电磁学部分习题解答

合集下载

电磁学部分习题解答

电磁学部分习题解答

电磁学部分习题解答一、判断题1、磨擦起电只能发生在绝缘体上( × )2、试探电荷的电量0q 应尽可能小,其体积应尽可能小( √ )3、一对量值相等的正负点电荷总可以看作是电偶极( × )4、电场线如图所示,P 点电势比Q 点电势低 ( √ )5、如果库仑定律公式分母中r 的指数不是2,而是其它数,则高斯定理不成立( √ )6、电荷沿等势面移动时,电场力永远不作功( √ )7、由公式0εσ=E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该点场强仅由该点附近的导体上的面上的面电荷产生的。

( × )8、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。

( × )9、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。

( × )10、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。

( √ ) 11、通过某一截面上的电流密度0=j ,通过该截面的电流强度必为零 ( √)12、如果电流是由几种载流子的定向运动形成的,则每一种载流子的定向运动对电流都有贡献(√ ) 13、若导体内部有电流,则导体内部电荷体密度一定不等于零( × ) 14、在全电路中,电流的方向总是沿着电势降落的方向( × )15、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元l d I0放在空间任意一点都不受力,则该空间不存在磁场(× )16、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用nI 0μ表示( √ ) 17、安培环路定理反映了磁场的有旋性( × )18、对于长度为L 的载流导线来说,可以直接用安培定理求得空间各点的B( × )19、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律( √ ) 20、楞次定律实质上是能量守恒定律的反映( √ ) 22、自感系数IL φ=,说明通过线圈的电流强度越小,自感系数越大( × )24、对一定的点,电磁波中的电能密度和磁能密度总相等( √ )25、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为πμ1620I ( √ ) 26、在真空中,只有当电荷作加速运动时,它才可能发射电磁波(√ )27、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的rε1倍( × )28、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷( √) 29、电介质可以带上自由电荷,但导体不能带上极化电荷( √ )30、电位移矢量D 仅决定于自由电荷( × )31、通过某一截面上的电流密度0=j ,通过该截面的电流强度必为零( √)32、如果电流是由几种载流子的定向运动形成的,则每一种载流子的定向运动对电流都有贡献(√) 33、若导体内部有电流,则导体内部电荷体密度一定不等于零( × ) 34、在全电路中,电流的方向总是沿着电势降落的方向( × )二、单选题1、将一带电量为Q 的金属小球靠近一个不带电的金属导体时,则有( C ) (A )金属导体因静电感应带电,总电量为-Q(B )金属导体因感应带电,靠近小球的一端带-Q ,远端带+Q (C )金属导体两端带等量异号电荷,且电量q<Q(D )当金属小球与金属导体相接触后再分离,金属导体所带电量大于金属小球所带电量2、两块无限大平行面上的电荷面密度分别为σ±,图中所示的三个区域的电场强度大小为( D )(A ) 02εσ=ⅠE 0εσ=ⅡE 02εσ=ⅢE (B ) 02εσ=ⅠE 0 E Ⅱ= 02εσ=ⅢE(C ) 0εσ=ⅠE 0 E Ⅱ= 0εσ=ⅢE(D ) 0=ⅠE 0εσ=ⅡE 0=ⅢE3、关于场强线有以下几种说法( C ) (A )电场线是闭合曲线 (B )任意两条电场线可以相交 (C )电场线的疏密程度代表场强的大小 (D )电场线代表点电荷在电场中的运动轨迹4、两个点电荷21q q 和固定在一条直线上。

电磁学第二版习题答案

电磁学第二版习题答案

电磁学-第二版-习题答案第二版《电磁学》的习题答案:1. 第一章:电荷和电场习题1:假设有两个电荷,一个带正电量Q1,另一个带负电量Q2,在他们之间的距离为r1。

如果将Q1的电荷减小到原来的一半,同时将Q2的电荷加倍,并将它们之间的距离改为r2,那么这两个电荷之间的相互作用力是怎样改变的?解答:根据库伦定律,两个电荷之间的相互作用力正比于它们的电荷量乘积,反比于它们之间的距离的平方。

即F∝(Q1Q2)/r^2。

根据题目,Q1变为原来的一半,Q2变为原来的两倍,r由r1变为r2。

代入上述关系式,可得新的相互作用力F'为:F'∝((Q1/2)*(Q2*2))/(r2^2)。

化简上式,可得F'∝(Q1Q2)/(r2^2)。

由上式可知,新的相互作用力与原来相互作用力相等。

即新旧相互作用力大小相同。

习题2:有一组平行板电容器,两板之间的距离为d,电容的电极面积为A。

当电容器充满理想电介质时,电容器的电容是原来的多少倍?解答:当电容器充满理想电介质时,电容的电容量由电容公式C=εA/d得到。

其中,ε为电介质的相对介电常数。

而当电容器未充满电介质时,电容的电容量为C0=ε0A/d。

其中,ε0为真空的介电常数。

所以,电容器充满电介质时,电容与未充满时的电容C0比较,即C/C0=ε/ε0。

所以,电容器电容是原来的ε/ε0倍。

2. 第二章:电荷的连续分布习题1:在距离线段中点为R的的P点,取出一个长度为l的小线段,小线段的位置如何改变时,该小线段对P点电势的贡献较大?解答:根据电场电势公式,P点电势由该小线段的电荷贡献决定。

即V=k(q/R),其中k为电场常量,q为该小线段的电荷量,R为该小线段到P点的距离。

所以,小线段对P点电势的贡献较大的情况是,当该小线段长度l较大且该小线段离P点的距离R较小的时候,即小线段越靠近P点且长度越大,对P点电势的贡献越大。

习题2:线电荷的线密度为λ,长度为L,P点到线电荷的距离为d。

电磁学试题(含答案)

电磁学试题(含答案)

