数法表示时和正数一样区别就是前面多一个号3当把一个用科学计数法表示的数还原为原数时只需将小数点向右移动n位不足的数位用0补齐并把10的n次幂去掉551确定n时要根据科学计数法的规定使它为只含有一位整数的数2确定n的方法有两种1利用整数的位数来求nn等于原数的整数位数1ex
有理数的混合运算
知识拓展:
1、将带分数化为假分数,小数化为分数,再 进行乘方、乘除等运算;另外,有些运算可以
同时进行,以简化运算
2、分为三级:(1)第一级:加和减 (2)第二级:乘和除 (3)第三级:乘方
近似数
科学计数法:
1、用科学计数法表示数只是改变数的形式, 并没有改变数的大小
2、负数用科学计数法表示时和正数一样,区 别就是前面多一个“-”号 3、当把一个用科学计数法表示的数还原为原 数时,只需将小数点向右移动n位(不足的数 位用0补齐),并把10的n次幂去掉
乘方
有理数乘方运算的符号法则: (1)正数的任何次幂都是正数 (2)负数的奇次幂是负数
偶次幂是正数 (3)0的任何正整数次幂都是0
乘方
有理数乘方的运算方法: (1)一是根据底数与指数确定幂的符号
二是把绝对值乘方 (2)根据乘方的意义,先把乘方转化为乘法, 再利用乘法的运算法则进行计算
乘方
知识拓展:
加号的几个正数或负数的和的形式 ex:(-9)-(+12)+(-3)-(-7)=-9-12-3+7
减法法则
提示: (1)只有把加减法统一成加法之后,才能写
成省略加号和括号的和的形式 (2)省略加号和括号的和的形式有两种读法:
a、按加法的结果来读:应读作“负9、负12、 负3、正7的和

新人教部编版七年级数学上册《第1章有理数1.2有理数【全套】》精品PPT优质课件

新人教部编版七年级数学上册《第1章有理数1.2有理数【全套】》精品PPT优质课件

25 20 15 10 5 0 -5 -10 -15 -20 -25
5℃
25 20 15 10 5 0 -5 -10 -15 -20 -25
-10℃
25 20 15 10 5 0 -5 -10 -15 -20 -25
0℃
知识与能力
理解数轴的三要素,会画数轴.
过程与方法
1.能将已知有理数在数轴上表示出来; 2.能说出数轴上的已知点所表示的有理数; 3.理解有理数都可以用数轴上的点表示.
3.下列说法错误的是
(C )
A.负整数和负分数统称为负有理数
B.正整数,0,负整数统称为整数
C.正有理数与负有理数组成全体有理数
D.3.14是小数,也是分数
正有理数、0与负有理数组成全体有理数
42―.7把2,,下―1列5,.各8―,数02.填0010入,2,相π76. 应,集―合1,的9括0%号,内3.:14,0, 2 13, (1)整数集合:{27,2 002,―1,0,―2,1,… } ; (2)分数集合:{ ―5.8,6 ,90%,3.14, 2,1 ―0.01, …}; (((453)))负正非有 有 负理 理 整数 数 数集 集 集合 合 合:::{{{―275,7.8,2 0―021,,6,2 139,0%…―,}23.,3.1―4,0.10,1…,…};} ;
情感态度与价值观
1.渗透数形结合的数学思想; 2.知道数学来源于实践; 3.培养对数学的学习兴趣.
重点
正确理解数轴的概念,掌握有理数在数轴上的表 示方法.
难点
建立有理数与数轴上的点的对应关系.
你知道怎样制 作一个弹簧秤吗?
弹簧秤制作过程:
1.标记不挂物体时弹簧的 位置是0;
2.标记挂确定质量(如: 100g);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)-0.1与-2;
(2)
1 3

