高中数学导数练习题分类练习讲义

合集下载

高中导数练习题及讲解

高中导数练习题及讲解

高中导数练习题及讲解### 高中导数练习题及讲解#### 练习题一:基础导数计算题目:求函数 \(f(x) = 3x^2 + 2x - 5\) 的导数。

解题步骤:1. 确定函数形式,\(f(x)\) 是一个多项式函数。

2. 应用幂函数的导数规则,即 \(u' = nu^{n-1}\),其中 \(u\) 是\(x\) 的幂函数,\(n\) 是指数。

3. 对每一项分别求导:- 对 \(3x^2\) 求导,得到 \(6x\)。

- 对 \(2x\) 求导,得到 \(2\)。

- 对常数项 \(-5\) 求导,导数为 \(0\)。

4. 合并结果,得到导数 \(6x + 2\)。

答案:\(f'(x) = 6x + 2\)。

#### 练习题二:复合函数的导数题目:求函数 \(g(x) = (2x + 1)^3\) 的导数。

解题步骤:1. 识别 \(g(x)\) 为复合函数。

2. 使用链式法则求导,即 \((g \circ h)' = g'(h(x)) \cdoth'(x)\)。

3. 令 \(u = 2x + 1\),\(g(u) = u^3\)。

4. 求 \(g(u)\) 的导数,得到 \(g'(u) = 3u^2\)。

5. 求 \(u\) 的导数,得到 \(u' = 2\)。

6. 应用链式法则,\(g'(x) = 3(2x + 1)^2 \cdot 2\)。

7. 简化表达式,得到最终导数。

答案:\(g'(x) = 12(2x + 1)^2\)。

#### 练习题三:隐函数的导数题目:给定方程 \(x^2 + y^2 = 4\),求 \(y\) 关于 \(x\) 的导数\(\frac{dy}{dx}\)。

解题步骤:1. 将方程视为 \(y\) 的隐函数。

2. 对方程两边同时对 \(x\) 求导。

3. 使用乘积法则和链式法则处理 \(y^2\) 的导数。

高中数学《基本初等函数的导数》知识点讲解及重点练习

高中数学《基本初等函数的导数》知识点讲解及重点练习

§5.2 导数的运算 5.2.1 基本初等函数的导数学习目标 1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x ,y =x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数.知识点一 几个常用函数的导数原函数 导函数 f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=x 3 f ′(x )=3x 2 f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x知识点二 基本初等函数的导数公式原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln af (x )=ln xf ′(x )=1x1.若y =2,则y ′=12×2=1.( × )2.若f (x )=1x 3,则f ′(x )=-3x 4.( √ )3.若f (x )=5x ,则f ′(x )=5x log 5e.( × ) 4.若y =sin 60°,则y ′=cos 60°.( × )一、利用导数公式求函数的导数 例1 求下列函数的导数: (1)y =x 0; (2)y =⎝⎛⎭⎫13x; (3)y =lg x ; (4)y =x 2x ;(5)y =2cos 2x2-1.解 (1)y ′=0.(2)y ′=⎝⎛⎭⎫13x ln 13=-⎝⎛⎭⎫13x ln 3. (3)y ′=1x ln 10.(4)∵y =x 2x=32,x∴31223322y'x 'x x ⎛⎫===. ⎪⎝⎭(5)∵y =2cos 2x2-1=cos x ,∴y ′=(cos x )′=-sin x .反思感悟 (1)若所求函数符合导数公式,则直接利用公式求导.(2)若给出的函数解析式不符合基本初等函数的导数公式,则通过恒等变换对解析式进行化简或变形后求导,如根式要化成指数幂的形式求导.如y =1x 4可以写成y =x -4,y =5x 3可以写成y =35x 等,这样就可以直接使用幂函数的求导公式求导,避免在求导过程中出现指数或系数的运算失误.(3)要特别注意“1x 与ln x ”,“a x 与log a x ”,“sin x 与cos x ”的导数区别.跟踪训练1 求下列函数的导数: (1)y =2 020; (2)y =13x 2;(3)y =4x ; (4)y =log 3x .解 (1)因为y =2 020, 所以y ′=(2 020)′=0. (2)因为y =13x 2=23x -,所以y ′=251332233.x x ---=-- (3)因为y =4x , 所以y ′=4x ln 4. (4)因为y =log 3x , 所以y ′=1x ln 3. 二、利用导数研究曲线的切线方程例2 已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 解 ∵y ′=1x ,∴k =y ′|x =e =1e,∴切线方程为y -1=1e (x -e),即x -e y =0. 延伸探究求曲线y =ln x 的过点O (0,0)的切线方程.解 ∵O (0,0)不在曲线y =ln x 上. ∴设切点Q (x 0,y 0), 则切线的斜率k =1x 0.又切线的斜率k =y 0-0x 0-0=ln x 0x 0,∴ln x 0x 0=1x 0,即x 0=e , ∴Q (e,1), ∴k =1e,∴切线方程为y -1=1e(x -e),即x -e y =0.反思感悟 (1)利用导数的几何意义解决切线问题的两种情况 ①若已知点是切点,则在该点处的切线斜率就是该点处的导数;②若已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. (2)求过点P 与曲线相切的直线方程的三个步骤跟踪训练2 (1)函数y =x 3在点(2,8)处的切线方程为( ) A .y =12x -16 B .y =12x +16 C .y =-12x -16 D .y =-12x +16答案 A解析 因为y ′=3x 2, 当x =2时,y ′=12, 故切线的斜率为12, 切线方程为y =12x -16.(2)已知曲线y =ln x 的一条切线方程为x -y +c =0,求c 的值. 解 设切点为(x 0,ln x 0),由y =ln x 得y ′=1x.因为曲线y =ln x 在x =x 0处的切线方程为x -y +c =0,其斜率为1. 所以0=|x x y'=1x 0=1,即x 0=1, 所以切点为(1,0). 所以1-0+c =0, 所以c =-1.利用导数公式求切点坐标问题典例 已知直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点,O 是坐标原点,试求与直线l 平行的抛物线的切线方程,并在弧AOB 上求一点P ,使△ABP 的面积最大. 解 由于直线l: 2x -y +4=0与抛物线y =x 2相交于A ,B 两点, ∴|AB |为定值,要使△ABP 的面积最大,只要点P 到AB 的距离最大,设P (x 0,y 0)为切点,过点P 与AB 平行的切线斜率为k =y ′=2x 0,∴k =2x 0=2,∴x 0=1,y 0 =1.故可得P (1,1),∴与直线l 平行的抛物线的切线方程为2x -y -1=0. 故P (1,1)点即为所求弧AOB 上的点,使△ABP 的面积最大.[素养提升] (1)利用基本初等函数的求导公式,可求其图象在某一点P (x 0,y 0)处的切线方程,可以解决一些与距离、面积相关的几何的最值问题,一般都与函数图象的切线有关.解题时可先利用图象分析取最值时的位置情况,再利用导数的几何意义准确计算. (2)结合图象,利用公式计算求解,体现了直观想象与数学运算的数学核心素养.1.给出下列命题: ①y =ln 2,则y ′=12;②y =1x 2,则y ′|x =3=-227;③y =2x ,则y ′=2x ln 2; ④y =log 2x ,则y ′=1x ln 2.其中正确命题的个数为( ) A .1 B .2 C .3 D .4 答案 C解析 对于①,y ′=0,故①错;对于②,∵y ′=-2x 3,∴y ′|x =3=-227,故②正确;显然③,④正确.2.已知f (x )=x ,则f ′(8)等于( ) A .0 B .2 2 C.28D .-1 答案 C解析 f (x )=x ,得f ′(x )=1212x -,∴f ′(8)121=828⨯=-3.(多选)下列结论正确的是( ) A .若y =3,则y ′=0 B .若y =1x,则y ′=-12xC .若y =x ,则y ′=12xD .若y =x ,则y ′=1 答案 ACD解析 只有B 是错误的.因为y ′132212'x 'x --⎛⎫===-= ⎪⎝⎭4.已知f (x )=ln x 且f ′(x 0)=1x 20,则x 0= .答案 1解析 因为f (x )=ln x (x >0),所以f ′(x )=1x ,所以f ′(x 0)=1x 0=1x 20,所以x 0=1.5.曲线y =9x 在点M (3,3)处的切线方程是 .答案 x +y -6=0 解析 ∵y ′=-9x 2,∴y ′|x =3=-1,∴过点(3,3)的斜率为-1的切线方程为y -3=-(x -3), 即x +y -6=0.1.知识清单: (1)常用函数的导数. (2)基本初等函数的导数公式. (3)切线方程.2.方法归纳:方程思想、待定系数法. 3.常见误区:不化简成基本初等函数.1.下列求导运算正确的是( ) A .(cos x )′=-sin x B .(x 3)′=x 3ln x C .(e x )′=x e x -1 D .(ln x )′=1x ln 10答案 A2.下列各式中正确的个数是( )①(x 7)′=7x 6;②(x -1)′=x -2;③(5x 2)′352;5x -= ④(cos 2)′=-sin 2. A .2 B .3 C .4 D .5答案 A解析 ∵②(x -1)′=-x -2; ④(cos 2)′=0. ∴②④错误,故选A.3.已知函数f (x )=x α(α∈Q ,且α≠0),若f ′(-1)=-4,则α的值等于( ) A .4 B .-4 C .5 D .-5 答案 A解析 ∵f ′(x )=αx α-1,f ′(-1)=α(-1)α-1=-4, ∴a =4.4.若函数f (x )=cos x ,则f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4的值为( ) A .0 B .-1 C .1 D .2 答案 A解析 f ′(x )=-sin x ,所以f ′⎝⎛⎭⎫π4+f ⎝⎛⎭⎫π4=-sin π4+cos π4=0. 5.(多选)已知曲线y =x 3在点P 处的切线斜率为k ,则当k =3时的P 点坐标为( ) A .(-1,1) B .(-1,-1) C .(1,1) D .(1,-1)答案 BC解析 y ′=3x 2,因为k =3,所以3x 2=3,所以x =±1,则P 点坐标为(-1,-1)或(1,1). 6.已知[cf (x )]′=cf ′(x ),其中c 为常数.若f (x )=ln 5log 5x ,则曲线f (x )在点A (1,0)处的切线方程为 . 答案 x -y -1=0解析 由已知得f ′(x )=ln 51x ln 5=1x, 所以f ′(1)=1,在A 点处的切线方程为x -y -1=0.7.若曲线y =x 在点P (a ,a )处的切线与两坐标轴围成的三角形的面积为2,则实数a 的值是 . 答案 4解析 因为y ′=12x,所以切线方程为y -a =12a (x -a ),令x =0,得y =a2,令y =0,得x =-a , 由题意知12·a2·a =2,所以a =4.8.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则点P 的坐标为 . 答案 (1,1) 解析 设f (x )=e x , 则f ′(x )=e x ,所以f ′(0)=1.设g (x )=1x (x >0),则g ′(x )=-1x2.由题意可得g ′(x P )=-1,解得x P =1. 所以P (1,1).9.点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离.解 如图,当曲线y =e x 在点P (x 0,y 0)处的切线与直线y =x 平行时,点P 到直线y =x 的距离最近.则曲线y =e x 在点P (x 0,y 0)处的切线斜率为1,又y ′=(e x )′=e x , 所以0e x=1,得x 0=0,代入y =e x ,得y 0=1,即P (0,1). 利用点到直线的距离公式得最小距离为22. 10.已知抛物线y =x 2,求过点⎝⎛⎭⎫-12,-2且与抛物线相切的直线方程. 解 设直线的斜率为k ,直线与抛物线相切的切点坐标为(x 0,y 0),则直线方程为y +2=k ⎝⎛⎭⎫x +12, 因为y ′=2x ,所以k =2x 0,又点(x 0,x 20)在切线上,所以x 20+2=2x 0⎝⎛⎭⎫x 0+12, 所以x 0=1或x 0=-2,则k =2或k =-4, 所以直线方程为y +2=2⎝⎛⎭⎫x +12或 y +2=-4⎝⎛⎭⎫x +12, 即2x -y -1=0或4x +y +4=0.11.已知函数f (x )=x 3在某点处的切线的斜率等于1,则这样的切线有( ) A .1条 B .2条 C .多于2条 D .不能确定答案 B解析 y ′=f ′(x )=3x 2,设切点为(x 0,x 30), 由3x 20=1,得x 0=±33, 即在点⎝⎛⎭⎫33,39和点⎝⎛⎭⎫-33,-39处均有斜率为1的切线,故有2条. 12.若曲线y =x α+1(α∈Q 且α≠0)在点(1,2)处的切线经过原点,则α= . 答案 2解析 y ′=αx α-1,所以y ′|x =1=α,所以切线方程为y -2=α(x -1),即y =αx -α+2,该直线过点(0,0),所以α=2.13.已知f (x )=cos x ,g (x )=x ,则关于x 的不等式f ′(x )+g ′(x )≤0的解集为 .答案 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z 解析 ∵f ′(x )=-sin x ,g ′(x )=1, ∴由f ′(x )+g ′(x )≤0,得-sin x +1≤0,即sin x ≥1,则sin x =1,解得x =π2+2k π,k ∈Z , ∴其解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x =π2+2k π,k ∈Z . 14.设f 0(x )=sin x ,f 1(x )=f ′0(x ),f 2(x )=f ′1(x ),…,f n +1(x )=f ′n (x ),n ∈N ,则f 2 020(x )= . 答案 sin x解析 由已知得,f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…,依次类推可得,函数呈周期变化,且周期为4,则f 2 020(x )=f 4(x )=sin x .15.函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,若a 1=16,则a 1+a 3+a 5的值是 .答案 21解析 ∵y ′=2x ,∴y =x 2(x >0)的图象在点(a k ,a 2k )处的切线方程为y -a 2k =2a k (x -a k ).又该切线与x 轴的交点坐标为(a k +1,0),∴a k +1=12a k ,即数列{a k }是首项为a 1=16,公比为q =12的等比数列, ∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.16.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,求a 1+a 2+…+a 99的值.解 导函数y ′=(n +1)x n ,切线斜率k =y ′|x =1=n +1,所以切线方程为y =(n +1)x -n ,可求得切线与x 轴的交点为⎝ ⎛⎭⎪⎫n n +1,0,则a n =lg n n +1=lg n -lg(n +1),所以a 1+a 2+…+a 99=(lg 1-lg 2)+(lg 2-lg 3)+…+(lg 99-lg 100)=lg 1-lg 100=-2.。