一、单选题1、 如果通过闭合面S 的电通量e Φ为零,则可以肯定A 、面S 内没有电荷B 、面S 内没有净电荷C 、面S 上每一点的场强都等于零D 、面S 上每一点的场强都不等于零2、 下列说法中正确的是A 、沿电场线方向电势逐渐降低B 、沿电场线方向电势逐渐升高C 、沿电场线方向场强逐渐减小D 、沿电场线方向场强逐渐增大3、 高压输电线在地面上空m 25处,通有A 1023⨯的电流,则该电流在地面上产生的磁感应强度为A 、T 104.15-⨯B 、T 106.15-⨯C 、T 1025-⨯D 、T 104.25-⨯4、 载流直导线和闭合线圈在同一平面内,如图所示,当导线以速度v 向左匀速运动时,在线圈中A 、有顺时针方向的感应电流B 、有逆时针方向的感应电C 、没有感应电流D 、条件不足,无法判断5、 两个平行的无限大均匀带电平面,其面电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσB 、0εσ C 、02εσ D 、0 6、 一束α粒子、质子、电子的混合粒子流以同样的速度垂直进入磁场,其运动轨迹如图所示,则其中质子的轨迹是A 、曲线1B 、曲线2C 、曲线3D 、无法判断 7、 一个电偶极子以如图所示的方式放置在匀强电场E 中,则在电场力作用下,该电偶极子将A 、保持静止B 、顺时针转动C 、逆时针转动D 、条件不足,无法判断8、 点电荷q 位于边长为a 的正方体的中心,则通过该正方体一个面的电通量为A 、0B 、0εqC 、04εqD 、06εq 9、 长直导线通有电流A 3=I ,另有一个矩形线圈与其共面,如图所示,则在下列哪种情况下,线圈中会出现逆时针方向的感应电流?A 、线圈向左运动B 、线圈向右运动C 、线圈向上运动D 、线圈向下运动10、 下列说法中正确的是A 、场强越大处,电势也一定越高3B 、电势均匀的空间,电场强度一定为零C 、场强为零处,电势也一定为零D 、电势为零处,场强一定为零11、 关于真空中静电场的高斯定理0εi S q S d E ∑=∙⎰ ,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成立;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E 一定是电荷i q ∑激发的;D. 积分式中的E 是由高斯面内外所有电荷激发的。

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析

高考物理电磁学大题练习20题Word版含答案及解析方向与图示一致。

金属棒的质量为m,棒的左端与导轨相接,右端自由。

设金属棒在磁场中的电势能为0.1)当磁场的磁感应强度为B1时,金属棒在匀强磁场区域内做匀速直线运动,求金属棒的速度和通过电阻的电流强度。

2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,求金属棒的最大速度和通过电阻的最大电流强度。

答案】(1) v=B1d/2m。

I=B1d2rR/(rL+dR) (2) vmaxBmaxd/2m。

ImaxBmaxd2rR/(rL+dR)解析】详解】(1)由洛伦兹力可知,金属棒在匀强磁场区域内受到向左的洛伦兹力,大小为F=B1IL,方向向左,又因为金属棒在匀强磁场区域内做匀速直线运动,所以受到的阻力大小为F1Fr,方向向右,所以有:B1IL=Fr解得:v=B1d/2m通过电阻的电流强度为:I=B1d2rR/(rL+dR)2)当磁场的磁感应强度随时间变化时,金属棒受到感生电动势的作用,其大小为:e=BLv所以金属棒所受的合力为:F=BLv-Fr当合力最大时,金属棒的速度最大,即:BLvmaxFr=0解得:vmaxBmaxd/2m通过电阻的电流强度为:ImaxBmaxd2rR/(rL+dR)题目一:金属棒在电动机作用下的运动一根金属棒在电动机的水平恒定牵引力作用下,从静止开始向右运动,经过一段时间后以匀速向右运动。

金属棒始终与导轨相互垂直并接触良好。

问题如下:1) 在运动开始到匀速运动之间的时间内,电阻R产生的焦耳热;2) 在匀速运动时刻,流过电阻R的电流方向、大小和电动机的输出功率。

解析:1) 运动开始到匀速运动之间的时间内,金属棒受到电动机的牵引力向右运动,电阻R中会产生电流。

根据欧姆定律和焦耳定律,可以得到电阻R产生的焦耳热为:$Q=I^2Rt$,其中I为电流强度,t为时间。

因此,我们需要求出这段时间内的电流强度。

根据电动机的牵引力和电阻R的阻值,可以得到电路中的总电动势为$E=FL$,其中F为电动机的牵引力,L为金属棒的长度。

习题册_II1_电磁学+详细解答

习题册_II1_电磁学+详细解答

磁感应强度、毕-萨定律1.有一个圆形回路1及一个正方形回路2,圆的直径和正方形的边长相等。

二者中通有大小相等的电流,它们在各自中心产生的磁感应强度的大小之比21/B B 为(A )0.90 (B )1.00 (C )1.11 (D )1.222.如图,边长为a 的正方形的四个角上固定有四个电量均为q 的点电荷。

此正方形以角速度ω绕过AC 轴旋转时,在中心O 点产生的磁感应强度大小为1B ;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感应强度大小为2B ,则1B 与2B 间的关系为 (A )1B =2B (B )1B =22B(C )1B =212B (D )1B =412B3.一弯曲的载流导线在同一平面内,形状如图(O 点是半径为1R 和2R 的两个圆弧的共同圆心,电流自无限远来到无限远去),则O 点的磁感应强度的大小 是 。

4.在xy 平面内有两根互相绝缘、分别通有电流I3和I 的长直导线,设两导线互相垂直(如图),则在xy 平面内磁感应强度为零的点的轨迹方程为 。

x答案在后5.均匀带电直线AB ,电荷线密度为 ,绕垂直于直线的轴O 以角速度ω匀速转动(线的形状不变,O 点在AB 延长线上),求: (1)O 点的磁感应强度B ,(2)磁矩m p ,(3)若a >>b ,求B 及m p。

6.如图,半径为a ,带正电荷且线密度为λ的半圆,以角速度ω绕轴O 'O ''匀速旋转,求:(1)O 点的B,(2)旋转的带电半圆的磁矩m p。

(积分公式 201sin 2d πθθπ=⎰)7.一半径为R 的带电塑料圆盘,其中有一半径为r 的阴影部分均匀带正电荷,面密度为+σ,其余部分均匀带负电荷,面密度为-σ。

