对数教学设计示例
对数及对数函数教案8篇
写教案能帮助教师更好地安排课堂教学时间,教案要结合实际的教学进度和学生的学习能力,才能更好地帮助学生提高学习效果,下面是范文社小编为您分享的对数及对数函数教案8篇,感谢您的参阅。
对数及对数函数教案篇1【学习目标】一、过程目标1通过师生之间、学生与学生之间的互相交流,培养学生的数学交流能力和与人合作的精神。
2通过对对数函数的学习,树立相互联系、相互转化的观点,渗透数形结合的数学思想。
3通过对对数函数有关性质的研究,培养学生观察、分析、归纳的思维能力。
二、识技能目标1理解对数函数的概念,能正确描绘对数函数的图象,感受研究对数函数的意义。
2掌握对数函数的性质,并能初步应用对数的性质解决简单问题。
三、情感目标1通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的.学习兴趣。
2在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质。
教学重点难点:1对数函数的定义、图象和性质。
2对数函数性质的初步应用。
教学工具:多媒体学前准备】对照指数函数试研究对数函数的定义、图象和性质。
对数及对数函数教案篇2对数函数及其性质教学设计1.教学方法建构主义学习观,强调以学生为中心,学生在教师指导下对知识的主动建构。
它既强调学习者的认知主体作用,又不忽视教师的指导作用。
高中一年级的学生正值身心发展的过渡时期,思维活跃,具有一定的独立性,喜欢新鲜事物,敢于大胆发表自己的见解,不过思维还不是很成熟.在目标分析的基础上,根据建构主义学习观,及学生的认知特点,我拟采用“探究式”教学方法。
将一节课的核心内容通过四个活动的形式引导学生对知识进行主动建构。
其理论依据为建构主义学习理论。
它很好地体现了“学生为主体,教师为主导,问题为主线,思维为主攻”的“四为主”的教学思想。
2.学法指导新课程强调“以学生发展为核心”,强调培养学生的自主探索能力与合作学习能力。
高一数学教案对数5篇
高一数学教案对数5篇高一数学教案对数1教学目标1.使学生掌握的概念,图象和性质.(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议教材分析(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.教法建议(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.高一数学教案对数2教学目标1.使学生了解反函数的概念;2.使学生会求一些简单函数的反函数;3.培养学生用辩证的观点观察、分析解决问题的能力。
高一数学对数函数教案5篇
高一数学对数函数教案5篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如职场文书、书信函件、教学范文、演讲致辞、心得体会、学生作文、合同范本、规章制度、工作报告、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as workplace documents, correspondence, teaching samples, speeches, insights, student essays, contract templates, rules and regulations, work reports, and other materials. If you want to learn about different data formats and writing methods, please pay attention!高一数学对数函数教案5篇高一数学对数函数教案1教学目标1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.2.通过函数单调性概念的教学,培养学生分析问题、认识问题的能力.通过例题培养学生利用定义进行推理的逻辑思维能力.3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.教学重点与难点教学重点:函数单调性的概念.教学难点:函数单调性的判定.教学过程设计一、引入新课师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?(用投影幻灯给出两组函数的图象.)第一组:第二组:生:第一组函数,函数值y随X的增大而增大;第二组函数,函数值y随X的增大而减小.师:(手执投影棒使之沿曲线移动)对.他(她)答得很好,这正是两组函数的主要区别.当X变大时,第一组函数的函数值都变大,而第二组函数的函数值都变小.虽然在每一组函数中,函数值变大或变小的方式并不相同,但每一组函数却具有一种共同的性质.我们在学习一次函数、二次函数、反比例函数以及幂函数时,就曾经根据函数的图象研究过函数的函数值随自变量的变大而变大或变小的性质.而这些研究结论是直观地由图象得到的.在函数的集合中,有很多函数具有这种性质,因此我们有必要对函数这种性质作更进一步的一般性的讨论和研究,这就是我们今天这一节课的内容.(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)二、对概念的分析(板书课题:)师:请同学们打开课本第51页,请XX同学把增函数、减函数、单调区间的定义朗读一遍.(学生朗读.)师:好,请坐.通过刚才阅读增函数和减函数的定义,请同学们思考一个问题:这种定义方法和我们刚才所讨论的函数值y随自变量X的增大而增大或减小是否一致?如果一致,定义中是怎样描述的?生:我认为是一致的.定义中的“当X1<X2时,都有f(X(1)<f(X(2)”描述了y随X的增大而增大;“当X1<X2时,都有f(X(1)>f(X(2)”描述了y随X的增大而减少.师:说得非常正确.定义中用了两个简单的不等关系“X1<X2”和“f(X(1)<f(X(2)或f(X(1)>f(X(2)”,它刻划了函数的单调递增或单调递减的性质.这就是数学的魅力!(通过教师的情绪感染学生,激发学生学习数学的兴趣.)师:现在请同学们和我一起来看刚才的两组图中的第一个函数y=f1X)和y=f2(X)的图象,体会这种魅力.(指图说明.)师:图中y=f1X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f1X(1)<f1X)因此y=f1X)在区间[a,b]上是单调递增的,区间[a,b]是函数y=f1X)的单调增区间;而图中y=f2(X)对于区间[a,b]上的任意X1.X2.当X1<X2时,都有f2(X(1)>f2(X(2)因此y=f2(X)在区间[a,b]上是单调递减的,区间[a,b]是函数y=f2(X)的单调减区间.(教师指图说明分析定义,使学生把函数单调性的定义与直观图象结合起来,使新旧知识融为一体,加深对概念的理解.渗透数形结合分析问题的数学思想方法.)师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应。
《对数的运算》示范课教学设计【高中数学】
《对数的运算》教学设计 1.理解对数的运算性质,体会对数对简化运算的作用; 2.知道用换底公式能将一般对数转化为自然对数或常用对数;
3.能够利用对数的运算性质、换底公式解决问题,提升数学运算核心素养.
教学重点:对数的运算性质,换底公式.
教学难点:对数运算性质的得出,对数换底公式的推导.
PPT 课件,计算器.
(一)新知探究
1.对数的运算性质 问题1:因为运算,数的威力无限;没有运算,数就只是一个符号.在引入对数之后,自然应研究对数的运算性质.你认为可以怎样研究?
师生活动:学生分组讨论交流,教师引导学生从对数与指数间的关系思考.
预设的答案:通过上节课的学习,我们知道了对数是通过指数幂的形式定义出来的,因此对数运算是由指数幂运算衍生出来的.对数运算与指数幂运算是两类重要的运算,正像加法与减法、乘法与除法之间的关系一样,我们通过加法运算学习减法运算,通过乘法运算学习除法运算.对于对数运算,我们也可以通过指数幂运算推导对数运算的性质. 设计意图:明确研究的内容,新旧知识产生联系,激发学生的探究欲望. 追问1:请回忆指数幂的运算性质.
师生活动:个别提问回答.
预设的答案:对于任意实数r ,s ,均有下面的指数幂运算性质.