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数

人教版高中数学(理)高考专题复习辅导讲义(含答案解析):第三章 导数

第三章 导 数1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义. 3.能根据导数的定义求函数y =C (C 为常数),y =x ,y =1x,y =x 2,y =x 3,y =x 的导数.4.能利用以下给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,并了解复合函数求导法则,能求简单复合函数(仅限于形如y =f (ax +b )的复合函数)的导数.①常见的基本初等函数的导数公式:(C )′=0(C 为常数); (x n )′=nx n -1(n ∈N +); (sin x )′=cos x; (cos x )′=-sin x ; (e x )′=e x; (a x )′=a xln a (a >0,且a ≠1);(ln x )′=1x ; (log a x )′=1xlog a e (a >0,且a ≠1).②常用的导数运算法则:法则1:[u (x )±v (x )]′=u ′(x )±v ′(x ). 法则2:[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x ).法则3: ⎣⎢⎡⎦⎥⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )v 2(x )(v (x )≠0).5.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次).6.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次).7.会用导数解决实际问题. 8.了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念.9.了解微积分基本定理的含义.§3.1 导数的概念及运算1.导数的概念 (1)定义如果函数y =f (x )的自变量x 在x 0处有增量Δx ,那么函数y 相应地有增量Δy =f (x 0+Δx )-f (x 0),比值ΔyΔx就叫函数y =f (x )从x 0到x 0+Δx之间的平均变化率,即ΔyΔx=f (x 0+Δx )-f (x 0)Δx .如果当Δx →0时,ΔyΔx有极限,我们就说函数y =f (x )在点x 0处____________,并把这个极限叫做f (x )在点x 0处的导数,记作____________或y ′|x =x 0,即f ′(x 0)= 0lim →∆x Δy Δx =0lim →∆x f (x 0+Δx )-f (x 0)Δx(2)导函数当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=0lim →∆xf (x +Δx )-f (x )Δx.(3)求函数y =f (x )在点x 0处导数的方法 ①求函数的增量Δy = ;②求平均变化率ΔyΔx= ;③取极限,得导数f ′(x 0)=0lim →∆x ΔyΔx.2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是 .相应的切线方程为 .3.基本初等函数的导数公式 (1)c ′= (c 为常数), (x α)′= (α∈Q *);(2)(sin x )′=____________, (cos x )′=____________;(3)(ln x )′= , (log a x )′= ;(4)(e x )′=____________, (a x)′= .4.导数运算法则(1)[f (x )±g (x )]′=__________________. (2)[f (x )g (x )]′=____________________; 当g (x )=c (c 为常数)时,即[cf (x )]′=________.(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为______________.即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.自查自纠:1.(1)可导 f ′(x 0) (3)①f (x 0+Δx )-f (x 0) ②f (x 0+Δx )-f (x 0)Δx2.f ′(x 0) y -y 0=f ′(x 0)(x -x 0)3.(1)0 αx α-1(2)cos x -sin x (3)1x1x ln a(4)e x a xln a4.(1)f ′(x )±g ′(x ) (2)f ′(x )g (x )+f (x )g ′(x ) cf ′(x )(3)f ′(x )g (x )-f (x )g ′(x )[g (x )]25.y x ′=y ′u ·u ′x函数f (x )=a 3+5a 2x 2的导数f ′(x )=( )A .3a 2+10ax 2B .3a 2+10ax 2+10a 2xC .10a 2x D .以上都不对解:f ′(x )=10a 2x .故选C.曲线y =1ln x在x =e 处的切线方程为( )A .x +ey -e =0B .ex +y -e =0C .x -ey -2e =0D .x +ey -2e =0解:y ′=-1x (ln x )2=-1x (ln x )2,y ′|x =e =-1e ,故所求方程为y -1=-1e(x -e ),整理得x +ey -2e =0.故选D .已知曲线y =x 24-3ln x 的一条切线的斜率为-12,则切点的横坐标为( )A .3B .2C .1D .12解:y ′=x 2-3x ,令x 2-3x =-12,解得x =2或x=-3(舍去).故选B.物体的运动方程是s =-13t 3+2t 2-5,则物体在t =3时的瞬时速度为 .解:v (t )=s ′(t )=-t 2+4t ,t =3时,v =3,故填3.(2014·新课标Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =________.解:y ′=a -1x +1,根据已知,当x =0时,y ′=2,代入解得a =3.故填3.类型一 导数的概念已知函数f (x )=x 2+1.用定义的方法求:(1)f (x )在x =2处的导数; (2)f (x )在x =a 处的导数.解:(1)因为Δy Δx =f (2+Δx )-f (2)Δx=(2+Δx )2+1-(22+1)Δx=4+Δx ,当Δx →0时,4+Δx →4, 所以f (x )在x =2处的导数是4.(2)因为Δy Δx =f (a +Δx )-f (a )Δx=(a +Δx )2+1-(a 2+1)Δx=2a +Δx ,当Δx →0时,2a +Δx →2a , 所以f (x )在x =a 处的导数是2a .点拨:利用导数定义求函数在某一点处的导数,首先写出函数在该点处的平均变化率ΔyΔx ,再化简平均变化率,最后判断当Δx →0时,ΔyΔx无限趋近于哪一常数,该常数即为所求导数,这是定义法求导数的一般过程.航天飞机发射后的一段时间内,第t s时的高度h (t )=5t 3+30t 2+45t +4(单位:m ).(1)求航天飞机在第1 s 内的平均速度; (2)用定义方法求航天飞机在第1 s 末的瞬时速度.解:(1)航天飞机在第1 s 内的平均速度为 h (1)-h (0)1=5+30+45+4-41=80 m /s .(2)航天飞机第1 s 末高度的平均变化率为 h (1+Δt )-h (1)Δt=错误!=5Δt 3+45Δt 2+120Δt Δt=5Δt 2+45Δt +120,当Δt →0时,5Δt 2+45Δt +120→120, 所以航天飞机在第 1 s 末的瞬时速度为120 m /s .类型二 求导运算求下列函数的导数: (1)y =5x 2-4x +1; (2)y =x ln x ;(3)y =sin(πx +φ)(其中φ为常数);(4)y =x +3x +2(x ≠-2).解:(1)y ′=10x -4;(2)y ′=ln x +x ·1x=ln x +1;(3)y ′=cos(πx +φ)·(πx +φ)′=πcos(πx +φ);(4)y ′=⎝⎛⎭⎪⎫1+1x +2′=-1(x +2)2.点拨:求导运算,一是熟记公式及运算法则,二是掌握求复合函数导数的步骤,遵从“由外到内”的原则,三是要注意在求导前对可以化简或变形的式子进行化简或变形,从而使求导运算更简单.求下列函数的导数:(1)y =(x +1)(x +2); (2)y =xe x-1(x ≠0); (3)y =cos2x ;(4)y =ln x +3x +1(x >-1).解:(1)y ′=(x +1)′(x +2)+(x +1)(x +2)′=x +2+x +1=2x +3;(2)y ′=x ′(e x -1)-x (e x -1)′(e x -1)2=(1-x )e x-1(e x -1)2; (3)y ′=-sin2x ·(2x )′=-2sin2x ;(4)y ′=[ln(x +3)-ln(x +1)]′=1x +3-1x +1=-2(x +1)(x +3).类型三 导数的几何意义已知曲线y =13x 3+43.(1)求满足斜率为1的曲线的切线方程; (2)求曲线在点P (2,4)处的切线方程; (3)求曲线过点P (2,4)的切线方程.解:(1)y ′=x 2,设切点为(x 0,y 0),故切线的斜率为k =x 20=1,解得x 0=±1,故切点为⎝ ⎛⎭⎪⎫1,53,(-1,1). 故所求切线方程为y -53=x -1和y -1=x +1,即3x -3y +2=0和x -y +2=0.(2)∵y ′=x 2,且P (2,4)在曲线y =13x 3+43上,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4.∴曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(3)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,又∵切线的斜率k =y ′|x =x 0=x 20,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2, 故所求的切线方程为4x -y -4=0或x -y +2=0.点拨:曲线切线方程的求法:(1)以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简.(2)如果已知点(x 1,y 1)不在曲线上,则设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.注意:①求切线方程时,要注意判断已知点是否满足曲线方程,即是否在曲线上.②与曲线只有一个公共点的直线不一定是曲线的切线,曲线的切线与曲线的公共点不一定只有一个.已知函数f (x )=x 3+x -16.(1)求满足斜率为4的曲线的切线方程;(2)求曲线y =f (x )在点(2,-6)处的切线方程;(3)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程.解:(1)设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20+1=4,∴x 0=±1, ∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18. ∴切线方程为y =4x -18或y =4x -14.(2)∵f ′(x )=3x 2+1,且(2,-6)在曲线f (x )=x 3+x -16上, ∴在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线方程为y =13x -32.(3)解法一:设切点为(x 0,y 0),∵直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 0=-2, ∴斜率k =13.∴直线l 的方程为y =13x . 解法二:设直线l 的方程为y =kx ,切点为(x 0,y 0),则斜率k =y 0-0x 0-0=x 30+x 0-16x 0,又∵k =f ′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2,∴k =13.∴直线l 的方程为y =13x .1.弄清“函数在一点x 0处的导数”“导函数”“导数”的区别与联系(1)函数在一点x 0处的导数f ′(x 0)是一个常数,不是变量;(2)函数的导函数(简称导数),是针对某一区间内任意点x 而言的.函数f (x )在区间(a ,b )内每一点都可导,是指对于区间(a ,b )内的每一个确定的值x 0,都对应着一个确定的导数f ′(x 0),根据函数的定义,在开区间(a ,b )内就构成了一个新的函数,也就是函数f (x )的导函数f ′(x );(3)函数y =f (x )在点x 0处的导数f ′(x 0)就是导函数f ′(x )在点x =x 0处的函数值.2.求函数y =f (x )在x =x 0处的导数f ′(x 0)通常有以下两种方法(1)利用导数的定义:即求lim →∆x f (x 0+Δx )-f (x 0)Δx 的值;(2)利用导函数的函数值:先求函数y =f (x )在开区间(a ,b )内的导函数f ′(x ),再将x 0(x 0∈(a ,b ))代入导函数f ′(x ),得f ′(x 0).3.正确区分“曲线在某点处的切线”与“过某点的曲线的切线”的含义,前者的“某点”即切点,后者的“某点”是否为切点则须检验.4.求曲线在某一点处的切线方程时,可以先求函数在该点的导数,即曲线在该点的切线的斜率,再利用点斜式写出直线的方程.如果切点未知,要先求出切点坐标.1.函数f (x )=x 3+sin2x 的导数f ′(x )=( )A .x 2+cos2xB .3x 2+cos2xC .x 2+2cos2xD .3x 2+2cos2x解:f ′(x )=3x 2+(2x )′cos2x =3x 2+2cos2x .故选D.2.已知f (x )=(x -2)(x -3),则f ′(2)的值为( )A .0B .-1C .-2D .-3 解:∵f ′(x )=(x -3)+(x -2)=2x -5,∴f ′(2)=-1.故选B.3.曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( )A .-9B .-3C .9D .15解:由y ′|x =1=3,得在点P (1,12)处的切线方程为3x -y +9=0,令x =0,得y =9,故选C.4.若f (x )=x 2-2x -4ln x ,则f ′(x )>0的解集为( )A .(0,+∞) B.(-1,0)∪(2,+∞) C .(2,+∞) D .(-1,0)解:∵f ′(x )=2x -2-4x =2(x -2)(x +1)x>0,x >0,∴x -2>0,解得x >2.故选C.5.(2014·湖北八市高三3月调考)设a ∈R ,函数f (x )=e x+a ·e -x 的导函数是f ′(x ),且f ′(x )是奇函数,则a 的值为( )A .1B .-12C .12D .-1解:因为f ′(x )=e x -ae -x,由奇函数的性质可得f ′(0)=1-a =0,解得a =1.故选A .6.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278 B .-2 C .2 D .-278解:设切点坐标为(t ,t 3-at +a ).切线的斜率为k =y ′|x =t =3t 2-a ,①所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ),②将点(1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解之得t =0或t =32.分别将t =0和t=32代入①式,得k =-a 或k =274-a ,由它们互为相反数得a =278.故选A.7.(2014·江西)若曲线y =e -x上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.解:设点P 的坐标为(x 0,y 0),y ′=-e -x.又切线平行于直线2x +y +1=0,所以-e -x 0=-2,可得x 0=-ln2,此时y =2,所以点P 的坐标为(-ln2,2).故填(-ln 2,2).8.(2013·江西)设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x,则f ′(1)=________.解:令e x =t ,则x =ln t .∵f (e x )=x +e x,∴f (t )=ln t +t ,∴f ′(t )=1t+1,∴f ′(1)=1+1=2.故填2.9.求函数f (x )=x 3-4x +4图象上斜率为-1的切线的方程.解:设切点坐标为(x 0,y 0),∵f ′(x 0)=3x 20-4=-1,∴x 0=±1. ∴切点为(1,1)或(-1,7).切线方程为x +y -2=0或x +y -6=0.10.设函数f (x )=13x 3-ax (a >0),g (x )=bx2+2b -1.若曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,求实数a ,b 的值,并写出切线l 的方程.解:因为f (x )=13x 3-ax (a >0),g (x )=bx 2+2b -1,所以f ′(x )=x 2-a ,g ′(x )=2bx .