当圆盘以角速度ω旋转时,测得圆盘中心O 点的磁感应强度为零,R 与r 满足什么关系?8.将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感应强度的大小。

电磁学课后部分习题答案解析

电磁学课后部分习题答案解析

电磁学课后部分习题答案解析1.2.2 两个同号点电荷所带电荷量之和为Q.在两者距离一定的前提下,他们带电荷量各为多少时相互作用力最大?解答:设一个点电荷的电荷量为1q q =,另一个点电荷的电荷量为()2q Q q =-,两者距离为r,则由库仑定律求得两个电电荷之间的作用力为()204q Q q F rπε-=令力F 对电荷量q 的一阶导数为零,即()2004Q q qdF dq r πε--== 得122Qq q == 即取 122Qq q ==时力F 为极值,而222202204Q q d Fdq rπε==-<故当 122Qq q ==时,F 取最大值 1.2.6 两个电荷量相等的同性点电荷相距为2a ,在两者连线的中垂面上置一试探点电荷0q , 求0q 受力最大的点的轨迹.解答:如图(a)所示,设有两个电荷量为q 的点电荷 ,坐标分别为(-a ,0,0)和(a ,0,0),试探点电荷0q 置于二者连线的中垂面Oyz 上坐标为(0,y,z).r y j zk =+ 为原点O 至试探点电荷0q 的失径,距离为r = ,如图(b)所示.根据对称性, 所受合力的方向与失径r 平行或反平行.其大小为()003222222sin 2q q q qrF k k r a r a α==++ 求上式的级值,去F 对r 的一阶导数并令其为零,的方程 ()22230r r a -++=求得22ar =求二阶导数并带入22ar =,得()272222022120a r d Fa kqq r a rdr -==-+<说明此时F 取极大值因此,0q 受力最大的点的轨迹是在中垂面上的圆心坐标为(0,0,0)半径为2a的圆. 1.3.6 附图中均匀带电圆环的半径为R,总电荷量为q (1)求数轴线上离环心O 为x 处的场强E (2) 轴线上何处场强最大?其值是多少? (3)大致画出E-x 曲线.解答:设圆环的带电线密度为 2q Rηπ=如图(a)所示,圆环一小段dl 到轴上一点P 的距离为r ,即有dq dl η=,cos xrα=,该小段对P 点产生的场强大小为 22dqdl dE kk r r η== 根据对称性,P 点场强仅有x 分量, d E 在x 轴的分量大小为()3222cos x xdldE dE kRxηα==+()()()33322222222200224x xRxqx E dE kR RxR xR xηηπεπε====+++⎰P 点场强为()322204qx E iR xπε=+(2)应求dE dx并令其值为0,求得当22R x =,E 取极值,而2220R x d E dx =<,根据对称性,位于轴上22R x =±点的场强取最大值,其值为 2063E i Rπε=±(3)如图(b )所示。

电磁学考试题库及答案详解

电磁学考试题库及答案详解

电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。

A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。

2. 电场强度的方向是()。

A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。

3. 电势能与电势的关系是()。

A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。

4. 电容器的电容C与板间距离d和板面积A的关系是()。

A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。

5. 磁场对运动电荷的作用力遵循()。

A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。

二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。

2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。

电磁学期末考试题及答案

电磁学期末考试题及答案

电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 电流通过导线时,导线周围会产生______。

答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。

答案:V/R4. 电荷的定向移动形成了______。

答案:电流5. 电磁波的传播速度在真空中是______。

答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。

电磁学习题答案

电磁学习题答案

电磁学习题答案电磁学习题答案第一章 静电场一、选择题(每题三分)1) 将一个试验电荷Q (正电荷)放在带有正电荷的大导体附近P 点处,测得它所受力为F ,若考虑到电量Q 不是足够小,则:()A 、F/Q 比P 点处原先的场强数值大 C 、F/Q 等于原先P 点处场强的数值B 、F/Q 比P 点处原先的场强数值小 D 、F/Q 与P 点处场强数值关系无法确定 答案(B )·P+Q2) 图中所示为一沿X 轴放置的无限长分段均匀带电直线,电荷线密度分别为+λ(X<0)和一个-λ(X>0),则OXY 坐标平面上点(0,a )处的场强E为( )A 、0B 、a i 0πελC 、a 4i 0πελD 、a 4)j i (0πε+λ3) 图中所示曲线表示球对称或轴对称静电场的某一物理量随径向距离r 那方面内容(E 为电场强度的大小,U 为静电势)()A 、半径为R 的无限长均匀带电圆柱体电场的E-r 关系 C 、半径为R 的均匀带正电球体电场的U-r 关系B 、半径为R 的无限长均匀带电圆柱面电场的E-r 关系 D 、半径为R 的均匀带正电球面电场的U-r 关系答案(B )4) 有两个点电荷电量都是+q ,相距2a,今以左边的点电荷为球心,以a 为半径作一球形高斯面,在球面上取两块相等的小面积1S 和2S 的电场强度通量分别为1ϕ和 2ϕ,通过整个球面的电场强度通量为3ϕ,则()5) 已知一高斯面所包围的体积内电量代数和0=∑iq ,则可肯定()A 、高斯面上各点场强均为零 C 、穿过整个高斯面的电通量为零B 、穿过高斯面上每一面元的电通量为零 D 、以上说法都不对 答案(C ) 6) 两个同心带电球面,半径分别为)(,b a b a R R R R <,所带电量分别为b a Q Q ,。