(1)()0,,r s r s a a a a r s +=>∈R ;
(2)()()0,,s r rs a a a r s =>∈R ;
◆教学目标 ◆教学重难点
◆ ◆课前准备
◆教学过程。
对数函数教学设计(精选10篇)
对数函数教学设计对数函数教学设计(精选10篇)作为一名教学工作者,时常需要用到教学设计,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
我们该怎么去写教学设计呢?以下是小编为大家收集的对数函数教学设计,仅供参考,欢迎大家阅读。
对数函数教学设计篇1教学目标:使学生掌握对数形式复合函数的单调性的判断及证明方法,掌握对数形式复合函数的奇偶性的判断及证明方法,培养学生的数学应用意识;认识事物之间的内在联系及相互转化,用联系的观点分析问题、解决问题.教学重点:复合函数单调性、奇偶性的讨论方法.教学难点:复合函数单调性、奇偶性的讨论方法.教学过程:[例1]设loga23 <1,则实数a的取值范围是A.0<a<23B. 23 <a<1C.0<a<23 或a>1D.a>23解:由loga23 <1=logaa得(1)当0<a<1时,由y=logax是减函数,得:0<a<23(2)当a>1时,由y=logax是增函数,得:a>23 ,∴a>1综合(1)(2)得:0<a<23 或a>1 答案:C[例2]三个数60.7,0.76,log0.76的大小顺序是A.0.76<log0.76<60.7B.0.76<60.7<log0.76C.log0.76<60.7<0.76D.log0.76<0.76<60.7解:由于60.7>1,0<0.76<1,log0.76<0 答案:D[例3]设0<x<1,a>0且a≠1,试比较|loga(1-x)|与|loga(1+x)|的大小解法一:作差法|loga(1-x)|-|loga(1+x)|=| lg(1-x)lga |-| lg(1+x)lga | =1|lga| (|lg(1-x)|-|lg(1+x)|)∵0<x<1,∴0<1-x<1<1+x∴上式=-1|lga| [(lg(1-x)+lg(1+x)]=-1|lga| lg(1-x2)由0<x<1,得lg(1-x2)<0,∴-1|lga| lg(1-x2)>0,∴|loga(1-x)|>|loga(1+x)|解法二:作商法lg(1+x)lg(1-x) =|log(1-x)(1+x)|∵0<x<1 ∴0<1-x<1+x∴|log(1-x)(1+x)|=-log(1-x)(1+x)=log(1-x)11+x由0<x<1 ∴1+x>1,0<1-x2<1∴0<(1-x)(1+x)<1 ∴11+x >1-x>0∴0<log(1-x) 11+x <log(1-x)(1-x)=1∴|loga(1-x)|>|loga(1+x)|解法三:平方后比较大小∵loga2(1-x)-loga2(1+x)=[loga(1-x)+loga(1+x)][loga (1-x)-loga(1+x)]=loga(1-x2)loga1-x1+x =1|lg2a| lg(1-x2)lg1-x1+x∵0<x<1,∴0<1-x2<1,0<1-x1+x <1∴lg(1-x2)<0,lg1-x1+x <0∴loga2(1-x)>loga2(1+x)即|loga(1-x)|>|loga(1+x)|解法四:分类讨论去掉绝对值当a>1时,|loga(1-x)|-|loga(1+x)|=-loga(1-x)-loga(1+x)=-loga(1-x2)∵0<1-x<1<1+x,∴0<1-x2<1∴loga(1-x2)<0,∴-loga(1-x2)>0当0<a<1时,由0<x<1,则有loga(1-x)>0,loga(1+x)<0∴|loga(1-x)|-|loga(1+x)|=|loga(1-x)+loga(1+x)|=loga(1-x2)>0∴当a>0且a≠1时,总有|loga(1-x)|>|loga(1+x)|[例4]已知函数f(x)=lg[(a2-1)x2+(a+1)x+1],若f(x)的定义域为R,求实数a的取值范围解:依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时,其充要条件是:a2-1>0△=(a+1)2-4(a2-1)<0 解得a<-1或a>53 又a=-1,f(x)=0满足题意,a=1不合题意.所以a的取值范围是:(-∞,-1]∪(53 ,+∞)[例5]已知f(x)=1+logx3,g(x)=2logx2,比较f(x)与g(x)的大小解:易知f(x)、g(x)的定义域均是:(0,1)∪(1,+∞)f(x)-g(x)=1+logx3-2logx2=logx(34 x).①当x>1时,若34 x>1,则x>43 ,这时f(x)>g(x).若34 x<1,则1<x<43 ,这时f(x)<g(x)②当0<x<1时,0<34 x<1,logx34 x>0,这时f(x)>g(x)故由(1)、(2)可知:当x∈(0,1)∪(43 ,+∞)时,f(x)>g(x)当x∈(1,43 )时,f(x)<g(x)[例6]解方程:2 (9x-1-5)= [4(3x-1-2)]解:原方程可化为(9x-1-5)= [4(3x-1-2)]∴9x-1-5=4(3x-1-2) 即9x-1-43x-1+3=0∴(3x-1-1)(3x-1-3)=0 ∴3x-1=1或3x-1=3∴x=1或x=2 经检验x=1是增根∴x=2是原方程的根.[例7]解方程log2(2-x-1) (2-x+1-2)=-2解:原方程可化为:log2(2-x-1)(-1)log2[2(2-x-1)]=-2即:log2(2-x-1)[log2(2-x-1)+1]=2令t=log2(2-x-1),则t2+t-2=0解之得t=-2或t=1∴log2(2-x-1)=-2或log2(2-x-1)=1解之得:x=-log254 或x=-log23对数函数教学设计篇2一、说教材1、地位和作用本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。
全国一等奖对数的概念教学设计
全国一等奖对数的概念教学设计一、教学目标1.理解对数的概念和性质。
2.能够正确地求解简单的对数运算。
3.培养学生的数学思维能力和解决问题的能力。
二、教学内容1.对数的概念2.对数的性质3.对数的运算三、教学过程第一步:导入(10分钟)1.引入对数的概念:可以通过举例子或问题引入,例如“我们知道1÷2=0.5,2的多少次方等于1÷2呢?”2.让学生根据问题思考,引导他们猜想2的多少次方等于1÷2,引出对数的概念。
第二步:概念讲解(20分钟)1. 对数的定义:如果a的x次方等于N,那么称x是以a为底N的对数,记作logₐN=x。
2.对数的意义:对数是一种指数运算的逆运算,它可以用来求解指数方程。
3. 对数的性质:将对数的定义列举出来,让学生猜测对数的性质,例如logₐ1=0,logₐa=1等。
4.通过举例子和问题,让学生验证对数的性质。
第三步:例题讲解与练习(30分钟)1. 解释对数的换底公式:logₐN=logᵦN/logᵦa。
2. 讲解对数的运算法则:logₐ(N×M)=logₐN+logₐM,以及logₐ(N/M)=logₐN-logₐM。
3.给学生提供一些例题进行讲解,让学生掌握对数的运算。
4.给学生一些练习题,巩固对数的运算法则。
第四步:应用拓展(15分钟)1.通过实际问题的引入,让学生了解对数在生活中的应用,例如震级为什么要用对数表示等。
2.提供一些拓展题,让学生进行解答和思考,培养他们的数学思维能力和解决问题的能力。
第五步:总结(5分钟)1.让学生归纳总结对数的概念和性质。
2.提问学生对对数的运算法则有什么理解和掌握。
四、教学评估1.在例题讲解与练习环节,教师可以通过观察学生解题的过程,检查学生对对数的运算法则的掌握情况。
2.在应用拓展环节,教师可以观察学生解答实际问题的能力来评估他们对对数的应用理解情况。
3.可以设计一个小测验来检查学生对对数的概念和性质的理解程度。
对数教学设计【优秀5篇】
对数教学设计【优秀5篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计【优秀5篇】高中数学对数教学教案有哪些篇一教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题。
《对数》教案完美版
《对数》教案完美版《对数》教案⼀.三维⽬标:1.知识与技能①通过实例推导对数的运算性质,准确地运⽤对数运算性质进⾏运算,求值、化简,并掌握化简求值的技能.②运⽤对数运算性质解决有关问题.③培养学⽣分析、综合解决问题的能⼒.培养学⽣数学应⽤的意识和科学分析问题的精神和态度.2. 过程与⽅法①让学⽣经历并推理出对数的运算性质.②让学⽣归纳整理本节所学的知识.3. 情感、态度、和价值观让学⽣感觉对数运算性质的重要性,增加学⽣的成功感,增强学习的积极性.⼆.教学重点、难点重点:对数运算的性质与对数知识的应⽤难点:正确使⽤对数的运算性质三.学法和教学⽤具学法:学⽣⾃主推理、讨论和概括,从⽽更好地完成本节课的三维⽬标.教学⽤具:投影仪四.教学过程1.设置情境复习:对数的定义及对数恒等式log b a N b a N =?= (a >0,且a ≠1,N >0),指数的运算性质.;m n m n m n m n a a a a a a +-?=÷=();n m n mn ma a a == 2.讲授新课探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m n a a a+?=,那m n +如何表⽰,能⽤对数式运算吗?如:,,m n m n m n a a a M a N a +?===设。