因为曲线y =f (x )与y =g (x )在它们的交点(1,c )处有相同的切线,所以f (1)=g (1),且f ′(1)=g ′(1),即13-a =b +2b -1,且1-a =2b , 解得a =13,b =13,得切点坐标为(1,0).切线方程为y =23(x -1),即2x -3y -2=0.11.已知函数f (x )=x -1+a ex (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值;(2)当a =1时,若直线l :y =kx -1与曲线y =f (x )相切,求l 的直线方程.解:(1)f ′(x )=1-a ex ,因为曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=1-a e=0,解得a =e .(2)当a =1时,f (x )=x -1+1e,f ′(x )=1-1ex .设切点为(x 0,y 0),∵f (x 0)=x 0-1+1ex 0=kx 0-1,①f ′(x 0)=1-1ex 0=k ,②①+②得x 0=kx 0-1+k ,即(k -1)(x 0+1)=0.若k =1,则②式无解,∴x 0=-1,k =1-e . ∴l 的直线方程为y =(1-e )x -1.(2014·安徽)若直线l 与曲线C 满足下列两个条件:(1)直线l 在点P (x 0,y 0)处与曲线C 相切;(2)曲线C 在点P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是________(写出所有正确命题的编号).①直线l :y =0在点P (0,0)处“切过”曲线C :y =x 3②直线l :x =-1在点P (-1,0)处“切过”曲线C :y =(x +1)2③直线l :y =x 在点P (0,0)处“切过”曲线C :y =sin x④直线l :y =x 在点P (0,0)处“切过”曲线C :y =tan x⑤直线l :y =x -1在点P (1,0)处“切过”曲线C :y =ln x解:对于①,y ′=(x 3)′=3x 2,y ′|x =0=0,所以l :y =0是曲线C :y =x 3在点P (0,0)处的切线,画图可知曲线C :y =x 3在点P (0,0)附近位于直线l 的两侧,①正确;对于②,l :x =-1显然不是曲线C :y =(x +1)2在点P (-1,0)处的切线,②错误;对于③,y ′=(sin x )′=cos x ,y ′|x =0=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =sin x 在点P (0,0)附近位于直线l 的两侧,③正确;对于④,y ′=(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=1cos 2x ,y ′|x =0=1cos 20=1,曲线在点P (0,0)处的切线为l :y =x ,画图可知曲线C :y =tan x 在点P (0,0)附近位于直线l 的两侧,④正确;对于⑤,y ′=(ln x )′=1x,y ′|x =1=1,在点P (1,0)处的切线为l :y =x -1,令h (x )=x -1-ln x (x >0),可得h ′(x )=1-1x =x -1x,所以h (x )min=h (1)=0,故x -1≥ln x ,可知曲线C :y =ln x 在点P (1,0)附近位于直线l 的下方,⑤错误.故填①③④.§3.2 导数的应用(一)1.函数的单调性与导数在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增;如果f ′(x )<0,那么函数y =f (x )在这个区间内____________.2.函数的极值与导数(1)判断f (x 0)是极大值,还是极小值的方法: 一般地,当f ′(x 0)=0时,①如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是极大值;②如果在x 0附近的左侧_________,右侧_________,那么f (x 0)是极小值.(2)求可导函数极值的步骤: ①求f ′(x );②求方程_________的根;③检查f ′(x )在上述方程根的左右对应函数值的符号.如果左正右负,那么f (x )在这个根处取得_________;如果左负右正,那么f (x )在这个根处取得_________.3.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则____________为函数在[a ,b ]上的最小值,_________为函数在[a ,b ]上的最大值;若函数f (x )在[a ,b ]上单调递减,则_________为函数在[a ,b ]上的最大值,_________为函数在[a ,b ]上的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与端点处的函数值______,______比较,其中最大的一个是最大值,最小的一个是最小值.自查自纠:1.单调递减2.(1)②f ′(x )<0 f ′(x )>0(2)②f ′(x )=0 ③极大值 极小值3.(2)f (a ) f (b ) f (a ) f (b ) (3)②f (a ) f (b )关于函数的极值,下列说法正确的是( )A .导数为0的点一定是函数的极值点B .函数的极小值一定小于它的极大值C .f (x )在定义域内最多只能有一个极大值,一个极小值D .若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内不是单调函数解:导数为0的点不一定是极值点(如y =x 3,在x =0处),而极值点的导数一定为0.极值是局部概念,因此极小值可能有多个且有可能大于极大值.极值点是单调性的转折点.故选D.已知函数f (x )=12x 2-x ,则f (x )的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)解:f ′(x )=x -1,令f ′(x )>0,解得x >1.故选D.若在区间[1,2]内有f ′(x )>0,且f (1)=0,则在[1,2]内有( )A .f (x )≥0B .f (x )≤0C .f (x )=0D .f (x )≥1 解:∵f ′(x )>0,∴f (x )在[1,2]内单调递增. ∵f (1)=0,∴在[1,2]内f (x )≥0.故选A.若函数f (x )的导函数f ′(x )=x 2-4x +3,则函数f (x -1)的单调递减区间是________.解:由f ′(x )=x 2-4x +3<0得1<x <3,所以函数f (x )的单调递减区间为(1,3),函数y =f (x -1)的图象由函数y =f (x )的图象向右平移1个单位得到,故函数f (x -1)的单调递减区间是(2,4).故填(2,4).函数f (x )=x +2cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.解:f ′(x )=1-2sin x ,令f ′(x )=0得sin x =12,从而x =π6,当x ∈⎝⎛⎭⎪⎫0,π6时,f ′(x )>0,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫π6,π2时,f ′(x )<0,f (x )单调递减,所以f (x )在x =π6处取得极大值,即最大值π6+ 3.故填π6+ 3.类型一 导数法判断函数的单调性设函数f (x )在定义域内可导,y =f (x )的图象如图所示,则导函数y =f ′(x )的图象可能是()解:当x <0时,f (x )为增函数,f ′(x )>0,排除A ,C ;当x >0时,f (x )先增后减,再增,对应f ′(x )先正后负,再正.故选D.点拨:导函数的图象在哪个区间位于x 轴上方(下方),说明导函数在该区间大于0(小于0),那么它对应的原函数在那个区间就单调递增(单调递减).(2014·北京联考)如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是()A .在(-2,1)上f (x )是增函数B .在(1,3)上f (x )是减函数C .当x =2时,f (x )取极大值D .当x =4时,f (x )取极大值 解:由y =f ′(x )的图象可得y =f (x )的大致图象如图.由图可知,A ,B ,D 均错.故选C .类型二 导数法研究函数的单调性已知函数f (x )=x 3-ax ,f ′(1)=0. (1)求a 的值; (2)求函数f (x )的单调区间. 解:(1)f ′(x )=3x 2-a ,由f ′(1)=3-a =0,得a =3.(2)∵f (x )=x 3-3x ,∴f ′(x )=3x 2-3.令f ′(x )>0,得x <-1或x >1.所以f (x )的单调递增区间是(-∞,-1),(1, +∞),单调递减区间是[-1,1].点拨:①用导数求函数的单调区间,突破口是讨论导数的符号.②注意:区间的端点可以属于单调区间,也可以不属于单调区间,对结论没有影响.如,本例中[-1,1]也可以写成(-1,1).③写单调区间时,一般不要使用符号“∪”,可以用“,”“和”分开各区间,原因是各单调区间用“∪”连接的条件是在合并后的区间内函数单调性依然成立.如,本例中(-∞,-1),(1,+∞)不能写成(-∞,-1)∪(1,+∞),不妨取x 1=-32∈(-∞,-1),x 2=32∈(1,+∞),x 1<x 2,而f (x 1)=f ⎝ ⎛⎭⎪⎫-32=98,f (x 2)=-98,这时f (x 1)<f (x 2)不成立.(2014·山东)设函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x (k ≤0,k 为常数,e =2.71828…是自然对数的底数),求函数f (x )的单调区间.解:函数y =f (x )的定义域为(0,+∞).f ′(x )=x 2e x -2xe x x 4-k ⎝ ⎛⎭⎪⎫-2x 2+1x=xe x -2e x x 3-k (x -2)x 2=(x -2)(e x-kx )x 3.由k ≤0可得e x-kx >0, 所以当x ∈(0,2)时,f ′(x )<0,函数y =f (x )单调递减,x ∈(2,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞).类型三 导数法研究函数的极值问题已知函数f (x )=12x 3+cx 在x =1处取得极值.(1)求函数f (x )的解析式; (2)求函数f (x )的极值. 解:(1)f ′(x )=32x 2+c ,当x =1时,f (x )取得极值,则f ′(1)=0,即32+c =0,得c =-32. 故f (x )=12x 3-32x .(2)f ′(x )=32x 2-32=32(x 2-1)=32(x -1)(x +1),令f ′(x )=0,得x =-1或1.f (1)=-1.点拨:找函数的极值点,即先找导数的零点,但并不是说导数为零的点就是极值点(如y =x 3),还要保证该零点为变号零点.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线斜率为2.(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解:(1)f ′(x )=2a (x -5)+6x,依题意,f ′(1)=6-8a =2,得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x.令f ′(x )=0,得x =2或3.单调减区间为(2,3).f (x )的极大值f (2)=92+6ln2,极小值f (3)=2+6ln3.类型四 导数法研究函数的最值问题已知函数f (x )=ax 2+2,g (x )=x 3+bx .若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线.(1)求a ,b 的值;(2)求函数f (x )+g (x )的单调区间,并求其在区间(-∞,1]上的最大值.解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , ∵f (1)=g (1),f ′(1)=g ′(1),∴a +2=1+b ,且2a =3+b ,解得a =4,b =5.(2)设h (x )=f (x )+g (x )=x 3+4x 2+5x +2,则h ′(x )=3x 2+8x +5=(3x +5)(x +1).所以f (x )在⎝⎛⎭⎪⎫-∞,-3,(-1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-53,-1上单调递减. ∵h ⎝ ⎛⎭⎪⎫-53=427,h (1)=12,12>427,∴f (x )+g (x )在(-∞,1]上的最大值为12.点拨:函数在限定区间内最多只有一个最大值和一个最小值,如果存在最大或最小值,最大值一般是在端点或极大值点取得,最小值一般是在端点或极小值点取得.已知函数f (x )=2x 3+ax 2+bx +1,若函数y =f ′(x )的图象关于直线x =-12对称,且f ′(1)=0.(1)求实数a ,b 的值;(2)求函数f (x )在区间[-2,2]上的最大值和最小值.解:(1)f ′(x )=6x 2+2ax +b , 函数y =f ′(x )的图象的对称轴为x =-a6.∵-a 6=-12,∴a =3.∵f ′(1)=0,∴6+2a +b =0,得b =-12.故a =3,b =-12.(2)由(1)知f (x )=2x 3+3x 2-12x +1, f ′(x )=6x 2+6x -12=6(x -1)(x +2).∴所以f (x )在[-2,2]上的最大值为21,最小值为-6.类型五 实际应用问题(优化问题)请你设计一个包装盒,如图所示,ABCD是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x (cm ).(1)若广告商要求包装盒侧面积S (cm 2)最大,x 应取何值?(2)若厂商要求包装盒容积V (cm 3)最大,x 应取何值?解:(1)根据题意有S =602-4x 2-(60-2x )2=240x -8x 2,0<x <30,S ′=240-16x ,令S ′=0,得x =15. 当0<x <15时,S ′>0,S 递增; 当15<x <30时,S ′<0,S 递减. 所以x =15 cm 时包装盒侧面积S 最大. (2)根据题意有V =(2x )2·22(60-2x )=22x 2(30-x ),0<x <30,V ′=62x (20-x ),当0<x <20时,V ′>0,V 递增; 当20<x <30时,V ′<0,V 递减. 所以x =20 cm 时包装盒容积V 最大.点拨:本题主要考查学生的空间想象能力、阅读能力、运用数学知识解决实际问题的能力及建立函数模型的能力,属于中档题.注意用导数求解实际问题中的最大(小)值时,如果函数在区间只有一个极值点,那么依据实际意义,该极值点也就是最值点.用长为15 cm ,宽为8 cm 的长方形铁皮做一个无盖的容器,先在四角分别裁去一个边长为x cm 的小正方形,然后把四边翻转90°角,再焊接而成(如图).问该容器的高为多少时,容器的容积最大?解:依题意,0<x <4,容积V =(15-2x )·(8-2x )·x =4x 3-46x 2+120x ,V ′=12x 2-92x +120=4(3x -5)(x -6).令V ′=0,得x =53或6(舍去).当0<x <53时,V ′>0,V 递增;当53<x <4时,V ′<0,V 递减. 所以高x =53cm 时容器的容积最大.1.用导数判断单调性用导数判断函数的单调性时,首先应确定函数的定义域,然后在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间.在对函数划分单调区间时,除了必须确定使导数等于0的点外,还要注意定义区间内的间断点.2.极值与最值的区别(1)“极值”反映函数在某一点附近的大小情况,刻画的是函数的局部性质;“最值”是个整体概念,是整个区间上的最大值或最小值,具有绝对性.(2)从个数上看,一个连续函数在闭区间内的最值一定存在且是唯一的,而极值可以同时存在若干个或不存在,且极大(小)值并不一定比极小(大)值大(小).(3)从位置上看,极值只能在定义域内部取得,而最值却可以在区间的端点处取得;有极值未必有最值,有最值未必有极值;极值有可能成为最值,连续函数的最值只要不在端点处必定是极值.3.实际问题中的最值在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.1.(2014·新课标Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0,q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解:由条件知由q 可推出p ,而由p 推不出q .故选C .2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象有可能是()解:当x <0时,f ′(x )>0,f (x )单调递增; 当0<x <1时,f ′(x )<0,f (x )单调递减.故选C.3.函数f (x )=(x -3)e x的单调递增区间是( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)解:f ′(x )=(x -3)′e x +(x -3)(e x)′=(x -2)e x,令f ′(x )>0,解得x >2,故选D.4.