设某点与球心相距r,当b a R r R <<时,该点的电场强度的大小为() A 、2ba 0rQ Q 41+∙πε B 、2ba 0rQ Q 41-∙πε C 、)R Q r Q (412bb 2a 0+∙πε D 、2a 0r Q 41∙πε 答案(D )7) 如图所示,一个带电量为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量为() A 、6qε B 、12q ε C 、24q ε D 、48q ε 答案(C )8) 半径为R 的均匀带电球面,若其电荷密度为σ,则在距离球面R 处的电场强度为()A 、0εσ B 、02εσC 、04εσD 、8εσ答案(C )9) 高斯定理⎰⎰ερ=∙vs dV S d E ()A 、适用于任何静电场 C 、只适用于具有球对称性,轴对称性和平面对称性的静电场B 、只适用于真空中的静电场 D 、只适用于虽然不具有(C)中所述的对称性,但可以找到合适的高斯面的静电场 答案(B ) 10) 关于高斯定理的理解正确的是()A 、 如果高斯面上处处E为零,则该面内必无电荷 C 、如果高斯面内有许多电荷,则通过高斯面的电通量必不为零B 、 如果高斯面内无电荷,则高斯面上处处E为零 D 、如果高斯面的电通量为零,则高斯面内电荷代数和必为零 答案(D )11) 如图两同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2Q ,则在内球面内距离球心为r 处的P 点场强大小E 为() A 、2021r 4Q Q πε+ B 、+πε2101R 4Q 2202R 4Q πε C 、201r 4Q πε D 、0 答案(D)12)若均匀电场的场强为E,其方向平行于半径为R 的半球面的轴,则通过此半球面的电通量Φ为()13) 下列说法正确的是()A 、 闭合曲面上各点场强为零时,面内必没有电荷 C 、闭合曲面的电通量为零时,面上各点场强必为零B 、 闭合曲面内总电量为零时,面上各点场强必为零 D 、通过闭合曲面的电通量仅决定于面内电荷 答案(D )14) 在空间有一非均匀电场,其电力线分布如图,在电场中作一半径为R 的闭合球面S ,已知通过球面上某一面元S ∆的电场线通量为e ∆Φ,则通过该球面其余部分的电场强度通量为()A 、e ∆Φ-B 、e S r ∆Φ⋅∆24π C 、e SSr ∆Φ⋅∆∆-24π D 、0 答案(15) 在电荷为q +的电场中,若取图中点P 处为电势零点,则M 点的电势为()16)下列说法正确的是()A 、 带正电的物体的电势一定是正的 C 、带负电的物体的电势一定是负的B 、 电势等于零的物体一定不带电 D 、物体电势的正负总相对电势参考点而言的 答案(D )17) 在点电荷q 的电场中,选取以q 为中心,R 为半径的球面上一点P 处作电势零点,则与点电荷q 距离为r 的P ‘点电势为()A 、r 4q 0πε B 、)R 1r 1(4q 0-πε C 、)R r (4q 0-πε D 、)R1r 1(4q 0-πε-答案(B )18) 半径为R 的均匀带电球面,总电量为Q ,设无穷远处的电势为零,则球内距球心为r 的P 强度和 电势为() A 、E=0, U=r 4Q 0πε B 、 E=0, U=R 4Q 0πε C 、E=2r 4Q0πε. U=r 4Q 0πε D 、E=2r 4Q0πε答案(B )19) 有N 个电量为q 布,比较在这两种情况下在通过圆心O 并垂直与圆心的Z 轴上任意点P 的 场强与电势,则有() A 、场强相等,电势相等B 、场强不相等,电势不相等C 、场强分量z E 相等,电势相等D 、场强分量z E 相等,电势不相等答案(C )20)在边长为a 正方体中心处放置一电量为Q 的点电荷,设无穷远处为电势零点,则在一个侧面的中心处的电势为()A 、a 4Q 0πε B 、R 2Q 0πε C 、R Q0πε D 、R22Q 0πε答案(B )21)如图两个同心的均匀带电球面,内球面半径为1R ,电量1Q ,外球面半径为2R ,电量2QA 、E R 2π B 、E R 22π C 、E R 221π D 、E R 22πE 、22ERπ 答案(A )A 、a 4q 0πε B 、a8q 0πε C 、a 4q 0πε-D 、a8q0πε- 答案(D )电势U为()A、r4QQ21πε+B、11R4Qπε+22R4QπεC 、0 D、11R4Qπε答案(B)22)真空中一半径为R的球面均匀带电为Q,,在球心处有一带电量为q的点电荷,如图设无穷远处为电势零点,则在球内离球心O距离为r的P点处的电势为()A、r4QπεB、)RQrq(41+πεC、r4qQπε+D、)RqQrq(41-+πε答案(B)23)当带电球面上总的带电量不变,而电荷的分布作任意改变时,这些电荷在球心出产生的电场强度E和电势U将()A、E不变,U不变 B、E不变,U改变 C、E改变,U不变 D、E改变,U也改变答案(C)24)真空中有一电量为Q的点电荷,在与它相距为r的A点处有一检验电荷q,现使检验电荷q从A 点沿半圆弧轨道运动到B点,如图则电场场力做功为()A、q2rr4Q22⋅π⋅πεB、rq2r4Q2⋅πεC、rqr4Q2π⋅πεD、0 答案(D)25)两块面积为S的金属板A 和B彼此平行放置,板间距离为d(d远远小于板的线度),设A板带电量1q, B 板带电量2q,则A,B板间的电势差为()A、S2qq21ε+B、dS4qq21⋅ε+C、dS2qq21⋅ε-D、dS4qq21⋅ε-答案(C)26)图中实线为某电场中电力线,虚线表示等势(位)面,由图可以看出()A、cE>>baEEcU>>baUU C 、cE>>baEEcU<<baUUB、cE<<baEEcU<<baUU D、cE<<baEEcU>>baUU答案(A)27)面积为S的空气平行板电容器,极板上分别带电量为q±,若不考虑边缘效应,则两极板间的相互作用力为()A、Sq2ε-B、S2q2ε-C、22S2qεD、22Sqε答案(B)28)长直细线均匀带电。

电磁学练习题积累(含部分答案)

电磁学练习题积累(含部分答案)