于是,m n MN a += 由对数的定义得到 log ,log m n a a M a m M N a n N =?==?=log m n a MN a m n MN +=?+=log log log ()a a a M N MN ∴+=放出投影即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的⽅法推出对数的其它性质吗?(让学⽣探究,讨论)如果a >0且a ≠1,M >0,N >0,那么:(1)log log log a a a MN M N =+(2)log log log a a a M M N N=- (3)log log ()n a a M n Mn R =∈证明:(1)令,m nM a N a == 则:m n m n M a a a N-=÷= l o g a M m n N ∴-= ⼜由,m n M a N a ==log ,log a a m M n N ∴== 即:log log log a a aM M N m n N -=-= (3)0,log ,N n n a n N M M a ≠==时令则l o g ,bn a b n M M a ==则Nb n na a ∴= Nb ∴= 即log log log a a a M M N N=- 当n =0时,显然成⽴.l o g l o gn a a M n M ∴= 提问:1. 在上⾯的式⼦中,为什么要规定a >0,且a ≠1,M >0,N >0?1.你能⽤⾃⼰的语⾔分别表述出以上三个等式吗?例题:1. 判断下列式⼦是否正确,a >0且a ≠1,x >0且a ≠1,x >0,x >y ,则有(1)log log log ()a a a x y x y ?=+ (2)log log log ()a a a x y x y -=-(3)log log log a a a x x y y=÷ (4)log log log a a a xy x y =-(5)(log )log n a a x n x = (6)1log log a a x x=- (71log a x n= 例2:⽤log a x ,log a y ,log a z 表⽰出(1)(2)⼩题,并求出(3)、(4)⼩题的值.(1)log a xy z (2)log a (3)75log (42)z ? (4)分析:利⽤对数运算性质直接计算:(1)log log log log log log aa a a a a xy xy z x y z z =-=+- (2)2log log log log log log a a a a a a x x ==+ =112log log log 23a a a x y z +- (3)7575222log (42)log 4log 214519?=+=+=(4)252lg lg105== 点评:此题关键是要记住对数运算性质的形式,要求学⽣不要记住公式.让学⽣完成P 79练习的第1,2,3题提出问题:你能根据对数的定义推导出下⾯的换底公式吗?a >0,且a ≠1,c >0,且e ≠1,b >0 log log logc a c b b a=先让学⽣⾃⼰探究讨论,教师巡视,最后投影出证明过程.设log ,log ,,M N c c M a N b a c b c ====则且11,()N N M M M a c a a b ====N 所以c 即:log log ,log c a c b N N b M M a==⼜因为所以:log log log c a c b b a = ⼩结:以上这个式⼦换底公式,换的底C 只要满⾜C >0且C ≠1就⾏了,除此之外,对C 再也没有什么特定的要求.提问:你能⽤⾃⼰的话概括出换底公式吗?说明:我们使⽤的计算器中,“log ”通常是常⽤对数. 因此,要使⽤计算器对数,⼀定要先⽤换底公式转化为常⽤对数. 如:2lg3log 3lg 2=即计算32log 的值的按键顺序为:“log ”→“3”→“÷”→“log ”→“2” →“=”再如:在前⾯要求我国⼈⼝达到18亿的年份,就是要计算1.0118log 13x = 所以 1.0118lg 18lg18lg13 1.2553 1.13913log 13lg1.01lg1.010.043x --===≈ =32.883733()≈年练习:P 79 练习4让学⽣⾃⼰阅读思考P 77~P 78的例5,例的题⽬,教师点拨. 3、归纳⼩结(1)学习归纳本节(2)你认为学习对数有什么意义?⼤家议论.2、思考:(1)证明和应⽤对数运算性质时,应注意哪些问题?(2)222log (3)(5)log (3)log (5)---+-等于吗?。
对数的概念教学设计(精选6篇)
对数的概念教学设计对数的概念教学设计(精选6篇)作为一位杰出的教职工,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。
写教学设计需要注意哪些格式呢?下面是小编为大家整理的对数的概念教学设计(精选6篇),欢迎阅读与收藏。
对数的概念教学设计1一、内容与解析(一)内容:对数函数的性质(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析(一)教学目标:1.掌握对数函数的性质并能简单应用(二)解析:(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程问题1.先画出下列函数的简图,再根据图象归纳总结对数函数的相关性质。
设计意图:师生活动(小问题):1.这些对数函数的解析式有什么共同特征?2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?问题2.先画出下列函数的简图,根据图象归纳总结对数函数的相关性质。
对数函数及其性质的教学设计【2篇】
对数函数及其性质的教学设计【2篇】篇一:高中数学对数函数教案篇一教学目标1、在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题。
2、通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想。
3、通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性。
教学重点,难点重点是理解对数函数的定义,掌握图像和性质。
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质。
教学方法启发研讨式教学用具投影仪教学过程一。
引入新课今天我们一起再来研究一种常见函数。
前面的几种函数都是以形式定义的方式给出的,今天我们将从反函数的角度介绍新的函数。
反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数。
这个熟悉的函数就是指数函数。
提问:什么是指数函数?指数函数存在反函数吗?由学生说出是指数函数,它是存在反函数的。
并由一个学生口答求反函数的过程:由得。
又的值域为,所求反函数为。
那么我们今天就是研究指数函数的反函数__对数函数。
2.8对数函数(板书)一。
对数函数的概念1、定义:函数的反函数叫做对数函数。
由于定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发。
如从定义中你能了解对数函数的什么性质吗?最初步的认识是什么?教师可提示学生从反函数的三定与三反去认识,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件。
在此基础上,我们将一起来研究对数函数的图像与性质。
二。
对数函数的图像与性质(板书)1、作图方法提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图。
同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图。
高一数学对数函数教案集锦7篇
高一数学对数函数教案集锦7篇高一数学对数函数教案1学习目标1. 通过详细实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2. 能借助计算器或计算机画出详细对数函数的图象,探究并了解对数函数的单调性与特别点;3. 通过比拟、对比的方法,引导学生结合图象类比指数函数,探究讨论对数函数的性质,培育数形结合的思想方法,学会讨论函数性质的方法.旧知提示复习:若,则,其中称为,其范围为,称为 .合作探究(预习教材P70- P72,找出怀疑之处)探究1:元旦晚会前,同学们剪彩带备用。