设函数f (x )=2x+ln x ,则( )A . x =12为f (x )的极大值点B . x =12为f (x )的极小值点C . x =2为 f (x )的极大值点D . x =2为 f (x )的极小值点解:f ′(x )=x -2x2,令f ′(x )=0,得x =2.当x <2时,f ′(x )<0,f (x )为减函数;当x >2时,f ′(x )>0,f (x )为增函数,所以x =2为f (x )的极小值点,故选D.5.函数f (x )=x 3-3x 2+m 在区间[-1,1]上的最大值是2,则常数m =( )A .-2B .0C .2D .4解:f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x =0或x =2(舍去),当-1≤x <0时,f ′(x )>0; 当0<x ≤1时,f ′(x )<0.所以当x =0时,f (x )取得最大值为m ,m =2.故选C.6.已知函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列判断正确的是()A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c >0D .a >0,b >0,c >0 解:因为x >0时,f (x )>0恒成立,所以a >0;f ′(x )=3ax 2+2bx +c =0的两个根x 1、x 2均小于零,所以x 1+x 2=-2b 3a <0,则b >0;x 1x 2=c3a>0,则c >0,所以a ,b ,c 同为正.故选D.7.函数f (x )=x 3+2xf ′(-1),则函数f (x )在区间[]-2,3上的值域是____________.解:f ′(x )=3x 2+2f ′(-1),令x =-1,则f ′(-1)=3+2f ′(-1),得f ′(-1)=-3,因此f (x )=x 3-6x ,f ′(x )=3x 2-6=3(x +2)(x -2),∵f (-2)=4, f (-2)=42,f (2)=-42,f (3)=9,∴f (x )在区间[]-2,3上的值域为[-42,9].故填[-42,9].8.已知圆柱的体积为16π cm 3,则当底面半径r =________cm 时,圆柱的表面积最小.解:圆柱的体积为V =πr 2h =16π⇒r 2h =16,圆柱的表面积S =2πrh +2πr 2=32πr+2πr 2=2π⎝ ⎛⎭⎪⎫16r+r 2, 由S ′=2π·⎝ ⎛⎭⎪⎫-162+2r =0,得r =2.因此r(0,2) 2 (2,+∞)S′- 0+S↘极小值,也是最小值↗填2.9.(2014·重庆)已知函数f (x )=x 4+ax -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)上为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)上为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5.10.已知函数f (x )=x 2+a ln x ,a ≠0. (1)若x =1是函数f (x )的极值点,求实数a 的值;(2)讨论f (x )的单调性.解:f ′(x )=2x +a x,x >0.(1)因为f ′(1)=0,所以2+a =0,得a =-2, 经检验,当a =-2时,x =1是函数f (x )的极值点.(2)①若a >0,则f ′(x )>0恒成立,f (x )在(0,+∞)上单调递增.②若a <0,令f ′(x )=0,得x =-a2, 当x ∈⎝⎛⎭⎪⎫0,-a 2时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎪⎫-a2,+∞时,f ′(x )>0,f (x )单调递增.11.(2014·天门、仙桃、潜江高三期末)某地政府为科技兴市,欲将如图所示的一块不规则的非农业用地AOCB 规划建成一个矩形的高科技工业园区.已知AB ⊥BC ,OA ∥BC ,AB =BC =2AO =4 km ,曲线段OC 是以点O 为顶点且开口向上的抛物线的一段.如果要使矩形的相邻两边分别落在AB ,BC 上,且一个顶点P 落在曲线段OC 上,问应如何规划才能使矩形工业园区的用地面积最大?并求出最大的用地面积(精确到0.1 km 2).解:以O 为原点,AO 所在直线为x 轴建立直角坐标系(如图).依题意可设抛物线的方程为 x 2=2py ,且C (2,4).∴22=2p ·4,∴p =12.故曲线段OC 的方程为y =x 2(0≤x ≤2).设P (x ,x 2)(0≤x <2),则|PM |=2+x ,|PN |=4-x 2. ∴工业园区的用地面积S =|PM |·|PN |=(2+x )(4-x 2)=-x 3-2x 2+4x +8.∴S ′=-3x 2-4x +4,令S ′=0⇒x 1=23,x 2=-2(舍去),当x ∈⎣⎢⎡⎭⎪⎫0,23时,S ′>0,S 是x 的增函数; 当x ∈⎝ ⎛⎭⎪⎫23,2时,S ′<0,S 是x 的减函数. ∴x =23时,S 取到最大值,此时|PM |=2+x =83,|PN |=4-x 2=329,S max =83×329=25627≈9.5(km 2).答:把工业园区规划成长(PN )为329km ,宽(PM )为83km 时,矩形工业园区的用地面积最大,最大用地面积约为9.5 km 2.(2014·全国Ⅱ)已知函数f (x )=x 3-3x 2+ax +2,曲线y =f (x )在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当k <1时,曲线y =f (x )与直线y =kx -2只有一个交点.解:(1)f ′(x )=3x 2-6x +a ,f ′(0)=a . 曲线y =f (x )在点(0,2)处的切线方程为y =ax +2.由题设得-2a=-2,所以a =1.(2)证明:由(1)知,f (x )=x 3-3x 2+x +2.设g (x )=f (x )-kx +2=x 3-3x 2+(1-k )x +4,由题设知1-k >0.当x ≤0时,g ′(x )=3x 2-6x +1-k >0,g (x )单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以g(x)>h(x)≥h(2)=0,所以g(x)=0在(0,+∞)上没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.§3.3 导数的应用(二)1.当f ′(x )在某个区间内个别点处为零,在其余点处均为正(或负)时,f (x )在这个区间上仍旧是单调递增(或递减)的,例如:在(-∞,+∞)上,f (x )=x 3,当x =0时,f ′(x )=_________,当x ≠0时,f ′(x )>0,而f (x )=x 3显然在(-∞,+∞)上是单调递增函数.2.可导函数求最值的方法f ′(x )=0⇒x =x 1,x 2,…,x n ,x ∈[a ,b ]. 直接比较f (a ),f (b ),f (x 1),…,f (x n ),找出__________和____________即可.在此基础上还应注意:(1)结合____________可减少比较次数. (2)含参数的函数求最值可用: ①按____________分类; ②按____________分类. 3.实际问题中的导数,常见的有以下几种情形: (1)加速度是速度关于________的导数; (2)线密度是质量关于________的导数; (3)功率是功关于________的导数;(4)瞬时电流是电荷量关于________的导数; (5)水流的瞬时速度是流过的水量关于________的导数;(6)边际成本是成本关于________的导数. 4.N 型曲线与直线y =k 的位置关系问题如图,方程f (x )=0有三个根x 1,x 2,x 3时,极大值f (a )>0且极小值f (b )<0.曲线y =f (x )与直线y =k (k 是常数)有一个交点时,见图中的直线①或直线②,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有两个交点时,见图中的直线③或直线④,极大值f (a )______k 或极小值f (b )______k ;曲线y =f (x )与直线y =k (k 是常数)有三个交点时,见图中的直线⑤.以上这些问题,常见于求参数的取值范围、讨论不等关系等形式的题目.自查自纠: 1.02.最小值 最大值 (1)单调性 (2)单调性极值点3.(1)时间 (2)长度 (3)时间 (4)时间 (5)时间 (6)产量 4.< > = =函数y =4x 2+1x的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎪⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎪⎫-∞,-12 解:y ′=8x -1x 2,令y ′>0,解得x >12,∴函数y =4x 2+1x 在⎝ ⎛⎭⎪⎫12,+∞上递增.故选B.函数f (x )=ax 3+x +1在x =-1处有极值,则a 的值为( )A .1B .0C .-13D .-12解:f ′(x )=3ax 2+1,∵f ′(-1)=3a +1=0,∴a =-13.故选C.已知函数f (x )=ax 3+bx +c (a ,b ,c ∈R ),若f ′(1)=2,则f ′(-1)=( )A .0B .3C .-1D .2解:f ′(x )=3ax 2+b ,f ′(-1)=f ′(1)=2.故选D.已知f (x )=sin x +2x ,x ∈R ,且f (2a )<f (a -1),则a 的取值范围是________.解:∵f ′(x )=cos x +2>0恒成立,∴f (x )在R 上单调递增.∵f (2a )<f (a -1),∴2a <a -1,得a <-1.故填(-∞,-1).若函数f (x )=ax 3+3x 2+3x (a <0)在区间(1,2)是增函数,则a 的取值范围是________.解:f ′(x )=3ax 2+6x +3,当a <0时,f (x )在区间(1,2)是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.故填⎣⎢⎡⎭⎪⎫-54,0.类型一 函数单调性的进一步讨论 已知实数a >0,函数f (x )=a (x -2)2+2ln x .(1)当a =1时,讨论函数f (x )的单调性; (2)若f (x )在区间[1,4]上是增函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2-4x +4+2ln x ,f ′(x )=2x -4+2x =2(x -1)2x,∵x >0,∴f ′(x )≥0,∴f (x )在区间(0,+∞)上单调递增.(2)∵f ′(x )=2ax -4a +2x =2ax 2-4ax +2x,又f (x )在区间[1,4]上是增函数,∴f ′(x )=2ax 2-4ax +2x≥0对x ∈[1,4]恒成立,即2ax 2-4ax +2≥0对x ∈[1,4]恒成立,令g (x )=2ax 2-4ax +2,则g (x )=2a (x -1)2+2-2a ,∵a >0,∴g (x )在[1,4]上单调递增,只要使g (x )min =g (1)=2-2a ≥0即可,∴0<a ≤1.点拨:函数f (x )在限定区间是单调函数,求参数范围的问题,可以转化为恒成立问题求解.设函数f (x )=xe kx(k ≠0).(1)若k >0,求函数f (x )的单调区间;(2)若函数f (x )在区间(-1,1)内单调递增,求k 的取值范围.解:(1)f ′(x )=(1+kx )e kx.若k >0,令f ′(x )>0,得x >-1k,所以函数f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-1k,+∞,单调递减区间是⎝ ⎛⎭⎪⎫-∞,-1k .(2)∵f (x )在区间(-1,1)内单调递增, ∴f ′(x )=(1+kx )e kx≥0在(-1,1)内恒成立,∴1+kx ≥0在(-1,1)内恒成立, 即⎩⎪⎨⎪⎧1+k ·(-1)≥0,1+k ·1≥0, 解得-1≤k ≤1. 因为k ≠0,所以k 的取值范围是[-1,0)∪(0,1].类型二 极值与最值的进一步讨论(2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程;(2)求函数f (x )的极值.解:(1)∵当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x.∴f (1)=1,f ′(1)=-1.∴所求切线方程为y -1=-(x -1),即x +y -2=0.(2)f ′(x )=1-a x =x -ax,x >0.若a ≤0,则f ′(x )>0恒成立,f (x )不存在极值.若a >0,则x ,f ′(x ),f (x )的变化情况如下点拨:本题要求掌握运用导数研究函数的单调性、极值的一般步骤.分类与整合思想是解这类题目常用的数学思想方法,注意:①分类标准统一,层次分明;②不重不漏.已知函数f (x )=(x -k )e x.(1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.解:(1)f ′(x )=(x -k +1)e x, 令f ′(x )=0,得x =k -1.;单调递增区间是(k -1,+∞),(2)当k -1≤0,即k ≤1时,函数f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,由(1)知f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,函数f (x )在[0,1]上单调递减,所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e .类型三 方程根的讨论已知函数f (x )=e x,x ∈R .(1)求f (x )的图象在点(0,f (0))处的切线方程;(2)证明:曲线y =f (x )与直线y =ex 有唯一公共点.解:(1)∵f ′(0)=e 0=1,f (0)=1,∴切线方程为y -1=1·(x -0),即x -y +1=0.(2)证法一:设g (x )=e x-ex ,曲线y =e x与y =ex 的公共点的个数等于函数g (x )=e x -ex 零点的个数.∵g ′(x )=e x-e ,令g ′(x )=0,得x =1, ∴g (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增,∴g (x )的最小值g (1)=e 1-e =0,g (x )=e x -ex ≥0(仅当x =1时,等号成立). ∴曲线y =f (x )与直线y =ex 有唯一公共点.证法二:⎝⎛⎭⎪⎫由于方程e x =ex 等价于x ex =1e .设h (x )=x ex ,分析方法类似证法一.点拨:本题通过作差或作商构造出新的函数,求出新函数的单调区间、极值点、区间端点处的函数值、特殊点(如图象与x 轴,y 轴交点),来判断交点的个数,这是函数与方程思想的体现.若a >1e,则方程ln x -ax =0的实根的个数为( )A .0个B .1个C .2个D .无穷多个解法一:由于方程ln x -ax =0等价于ln xx=a .设f (x )=ln xx.∵f ′(x )=1x·x -ln xx 2=1-ln xx2, 令f ′(x )=0,得x =e ,∴f (x )在(0,e )上单调递增;在(e ,+∞)上单调递减.∴f (x )的最大值f (e )=1e,f (x )=ln x x ≤1e(仅当x =e 时,等号成立).∵a >1e,∴原方程无实根.解法二:设g (x )=ln x -ax ,分析单调性、极值可得结论.故选A.类型四 导数法证明不等式已知函数f (x )=e x,当x ∈[0,1]时,求证:(1)f (x )≥1+x ;(2)(1-x )f (x )≤1+x .证明:(1)设g (x )=e x-x -1,x ∈[0,1].∵g ′(x )=e x-1≥0,∴g (x )在[0,1]上是增函数,g (x )≥g (0)=1-0-1=0. ∴e x≥1+x ,即f (x )≥1+x .(2)设h (x )=(1-x )e x-x -1,x ∈[0,1].∵h ′(x )=-xe x-1<0,∴h (x )在[0,1]上是减函数,h (x )≤h (0)=1-0-1=0.∴(1-x )e x-x -1≤0, 即(1-x )f (x )≤1+x .点拨:①用导数证明不等式问题的关键在于构造函数;②由作差或者作商来构造函数是最基本的方法;③本题通过作差构造函数,分析其单调性、最值,得出函数值恒大于或小于0,使问题得证.(2013·江西模拟)设函数f (x )=x 1+x ,g (x )=ln x +12.求证:当0<x ≤1时,f (x )≥g (x ).证明:设h (x )=x 1+x -ln x -12,0<x ≤1.∵h ′(x )=1+x -x (1+x )2-1x =1(1+x )2-1x=-x 2-x -1(1+x )2x<0,∴h (x )在(0,1]上单调递减.∵h (1)=12-0-12=0,h (x )≥0(仅当x =1时,等号成立). ∴当0<x ≤1时,f (x )≥g (x ).1.证明不等式问题可通过作差或作商构造函数,然后用导数证明.2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值.3.方程根的问题:可化为研究相应函数的图象,。