电磁学练习题积累(含部分答案)⼀. 选择题(本⼤题15⼩题,每题2分)第⼀章、第⼆章1. 在静电场中,下列说法中哪⼀个是正确的? [ ](A) 带正电荷的导体,其电位⼀定是正值(B) 等位⾯上各点的场强⼀定相等 (C) 场强为零处,电位也⼀定为零(D) 场强相等处,电位梯度⽮量⼀定相等2. 在真空中的静电场中,作⼀封闭的曲⾯,则下列结论中正确的是[](A)通过封闭曲⾯的电通量仅是⾯内电荷提供的(B) 封闭曲⾯上各点的场强是⾯内电荷激发的(C) 应⽤⾼斯定理求得的场强仅是由⾯内电荷所激发的(D) 应⽤⾼斯定理求得的场强仅是由⾯外电荷所激发的3. 关于静电场下列说法中正确的是 [ ](A) 电场和试探电荷同时存在和消失 (B) 由E =F /q 知道,电场强度与试探电荷成反⽐(C) 电场强度的存在与试探电荷⽆关(D) 电场是试探电荷和场源电荷共同产⽣的4. 下列⼏个说法中正确的是: [ ](A) 电场中某点场强的⽅向,就是将点电荷放在该点所受电场⼒的⽅向(B) 在以点电荷为中⼼的球⾯上,由该点电荷所产⽣的场强处处相同(C) 场强⽅向可由E =F /q 定出,其中q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场⼒(D) 以上说法全不对。

5. ⼀平⾏板电容器中充满相对介电常数为ε的各向同性均匀电介质。

已知介质两表⾯上极化电荷⾯密度为 ±σ ',则极化电荷在电容器中产⽣的电场强度 [ ](B) 02εσ' (C) 0εεσ' (D) εσ' 6. 在平板电容器中充满各向同性的均匀电介质,当电容器充电后,介质中 D 、E 、P 三⽮量的⽅向将是 [ ](A) D 与E ⽅向⼀致,与P ⽅向相反(B) D 与E ⽅向相反,与P ⽅向⼀致(C) D 、E 、P 三者⽅向相同(D) E 与P ⽅向⼀致,与D ⽅向相反7. 在⼀不带电荷的导体球壳的球⼼处放⼀点电荷,并测量球壳内外的场强分布,如果将此点电荷从球⼼移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: [ ](A) 球壳内、外场强分布均⽆变化(B) 球壳内场强分布改变,球壳外的不变(C) 球壳外场强分布改变,球壳内的不变(D) 球壳内、外场强分布均改变8. ⼀电场强度为E 的均匀电场,E 的⽅向与x 轴正向平⾏,如图所⽰,则通过图中⼀半径为R 的半球⾯的电场强度通量为 [ ](A) 2R E π;(B) 212R E π; (C) 22R E π;(D ) 0。

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理电磁学练习题及答案

大学物理电磁学练习题及答案

大学物理电磁学练习题及答案题目一:1. 电场和电势a) 一个均匀带电圆环上各点的电势如何?答:电场和电势是描述电荷之间相互作用的物理量。

对于一个均匀带电圆环上的各点,其电势是相同的,因为圆环上的每个点与圆心的距离相等且圆环上的电荷密度是均匀分布的。

所以,圆环上任意一点的电势与其它点是等势的。

b) 电势能和电势的关系是什么?答:电势能是电荷在电场中由于位置而具有的能量,而电势则是描述电荷因所处位置而具有的势能单位的物理量。

电势能和电势之间的关系可以用公式:电势能 = 电荷 ×电势来表示。

题目二:2. 高斯定律a) 高斯定律适用于哪些情况?答:高斯定律适用于具有球对称性、圆柱对称性和平面对称性的问题,其中球对称性是最常见和最简单的情况。

b) 高斯定律的数学表达式是什么?答:高斯定律的数学表达式是∮E·dA = ε₀q/ε,其中∮E·dA表示电场E通过闭合曲面积分得到的通量,ε₀是真空介电常数,q表示闭合曲面内的电荷总量,ε表示物质的介电常数。

题目三:3. 电动力学a) 什么是电感?答:电感是指电流在变化时产生的电磁感应现象所引起的抗拒电流的能力。

电感的单位是亨利(H)。

b) 电感的大小与什么因素有关?答:电感的大小与线圈的匝数、线圈的形状以及线圈中的铁芯材料的性质有关。

线圈匝数越多,电感越大;线圈形状越复杂,电感越大;线圈中的铁芯材料磁导率越大,电感越大。

题目四:4. 交流电路a) 直流电和交流电有什么区别?答:直流电是指电流方向始终保持不变的电流,而交流电是指电流方向以一定频率周期性地变化的电流。

直流电是恒定电流,交流电是变化电流。

b) 交流电流的形式有哪些?答:交流电流的形式可以是正弦波、方波、锯齿波等。

其中,正弦波是最常见和最基本的交流电流形式,用于描述交流电路中电压和电流的变化规律。

以上是关于大学物理电磁学练习题及答案的一些内容。

希望这些问题和答案能够帮助你更好地理解和学习物理电磁学的知识。

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析

电磁学第四版赵凯华习题答案解析第一章:电磁现象和电磁场基本定律
1. 问题:什么是电磁学?
答案:电磁学是研究电荷和电流相互作用所产生的现象和规律的科学。

2. 问题:什么是电磁场?
答案:电磁场是指由电荷和电流引起的空间中存在的物理场。

3. 问题:什么是电场?
答案:电场是指电荷在周围空间中所产生的物理场。

4. 问题:什么是磁场?
答案:磁场是指电流或磁体在周围空间中所产生的物理场。

5. 问题:电磁场有哪些基本定律?
答案:电磁场的基本定律有高斯定律、安培定律、法拉第定律和麦克斯韦方程组。

第二章:静电场
1. 问题:什么是静电场?
答案:静电场是指电荷分布不随时间变化的电场。

2. 问题:什么是电势?
答案:电势是指单位正电荷在电场中所具有的能量。

3. 问题:什么是电势差?
答案:电势差是指在电场中从一个点到另一个点所需做的功。

4. 问题:什么是电势能?
答案:电势能是指带电粒子在电场中由于位置改变而具有的能量。

5. 问题:什么是电容?
答案:电容是指导体上带电量与导体电势差之间的比值。

以上是电磁学第四版赵凯华习题的部分答案解析。

详细的解析请参考教材。

(完整版)电磁学练习题及答案

(完整版)电磁学练习题及答案

Prλ2λ1R 1 R 21.坐标原点放一正电荷Q ,它在P 点(x =+1,y =0)产生的电场强度为E ρ。

现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使P 点的电场强度等于零? (A) x 轴上x >1。