现有一根彩带,将其对折后,沿折痕剪开,可将所得的两段放在一起,对折再剪段。
设所得的彩带的根数为,剪的次数为,试用表示 .新知:对数函数的概念试一试:以下函数是对数函数的是( )A. B. C. D. E.反思:对数函数定义与指数函数类似,都是形式定义,留意区分,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且 .探究2:你能类比前面争论指数函数性质的思路,提出讨论对数函数性质的内容和方法吗?讨论方法:画出函数图象,结合图象讨论函数性质.讨论内容:定义域、值域、特别点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出以下对数函数的`图象.新知:对数函数的图象和性质:象定义域值域过定点单调性思索:当时,时,; 时,;当时,时,; 时, .典型例题例1求以下函数的定义域:(1) ; (2) .例2比拟大小:(1) ; (2) ; (3) ;(4) 与 .课堂小结1. 对数函数的概念、图象和性质;2. 求定义域;3. 利用单调性比大小.学问拓展对数函数凹凸性:函数,是任意两个正实数. 当时,;当时, .学习评价1. 函数的定义域为( )A. B. C. D.2. 函数的定义域为( )A. B. C. D.3. 函数的定义域是 .4. 比拟大小:(1)log 67 log 7 6 ; (2) ; (3) .课后作业1. 不等式的解集是( ).A. B. C. D.2. 若,则( )A. B. C. D.3. 当a1时,在同一坐标系中,函数与的图象是( ).4. 已知函数的定义域为,函数的定义域为,则有( )A. B. C. D.5. 函数的定义域为 .6. 若且,函数的图象恒过定点,则的坐标是 .7.已知,则= .8. 求以下函数的定义域:2.2.2 对数函数及其性质(2)学习目标1. 解对数函数在生产实际中的简洁应用;2. 进一步理解对数函数的图象和性质;3. 学习反函数的概念,理解对数函数和指数函数互为反函数,能够在同一坐标上看出互为反函数的两个函数的图象性质.旧知提示复习1:对数函数图象和性质.a1 0图性质(1)定义域:(2)值域:(3)过定点:(4)单调性:复习2:比拟两个对数的大小:(1) ; (2) .复习3:(1) 的定义域为;(2) 的定义域为 .复习4:右图是函数,,,的图象,则底数之间的关系为 .合作探究(预习教材P72- P73,找出怀疑之处)探究:如何由求出x?新知:反函数试一试:在同一平面直角坐标系中,画出指数函数及其反函数图象,发觉什么性质?反思:(1)假如在函数的图象上,那么P0关于直线的对称点在函数的图象上吗?为什么?(2)由上述过程可以得到结论:互为反函数的两个函数的图象关于对称.典型例题例1求以下函数的反函数:(1) ; (2) .提高:①设函数过定点,则过定点 .②函数的反函数过定点 .③己知函数的图象过点(1,3)其反函数的图象过点(2,0),则的表达式为 .小结:求反函数的步骤(解x 习惯表示定义域)例2溶液酸碱度的测量问题:溶液酸碱度pH的计算公式,其中表示溶液中氢离子的浓度,单位是摩尔/升.(1)分析溶液酸碱度与溶液中氢离子浓度之间的变化关系?(2)纯洁水摩尔/升,计算其酸碱度.例3 求以下函数的值域:(1) ;(2) .课堂小结①函数模型应用思想;②反函数概念.学问拓展函数的概念重在对于某个范围(定义域)内的任意一个自变量x的值,y都有唯一的值和它对应. 对于一个单调函数,反之对应任意y值,x也都有惟一的值和它对应,从而单调函数才具有反函数. 反函数的定义域是原函数的值域,反函数的值域是原函数的定义域,即互为反函数的两个函数,定义域与值域是穿插相等.学习评价1. 函数的反函数是( ).A. B. C. D.2. 函数的反函数的单调性是( ).A. 在R上单调递增B. 在R上单调递减C. 在上单调递增D. 在上单调递减3. 函数的反函数是( ).A. B. C. D.4. 函数的值域为( ).A. B. C. D.5. 指数函数的反函数的图象过点,则a的值为 .6. 点在函数的反函数图象上,则实数a的值为 . 课后作业1. 函数的反函数为( )A. B. C. D.2. 设,,,,则的大小关系是( )A. B. C. D.3. 的反函数为 .4. 函数的值域为 .5. 已知函数的反函数图象经过点,则 .6. 设,则满意的值为 .7. 求以下函数的反函数.(1) y= ; (2)y= (a1,x (3) .高一数学对数函数教案2教学目标:1.进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题.2.培育学生数形结合的思想,以及分析推理的力量.教学重点:对数函数性质的应用.教学难点:对数函数的性质向对数型函数的演化延长.教学过程:一、问题情境1.复习对数函数的性质.2.答复以下问题.(1)函数y=log2x的值域是;(2)函数y=log2x(x≥1)的值域是;(3)函数y=log2x(03.情境问题.函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?二、学生活动探究完成情境问题.三、数学运用例1 求函数y=log2(x2+2x+2)的定义域和值域.练习:(1)已知函数y=log2x的值域是[-2,3],则x的范围是________________.(2)函数,x(0,8]的值域是 .(3)函数y=log (x2-6x+17)的值域 .(4)函数的值域是_______________.例2 推断以下函数的奇偶性:(1)f (x)=lg (2)f (x)=ln( -x)例3 已知loga 0.75>1,试求实数a 取值范围.例4 已知函数y=loga(1-ax)(a>0,a≠1).(1)求函数的定义域与值域;(2)求函数的单调区间.练习:1.以下函数(1) y=x-1;(2) y=log2(x-1);(3) y= ;(4)y=lnx,其中值域为R的有(请写出全部正确结论的序号).2.函数y=lg( -1)的`图象关于对称.3.已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= .4.求函数,其中x [ ,9]的值域.四、要点归纳与方法小结(1)借助于对数函数的性质讨论对数型函数的定义域与值域;(2)换元法;(3)能画出较简单函数的图象,依据图象讨论函数的性质(数形结合).五、作业课本P70~71-4,5,10,11.高一数学对数函数教案31.把握对数函数的概念,图象和性质,且在把握性质的根底上能进展初步的应用。
02 教学设计_对数运算法则(2)
对数运算法则【教学过程】一、新知初探探究1:具体数的化简求值例1:计算:(1)log 345-log 35;(2)log 2(23×45);(3)lg 27+lg8-lg 1 000lg1.2; (4)log 29·log 38.解:(1)log 345-log 35=log 3455=log 39=log 332=2log 33=2.(2)log 2(23×45)=log 2(23×210)=log 2(213)=13log 22=13. (3)原式=lg (27×8)-lg 1032lg 1210=lg (332×23÷1032)lg 1210=lg ⎝ ⎛⎭⎪⎫3×41032lg 1210=32lg 1210lg 1210=32. (4)log 29·log 38=log 2(32)·log 3(23)=2log 23·3log 32=6·log 23·1log 23=6. 规律方法:具体数的化简求值主要遵循两个原则:(1)把数字化为质因数的幂、积、商的形式.(2)不同底化为同底.探究点2:代数式的化简命题角度一:代数式恒等变换例2:化简log a x 2y 3z. 解:因为x 2y 3z>0且x 2>0,y >0,所以y >0,z >0. log a x 2y 3z=log a (x 2y )-log a 3z =log a x 2+log a y -log a 3z =2log a |x |+12log a y -13log a z . 规律方法:使用公式要注意成立条件,如lg x 2不一定等于2lg x ,反例:log 10(-10)2=2log 10(-10)是不成立的.要特别注意log a (MN )≠log a M ·log a N ,log a (M ±N )≠log a M ±log a N .命题角度二:用代数式表示对数例3:已知log 189=a ,18b =5,求log 3645.解:法一:因为log 189=a ,18b =5,所以log 185=b ,所以log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b1+log 18189=a +b 2-a .法二:因为log 189=a ,18b =5,所以log 185=b ,所以log 3645=log 1845log 1836=log 18(9×5)log 18(18×2) =log 189+log 1852log 1818-log 189=a +b 2-a. 