高中数学《导数的四则运算法则》知识点讲解及重点练习

高中数学《导数的四则运算法则》知识点讲解及重点练习

5.2.2 导数的四则运算法则 学习目标 1.理解函数的和、差、积、商的求导法则.2.理解求导法则的证明过程,能够综合运用导数公式和导数运算法则求函数的导数.知识点 导数的运算法则已知f (x ),g (x )为可导函数,且g (x )≠0.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ),特别地,[cf (x )]′=cf ′(x ).(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2.1.⎝⎛⎭⎫e x +cos π4′=e x .( √ ) 2.函数f (x )=x e x 的导数是f ′(x )=e x (x +1).( √ )3.当g (x )≠0时,⎣⎡⎦⎤1g (x )′=-g ′(x )g 2(x ).( √ )一、利用运算法则求函数的导数例1 求下列函数的导数:(1)y =15x 5+43x 3; (2)y =3x 2+x cos x ;(3)y =x 1+x; (4)y =lg x -e x ;(5)y =(x +1)⎝⎛⎭⎫1x -1. 解 (1)y ′=⎝⎛⎭⎫15x 5+43x 3′=⎝⎛⎭⎫15x 5′+⎝⎛⎭⎫43x 3′=x 4+4x 2. (2)y ′=(3x 2+x cos x )′=(3x 2)′+(x cos x )′=6x +x ′cos x +x (cos x )′=6x +cos x -x sin x .(3)y ′=⎝ ⎛⎭⎪⎫x 1+x ′=x ′(1+x )-x (1+x )′(1+x )2=1+x -x (1+x )2=1(1+x )2. (4)y ′=(lg x -e x )′=(lg x )′-(e x )′=1x ln 10-e x . (5)y ′=⎣⎡⎦⎤(x +1)⎝⎛⎭⎫1x -1′ =⎝⎛⎭⎫1x -x ′1122=x x '-⎛⎫- ⎪⎝⎭1131222211=22x 'x 'x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭---=--- =-12x ⎝⎛⎭⎫1+1x . 反思感悟 利用导数运算法则的策略(1)分析待求导式子符合哪种求导法则,每一部分式子是由哪种基本初等函数组合成的,确定所需的求导法则和基本公式.(2)如果求导式比较复杂,则需要对式子先变形再求导,常用的变形有乘积式展开变为和式求导,商式变乘积式求导,三角函数恒等变换后求导等.(3)利用导数运算法则求导的原则是尽可能化为和、差,能利用和差的求导法则求导的,尽量少用积、商的求导法则求导.跟踪训练1 求下列函数的导数:(1)y =x 2+x ln x ;(2)y =ln x x 2; (3)y =e xx; (4)y =(2x 2-1)(3x +1).解 (1)y ′=(x 2+x ln x )′=(x 2)′+(x ln x )′=2x +(x )′ln x +x (ln x )′=2x +ln x +x ·1x=2x +ln x +1.(2)y ′=⎝⎛⎭⎫ln x x 2′=(ln x )′·x 2-ln x (x 2)′x 4 =1x ·x 2-2x ln x x 4=1-2ln x x 3. (3)y ′=⎝⎛⎭⎫e x x ′=(e x )′x -e x (x )′x 2=e x ·x -e xx 2. (4)方法一 y ′=[(2x 2-1)(3x +1)]′=(2x 2-1)′(3x +1)+(2x 2-1)(3x +1)′=4x (3x +1)+(2x 2-1)×3=12x 2+4x +6x 2-3=18x 2+4x -3.方法二 ∵y =(2x 2-1)(3x +1)=6x 3+2x 2-3x -1,∴y ′=(6x 3+2x 2-3x -1)′=(6x 3)′+(2x 2)′-(3x )′-(1)′=18x 2+4x -3.二、利用运算法则求曲线的切线例2 (1)曲线y =sin x sin x +cos x -12在点M ⎝⎛⎭⎫π4,0处的切线的斜率为( ) A .-12 B.12 C .-22 D.22答案 B解析 y ′=cos x (sin x +cos x )-sin x (cos x -sin x )(sin x +cos x )2=1(sin x +cos x )2,故π=4|x y'=12, ∴曲线在点M ⎝⎛⎭⎫π4,0处的切线的斜率为12. (2)已知曲线f (x )=x 3+ax +b 在点P (2,-6)处的切线方程是13x -y -32=0.①求a ,b 的值;②如果曲线y =f (x )的切线与直线y =-14x +3垂直,求切线的方程. 解 ①f (x )=x 3+ax +b 的导数f ′(x )=3x 2+a ,由题意可得f ′(2)=12+a =13,f (2)=8+2a +b =-6,解得a =1,b =-16.②∵切线与直线y =-x 4+3垂直,∴切线的斜率k =4. 设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,∴x 0=±1.由f (x )=x 3+x -16,可得y 0=1+1-16=-14或y 0=-1-1-16=-18,则切线方程为y =4(x -1)-14或y =4(x +1)-18,即y =4x -18或y =4x -14.反思感悟 (1)此类问题往往涉及切点、切点处的导数、切线方程三个主要元素,其他的条件可以进行转化,从而转化为这三个要素间的关系.(2)准确利用求导法则求出导函数是解决此类问题的第一步,也是解题的关键,务必做到准确.(3)分清已知点是否在曲线上,若不在曲线上,则要设出切点,这是解题时的易错点. 跟踪训练2 (1)曲线y =x 3-4x 2+4在点(1,1)处的切线方程为( )A .y =-x +2B .y =5x -4C .y =-5x +6D .y =x -1答案 C解析 由y =x 3-4x 2+4,得y ′=3x 2-8x ,y ′|x =1=3-8=-5,所以曲线y =x 3-4x 2+4在点(1,1)处的切线方程为y -1=-5(x -1),即y =-5x +6.(2)已知函数f (x )=a ln x x +1+b x,曲线y =f (x )在点A (1,f (1))处的切线方程为x +2y -3=0,则a ,b 的值分别为________.答案 1,1 解析 f ′(x )=a ⎝ ⎛⎭⎪⎫x +1x -ln x (x +1)2-b x 2. 由于直线x +2y -3=0的斜率为-12,且过点(1,1), 故⎩⎪⎨⎪⎧ f (1)=1,f ′(1)=-12,即⎩⎪⎨⎪⎧ b =1,a 2-b =-12,解得⎩⎪⎨⎪⎧a =1,b =1.三、与切线有关的综合问题例3 (1)曲线y =x ln x 上的点到直线x -y -2=0的最短距离是( ) A. 2 B.22C .1D .2 答案 B解析 设曲线y =x ln x 在点(x 0,y 0)处的切线与直线x -y -2=0平行.∵y ′=ln x +1,∴0=|x x y'=ln x 0+1=1,解得x 0=1,∴y 0=0,即切点坐标为(1,0).∴切点(1,0)到直线x -y -2=0的距离为d =|1-0-2|1+1=22, 即曲线y =x ln x 上的点到直线x -y -2=0的最短距离是22. (2)设曲线 y =a (x -1)e x 在点(1,0)处的切线与直线 x +2y +1=0垂直,则实数a =________.答案 2e解析 令y =f (x ),则曲线y =a (x -1)e x 在点(1,0)处的切线的斜率为f ′(1),又切线与直线x +2y +1=0垂直,所以f ′(1)=2.因为f (x )=a (x -1)e x ,所以f ′(x )=a e x +a (x -1)e x =ax e x ,所以f ′(1)=a e ,故a =2e. 反思感悟 本题正确的求出函数的导数是前提,审题时注意所给点是否是切点,挖掘题目隐含条件,求出参数,解决已知经过一定点的切线问题,寻求切点是解决问题的关键.跟踪训练3 求曲线y =2e(x -1)e x 在点(1,0)处的切线与坐标轴围成的面积. 解 由题意可知,y ′=2ex ·e x ,y ′|x =1=2, ∴切线方程为y =2(x -1),即2x -y -2=0.令x =0得y =-2;令y =0得x =1.∴曲线y =2e (x -1)e x 在点(1,0)处的切线与坐标轴围成的面积为S =12×2×1=1.1.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是( )A.193B.163C.133D.103答案 D解析 ∵f ′(x )=3ax 2+6x ,∴f ′(-1)=3a -6=4,∴a =103. 2.设函数y =-2e x sin x ,则y ′等于( )A .-2e x cos xB .-2e x sin xC .2e x sin xD .-2e x (sin x +cos x )答案 D解析 y ′=-2(e x sin x +e x cos x )=-2e x (sin x +cos x ).3.若函数f (x )=12f ′(-1)x 2-2x +3,则f ′(-1)的值为( ) A .-1 B .0 C .1 D .2答案 A解析 因为f (x )=12f ′(-1)x 2-2x +3, 所以f ′(x )=f ′(-1)x -2.所以f ′(-1)=f ′(-1)×(-1)-2,所以f ′(-1)=-1.4.已知f (x )=ln x x,则f ′(1)=________. 答案 1解析 f ′(x )=(ln x )′·x -ln x ·(x )′x 2=1x ·x -ln x x 2 =1-ln x x 2, 所以f ′(1)=1.5.已知函数f (x )=f ′⎝⎛⎭⎫π4cos x +sin x ,则f ⎝⎛⎭⎫π4的值为________. 答案 1解析 ∵f ′(x )=-f ′⎝⎛⎭⎫π4sin x +cos x ,∴f ′⎝⎛⎭⎫π4=-f ′⎝⎛⎭⎫π4×22+22,得f ′⎝⎛⎭⎫π4=2-1. ∴f (x )=(2-1)cos x +sin x ,∴f ⎝⎛⎭⎫π4=1.1.知识清单:(1)导数的运算法则.(2)综合运用导数公式和导数运算法则求函数的导数.2.方法归纳:转化法.3.常见误区:对于函数求导,一般要遵循先化简、再求导的基本原则.1.(多选)下列运算中正确的是( )A .(ax 2+bx +c )′=a (x 2)′+b (x )′B .(sin x -2x 2)′=(sin x )′-2′(x 2)′C.⎝⎛⎭⎫sin x x 2′=(sin x )′-(x 2)′x 2D .(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′答案 AD解析 A 项中,(ax 2+bx +c )′=a (x 2)′+b (x )′,故正确;B 项中,(sin x -2x 2)′=(sin x )′-2(x 2)′,故错误;C 项中,⎝⎛⎭⎫sin x x 2′=(sin x )′x 2-sin x (x 2)′(x 2)2,故错误; D 项中,(cos x ·sin x )′=(cos x )′sin x +cos x (sin x )′,故正确.2.函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为( )A .0 B.π4 C .1 D.π2答案 B解析 对函数求导得f ′(x )=e x (cos x -sin x ),∴f ′(0)=1,∴函数f (x )=e x cos x 的图象在点(0,f (0))处的切线的倾斜角为π4. 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0等于( )A .e 2B .e C.ln 22D .ln 2 答案 B解析 ∵f (x )=x ln x ,∴f ′(x )=ln x +1(x >0),由f ′(x 0)=2,得ln x 0+1=2,即ln x 0=1,解得x 0=e.4.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( )A .-1B .-2C .2D .0答案 B解析 ∵f ′(x )=4ax 3+2bx ,f ′(x )为奇函数,∴f ′(-1)=-f ′(1)=-2.5.(多选)当函数y =x 2+a 2x(a >0)在x =x 0处的导数为0时,那么x 0可以是( ) A .a B .0 C .-a D .a 2答案 AC解析 y ′=⎝ ⎛⎭⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2, 由x 20-a 2=0得x 0=±a .6.已知f (x )=sin x 1+cos x,则f ′⎝⎛⎭⎫π3=________. 答案 23解析 因为f ′(x )=(sin x )′(1+cos x )-sin x (1+cos x )′(1+cos x )2=cos x (1+cos x )-sin x (-sin x )(1+cos x )2=cos x +cos 2x +sin 2x (1+cos x )2=cos x +1(1+cos x )2 =11+cos x . 所以f ′⎝⎛⎭⎫π3=11+cos π3=23. 7.已知f (x )=e x x,则f ′(1) =________,若f ′(x 0)+f (x 0)=0,则x 0=________. 答案 0 12解析 因为f ′(x )=(e x )′x -e x (x )′x 2=e x (x -1)x 2(x ≠0). 所以f ′(1)=0.由f ′(x 0)+f (x 0)=0,得()00020e 1e 0.x x x x x 0-+= 解得x 0=12. 8.已知函数f (x )=e x ·sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是____________. 答案 y =x解析 ∵f (x )=e x ·sin x ,f ′(x )=e x (sin x +cos x ),f ′(0)=1,f (0)=0,∴曲线y =f (x )在点(0,0)处的切线方程为y -0=1×(x -0),即y =x .9.若曲线y =x 2-ax +ln x 存在垂直于y 轴的切线,求实数a 的取值范围.解 ∵y =x 2-ax +ln x ,∴y ′=2x -a +1x, 由题意可知,存在实数x >0使得2x -a +1x=0, 即a =2x +1x成立,∴a =2x +1x ≥22(当且仅当2x =1x ,即x =22时等号成立).∴a 的取值范围是[22,+∞).10.已知函数f (x )=ax 2+bx +3(a ≠0),其导函数f ′(x )=2x -8.(1)求a ,b 的值;(2)设函数g (x )=e x sin x +f (x ),求曲线g (x )在x =0处的切线方程.解 (1)因为f (x )=ax 2+bx +3(a ≠0),所以f ′(x )=2ax +b ,又f ′(x )=2x -8,所以a =1,b =-8.(2)由(1)可知g (x )=e x sin x +x 2-8x +3,所以g ′(x )=e x sin x +e x cos x +2x -8,所以g ′(0)=e 0sin 0+e 0cos 0+2×0-8=-7,又g (0)=3,所以曲线g (x )在x =0处的切线方程为y -3=-7(x -0),即7x +y -3=0.11.已知曲线f (x )=x 2+ax +1在点(1,f (1))处切线的倾斜角为3π4,则实数a 等于( )A .1B .-1C .7D .-7答案 C解析 ∵f ′(x )=2x (x +1)-(x 2+a )(x +1)2=x 2+2x -a (x +1)2,又f ′(1)=tan 3π4=-1,∴a =7.12.已知曲线f (x )=(x +a )·ln x 在点(1,f (1))处的切线与直线2x -y =0垂直,则a 等于() A.12 B .1 C .-32 D .-1答案 C解析 因为f (x )=(x +a )·ln x ,x >0,所以f ′(x )=ln x +(x +a )·1x ,所以f ′(1)=1+a .又因为f (x )在点(1,f (1))处的切线与直线2x -y =0垂直,所以f ′(1)=-12,所以a =-32,故选C. 13.已知函数f (x )=f ′(-1)x 22-2x +3,则f (-1)的值为________. 答案 92解析 ∵f ′(x )=f ′(-1)·x -2,∴f ′(-1)=-f ′(-1)-2,解得f ′(-1)=-1.∴f (x )=-x 22-2x +3, ∴f (-1)=92. 14.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为______________.答案 x -y -1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上,∴设切点坐标为(x 0,y 0).又∵f ′(x )=1+ln x (x >0),∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴切点坐标为(1,0),∴f ′(1)=1+ln 1=1.∴直线l 的方程为y =x -1,即x -y -1=0.15.等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=________. 答案 212解析 因为f ′(x )=(x )′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=8,所以f ′(0)=84=212.16.偶函数f (x )=ax 4+bx 3+cx 2+dx +e 的图象过点P (0,1),且在x =1处的切线方程为y =x -2,求f (x )的解析式.解 ∵f (x )的图象过点P (0,1),∴e =1.又∵f (x )为偶函数,∴f (x )=f (-x ).故ax 4+bx 3+cx 2+dx +e =ax 4-bx 3+cx 2-dx +e .∴b =0,d =0.∴f (x )=ax 4+cx 2+1.∵函数f (x )在x =1处的切线方程为y =x -2,∴切点坐标为(1,-1).∴a +c +1=-1.∵f ′(1)=4a +2c ,∴4a +2c =1.∴a =52,c =-92. ∴函数f (x )的解析式为f (x )=52x 4-92x 2+1.。

导数的含参分类讨论练习(含答案)

导数的含参分类讨论练习(含答案)