(B) x 轴上0<x <1。

(C) x 轴上x <0。

(D) y 轴上y >0。

(E) y 轴上y <0。

[ C ]2.个未带电的空腔导体球壳,内半径为R 。

在腔内离球心的距离为d 处( d < R ),固定一点电荷+q ,如图所示. 用导线把球壳接地后,再把地线撤去。

选无穷远处为电势零点,则球心O 处的电势为 (A) 0 (B)dq04επ(C)R q 04επ- (D) )11(40Rd q -πε [ D ] 3.图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面,均匀带电,沿轴线方向单位长度上的所带电荷分别为λ1和λ2,则在外圆柱面外面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r 0212ελλπ+ (B) ()()20210122R r R r -π+-πελελ(C) ()20212R r -π+ελλ(D) 20210122R R ελελπ+π [ A ]4.荷面密度为+σ和-σ的两块“无限大”均匀带电的平行平板,放在与平面相垂直的x 轴上的+a 和-a 位置上,如图所示。

设坐标原点O 处电势为零,则在-a <x <+a 区域的电势分布曲线为 [ C ]5.点电荷+q 的电场中,若取图中P 点处为电势零点 , 则M 点的电势为(A)a q 04επ (B) a q08επ(C) a q 04επ- (D) aq08επ- [ D ]yxO +Q P(1,0)R O d +q+a aO -σ +σO-a +ax U (A)O -a +a xUO -a +a x U (C)O -a +ax U (D)aa+qPM6.图所示,CDEF 为一矩形,边长分别为l 和2l 。

电磁学习题解答

电磁学习题解答
电磁学习题解答
新疆大学物理系
亚森江I, 例1. 载流长直导线,其电流强度为 ,试计算导线旁 任意一点P的磁感应强度 任意一点 的磁感应强度 B = ? dB 方向为 Idl × r y θ 根据毕——萨定理 解:根据毕 萨定理 2 取任意电流元 Idl 其在P点产生的磁场为 点产生的磁场为: 其在 点产生的磁场为: ro ×P o µ o Idl sinθ dB = l θr 4π r 2 Idl θ 方向垂直纸面向里。 各电流元产生的 dB 方向垂直纸面向里。 1
q µ oq σ= ω ∴B = 2π R πR 2 R 2 (2) Pm = ∫ dPm = ∫ SdI = ∫ π r σω rdr = 1 πσω R 4 4 0 2 qR ω ∴ Pm = 12 4
µoI R2 B=? 例5. 一长螺线管轴线上的磁场 B= 2 r3 已知:导线通有电流I,单位长度上匝数为n。 已知:导线通有电流 ,单位长度上匝数为 。 在管上取一小段dl 解:在管上取一小段 , 电流为dI=nIdl , 电流为 该电流在P点的磁场为 点的磁场为: 该电流在 点的磁场为: µo R2nIdl r 2 = l 2 + R 2 dB = 2 + R2 )3 2 r= R 2(l sin θ R dθ dl ... . ... . . . .. .... . ... . .. ... l = − Rctgθ → dl = r θ sin 2θ θ θ µ o nI l P 则: = dB sin θ d θ 2 θ2µ o nI B = ∫ dB = ∫ sinθ dθ θ1 2 µ o nI (cosθ 1 − cosθ 2 ) =
2( x 2 + R 2 ) 3 / 2
轴正向! 方向沿 x 轴正向!

电磁学习题答案1-3章

电磁学习题答案1-3章

第一章 习题一1、电量Q 相同的四个点电荷置于正方形的四个顶点上,0点为正方形中心,欲使每个顶点的电荷所受电场力为零,则应在0点放置一个电量q =-(1+2√2)Q/4 的点电荷。

2、在点电荷系的电场中,任一点的电场强度等于各点电荷单独在该点产生场强的矢量和,这称为电场强度叠加原理。

3、一点电荷电场中某点受到的电场力很大,则该点的电场强度E :( C )(A)一定很大 (B)一定很小 (C)可能大也可能小4、两个电量均为+q 的点电荷相距为2a ,O 为其连线的中点,求在其中垂线上场强具有极大值的点与O 点的距离R 。

解法一:22020214141aR qπεr q πεE E +=== 21E E E+=,θE θE θE E cos 2cos cos 121=+=2222042a R R a R q πε++=()2/32202a R R πεq +=E 有极值的条件是:()0222/522220=+-=a R R a πεq dR dE 即 0222=-R a ,解得极值点的位置为:a R 22=∵ ()2/722220223223a R a R πεqR dR E d +-=,而 0398402/222<-==aπεqdR E d a R ∴ 中垂线上场强具有极大值的点与O 点的距离为a R 22= 且 ()202/3220m a x 332/2/2aπεq a a a πεq E =+=解法二:θaq πεr q πεE E 2202021sin 4141===,21E E E +=+qθE θE θE E cos 2cos cos 121=+=θθaq πεcos sin 21220=)cos (cos 21320θθaq πε-=E 有极值的条件是:0)sin 3sin 2(2320=-=θθaπεq θd dE E 有极值时的θ满足:31cos 32sin 1cos 0sin 2211====θ,θ;θ,θ )cos 7cos 9(2)cos sin 9cos 2(232022022θθaπεq θθθa πεq θd E d -=-= 0)cos 7cos 9(22011320221>=-==aπεq θθa πεq θd E d θθ 032)cos 7cos 9(22022320222<-=-==aπεq θθa πεq θd E d θθ 可见 θ = θ2时,E 有极大值。

高中物理《电磁学》练习题(附答案解析)

高中物理《电磁学》练习题(附答案解析)