法三:因为log 189=a ,18b =5,所以lg 9=a lg 18,lg 5=b lg 18,所以log 3645=lg 45lg 36=lg (9×5)lg 1829=lg 9+lg 52lg 18-lg 9=a lg 18+b lg 182lg 18-a lg 18=a +b 2-a . 规律方法:用代数式表示对数问题的本质是把目标分解为基本“粒子”,然后用指定字母换元.二、课堂总结1.对数运算法则log a (MN )=log a M +log a N ,log a M α=αlog a M ,log a M N =log a M -log a N .(其中,a >0且a ≠1,M >0,N >0,α∈R )2.换底公式log a b =log c b log c a .(其中a >0且a ≠1,b >0,c >0且c ≠1) 三、课堂检测1.log 513+log 53等于( )A .0B .1C .-1D .log 5103答案:A2.(2019·广西南京市期中)在对数式b =log a -2(5-a )中,实数a 的取值范围是( )A .{a |a >5或a <2}B .{a |2<a <5}C .{a |2<a <3或3<a <5}D .{a |3<a <4} 解析:选C .由题意得⎩⎨⎧a -2>0,a -2≠1,5-a >0,解得2<a <3或3<a <5.3.log 29×log 34等于( )A .14B .12C .2D .4答案:D4.log 327+lg25+lg4+7log 72+(-9.8)0=________.解析:原式=12log 333+lg (25×4)+2+1=32+2+3=132. 答案:132。
对数的概念 教学设计
《对数的概念》教学设计一、教材分析本节课是人教A版《普通高中教科书》中第4章第3节,共2课时,本节为第一课时.主要内容是对数的概念以及指数式与对数式的相互转化.它是在学习了“指数幂a x的意义及运算性质”、“指数函数的性质”基础上进行的,同时本节也为学习对数的运算和对数函数奠定了基础。
对数既可以看作是一个算式,又可以看作是一个数值,与指数幂具有共同的本质——指数(对数)与幂(真数)之间的对应关系. 对数作为重要而简便的计算技术,被恩格斯誉为17世纪三大重要数学成就之一,在数学和其他许多知识领域都有广泛的应用.通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义.可以提升学生的数学抽象、数学运算、直观想象等核心素养,可以融合数学史的发展过程提升数学课堂的人文情怀。
二、学情分析1.学生已有的认知基础从知识方面看,学生已学习了指数、幂的运算性质、指数函数的图象及性质,这为学生发现对数的存在,理解对数的概念奠定了理论基础.从能力方面看,学生能根据具体问题由特殊到一般抽象归纳出对数的含义.有一定的应用能力.从心理方面看,学生有丰富的想象力,乐于探索.同时,高中学生心理还不够成熟,探究新知,不能过急,需“随风潜入夜,润物细无声”加以引导.2.问题诊断对数的概念对于学生来说,是全新的.从形式上进行指数式与对数式之间的互化是容易的,在真正理解对数概念的基础上进行解题是有一定难度的,表现在两个方面:(1)不能将对数与普通的数平等对待,不理解对数的概念,只能够进行表面上的形式转换;(2)不能把“对数的实质是指数”应用在数学问题的解决中.基于以上分析,本节的教学难点是:对数概念的构建.为了突破难点,要在引入对数概念时,通过不同的实例,让学生感受到为什么要学习对数,是基于研究指数的需求才引入对数,因此对数的实质是指数;在形成概念时,要引导学生明确“对数是数”这一事实;在引入对数概念后,学生通过自主举例,具体感知个例,从对数概念外延的角度进行理解.通过互化和求值的练习,让学生逐渐地从内涵和外延两方面加深对数概念的理解.三、教学目标1.经历对数的发现过程,理解引入对数的必要性,领悟对数超强的简化运算的功能.2.通过对数概念的构建过程,理解对数的概念以及指数式与对数式的转化关系.感悟函数与方程思想和化归思想,培养学生数学抽象、逻辑思维能力.四、教学重点、难点重点:(1)对数概念的理解;(2)对数式与指数式的相互联系与转化.难点:对数概念的构建.五、教法与学法分析1.教法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的变式教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,加强引导学生通过自己的观察、操作等活动自主构建对数的概念的过程,以问题引导学生的思维活动,使学生在问题带动下进行更加主动的思考,经历对数发现的历史背景,了解对数产生的必要性和合理性,加深对对数概念的理解.倡导合作学习与独立思考相结合,有效地调动学生思维.2.学法指导启发学生通过类比、联想等思维活动来发现对数的存在;运用函数的观点分析问题中的变量及变量间的对应关系,从而得到对数的确定性.培养学生用数学抽象,由特殊到一般得出对数的概念,并通过反思,总结完善概念.通过问题解决,理解对数概念的本质特征.六、课型课时、教学准备1.课型:新授课;2.课时:1课时3.教学准备:多媒体、实物投影、展台等.七、教学内容及过程 (一)设计问题,创设情境 十六世纪末到十七世纪初,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此花费了若干年甚至毕生的宝贵时间.例如:299 792.468×31 536 000=?教师:299 792.468是光在真空中的速度(km/s),31536 000是一年的总秒数,所得的结果正是天文学中的一光年.这个天文学中的基本单位的运算尚且如此复杂,要探索整个宇宙,任务何其艰巨!古人没有计算器,常常陷于繁难的大数计算而深感苦恼,他们为了计算出一个行星的位置,往往要耗费几个月甚至几年的时间,庞大的天文数字计算严重地束缚着人类探索宇宙的进程.与此同时,数学家们也感慨:“没有什么比大数的乘、除、开平方或开立方运算更让数学工作者头疼、更阻碍计算者的了.这不仅浪费时间,而且容易出错.”问题1:如何解决这里大数的乘法问题呢?请大家观察下列各式,你能不用乘法运算吗?(1)=⨯6416(2)=⨯1024256(3)=⨯1234567895师生活动:(教师备案:学生如果不能顺利求解,教师可以利用“=⨯6422”运算法则启发引导.) 学生:10642226416=⨯=⨯;181082221024256=⨯=⨯.问题2:上面的问题中(1)、(2)的解决是运用什么策略完成的?(3)要类似求解,需要我们做哪些工作?学生:需要将因数5和123456789转化为同底数幂的形式,即1234567892,52==n m . 设计意图:通过对数产生的历史背景,体现引入对数的必要性,激发学生的求知欲.通过具体问题的求解,让学生明确将乘法运算转化为加法运算的策略,就是将因数转化为指数幂的形式,然后利用同底数幂的乘法运算法则运算.渗透转化与化归思想,培养学生数学建模的核心素养.(二)学生探索,尝试解决问题3:方程52=m 是否有解?有几个解?师生活动:学生:观察方程,我们可以得出方程的左边可以看作指数函数x x f 2)(=.根据指数函数的值域为),0(+∞所以方程52=m 一定有解.又指数函数都是是单调函数,所以方程52=m 只有一解.教师:很好.这位同学运用了指数函数的图象及性质解答了上述方程解的存在性和唯一性问题,这体现了什么样的数学思想呢?学生:函数思想.问题4:你能借助指数函数的图象探究一下方程2m =5的解的范围吗?如何描述出这个解?师生活动:学生:因为32252<<,所以32<<x .设计意图:通过学生探究,让学生切实感受到m 存在的合理性、唯一性,体会对数就是实数.教师:满足52=m 的实数m 确实存在,它是以2为底的幂5所对应的指数.记作:5log 2=m ,读作“以2为底5的对数”.教师:为了体现这种对应关系,英国数学家约翰•纳皮尔创造了“Logarithm (对数)”一词,直至1624年,开普勒将其简化为“Log ”,经过多次演编现在用“log ”来表示这种对应关系.练习1:写出满足下列各式的实数x ,(1)82=x ; (2)412=x ; (3)55=x ; (4)85=x ; (5)22-=x .设计意图:通过对数发展史的简介和对数符号的引入,激发学生探索精神,培养创新意识.通过练习,让学生进一步加深对对数的认识,理解对数存在的条件,为后面得出对数的概念打好坚实基础.(三)师生交流,揭示规律问题5:设M >0,N >0,通过上面的探究,如何将乘法运算M ×N 转化为加法运算呢?M 与N 的除法、乘方、开方呢?学生:需要将M 和N 转化为底数相同的幂的形式,这样就可以将幂的乘法转化为指数的加法,幂的除法、乘法、开方转化为指数的减法、乘法、除法.设计意图:回扣前面的问题,弄清简化运算的依据是同底数幂的运算性质,同时由特殊到一般,培养学生数学抽象能力.问题6:当底数a 确定时,方程a x =N (a >0,且a ≠1)的解x 由“谁”来确定呢?