贯穿高中的数学工具系列之5《一元二次类与韦达定理》下篇含参一元二次类在高中数学的应用1、讨论导数的单调性(含参二次不等式)(1)设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.(2)(2019·荆州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(a)求b ,c 的值;(b)若a >0,求函数f (x )的单调区间.(3)已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.(4)已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性.(5)(2019·兰州模拟)已知函数f (x )=ln x -ax +1-a x-1(a ∈R ).当0<a <12时,讨论f (x )的单调性.(6)已知f (x )=a (x -ln x )+2x -1x2,a ∈R .讨论f (x )的单调性.(7)设函数f (x )=ax 2-a -ln x ,其中a ∈R ,讨论f (x )的单调性.(8)讨论函数f (x )=(a -1)ln x +ax 2+1的单调性.(9)已知函数2()(2ln )(0)f x x a x a x=-+->,讨论()f x 的单调性.(10)(2018·高考全国卷Ⅰ节选)已知函数f(x)=1x-x+a ln x,讨论f(x)的单调性.(11)已知函数f(x)=x2e-ax-1(a是常数),求函数y=f(x)的单调区间.mx3+(4+m)x2,g(x)=a ln(x-1),其中a≠0.(12)设函数f(x)=13(1)若函数y=g(x)的图象恒过定点P,且点P关于直线x=32对称的点在y=f(x)的图象上,求m的值.(2)当a=8时,设F(x)=f′(x)+g(x+1),讨论F(x)的单调性.(13)已知函数g(x)=ln x+ax2+bx,其中g(x)的函数图象在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.下篇含参一元二次类在高中数学的应用参考答案1讨论导数的单调性(含参二次不等式)(1)解析:f ′(x )=x 2-2(1+a )x +4a =(x -2)(x -2a ),由a >1知,当x <2时,f ′(x )>0,故f (x )在区间(-∞,2)上单调递增;当2<x <2a 时,f ′(x )<0,故f (x )在区间(2,2a )上单调递减;当x >2a 时,f ′(x )>0,故f (x )在区间(2a ,+∞)上单调递增.综上,当a >1时,f (x )在区间(-∞,2)和(2a ,+∞)上单调递增,在区间(2,2a )上单调递减.答案:(2,2a )(2)解析:(a)f ′(x )=x 2-ax +b ,0)=1,(0)=0,=1,=0.(b)由(a)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ).(3)解f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a>1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a.②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a<1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )(0,1)当a=1时,f(x)在(0,+∞)上单调递增,当a>1时,f(x)在(1,+∞)(4)解g′(x)=2ax2-(2a+1)x+1x=(2ax-1)(x-1)x.∵函数g(x)的定义域为(0,+∞),∴当a=0时,g′(x)=-x-1 x.由g′(x)>0,得0<x<1,由g′(x)<0,得x>1.当a>0时,令g′(x)=0,得x=1或x=1 2a,若12a<1,即a>12,由g′(x)>0,得x>1或0<x<1 2a,由g′(x)<0,得12a<x<1;若12a>1,即0<a<12,由g′(x)>0,得x>12a或0<x<1,由g′(x)<0,得1<x<12a,若12a=1,即a=12,在(0,+∞)上恒有g′(x)≥0.综上可得:当a=0时,函数g(x)在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a<12时,函数g(x)在(0,1)上单调递增,当a=12时,函数g(x)在(0,+∞)上单调递增;当a>12时,函数g(x)(1,+∞)上单调递增.(5)解析:因为f (x )=ln x -ax +1-ax-1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1,因为0<a <12,所以1a-1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x ,1a -f ′(x )>0,函数f (x )单调递增;当x ∈(1a -1,+∞)时,f ′(x )<0,函数f (x )单调递减.(6)【解】f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0时,x ∈(0,1)时,f ′(x )>0,f (x )单调递增,x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.当a >0时,f ′(x )(1)0<a <2时,2a>1,当x ∈(0,1)或x f ′(x )>0,f (x )单调递增.当x f ′(x )<0,f (x )单调递减.(2)a =2时,2a=1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.(3)a >2时,0<2a<1,当x x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增,当x f ′(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)当a =2时,f (x )在(0,+∞)内单调递增;当a >2时,f (x )(1,+∞)内单调递增.(7)解:f (x )的定义域为(0,+∞)f ′(x )=2ax -1x =2ax 2-1x(x >0).当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0,有x =12a.此时,当x f ′(x )<0,f (x )单调递减;当x f ′(x )>0,f (x )单调递增.综上当a ≤0时,f (x )的递减区间为(0,+∞),当a >0时,f (x )(8)解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减;③当0<a <1时,令f ′(x )=0,解得x =1-a2a,则当x ∈,时,f ′(x )<0;当x 1-a2a,+f ′(x )>0,故f (x ),1-a2a,+(9)解析函数()f x 的定义域为()()222220,,1a x ax f x x x x-+'+∞=+-=。

高中求导简单练习题及讲解

高中求导简单练习题及讲解

高中求导简单练习题及讲解练习题1:求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

解答:首先,我们需要知道基本的求导法则。

对于多项式函数,每一项的导数可以通过求导法则分别求得,然后将它们相加。

对于 \( f(x) = 3x^2 \),导数是 \( 6x \)。

对于 \( f(x) = 2x \),导数是 \( 2 \)。

对于常数项 \( -5 \),导数是 \( 0 \)。

将这些导数相加,我们得到 \( f'(x) = 6x + 2 \)。

练习题2:求函数 \( g(x) = \sin(x) \) 的导数。

解答:对于三角函数,我们使用基本的三角函数导数公式。

对于 \( \sin(x) \),导数是 \( \cos(x) \)。

因此,\( g'(x) = \cos(x) \)。

练习题3:求函数 \( h(x) = (x^3 - 1)^4 \) 的导数。

解答:这里我们使用链式法则和幂法则。

首先,设 \( u = x^3 - 1 \),那么 \( h(x) = u^4 \)。

\( u \) 的导数是 \( u' = 3x^2 \)。

接下来,我们对 \( u^4 \) 求导,使用幂法则,得到 \( h'(x) = 4u^3 \cdot u' \)。

将 \( u \) 和 \( u' \) 的表达式代入,我们得到 \( h'(x) =4(x^3 - 1)^3 \cdot 3x^2 \)。

练习题4:求函数 \( k(x) = \frac{1}{x^2 + 1} \) 的导数。

解答:对于复合函数的导数,我们使用商法则。

设 \( u = x^2 + 1 \),那么 \( k(x) = \frac{1}{u} \)。

\( u \) 的导数是 \( u' = 2x \)。

使用商法则,我们得到 \( k'(x) = -\frac{u'}{u^2} \)。

高中数学专题练习《导数的四则运算法则》含详细解析

高中数学专题练习《导数的四则运算法则》含详细解析

5.2.2导数的四则运算法则基础过关练题组一导数的四则运算法则1.函数f(x)=x 2x+3的导数f'(x)=()A.x 2+6xx+3B.-2x(x+3)2C.x2+6x(x+3)2D.3x2+6x(x+3)22.函数y=x2cos x的导数为()A.y'=2xcos x-x2sin xB.y'=2xcos x+x2sin xC.y'=x2cos x-2xsin xD.y'=xcos x-x2sin x3.已知f(x)=x2+e x,则f'(0)=()A.0B.-4 C.-2 D.14.对于函数f(x)=e xx2+ln x-2kx,若f'(1)=1,则实数k等于()A.e2B.e3C.-e2D.-e35.(2020浙江宁波余姚中学高二下月考)设f(x)与g(x)是定义在R上的两个可导函数,若f(x),g(x)满足f'(x)=g'(x),则f(x)与g(x)满足() A.f(x)=g(x) B.f(x)=g(x)=0C.y=f(x)-g(x)为常数函数D.y=f(x)+g(x)为常数函数6.若函数f(x)=x 2e x,则f'(x)=.7.已知函数f(x),g(x)满足f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,若h(x)=f(x)+2g(x),则h'(5)=.8.求下列函数的导数.(1)y=x-2+x2;(2)y=3x e x-2x+e;(3)y=lnxx2+1;(4)y=x2-4sin x2cos x2.题组二求导法则的综合应用9.已知函数f(x)=f'(1)+xln x,则f(e)=()A.1+eB.eC.2+eD.310.已知定义在R上的函数f(x)=e x+x2-x+sin x,则曲线y=f(x)在点(0,f(0))处的切线方程为()A.y=3x-2B.y=x+1C.y=2x-1D.y=-2x+311.(2020浙江嘉兴高三上期末)设曲线y=x+1x-2在点(1,-2)处的切线与直线ax+by+c=0(b≠0)垂直,则ab=()A.13B.-13C.3D.-312.(2020河北保定高二上期末)设曲线f(x)=ae x-ln x(a≠0)在x=1处的切线为l,则l在y轴上的截距为()A.1B.2C.aeD.ae-113.若质子的运动方程为s=tsin t,其中s的单位为m,t的单位为s,则质子在t=2s时的瞬时速度为m/s.14.曲线y=x3+3x2+6x-10的所有切线中,斜率最小的切线方程为.15.(2020江西南昌三中高二下期中)已知函数f(x)=x-2ln x,求曲线y=f(x)在点A(1,f(1))处的切线方程.能力提升练题组导数的四则运算法则及其应用1.()设函数f(x)=sinθ3x3+√3cosθ2x2+tanθ,其中θ∈[0,5π12],则导数f'(1)的取值范围是()A.[-2,2]B.[√2,√3]C.[√3,2]D.[√2,2]2.(2020湖南长沙长郡中学高二上期末,)下面四个图象中,有一个是函数f(x)=13x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)=()A.13B.-23C.73D.-13或533.(2019河北衡水中学高三二调,)已知f'(x)是函数f(x)的导函数,且对任意的实数x都有f'(x)=e x(2x-2)+f(x)(e是自然对数的底数),f(0)=1,则(易错)A.f(x)=e x(x+1)B.f(x)=e x(x-1)C.f(x)=e x(x+1)2D.f(x)=e x(x-1)24.()设函数f(x)=xsin x+cos x的图象在点(t,f(t))处切线的斜率为g(t),则函数y=g(t)图象的一部分可以是()5.(多选)()给出定义:若函数f(x)在D上可导,即f'(x)存在,且导函数f'(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f'(x))',若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在(0,π)上不是凸函数的是()2A.f(x)=sin x-cos xB.f(x)=ln x-2xC.f(x)=-x3+2x-1D.f(x)=xe x6.()对于三次函数f(x)=ax3+bx2+cx+d(a≠0),现给出定义:设f'(x)是函数f(x)的导数,f″(x)是f'(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数f(x)=ax3+bx2+cx+d(a≠0)的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数g(x)=2x3-3x2+1,则g(1100)+g(2100)+…+g(99100)=.7.(2020湖南长沙长郡中学高二上期末,)已知函数f(x)=13x3-2x2+3x(x∈R)的图象为曲线C.(1)求曲线C上任意一点的切线的斜率的取值范围;(2)若在曲线C上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.8.()已知直线x+2y-4=0与抛物线y2=4x相交于A,B两点,O是坐标原点,试在抛物线的AOB⏜上求一点P,使△ABP的面积最大.9.()已知函数f(x)(x∈(0,+∞))的导函数为f'(x),且满足xf'(x)-2f(x)=x3e x,f(1)=e-1,求f(x)在点(2,f(2))处的切线方程.答案全解全析基础过关练1.C f'(x)=(x 2)'(x+3)−x2(x+3)′(x+3)2=2x(x+3)−x 2(x+3)2=2x2+6x-x2(x+3)2=x2+6x(x+3)2.故选C.2.A对函数y=x2cos x求导,得y'=2xcos x+x2·(-sin x)=2xcos x-x2sin x.故选A.3.D由题意,得f'(x)=2x+e x,则f'(0)=1,故选D.4.A因为f'(x)=e x(x-2)x3+1x+2kx2,所以f'(1)=-e+1+2k=1,解得k=e2,故选A.5.C取f(x)=x,g(x)=x+1,满足f'(x)=g'(x),可以验证A、B、D错误;由f'(x)=g'(x),得f'(x)-g'(x)=0,即[f(x)-g(x)]'=0,所以f(x)-g(x)=c(c为常数),C 正确.故选C.6.答案2x-x 2e x解析f'(x)=2xe x-x2e x(e x)2=2x-x2e x.7.答案516解析由题意得,h'(x)=f'(x)g(x)-[f(x)+2]g'(x)[g(x)]2,由f(5)=5,f'(5)=3,g(5)=4,g'(5)=1,得h'(5)=f'(5)g(5)-[f(5)+2]g'(5)[g(5)]2=3×4−(5+2)×142=516.8.解析(1)y'=2x-2x-3. (2)y'=(ln3+1)·(3e)x-2x ln2.(3)y'=x 2+1−2x 2lnx x(x 2+1)2.(4)∵y=x 2-4sin x2cos x 2=x 2-2sin x,∴y'=2x-2cos x.9.A ∵f'(x)=ln x+1,∴f'(1)=ln 1+1=1,则f(x)=1+xln x,∴f(e)=1+eln e=1+e.10.B ∵f'(x)=e x +2x-1+cos x,∴切线的斜率k=f'(0)=1,又f(0)=1,∴切线方程为y=x+1. 11.B 依题意得y'=x -2-(x+1)(x -2)2=-3(x -2)2,则y'x=1=-3,由于曲线y=x+1x -2在点(1,-2)处的切线与直线ax+by+c=0(b ≠0)垂直,所以(-3)·(-ab)=-1,解得a b=-13.故选B.12.A 因为函数f(x)=ae x -ln x(a ≠0), 所以f'(x)=ae x -1x ,将x=1代入,得k=ae-1,又f(1)=ae,所以曲线f(x)在x=1处的切线l 的方程为y-ae=(ae-1)(x-1), 整理得y=(ae-1)x+1,令x=0,得y=1. 所以l 在y 轴上的截距为1.故选A. 13.答案 sin 2+2cos 2解析 ∵s'=(tsin t)'=sin t+tcos t, ∴所求瞬时速度为(sin 2+2cos 2)m/s. 14.答案 3x-y-11=0解析 ∵y'=3x 2+6x+6=3(x 2+2x+2) =3(x+1)2+3≥3,∴当x=-1时,y'最小,即此时切线的斜率最小,此时切点为(-1,-14), ∴切线方程为y+14=3(x+1), 即3x-y-11=0.15.解析 ∵函数f(x)=x-2ln x 的导函数为f'(x)=1-2x ,∴曲线y=f(x)在点A(1,f(1))处的切线斜率为f'(1)=1-2=-1,又f(1)=1,∴曲线y=f(x)在点A(1,f(1))处的切线方程为y-1=-(x-1),即x+y-2=0.能力提升练1.D f'(x)=sin θ·x 2+√3cos θ·x, ∴f'(1)=sin θ+√3cos θ=2sin (θ+π3),∵θ∈[0,5π12],∴θ+π3∈[π3,3π4],∴sin (θ+π3)∈[√22,1],∴f'(1)=2sin (θ+π3)∈[√2,2].故选D.2.D 因为f'(x)=x 2+2ax+a 2-1,所以y=f'(x)的图象开口向上,排除②④.若y=f'(x)的图象为①,则a=0,f(-1)=53;若y=f'(x)的图象为③,则a 2-1=0,得a=±1.又对称轴x=-a>0,所以a=-1,所以f(-1)=-13.3.D 由f'(x)=e x (2x-2)+f(x), 得f'(x)-f(x)e x =2x-2,即[f(x)e x]'=2x-2,所以f(x)e x=x 2-2x+c(c 为常数),所以f(x)=(x 2-2x+c)e x , 又因为f(0)=1,所以c=1,所以函数f(x)的解析式是f(x)=e x (x-1)2.故选D.易错警示 已知原函数可求出唯一的导函数,已知导数求原函数,则结论不唯一,如本题中由y'=2x-2可以得到y=x 2-2x+c(c 为常数),解题时容易将c 遗漏导致解题错误. 4.A 由f(x)=xsin x+cos x,可得f'(x)=sin x+xcos x-sin x=xcos x. 则g(t)=f'(t)=tcos t,易知函数g(t)是奇函数,排除选项B,D; 当t ∈(0,π2)时,g(t)>0,排除选项C.故选A.5.AD 对于A,f'(x)=cos x+sin x, f″(x)=-sin x+cos x,当x ∈(0,π4)时,f″(x)>0,故f(x)=sin x-cos x 不是凸函数;对于B,f'(x)=1x-2,f″(x)=-1x2<0,故f(x)=ln x-2x 是凸函数; 对于C,f'(x)=-3x 2+2,f″(x)=-6x,当x ∈(0,π2)时,f″(x)<0,故f(x)=-x 3+2x-1是凸函数;对于D,f'(x)=(x+1)e x ,f″(x)=(x+2)e x ,当x ∈(0,π2)时,f″(x)>0,故f(x)=xe x 不是凸函数.故选AD.6.答案992解析 依题意得,g'(x)=6x 2-6x,g″(x)=12x -6,令g″(x)=0,解得x=12, ∵g (12)=12,∴函数g(x)的对称中心为(12,12),则g(1-x)+g(x)=1,∵1100+99100=2100+98100=…=49100+51100=1,∴g (1100)+g (99100)=g (2100)+g (98100)=…=g (49100)+g (51100)=1,∴g (1100)+g (2100)+…+g (99100) =[g (1100)+g (99100)]+[g (2100)+g (98100)] +…+[g (49100)+g (51100)]+g (12) =49+12=992.7.解析 (1)由题意得f'(x)=x 2-4x+3,则f'(x)=(x-2)2-1≥-1,即曲线C 上任意一点的切线的斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k,则由条件和(1)中结论可知, {k ≥−1,-1k ≥−1,解得-1≤k<0或k ≥1,故由-1≤x 2-4x+3<0或x 2-4x+3≥1,得x ∈(-∞,2-√2]∪(1,3)∪[2+√2,+∞).8.解析 因为|AB|为定值,所以要使△PAB 的面积最大,只要点P 到AB 的距离最大即可,即点P 是抛物线的切线中平行于AB 的切线的切点,设P(x,y).由题图知,点P 在x 轴下方的图象上,所以y=-2√x ,所以y'=-√x . 因为k AB =-12,所以-√x =-12,解得x=4.由y=-2√x ,得y=-4, 所以点P 的坐标为(4,-4).9.解析 ∵xf'(x)-2f(x)=x 3e x ,x ∈(0,+∞),∴xf'(x)-2f(x)x 3=e x . 令g(x)=f(x)x 2,则g'(x)=xf'(x)-2f(x)x 3=e x , ∴g(x)=f(x)x 2=e x +c(c 为常数),∴f(x)=x 2(e x +c).又f(1)=e+c=e-1,∴c=-1.∴f(x)=x 2(e x -1),∴f'(x)=2x(e x -1)+x 2e x =(x 2+2x)e x -2x,∴f'(2)=8e 2-4.又f(2)=4(e 2-1),∴所求切线方程为y-4(e 2-1)=(8e 2-4)·(x-2),即y=(8e 2-4)x-12e 2+4.。