高中物理《电磁学》练习题(附答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列哪种做法不属于防止静电的危害()A.印染厂房中保持潮湿B.油罐车的尾部有一铁链拖在地上C.家用照明电线外面用一层绝缘胶皮保护D.在地毯中夹杂一些不锈钢丝纤维2.避雷针能起到避雷作用,其原理是()A.尖端放电B.静电屏蔽C.摩擦起电 D.同种电荷相互排斥3.2022年的诺贝尔物理学奖同时授予给了法国物理学家阿兰•阿斯佩、美国物理学家约翰•克劳泽及奥地利物理学家安东•蔡林格,以表彰他们在“纠缠光子实验、验证违反贝尔不等式和开创量子信息科学”方面所做出的杰出贡献。

许多科学家相信量子科技将改变我们未来的生活,下列物理量为量子化的是()A.一个物体带的电荷量B.一段导体的电阻C.电场中两点间的电势差D.一个可变电容器的电容4.关于电流,下列说法中正确的是()A.电流跟通过截面的电荷量成正比,跟所用时间成反比B.单位时间内通过导体截面的电量越多,导体中的电流越大C.电流是一个矢量,其方向就是正电荷定向移动的方向D.国际单位制中,其单位“安培”是导出单位5.转笔(Pen Spinning)是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示。

转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是()A.笔杆上的点离O点越近的,做圆周运动的向心加速度越大B.若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动而被甩走C.若该同学使用的是金属笔杆,且考虑地磁场的影响,由于笔杆中不会产生感应电流,因此金属笔杆两端一定不会形成电势差D.若该同学使用的是金属笔杆,且考虑地磁场的影响,那么只有在竖直平面内旋转时,金属笔杆两端才会形成电势差6.关于电场力做功与电势差的关系,下列说法正确的是()A.M、N两点间的电势差等于将单位电荷从M点移到N点电场力做的功B.不管是否存在其他力做功,电场力对电荷做多少正功,电荷的电势能就减少多少C.在两点间移动电荷电场力做功为零,则这两点一定在同一等势面上,且电荷一定在等势面上移动D.在两点间移动电荷,电场力做功的多少与零电势的选取有关7.图甲和乙是教材中演示自感现象的两个电路图,L1和L2为电感线圈。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。

答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 直角坐标系中点电荷电量为Q ,坐标为()c b a ,,,写出Q 所产生的电场在空间任一点的电场强度。

解:画出坐标系及空间任一点()z y x P ,,,则该点相对于点电荷的位矢为 ()c z b y a x r ---=,,ϖ,由点电荷Q 产生的电场在P 点处的场强分量为 ()()()[]2322204c z b y a x ax Q E x -+-+--⋅=πε()()()[]2322204c z b y a x by Q E y -+-+--⋅=πε()()()[]232224c z b y a x cz Q E z -+-+--⋅=πε该场强的方向沿r ϖ方向:()()()k c z j b y i a x r )))ϖ-+-+-=。

在求解给定具体坐标的特殊问题时,往往用分量形式直接计算更直观更方便,还不易出错。

矢量形式固然很标准化很简洁(尤其是涉及到带有散度和旋度的微分方程),但一般只用于做基本证明和推导的过程,因为矢量方程与所取的任一坐标无关。

2. 一电偶极子的电偶极矩为l q P ϖϖ=,P 点到偶极子中心的距离为r ,r ϖ与l ϖ的夹角为θ,在l r >>时,求P 点的电场强度E ϖ在P O r ρϖ=方向的分量r E 和垂直于r ϖ方向的分量θE 。

解:在极坐标系下,设点()θ,r P 相对于q +和q -的位矢分别为+r ϖ,-r ϖ,它们与r ϖ的夹角分别为α和β,由点电荷的场强公式有2041++⋅=r q E πε,2041--⋅=r q E πε, -++=E E E ϖϖϖ在极坐标下,E ϖ可以分解为:βαcos cos -+-=E E E r , βαθsin sin -++=E E E其中,+-=r l r θαcos 2cos ,-+=r l r θβcos 2cos ,+=r lθαsin 2sin , -=r l θβsin 2sin又因为l r >>,在此近似下有2r r r ≈⋅-+,r r r 2≈+-+,θcos l r r ≈-+-,带入以上各式,化简得30cos 241r P E r θπε⋅=,30sin 41r P E θπεθ⋅=。

此种方法的关键在于灵活运用各坐标分量间的几何与近似关系。

对于电偶极子的问题,联系电势一节的内容,我们可以做一些归纳,下面我们从最常用的直角坐标系出发,来推导电偶极子在空间任一点的电势及场强公式。

以偶极子两电荷连线中点为原点,以偶极矩方向为x 轴方向取直角坐标系中任一点()z y x P ,,,由点电荷的电势叠加可得:()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡++⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-⋅=+=-+22222202241z y l x q z y l x qU U P U πε考虑到l r >>的条件,有2222z y x r ++=,212222211121-⎪⎭⎫⎝⎛-=-≈++⎪⎭⎫ ⎝⎛-r xl r xl r zy l x上式右边经过二项展开,并略去l 的高阶项(二阶及以上),得⎪⎭⎫⎝⎛+≈++⎪⎭⎫ ⎝⎛-222221121r xl r zy l x则 ⎪⎭⎫ ⎝⎛+≈+20214r xl r qU πε,⎪⎭⎫ ⎝⎛-≈-20214r xl r q U πε 则P 点的偶极子势为()2030cos 4141r P l q r x U U P U θπεπε⋅=⋅⋅⋅=+=-+ 可写成矢量表达形式:()30204141r rP r r P P U ϖϖ)ϖ⋅⋅=⋅⋅=πεπε (*)下面求电偶极子的电场强度:由()()P U P E -∇=ϖ,将上式带入,有()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇⋅+⋅∇=∇3301141r r P r P r U ϖϖϖϖπε 其中,()P r P ϖϖϖ=⋅∇,54333311rrrr rr r dr d r ϖϖ-=⋅-=∇⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∇,则()()⎥⎦⎤⎢⎣⎡-⋅=350341r P r r r P P E ϖϖϖϖϖπε (#)。