为什么?又怎样表示呢?学生:由幂的值N 决定.因为指数函数是单调函数.可表示为N x a log =.教师:实数x 我们就用符号N a log 来表示,读作“以a 为底N 的对数”.设计意图:通过前面的探究,对数的概念呼之欲出,问题6从一般性角度再次让学生明确指数式中幂指数x 与幂N 的函数关系,培养学生在问题解决中的函数意识,渗透函数与方程思想.问题7:你能给出“对数”的定义吗?师生共同抽象出对数的定义:一般地,如果a (a >0,a ≠1)的x 次幂等于N ,就是a x =N ,那么数x 叫作以a 为底N 的对数(logarithm),记作x =log a N ,其中a 叫作对数的底数,N 叫作真数.教师:x =log a N ,这是它的书写格式,其中a 叫作对数的底数,N 叫作真数. 练习2:请你写出一个对数,并说出它的含义.设计意图:通过练习2使学生对对数有一个主动内化的过程,加深对对数的认识和理解,并自主发现对数式与指数式的关系.师生活动:学生:7log 2是一个实数,它的含义是“2的这个数次方等于7”.用式子描述为:若7log 2=x ,则72=x ,即727log 2=.教师:对数与指数有以下对应关系:a x =N 叫做指数式,N x a log =叫做对数式,指数式与对数式的互化 )1,0(log ≠>=⇔=a a N x N a a x .(四)运用规律、解决问题教师:通过学习指数式和对数式的互化,同学们能否解决如下问题:例1.将下列指数式化为对数式,对数式化为指数式:(1)10001103=-; (2)4832=; (3)3125log 5=; (4)01log =e (e=2.71828…)教师:请同学展示一下两个重要对数:教师:在日常生活和科学技术中经常会用到以下两个重要的对数教师板书:(1)常用对数:以10为底的对数叫常用对数,记作:N lg(2)自然对数:以 e 为底的对数叫自然对数,记作:N ln教师:请同学们熟悉一下这两个重要对数.请同学们以两个重要对数为背景来完成下列练习:练习3:(1)将对数式__________ 转化为指数式________(2)将指数式__________ 转化为对数式________教师巡视,请两位编好的同学投影展示,由教师点评改错.设计意图:通过练习,在巩固对数概念的同时,又创设出新的问题情境,培养学生发现问题、提出问题的意识.这样的设计,使得整个教学环环相扣,既使得学生的思维得到不间断的螺旋式上升,又提高了课堂效率.既体现了数学的转化思想,同时也培养了学生辩证唯物主义世界观.(五)变练演编、深化提高例2.(1)当0≤N 时,N a log 有意义吗?(2)=1log a ;(3)=a a log ;)1,0(≠>a a(4)=N a a log .)1,0(≠>a a学生:(1)没有.因为当0>a 且1≠a 时,0>x a .(2)因为10=a ,所以01log =a ;(3)因为a a =1,所以1log =a a ;(4)设N x a log =,则N a x =,即N a N a=log .设计意图:将对数的重要性质以具体问题的形式呈现,既便于学生入手探究,又有利于学生对对数概念认识的提高.同时,在问题的驱动下,有利于培养学生的抽象思维能力. 例3.求下列各式中x 的值:x =1000lg )1( 38log )2(=x 32log )3(64-=x x e =-2ln )4( 师生活动:学生黑板板演,学生批改、教师点评.设计意图:通过例3学生的解答,以及板演,进一步体现对数式与指数式的转化,使得学生对对数的本质的认识进一步深化.同时,也揭示了数学中“概念”的重要性和应用性.提升学生的数学素养,培养学生从数学的视角思考问题、分析问题和解决问题的能力.(六)反思小结,观点提炼(多媒体动态展示问题,并结合多媒体形成知识网络)问题9:(1)这节课我们主要学习了哪些知识?(2)在学习的过程中,体现了哪些数学思想方法?(3)通过这节课的学习你有哪些感悟?还存在哪些问题?设计意图:以知识为载体,通过反思小结,凸显知识之间的联系,形成思维导图,突出学习过程中运用的数学思想方法,使学生收获的不仅仅是“鱼”,更重要的是主动获取“鱼”的方法——“渔”.对于数学建模过程的小结,更体现了“教”是为了“不教”.【布置作业】(1)习题2.2 A组1、2、3、4;(2)阅读课本68-69页,了解对数的发展史.九、板书设计2.2.1 对数的概念对数产生的背景及必要性对数概念的应用对数产生的合理性变式、编题对数的概念课堂小结十、教后反思高中数学课程标准明确指出“高中数学课程应该返璞归真,努力揭示数学概念、法则、结论的发生、发展过程和本质.” 有些教师对对数概念的形成过程重视程度不够,认为概念就是一种规定,没有必要追究它的合理性,只要将概念给学生交代清楚,并通过举例辨析明确概念的外延,就算对概念认识到位了.但这种教学理念导致的教学效果是短期内学生会做题,时间稍长,留在学生脑子了的“东西”是少之又少,有时候还得重新将“对数”概念“交代”一番,长此以往,教学效果差,严重制约学生思维能力的发展.结合教学前的准备和实际教学效果,作出以下反思.3.1 明确概念的“来龙去脉”,准确把握适合学生的概念“生长点”虽然在数学历史的发展中,对数和指数是相伴而生的,但由于学生已经学习了指数与指数函数,因此,以指数函数为背景设计问题,通过学生的自主探究,使学生体会到引入“对数”概念的必要性和合理性,就是找准了对数概念的“生长点”,就是对数概念的“来龙”.在教学中,通过问题驱动,引领学生深刻体会幂的底数、幂的值与幂的指数之间的对应关系,为后面学习对数的运算、对数函数的图象与性质奠定坚实的基础,就是对数概念的“去脉”.所以,本节课的重点放在对数概念的产生的必要性和合理性上,并通过对数函数符号“log”的引入,让学生明确了概念的内涵.3.2 换位思考,厘清学生对概念理解的障碍由于学生之前对“对数”的概念一无所知,因此在教学设计上,突出“对数”出现的合理性和必然性的同时,通过特例、指数函数图象性质、数函数符号“log”的含义多角度,全方位让学生“明白并接受”对数,让学生感受到“对数原来就在我们身边,对数并不是刚刚创造的数”,同时也解决了在学生心里存在已久的“无理数都有哪些?”的困惑.3.3 以数学思想为设计主线,彰显数学本色《普通高中数学课程标准》指出:“数学教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿高中数学教学的始终,帮助学生逐步理解.由于数学高度抽象的特点,注意体现基本概念的来龙去脉.在教学中要引导学生经历具体实例抽象数学概念的过程,在初步运用中逐步理解概念的本质.”而对数并不是孤立存在的,它依赖于“幂的底数和幂的值”,因此在教学中充分利用这种对应关系,以函数思想为主线,逐步揭示对数的本质特征.因此,本节课教学设计的“明线”是指数方程的解与对数的概念.“暗线”就是以函数思想为骨架,设计合理问题,驱动学生思维,培养学生能力. 明线暗线交替出现.明线是一节课的躯体,而暗线是一节课的灵魂.主线不清晰,容颜就不会漂亮,没有暗线,外表再漂亮也没用,没用灵气.对数的历史对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵.在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科。
高中对数数学教案设计
高中对数数学教案设计
【教学目标】:
1. 理解对数的基本概念和性质;
2. 掌握对数运算规律;
3. 熟练应用对数解决实际问题。
【教学重点】:
1. 对数的定义和性质;
2. 对数的运算规律;
3. 对数的实际应用。
【教学难点】:
1. 解决包含对数的复杂方程;
2. 运用对数解决生活中的实际问题。
【教学准备】:
1. 教材《高中数学》;
2. 多媒体教具。
【教学过程】:
一、导入(5分钟)
引入对数的概念,通过举例引导学生了解对数的定义和性质。
二、讲解(15分钟)
1. 对数的定义和性质;
2. 对数的运算规律;
3. 对数的变换公式。
三、练习(20分钟)
1. 完成练习册上的对数运算题目;
2. 解决生活中的实际问题,如声音强度、震级等相关问题。
四、讨论(15分钟)
学生互相讨论解题思路及方法,学习彼此之间的优点。
五、总结(5分钟)
总结今天所学内容,强化对对数的理解和应用。
【课堂延伸】:
根据学生不同程度,可选择性地引入高阶对数概念,如对数函数、对数方程等,增加课堂深度。
【课后作业】:
1. 完成课本习题;
2. 撰写一篇关于对数的应用文。
【教学反思】:
通过此次教学,发现学生在对数的理解和应用上存在一定困难,需要进一步引导和巩固。
应在后续教学中加强练习和实际应用,提高学生对对数的掌握水平。
(完整版)对数函数教学案例
(完整版)对数函数教学案例对数函数及其图像与性质的教学案例莆田侨职林晨一、背景数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的参与,是促进学生良好的认知结构,培养能力,全面提高素质的关键。
数学教学中的探究式创造性思维教学对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。