导数(一)讲义(学霸版)

导数(一)讲义(学霸版)

导数(一)讲义(学霸版)PPT(第1页):终于来到了高中数学的最后一大关,也是最难的一关,导数。

这里比圆锥曲线还要加大一点难度,会有很多同学干脆就放弃了导数。

不过你能来到这里,已经很勇敢,也很有实力了。

相信CB 两类模块你已经掌握得不错了,圆锥曲线也练出一点点多步骤、长线思维的能力。

来到这里几乎是地狱之模块了,难度要再大一点点,如果说圆锥曲线的难是横向的难,就是说跟以往知识点有很多很多结合,好像一道题在考你整个的高中数学一样,那么导数就是纵向的难。

就是从这一个点,不断往深挖,挖出井为止的那种。

所以很多同学只会做第一问,只会四则运算,这是正常的。

另外,我们在总论里就提过,学导数有很多人有一种错误的思维,非常非常错误,导致刚上场就倒下了。

很恐怖。

我们会在这几节课中慢慢把正确的思维导入脑中,丢掉原来错误的。

刚开始可能你会有一点不适应,但是一定要下决心,不然导数永远只是第一问,还不一定能拿全分数。

还是先介绍一下导数的整体安排。

今天是第一节,我们先纠正做题思路,讲点意识流的东西,然后梳理一下导数自己的知识点。

今天主要解决一些小题,导数的小题不像圆锥曲线有明显的简单题和难题,导数这里,不好意思,几乎没有简单题。

第二节开始,我们按照类型来攻克一下大题。

导数属于我们CBA方法的A类模块——Analyzing。

题目是大题小题都有,小题一般就在11,12题。

大题我想你很熟悉了,就是21题,非常恐怖的。

A类模块的知识点梳理是相对简单的,看起来好像没什么东西,因为有点抽象。

重点在于与题目结合起来的讲解,因此A模块里面的例题视频务必好好看,精华的讲解很多都在视频里面。

嘱咐就这么多,让我们开始今天的学习吧。

PPT(第2页):让我们看看导数到底是怎么难的。

先从它的知识点特点说起。

有以下2个特点。

1、自身知识点难度不大。

其实导数和圆锥曲线有相似的地方就在这里,自身的知识点没什么太大难度。

你学会了导数的定义、几何意义和四则运算以后,可以说就算是掌握了导数自身的知识了,这里我想你应该是滚瓜烂熟的,如果加减乘除还没搞定,那根本进行不下去,先停下好好背熟,练熟才行。

高中数学导数自学讲义——认识导数

高中数学导数自学讲义——认识导数

导数的简单自学讲义1.函数y =f (x )在x =x 0处的导数(1)定义:称函数y =f (x )在x =x 0处的瞬时变化率()()0000lim lim x x f x x f x y x x∆→∆→+∆-∆=∆∆为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0(2)几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).2.函数f (x )的导函数称函数f ′(x )=()()0lim x f x x f x x∆→+∆-∆为f (x )的导函数.3.基本初等函数的导数公式(*)4.利用导数的定义求函数的导数(1)根据导数的定义求函数在点处导数的方法: ①求函数的增量; ②求平均变化率; ③得导数,简记作:一差、二比、三极限.(2)函数的导数与导数值的区间与联系:导数是原来函数的导函数,而导数值是导函数在某一点的函数值,导数值是常数.5.导数的运算法则1) .[f (x )±g (x )]′=f ′(x )±g ′(x );2) .[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );3) .()()()()()()()2f x f x g x f x g x g x g x '⎡⎤''-=⎢⎥⎡⎤⎣⎦⎣⎦(g (x )≠0) 4) 复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.例题精析【例题1】求函数y =x=1处的导数. 【例题2】一质点运动的方程为.(1) 求质点在t=1时的瞬时速度;(2) 求质点在t=1时的瞬时加速度;【例题3】求下列函数的导数.【例题4】已知曲线,(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;。

高中数学求导练习题及讲解

高中数学求导练习题及讲解

高中数学求导练习题及讲解### 高中数学求导练习题及讲解#### 练习题1. 基本函数求导求函数 \( f(x) = 3x^2 + 2x - 5 \) 的导数。

2. 复合函数求导已知 \( g(x) = (x^3 + 1)^2 \),求 \( g'(x) \)。

3. 链式法则应用若 \( h(t) = \sin(2t + 1) \),求 \( h'(t) \)。

4. 高阶导数求函数 \( f(x) = x^3 \ln(x) \) 的一阶和二阶导数。

5. 隐函数求导若 \( xy = x^2 + y^2 \),求 \( y' \)。

6. 参数方程求导给定参数方程 \( x = t^2 \) 和 \( y = t^3 \),求 \( dy/dx \)。

7. 反函数求导若 \( y = \sqrt{x + 1} \),求 \( \frac{dx}{dy} \)。

8. 乘积法则与商法则求函数 \( f(x) = (x^2 + 1)(3x - 1) \) 和 \( g(x) =\frac{x^2}{x + 1} \) 的导数。

9. 应用问题某物体的位移函数为 \( s(t) = t^3 - 6t^2 + 4t \),求其在\( t = 2 \) 时的瞬时速度。

10. 最优化问题若 \( C(x) = 100x + 0.02x^2 \) 是生产成本函数,求使成本最小化的 \( x \) 值。

#### 讲解1. 基本函数求导\( f'(x) = 6x + 2 \),根据幂函数的导数规则 \( (x^n)' =nx^{n-1} \)。

2. 复合函数求导\( g'(x) = 2(x^3 + 1)(x^3)' = 2(x^3 + 1)(3x^2) = 6x^2(x^3+ 1) \),应用链式法则。

3. 链式法则应用\( h'(t) = \cos(2t + 1) \cdot (2t + 1)' = 2\cos(2t + 1) \)。

(word版)高二数学导数及其应用复习讲义有答案

(word版)高二数学导数及其应用复习讲义有答案

高二数学复习讲义—导数及其应用知识归纳1.导数的概念 函数y=f(x), 如果自变量x 在x 0处有增量x ,那么函数y 相应地有增量 y =f 〔x 0+x 〕 -f 〔x 0〕,比值 y 叫做函数y=f 〔x 〕在x 0x到x 0+x 之间的平均变化率,即y f(x 0 x) f(x 0)。

如果当x0时, x =xy 有极限,我们就说函数 y=f(x)在点x 0处 x可导,并把这个极限叫做f 〔x 〕在点x 0处的导数,记作f ’〔x 0〕或y ’|xx 0。

即f 〔x 0 〕=limy=lim f(x 0 x)f(x 0)。

x 0xx0x说明:〔1〕函数f 〔x 〕在点x 0处可导,是指 x 0时,y 有极限。

如果y不存在极限,x x就说函数在点x 0处不可导,或说无导数。

〔2〕x 是自变量x 在x 0处的改变量,x0时,而y 是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f 〔x 〕在点x 0处的导数的步骤:〔1〕求函数的增量 y =f 〔x 0+x 〕-f 〔x 0〕;〔2〕求平均变化率yf(x 0x)f(x 0);x =x〔3〕取极限,得导数f ’(x 0)=lim y 。

x 0 x 2.导数的几何意义函数y=f 〔x 〕在点x 0处的导数的几何意义是曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率。

也就是说,曲线y=f 〔x 〕在点p 〔x 0,f 〔x 0〕〕处的切线的斜率是f ’〔x 0〕。

/〕〔x -x 0 〕。

相应地,切线方程为y -y 0=f 〔x 0 3.几种常见函数的导数:①C0; ②x nnx n1;③(sinx)cosx ;④(cosx)sinx ;⑤(e x ) e x ;⑥(a x ) a x lna ;4.两个函数的和、差、积的求导法那么法那么1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),即:(u v)' u ' v '. 2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个 函数乘以第二个函数的导数,即:(uv)' u 'vuv '.假设C 为常数,(Cu)' C 'uCu ' 0Cu ' Cu '. 即常数与函数的积的导数等于常数乘以函数 的导数:(Cu)' Cu '. 法那么 3:两个函数的商的导数,等于分子的 导数与分母的积,减去分母的导数与分子的积再除以分母的平方:u‘=u'v uv'v v 2 v0〕。

高二数学导数及其应用复习讲义有答案.docx

高二数学导数及其应用复习讲义有答案.docx

高二数学复习讲义一导数及其应用知识归纳1.导数的概念函数y二f(x),如果自变量x在x()处有增量A A•,那么函数y相应地有增量Ay=f(x0 + A.v ) -f (x0),比值空叫做函数y二f (x)在X。

Ax到X 0 +心之间的平均变化率,即Ay =/(x0+ZU)-/(x Q)o如果当心T O时,级有极限,我们就说函数y=f(x)在点x°处可导,并把这个极限叫做f(x)在点X。

处的导数,记作f'(x())或y' |“曲。

即f(x。

)二lim 型二lim /代+心)7(心)。

山TO Ax zto A X说明:(1)函数f(X)在点X。

处可导,是指心TOU寸,生有极限。

如果0不存在极限, ArAx就说函数在点X。

处不可导,或说无导数。

(2)心是自变量x在X。

处的改变量,A XH O 时,而△);是函数值的改变量,可以是零。

由导数的定义可知,求函数y二f (x)在点x0 处的导数的步骤:(1)求函数的增量Ay二f (x0 + Ax ) —f(x0 );(2)求平均变化率冬二+空)_于(兀0);Ar Ar(3)取极限,得导数f' (x0)=lim^-oAmo心2.导数的几何意义函数y=f (x)在点x°处的导数的几何意义是曲线y二f (x)在点p (x0, f (x0))处的切线的斜率。

也就是说,曲线y=f (x)在点p (x0, f (x0))处的切线的斜率是f' (x0)o 相应地,切线方程为y—y0=f/(x0)(x—x0)o3.几种常见函数的导数;①C Z = O; ②(打=十;③(sin x)' = cos x ; ④(cosx)z = -sinx ;⑤(e x y = e x;®(a x y = a" In a ;⑦(In ;⑧(log a xf=-log a e.JC X4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),艮卩: (《±u) = u ± v .法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:・■I(MV)= W V + UV ・若C 为常数,(Cu) = Cu + Cu =Q + Cu = Cu . 即常数与函数的积的导数等于常数乘以函数的导数:(Cu) = Cu\法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:化]7":川3丿V (VH 0)。

(完整word版)高二数学导数及其应用复习讲义有答案

(完整word版)高二数学导数及其应用复习讲义有答案

高二数学复习讲义—导数及其应用知识归纳1.导数的概念函数y=f(x),如果自变量x 在x 0处有增量x ∆,那么函数y 相应地有增量y ∆=f (x 0+x ∆)-f (x 0),比值xy∆∆叫做函数y=f (x )在x 0到x 0+x ∆之间的平均变化率,即x y ∆∆=x x f x x f ∆-∆+)()(00。

如果当0→∆x 时,xy ∆∆有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim→∆x xy∆∆=0lim →∆x x x f x x f ∆-∆+)()(00。

说明:(1)函数f (x )在点x 0处可导,是指0→∆x 时,x y ∆∆有极限。

如果xy∆∆不存在极限,就说函数在点x 0处不可导,或说无导数。

(2)x ∆是自变量x 在x 0处的改变量,0≠∆x 时,而y ∆是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤:(1)求函数的增量y ∆=f (x 0+x ∆)-f (x 0); (2)求平均变化率xy ∆∆=x x f x x f ∆-∆+)()(00;(3)取极限,得导数f’(x 0)=xyx ∆∆→∆0lim。

2.导数的几何意义函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。

也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。

相应地,切线方程为y -y 0=f /(x 0)(x -x 0)。

3.几种常见函数的导数:①0;C '= ②()1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-;⑤();x x e e '=⑥()ln xxa a a '=;⑦()1ln x x '=; ⑧()1l g log a a o x e x'=.4.两个函数的和、差、积的求导法则法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: (.)'''v u v u ±=±法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数,即:.)('''uv v u uv +=若C 为常数,'''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu =法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积再除以分母的平方:⎪⎭⎫⎝⎛v u ‘=2''v uv v u -(v ≠0)。

高中数学选择性必修二 5 2 1基本初等函数的导数(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 5 2 1基本初等函数的导数(知识梳理+例题+变式+练习)(含答案)