以上(*)和(#)式为偶极子的一般计算式。

可以在具体的坐标系中直接带入计算。

变换到球坐标系()ϕθ,,r 中,由于轴对称性可知,U 与ϕ无关,则E ϖ的分量为:30cos 241r P r U E r θπε⋅=∂∂-=,30sin 411r P U r E θπεθθ⋅=∂∂-=0sin 1=∂∂-=ϕθϕUr E 。

1. 计算3r rϖ的散度:解:03311325333=+-=⋅∇+⋅∇=⋅∇rr r r r r r r r ϖϖϖ。

2. 如图所示,无限大带电层,且电荷密度()x ρρ=,试求其产生的场强。

解:此题需分三个区域进行计算:取垂直于带电层的坐标OX 。

(1)a x ≤,取'x 到''dx x +之间的带电平面,取单位面积的电荷面密度为σ,则()''dx x ρσ=,则该平面在x 处形成的电场强度为:()()0''22ερεσdx x x dE ==,()()''021dx x x E ba⎰-=⇒ρε(负号代表取坐标负向。

)若()常数αρ=,则()02εαlx E -=;(2)b x ≥,同理可得()()''021dx x x E ba⎰=ρε(负号代表取坐标正向。

)若()常数αρ=,则 ()02εαlx E =;(3)b x a <<,对于带电层中间的区域,要注意x x <'和x x >'的情况不一样,故要进行分段积分:()()()''0''2121dx x dx x x E bxxa⎰⎰-=ρερε若()常数αρ=,则 ()()αε022b a x x E +-=。

3. 求无限长均匀带电柱体周围的场强,已知延高方向单位长度电荷密度为λ,圆柱底面半径为R 。

解:取半径为r 、高为l 的同轴圆柱面为高斯面,分以下两种情况考虑:(1)R r ≤时,由高斯定理,有2επq rlE s d E S==⋅⎰⎰ϖϖ而222Rlr l r q λρπ==,则 2022R lr rlE ελπ= 得202R r E πελ=(2)当R r ≥时,l q λ=,同理得到 r E 02πελ=。

4. 求均匀带电球壳产生的电场中电位的分布,设球壳带电总量为q ,半径为R 。

解:以无穷远处作为电位零点,即()0=∞U , 由真空中带电球壳的场强分布:⎪⎩⎪⎨⎧<>⋅=R r R r r q E ,0,4120πε根据电位的定义求解:对于R r >时,()r qdr r q l d E r U r r020414πεπε=⋅=⋅-=⎰⎰∞∞ϖϖ;对于R r <时,()R q dr r q l d E l d E r U R R r R 020414πεπε=⋅=⎥⎦⎤⎢⎣⎡⋅+⋅-=⎰⎰⎰∞∞ϖϖϖϖ。

5. 求无限大均匀带电平面(电荷面密度为σ)的电势分布。

解:确立原点在平面上的坐标OX ,设空间任一点P 位于r 处。

取)(00r P 为电位零点,由无限大均匀带电平面的场强公式,有⎪⎪⎩⎪⎪⎨⎧<->=0,20,20r r E εσεσ下面以0>r 的情况来讨论:由电位定义有:()()()r r l d E l d E P U P U P A AP-=⋅+⋅=-⎰⎰00020εσϖϖϖϖ。

本题中电位零点的取法很关键,注意到:求无限大带电体周围的电位时,不能取无穷远处为电位零点。

6. 一半径为R 的均匀带电圆面,电荷总量为q ,求轴线(OX )上的电位分布,并画出x U -曲线。

解:在圆面上取dr r r +-的圆环,由于圆面的电荷面密度:2R qπσ=,故该圆环所带电量为:rdr Rq rdr R q rdr dq 22222=⋅=⋅=πππσ 而圆环在轴线上的电位分布可以根据电位叠加法,取圆环上dl l l +-的一段,取无穷远处为电位零点,由点电荷的电位公式:220'0''44Rx dq rdq dU +==πεπε,得圆环在轴线上的电位分布为:220'220'44'R x q Rx dq U q +=+⎰πεπε=环现在将此电位作为圆面在轴线上电位的积分元,即令'q dq =,环U dU =,作圆面上半径的积分,可得整个圆面在轴线上的电位:()xR xR qRx R qrdr Rx dq dU U RRR -+=+=+=⎰⎰⎰2220220222002424επεππε=。

7. 电量q 均匀分布在长为l 2的细直线上,求下列各处的电位:(1) 中垂面上离带电线段中心O 为r 处,并用梯度求r E ; (2) 延长线上离中心O 为为z 处,并用梯度求z E ; (3) 通过一端的垂直面上离该点为r 处,并用梯度求r E 。

解:根据题意,以O 为原点中垂线所在直线作为x 轴、延长线所在直线作为y 轴建立坐标系,取无穷远处为电位零点。

(1) 求()0,r P 点的电位()P U 及r E :设直线上dy y y +-的一段所带的电量为dy lqdq 2=,由点电荷电位公式,它在()0,r P 点的电位为:22022084yr l qdy yr dq dU +=+=πεπε则整段直线在()0,r P 点的电位为:r l r l l qyr l qdy dU U ll ll 220220ln 48++=+=⎰⎰--πεπε= 则有 2204l r r qr U E r +=∂∂-=πε。

(2)求()z P ,0点的电位()P U 及z E :线元dy y y +-的电量仍然为dy lqdq 2=,由点电荷电位公式,它在()z P ,0点的电位为:()()y z l qdzy z dq dU -=-=0084πεπε则整段直线在()z P ,0点的电位为:()()l z l z lz l q y z l qdz dU U ll ll>-+=-=⎰⎰--ln8800πεπε= 则有 ()2204l z q z U E z -±=∂∂-=πε,(+号对应l z >,—号对应l z -<)。

(3)求()l r P ,点的电位()P U 及r E : 同样取线元dy y y +-,其电量仍然为dy lqdq 2=,由点电荷电位公式,它在()l r P ,点的电位为:22022084yr l qdy yr dq dU +=+=πεπε则整段直线在()l r P ,点的电位为:r l r l l qyr l qdydU U ll 220202202042ln 48++=+=⎰⎰πεπε= 则有 22044l r r qr U E r +=∂∂-=πε。

相关文档
最新文档