在实施数学新课程中,如何贯彻新课程理念,正确把握和实施中职数学教学,已成为我们每一个中职数学教师应该研究的课题。
二、教学设计思想本节是在学生已经学过对数与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题的情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。
因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
三、学生情况与教材分析1、通过探究式创造性思维教学方法充分利用现实情景,尽可能的增加教学过程的趣味性、实践性。
利用多媒体课件和flash动画等丰富学生的学习资源,生动活泼的展示图形,强调学生动手操作和主动参与。
2、教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践、自主探究与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题。
四、教学分析1、教学目标(1)知识目标:①掌握对数函数的概念;②理解并掌握对数函数的图像及性质特征(2)能力目标:①观察对数函数的图像,总结对数函数的性质,培养学生观察能力;②应用对数函数的性质解题.③通过观察函数图像得到函数性质,加强学生数形结合思想的渗透。
2、教学重点对数函数概念及图像与性质.3、教学难点对数函数图像与性质.4、教学设计(1)检查课前预习,培养学生的自学能力;(2)实例引入知识,提升学生的求知欲;(3)“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;(4)知识的巩固与练习,培养学生的思维能力.5、教学模式:自主学习模式 .6、教学特点:在学生预习的基础上,充分利用学案,巩固知识、熟练知识、应用知识,使所学知识学生熟练掌握.7、教学过程:(一)创设情景兴趣导入设1个细胞经过y 次分裂后得到x 个细胞,则x 与y 的函数关系是2y x =,写成对数式为2log y x =,此时自变量x 位于真数位置.(二)动脑思考探索新知(利用对数函数概念,预设填空题检查学生预习情况,教师指导并使其掌握)概念:一般地,形如log a y x =的函数叫以a 为底的对数函数,其中a >0且a ≠1.对数函数的定义域为(0,)+∞,值域为),(+∞-∞.例如x y 5log =、x y 31log =,lg y x =都是对数函数.(三)动手操作探索新知利用“描点法”作函数2log y x =和12log y x =的图像.观察函数图像发现:1.函数2log y x =和12log y x =的图像都在y 轴的右边;2.图像都经过点()1,0;3.函数2log y x =的图像自左至右呈上升趋势;函数12log y x =的图像自左至右呈下降趋势.(四)整体建构理论升华一般地,对数函数log a y x =( a >0且a ≠1)具有下列性质:(1)函数的定义域是(0,)+∞,值域为R ;(2)当1x =时,函数值0y =,即图像都经过点()1,0;(3)当a >1时,函数在(0,)+∞内是增函数;当0<1时,函数在(0,)+∞内是减函数.<="" bdsfid="111" p=""><1时,函数在(0,)+∞内是减函数.<="" bdsfid="113" p="">(五)运用知识巩固练习<1时,函数在(0,)+∞内是减函数.<="" bdsfid="115" p="">1、已知对数函数常数a ,函数的定义域是,值域是。
《对数》教学设计
一
ቤተ መጻሕፍቲ ባይዱ,
嚣中分别 求 出 ,我们 所学过的知识 里
解 :由对数的定义可知
=
,
N§ x = l o g , , N ( 1 ) 通过学习对数 ,使学生体会到 : 事 d= 于 是 一 2 在指 数式 d = N中, 叫做底 数 , 叫做 物间是普遍联系的。 1 0 . 练习 :求下列各式的值 指数 , Ⅳ叫做幂;在对数式 Ⅳ中,a叫做底数 , ( 2)通过练习 ,培养学生类比、分析、 ( 1 )l o g 5 2 5( 2)l o g 2 Ⅳ叫做真数 , x 叫做对数。 归纳能力和严谨的思维品质。 ( 3 )l g1 0 0 0 ( 4) l o g 0 . 0 0 1 ( 3 )当 a>0且 a≠ 1 时, >0 ,所 教学重点 : 以真数一定是大于 0的数。 对数 的概 念 解: ( 1) l o g s 2 5 = 2 2 . 常用对数和 自然对数 对数式与指数式的互化 ( 2 )l 0 & = _ 4 常用对数 :以 1 0为底的对数 叫做常用对 教学难点 : ( 3 )l g 1 0 0 0 = 3 数,并把 l 0 g 1 0 Ⅳ记作 l g No 对数概念的理懈 ( 4)l g 0 . 0 0 1 = - 3 自 然对 数:以无理数 e = 2 . 7 1 8 2 8 …为底数 对数性质的理解 1 1 . 从 上面的练习题中,你发现了什么规 的对数, 称为 自 然对数 , 并把 l o g , N记作 h l Ⅳ 。 新 课 导入 注意 :引入特殊记法后 ,以后 以 1 0为底 律吗? 1 . 知识回顾 答案 :l 0 岛 = g Ⅳ ,以无理数 e 为底数的对数 练习:截止至 1 9 9 9年底 ,我国人 口约 1 3 的对数一律写 l 1 2 . 练习 : 求下列各式的值。 律写 l n 帆 亿 ,如果 今后能将人 口年平均增长率控制在 ( 1 )2 嘞 I , ( 2 ) 3 l 0 E 3 , ( 3 ) 4 e g 4 4 , ( 4 ) e I M 3 . 例1 :将下列指数式化对数式。 1 %,那 么经过 2 0年后 ,我国人 口数最多是多 答案 : ( 1 )8 , ( 2) 9 ,( 3) 4 , ( 4) 4 ( 1 )5 4 = 6 2 5 ( 2)2 = 少? ( 精确到亿 ) 1 3 . 从上面的练习题里 ,你发现 了什么规 解 :设今后人 口年平均增长率为 l %,经 ( 3 ) 1 7 3 律吗? 过 年后 ,我国人 口数 为Y亿 ,1 9 9 9 年底 , 解 :由对数的定义可知 : 答案: 口 1 0 % = M我们把它叫做对数恒等式。 我过人 口数约为 1 3 亿, 1 4 . 练习 : 求下列各式的值 。 1 ( 1 3 ) 4 = l o g s 曼 ( 2 ) _ 6 - l 0 g 2 1 经 过一 年 (即 2 0 0 0年 ),人 口数 为: e= r l o g 1 5. 3 7 — ( 1 )l 0 岛( 1 o g . a), ( 2)l % ( 1 o g 2 1 6) 1 3 + 1 3 ×1 %= 1 3×( 1 + 1 ( 亿) ;经过两年 ( 即 4 . 练习 :将 下列指数式化为对数式 。 . 提示:明确哪个是底数 ,哪个是真数 2 0 0 1 年 ),人 口数为 :1 3 ×( 1 + 1 + 1 3× ( 1 + 1 ( 1 )2 3 = 8 ( 2) 2 3 2 ( 3) 2 - = 答案: ( 1 )0 ,( 2)2 % ) ×1 % = 1 3 × ( 1 + 1 ( 亿 );经过 三年 ( 即 1 5 . 求下列各式中 x 的值 ( 4) = 1 >0且 a≠ 1 ) 2 0 0 2 年 ), 人口 数为 :1 3 × ( 1 + 1 % ) 2 + 1 3 × ( I + 1 ( 1 ) k( k & ) = 1 ,( 2) ( k & ) ( 5 )a 1 = 口 >0且 a≠ 1 ) %) ×1 %= 1 3 ×( 1 + 1 % ( 亿) 解 : ( 1 ) x = 2 ( 2 )x = 2 答案 :
对数的概念教案最终版
对数的概念教案最终版一、教学目标:1. 让学生理解对数的定义和性质,能够正确地运用对数解决实际问题。
2. 培养学生对数的概念和运算能力,提高逻辑思维和解决问题的能力。
二、教学重点与难点:1. 重点:对数的定义、性质和对数运算。
2. 难点:对数的运算法则和应用。
三、教学准备:1. 教师准备PPT、教案、练习题等相关教学材料。
2. 学生准备笔记本、笔等学习用品。
四、教学过程:1. 导入:通过引入自然对数与指数函数的关系,激发学生学习对数的兴趣。
2. 新课导入:讲解对数的定义、性质和对数运算的基本法则。
3. 案例分析:举例讲解对数在实际问题中的应用,如人口增长、放射性衰变等。
4. 课堂练习:学生独立完成练习题,巩固所学知识。
5. 总结与拓展:对本节课内容进行总结,布置课后作业,引导学生思考对数在实际生活中的应用。
五、课后作业:1. 复习本节课所学内容,整理笔记。
2. 完成课后练习题,巩固对数的概念和运算。
3. 探索对数在其他领域的应用,如科学计算、经济学等。
4. 准备下一节课的学习内容。
六、教学评价:1. 通过课堂提问、练习题和课后作业,评估学生对对数概念的理解和运用能力。
2. 关注学生在解决问题时的思维过程,培养学生的创新意识和解决问题的能力。
3. 鼓励学生参与课堂讨论,提高学生的表达能力和合作精神。
七、教学策略:1. 采用直观演示、案例分析等教学方法,让学生形象地理解对数概念。