3
精选ppt课件
9
实践应用
例7:课桌的高度比标准高度高2毫米,记作+2 毫米,那么比标准高度低3毫米,记作什么? 现在有5张课桌,量得它们的高度比标准高+1 毫米,-1毫米,0毫米,+3毫米,-1.5毫米,若 规定课桌的高度比标准高度最高不能超过2毫 米,最低不能超过2毫米,就算合格,问上述5 张课桌中有几张合格?
4
分数:2,0.5,3.1,411,0.0,33
正数:0.35,3.14,15, 33,2
4
4
负数: 2,4,11,0.03
33
精选ppt课件
5
例2:求-3,0,+1.5的相反数,并把这 些数及其相反数表示在数轴上。
解:-3的相反数是3; 0的相反数是0;
+1.5的相反数是-1.5
. -1。.5 . 1.5
精选ppt课件
10
超越自我
1、如图,圈中有6个数,按一定的规律填
入,后因不慎,一滴墨水涂掉了一个数,
你认为这个数是5或26 ,理由
是 后一个数比前一个。数大 一个自然数
86
11
15 20
精选ppt课件
11
2、min(a,b)表示a,b两数中的较小者, max(a,b)表示a,b两数中的较大者, 如min(-3,5)=-3,max(-3,5)=5,则
例 9、若 2mn( mn) 20,m 则 的值是多少
6、利用绝对值比较有理数的大小:
将下列各数从列 小: 到大排 0.25,2.3,0.15,0,2,3,1,0.05
322
精选ppt课件
15
五、倒数
乘积是1的两个数互为倒数。0没有倒数。
1、会求一个数的倒数:如2的倒数是______;
2
2 3
的倒数是ห้องสมุดไป่ตู้_____.
有理数
精选ppt课件
1
一、知识要点
1、用正数、负数表示具有相反意义的量; 正数和负数的概念。
2、有理数的分类 正整数
自然数
整数

有理数
负整数
分数 正分数
负分数
精选ppt课件
2
2、规定 原点 、 正方向 和 单位长度 的直 线,叫做数轴,
如果两个数只有符号不同,那么我们称 这两个数 互为相反数 ,零的相反数 是 0。 在数轴上,表示互为相反数的两个数(零除外) 位于原点的 两侧,并且到 原的点距离相等
(3)两个正数比较大小,绝对值 大 的数大;
两个负数比较大小,绝对值
大 的数反而小。
精选ppt课件
4
例题讲解:
例1:下列给出的数,哪些是整数?哪些是分数?哪些是 正数?哪些是负数?
2,0 .5 , 4 ,0 ,3 .1, 4 11, 1, 5 0 .0,3 3 ,2
解3 :整数:-4,0,+15,-3 2
2、倒数是本身的数是_________.
精选ppt课件
16
3、a是一个负整数,且满 4足a, 在数轴上表a可 示能取的所有值
4、若2mn (3n6)2 0, 则( 2 mn)的值是多少?
精选ppt课件
17
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
32 mam xa3 2 x,(1)m , in 4 3, (3 2) =
精选ppt课件
12
选一选:
(1)、-3不是( C ) A、有理数 B、整数 C、自然数 D、负有理数 2、一个数的绝对值等于它的本身,这个数必定是( D ) A、0 B、负数 C、非正数 D、非负数 3、某人第一次向南走了40千米,第二次向北走了30千 米,第三次向北走了40千米,最后相当于这人( D )
-3
3
精选ppt课件
6
例3:填空题
2
2
5
2
5
5
2
5
0
无 0
1
1
1
3
3
3
精选ppt课件
7
例4:按要求写数:
(1)不大于
2
3 4
的最大整数;
(2)不大于
9 4
的最大整数;
(3)不小于-3.14的最小整数。
精选ppt课件
8
例5计算: (1) 10010
(2)
2 5
11 3
例6:比较下列各对数的大小:
在数轴上,一个数的绝对值就是表示这 个数的点到原点的 距离 。
精选ppt课件
3
正数的绝对值是 本身,负数的绝对值是 它的相反,数 零的绝对值是 0 。
3、有理数的大小比较法则 (1)利用数轴比较:在数轴上表示的两个数,右边的数 总比左边的数 大 。
推论:(于20)正。数都大于 负数 ,负数都小于 0 ,正数大
A、向南走了110千米 B、向北走了50千米 C、向南走了30千米 D、向北走了30千米
精选ppt课件
13
4、数轴上A,B两点分别是 8.2,6 3 ,则A,B两点间的距离为( A ) 5
A、14.8 B、14.4 C、-1.9 D、1.9
做一做:
1、-4的倒数是
1 4
,相反数是 4
, 2 2。
2、数轴上到原点的距离等于3的点所表示的数是 3。
3、最大的负整数是 -1 ,最小的正整数是 1 ,
绝对值最小的数是 0 ,最小的自然数 0 。
4、绝对值小于4的所有整数
是 1,02,3。
精选ppt课件
14
例 7、若 2a43b10,a则 b的值是多
例 8、2若 a43b2a10,1则 ab的值是 3
相关文档
最新文档