2. 通过循序渐进的练习,培养学生对数运算的熟练程度。
3. 创设问题情境,引导学生运用对数解决实际问题,培养学生的应用能力。
八、教学实践:1. 课堂讲解:详细讲解对数的定义、性质和对数运算的法则。
2. 练习巩固:安排适量练习题,让学生在课堂上完成,及时巩固所学知识。
3. 课后作业:布置针对性的课后作业,巩固对数的概念和运算。
九、教学反思:1. 课后认真总结课堂教学,反思教学效果,发现问题并及时调整教学方法。
2. 关注学生的学习反馈,了解学生对对数概念的理解程度,针对性地进行辅导。
对数教学设计优秀10篇
对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。
高一数学教案范文:对数函数教案6篇
高一数学教案范文:对数函数教案高一数学教案范文:对数函数教案精选6篇(一)教案主题:对数函数教学目标:1. 理解对数的定义和性质;2. 熟练掌握对数函数的图像和性质;3. 能够解决与对数函数相关的实际问题。
教学重点:1. 对数的定义和性质;2. 对数函数的图像和性质。
教学难点:对数函数的应用和解决实际问题。
教学过程:Step 1:导入通过一幅图片展示一张单调递增函数的图像,并引导学生思考这个函数的性质。
Step 2:激发兴趣提问:上述的函数图像中,这个函数的自变量是否能取任意实数?为什么?这个函数的值域是否有限制?存在哪些特殊的点,比如零点、极值点等?Step 3:引入概念引导学生思考自然对数的定义和性质,然后介绍对数的定义和常见的特殊情况。
Step 4:讲解对数函数的基本性质1. 对数函数的图像特点:单调递增、定义域、值域;2. 对数函数的零点和极值点;3. 对数函数的性质关系式:ln(xy) = ln(x) + ln(y),ln(x/y) = ln(x) - ln(y)。
Step 5:示例演练结合具体的实例,让学生通过计算和图像分析的方法,熟悉对数函数的表达式和性质。
Step 6:拓展应用通过一些实际问题的展示,引导学生运用对数函数解决实际问题,如指数增长问题、物质衰减问题等。
Step 7:总结提高总结对数函数的定义、性质和应用,并引导学生思考对数函数与指数函数的关系。
Step 8:作业布置要求学生完成与对数函数相关的习题,巩固所学内容。
评价与反馈:通过学生作业的批改和讲解,及时反馈学生对对数函数概念和应用的掌握程度。
教学资源:1. PPT;2. 教科书;3. 白板、彩色粉笔;4. 实际问题的案例材料。
教学延伸:对数函数在科学和工程领域中具有广泛的应用,可以通过提供更多实际问题的案例,培养学生运用对数函数分析和解决问题的能力。
高一数学教案范文:对数函数教案精选6篇(二)教学目标:1. 理解对数函数的概念及性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计示例
课题 对数的运算法则
教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.
2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.
3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神. 教学重点,难点
重点是对数的运算法则及推导和应用
难点是法则的探究与证明.
教学方法
引导发现法
教学用具
投影仪
教学过程
一. 引入新课
我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题. 如果看到b N a =log 这个式子会有何联想?
由学生回答(1)0>a (2) 1≠a (3)0>N (4)N a b
=.
也就要求学生以后看到对数符号能联想四件事.从式子中,可以总结出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.
二. 对数的运算法则(板书)
对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则. 由学生回答后教师可用投影仪打出让学生看:n m n m a a a +=⋅,n m n m
a a
a -=,mn n m a a =)(. 然后直接提出课题:若)log(log log ,0,0,1,0N M N M N M a a a a +=+>>≠>是否成立? 由学生讨论并举出实例说明其不成立(如可以举54116log 2log 22=+=+而518log )162(log 22≠=+),教师在肯定结论的正确性的同时再提出?log log =+N M a a 可提示学生利用刚才的反例,把=+16log 2log 225改写成?log 2应为32log 2,而32=216⨯,还可以让学生再找几个例子,39log 27log 3123log 9log 3333⨯=====+.之后让学生大胆说出发现有什么规律?
由学生回答应有MN N M a a a log log log =+成立.
现在它只是一个猜想,要保证其对任意N M ,都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?
学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.
证明:设q N p M a a ==log ,log 则N a M a q p ==,,由指数运算法则
得N M a
a a q
p q p ⋅==⋅+ q p MN a +=∴)(log ,
即N M MN a a a log log )(log +=. (板书)
法则出来以后,要求学生能 从以下几方面去认识:
(1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).
(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.
(3)若真数是三个正数,结果会怎样?很容易可得P N M MNP a a a a log log log )(log ++=. (条件同前)
(4)能否利用法则完成下面的运算:
例1:计算
(1))6432(log 2⨯ (2)5
1log 5log 33+ (3)3log 2log 66+ 由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:
)0,,1,0(?log >≠>=N M a a N
M a
. 可由学生说出N M N
M a a a log log log -=.得到大家认可后,再让学生完成证明. 证明:设q N p M a a ==log ,log 则N a M a q p ==,,由指数运算法则得N M a a
a q p q p ==- N M q p N M a a a log log log -=-=∴. 教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论? 有的学生可能会提出把
N M 看成N M 1⋅再用法则,但无法解决N a 1log 计算问题,再引导学生如何回避N
a 1log 的问题.经思考可以得到如下证法 N M N N N
M N M a a a a a a log log log log log log -=-+=.或证明如下 N N
M N N M M a a a a log log )(log log +=⋅=,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)
请学生完成下面的计算 (1)100
10lg (2)2lg 20lg -. 计算后再提出刚才没有解决的问题即?log 1log 1==-N N a a
并将其一般化改为 )0,1,0(?log >≠>=M a a M n a 学生在说出结论的同时就可给出证明如下:
设,log p M a =则,M a p =pn n p n a a M ==∴)(,M n M a n a log log ⋅=∴.教师还可
让学生思考是否还有其它证明方法,可在课下研究.
将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则
(1) 了解法则的由来.(怎么证)
(2) 掌握法则的内容.(用符号语言和文字语言叙述)
(3) 法则使用的条件.(使每一个对数都有意义)
(4) 法则的功能.(要求能正反使用)
三.巩固练习
例2.计算
(1)27log 3log 99+ (2)5100lg (3)5lg 241lg
- (4))44(log 2+ (5)100
lg 100000lg (6))24(log 572⨯ 解答略
对学生的解答进行点评.
例3.已知b a ==5log ,3log 22,用b a ,的式子表示
(1)6.0log 2 (2)30log 2 (3) 1253log 4
2. 由学生上黑板写出求解过程.
四.小结
1.运算法则的内容
2.运算法则的推导与证明
3.运算法则的使用
五.作业略。