5.2.1基本初等函数的导数要点一 几个常用函数的导数要点二【重点小结】(1)几个基本初等函数导数公式的特点①正、余弦函数的导数可以记忆为“正余互换,(符号)正同余反”. ②指数函数的导数等于指数函数本身乘以底数的自然对数. ③对数函数的导数等于x 与底数的自然对数乘积的倒数. (2)函数与其导函数奇偶性的关系 ①常数的导数是0.②奇函数的导函数为偶函数. ③偶函数的导函数为奇函数.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)⎝⎛⎭⎫1x ′=1x 2.( ) (2)(log 3x )′=13ln x.( )(3)⎣⎡⎦⎤sin ⎝⎛⎭⎫π2-x ′=cos ⎝⎛⎭⎫π2-x .( ) (4)若y =e 3,则y ′=e 3.( ) 【答案】(1)×(2)×(3)×(4)×2.(多选题)下列导数运算正确的是( )A .(ln x )′=xB .(a x )′=xa x -1C .(sin x )′=cos xD .(x -5)′=-5x -6 【答案】CD【解析】由导数公式得C 、D 正确.3.曲线y =e x 在点A (0,1)处的切线方程是( ) A .x +y +1=0 B .x -y -2=0 C .x -y +1=0 D .x +y -2=0 【答案】C【解析】y ′|x =0=e x |x =0=1,即切线斜率为1,又切点为A (0,1),故切线方程为y =x +1,即x -y +1=0. 4.函数f (x )=sin x ,则f ′(6π)=________. 【答案】1【解析】f ′(x )=cos x ,所以f ′(6π)=1.题型一 利用导数公式求函数的导数 【例1】求下列函数的导数:(1)y =x -3; (2)y =3x ;(3)y = x x x ; (4)y =log 5x ;(5)y =cos ⎝⎛⎭⎫π2-x ;(6)y =sin π6;(7)y =ln x ; (8)y =e x .【解析】(1)y ′=-3x -4;(2)y ′=3x ln 3;(3)y =x ·x ·x 12=xx 32=x ·x 34=x 78,∴y ′=78x1-8;(4)y ′=1x ln 5;(5)y =sin x ,y ′=cos x ;(6)y ′=0;(7)y ′=1x;(8)y ′=e x .不能用基本初等函数公式直接求导的,应先化为基本初等函数再求导. 【方法归纳】求简单函数的导数有两种基本方法(1)用导数的定义求导,但运算比较繁杂;(2)用导数公式求导,可以简化运算过程、降低运算难度.解题时根据所给问题的特征,将题中函数的结构进行调整,再选择合适的求导公式. 【跟踪训练1】求下列函数的导数:(1)y =lg x ; (2)y =⎝⎛⎭⎫12x; (3)y =x x ;(4)y =⎝⎛⎭⎫sin x 2+cos x22-1. 【解析】(1)y ′=(lg x )′=1x ln 10. (2)y ′=⎣⎡⎦⎤⎝⎛⎭⎫12x ′=⎝⎛⎭⎫12x ln 12=-⎝⎛⎭⎫12x ln 2. (3)y ′=(x x )′=(x32)′=32x12=32x ; (4)∵y =⎝⎛⎭⎫sin x 2+cos x22-1 =sin 2x 2+2sin x 2cos x 2+cos 2x 2-1=sin x ,∴y ′=(sin x )′=cos x .题型二 利用导数公式求曲线的切线方程【例2】已知曲线y =ln x ,点P (e,1)是曲线上一点,求曲线在点P 处的切线方程. 【解析】∵y =ln x ,∴y ′=1x ,∴y ′|x =e =1e ,即切线斜率为1e .∴切线方程为y -1=1e(x -e),即x -e y =0.【变式探究】本例中的曲线不变,求过点(0,0)的切线方程. 【解析】因为点(0,0)不在曲线上,所以设切点Q (a ,b ).则切线斜率k =y ′|x =a =1a,又k =b -0a -0=b a,且b =ln a∴a =e ,b =1,∴切线方程为x -e y =0. 【方法归纳】(1)求过点P 的切线方程时应注意,P 点在曲线上还是在曲线外,两种情况的解法是不同的;(2)解决此类问题应充分利用切点满足的三个关系:一是切点坐标满足曲线方程;二是切点坐标满足对应切线的方程;三是切线的斜率是曲线在此切点处的导数值.【跟踪训练2】已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 垂直的曲线y =x 2的切线方程.【解析】∵y ′=(x 2)′=2x ,设切点为M (x 0,y 0), 则y ′|0x x ==2x 0,又∵直线PQ 的斜率为k =4-12+1=1,而切线垂直于直线PQ ,∴2x 0=-1,即x 0=-12,所以切点为M ⎝⎛⎭⎫-12,14.∴所求的切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.易错辨析 混淆幂函数与指数函数求导公式致错【例3】曲线f (x )=2x 在点(0,1)处的切线方程为________. 【答案】y =x ln 2+1【解析】∵f (x )=2x ,∴f ′(x )=2x ln 2,∴f ′(0)=ln 2 故所求切线方程为y -1=(x -0)ln 2 即y =x ln 2+1. 【易错警示】 1.出错原因记错导数公式(a x )′=a x ln a ,与幂函数y =x α的求导公式混淆. 2.纠错心得利用导数公式求导时,应先弄清是指数函数,还是幂函数.一、单选题1.若函数5()(2cos )sin 2f x a x x x =-+(其中a 为参数)在R 上单调递增,则a 的取值范围是( )A .10,2⎡⎤⎢⎥⎣⎦B .11,22⎡⎤-⎢⎥⎣⎦C .11,,22⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭D .1,02⎡⎤-⎢⎥⎣⎦【答案】B 【分析】先求解函数的导数,再根据函数的单调性建立不等式,将问题转化为不等式恒成立问题,进而求解参数的值. 【解析】根据题意,()22259cos 2sin 2cos cos 4cos 22f x a x x x a x x '=+-+=-+()f x 在R 上单调递增 ()0f x ∴'≥ 在R 上恒成立令cos x t =,[]1,1t ∈-,则 ()f x '可写为 ()[]294,1,12g t at t t =-+∈-根据题意()g t 在[]1,1-上的最小值非负()()1010g g ⎧-≥⎪∴⎨≥⎪⎩解得 1122a -≤≤,所以选项B 正确故选:B.2.已知函数()tan f x x =,则4f π⎛⎫' ⎪⎝⎭等于( )A .12 BC .1D .2【答案】D 【分析】先对函数求导,然后求出4f π⎛⎫' ⎪⎝⎭即可【解析】由()sin tan cos x f x x x ==,得2222cos sin 1()cos cos x x f x x x+==',所以2124cos4f ππ⎛⎫=='= ⎪⎝⎭, 故选:D3.已知函数()()2e e ln ex f x f x '=⋅⋅-(e是自然对数的底数),则()e f 等于( ) A .e 1- B .21e-C .1D .11e-【答案】C 【分析】利用导数的运算可得出关于()e f '的方程,求出()e f '的值,可得出函数()f x 的解析式,进而可求得()e f 的值. 【解析】因为()()2e e ln e xf x f x '=⋅⋅-,则()()2e e 1e f f x x ''=-, 所以,()()1e 2e e f f ''=-,所以,()1e e f '=,故()2ln exf x x =-,因此,()e 2lne 11f =-=. 故选:C.4.函数()ln 25y x x =+的导数为( )A .()2ln 25y x x '=+B .25xy x '=+ C .()ln 2525xy x x '=+++ D .()2ln 2525xy x x '=+++ 【答案】D 【分析】利用复合函数的求导法则,乘法公式的求导法则及基本初等函数的导数公式对函数()ln 25y x x =+求导即可. 【解析】因为()ln 25y x x =+,所以()()()ln 25ln 25ln 25y x x x x x x ''⎡''=+=⎤⎡+++⎤⎣⎦⎣⎦()()()12ln 2525ln 252525xx x x x x x =++⋅⋅+=++++'. 故选:D.5.若()e ln2xf x x =,则()f x '等于( )A .e e ln 22xx x x+B .e ln 2xx x -C .e e ln 2xxx x+D .12e x x⋅【答案】C 【分析】直接根据基本初等函数的导数公式及导数的运算法则计算可得; 【解析】解:()()()ee ln 2e ln 2e ln 2xxx x f x x x x x'''=⋅+⋅=+.故选:C. 6.函数()1f x x=在2x =和3x =处的导数的大小关系是( ) A .()()23f f ''< B .()()23f f ''> C .()()23f f ''= D .不能确定【答案】A 【分析】求出函数导数即可比较. 【解析】 ()1f x x =,()21f x x '∴=-,所以()()112,349f f ''=-=-,即()()23f f ''<.故选:A.7.给出下列命题:①ln 2y =,则12y ;②21y x=,则3227x y ==-';③2x y =,则2ln 2x y '=;④2log y x =,则1ln 2y x '=.其中正确命题的个数为( ) A .1 B .2 C .3 D .4【答案】C 【分析】利用求导公式和法则逐个分析判断即可 【解析】①中ln 2y =为常数函数,故0y '=,故①错误; 对于②,∵32y x '=-,∵3227x y ==-',故②正确; 显然③④正确. 故选:C.8.下列导数运算正确的是( ) A .()121x x-'=B .11ln 222x x'⎡⎤⎛⎫⎛⎫=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦C .()cos sin x x '=D .()1ln 1x x x'+=+【答案】D 【分析】利用求导公式和法则逐个分析判断即可 【解析】因为()121x x -'=-,11ln 222x x'⎡⎤⎛⎫⎛⎫=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,()cos sin x x '=-,()1ln 1x x x '+=+,所以选项A ,B ,C 均不正确,选项D 正确, 故选:D.二、多选题9.(多选)以下运算正确的是( )A .211x x '⎛⎫= ⎪⎝⎭B .()sin cos x x '=C .()22ln 2x x '=D .()1lg ln10x x =-' 【答案】BC 【分析】利用基本初等函数的导数公式,依次计算判断即可 【解析】对于A ,因为1211()x x x -'⎛⎫'==- ⎪⎝⎭,所以A 不正确; 对于B ,因为()sin cos x x '=,所以B 正确; 对于C ,因为()22ln 2x x '=,所以C 正确; 对于D ,因为()1lg ln10x x '=,所以D 不正确. 故选:BC.10.下列求导运算不正确的是( ) A .2111x x x '⎛⎫+=+ ⎪⎝⎭B .2sin cos sin x x x x x x '-⎛⎫=⎪⎝⎭C .()555log x x x '=D .()2cos 2sin x x x x '=-【答案】ACD 【分析】利用基本初等函数的导数公式和运算法则求解. 【解析】2111x x x '⎛⎫+=- ⎪⎝⎭,故A 错误; 2sin cos sin x x x x x x '-⎛⎫= ⎪⎝⎭,故B 正确; ()55ln 5xx'=,故C 错误;()22cos 2cos sin xx x x x x '=-,故D 错误.故选:ACD11.下列各式正确的是( ) A .sin cos 33ππ'⎛⎫= ⎪⎝⎭B .()cos sin x x '=C .()sin cos x x '=D .'⎛ ⎝【答案】CD 【分析】直接根据导数的运算公式计算即可. 【解析】对于A ,sin 03π'⎛⎫= ⎪⎝⎭,故错误;对于B ,()cos sin x x '=-,故错误; 对于C ,()sin cos x x '=,故正确; 对于D ,'⎛=⎝ 故选:CD.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.对于三次函数()()320ax bx d a f x cx =+++≠给出定义:设()f x '是函数()y f x =的导数,()f x ''是函数()f x '的导数,若方程()0f x ''=有实数解0x ,则称点()()00,x f x 为函数()y f x =的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数专题经典例题剖析 考点一:求导公式。

例1. ()f x '是31()213f x x x =++的导函数,则(1)f '-的值是 。

解析:()2'2+=x x f ,所以()3211'=+=-f 答案:3考点二:导数的几何意义。

例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+= 。

解析:因为21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251=f ,所以()()31'1=+f f 答案:3例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。

解析:443'2--=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x点评:以上两小题均是对导数的几何意义的考查。

考点三:导数的几何意义的应用。

例4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000≠=x x y k 。

由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴2302000+-=x x x y 。

又263'2+-=x x y ,∴ 在()00,y x 处曲线C的切线斜率为()263'0200+-==x x x f k ,∴26323020020+-=+-x x x x ,整理得:03200=-x x ,解得:230=x 或00=x (舍),此时,830-=y ,41-=k 。

所以,直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫⎝⎛-83,23。

答案:直线l 的方程为x y 41-=,切点坐标是⎪⎭⎫ ⎝⎛-83,23 点评:本小题考查导数几何意义的应用。

解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。

函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。

考点四:函数的单调性。

例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。

解析:函数()x f 的导数为()163'2-+=x ax x f 。

对于R x ∈都有()0'<x f 时,()x f 为减函数。

由()R x x ax ∈<-+01632可得⎩⎨⎧<+=∆<012360a a ,解得3-<a 。

所以,当3-<a 时,函数()x f 对R x ∈为减函数。

(1) 当3-=a 时,()98313133323+⎪⎭⎫ ⎝⎛--=+-+-=x x x x x f 。

由函数3x y =在R 上的单调性,可知当3-=a 是,函数()x f 对R x ∈为减函数。

(2) 当3->a 时,函数()x f 在R 上存在增区间。

所以,当3->a 时,函数()x f 在R 上不是单调递减函数。

综合(1)(2)(3)可知3-≤a 。

答案:3-≤a点评:本题考查导数在函数单调性中的应用。

对于高次函数单调性问题,要有求导意识。

考点五:函数的极值。

例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。

(1)求a 、b 的值;(2)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围。

解析:(1)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.,解得3a =-,4b =。

(2)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--。

当(01)x ∈,时,()0f x '>;当(12)x ∈,时,()0f x '<;当(23)x ∈,时,()0f x '>。

所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+。

则当[]03x ∈,时,()f x 的最大值为(3)98f c =+。

因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<,解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞U ,,。

答案:(1)3a =-,4b =;(2)(1)(9)-∞-+∞U ,,。

点评:本题考查利用导数求函数的极值。

求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

考点六:函数的最值。

例7. 已知a 为实数,()()()a x x x f --=42。

求导数()x f ';(2)若()01'=-f ,求()x f 在区间[]2,2-上的最大值和最小值。

解析:(1)()a x ax x x f 4423+--=,∴ ()423'2--=ax x x f 。

(2)()04231'=-+=-a f ,21=∴a 。

()()()14343'2+-=--=∴x x x x x f令()0'=x f ,即()()0143=+-x x ,解得1-=x 或34=x , 则()x f 和()x f '在区间[]2,2-()291=-f ,275034-=⎪⎭⎫ ⎝⎛f 。

所以,()x f 在区间[]2,2-上的最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

答案:(1)()423'2--=ax x x f ;(2)最大值为275034-=⎪⎭⎫⎝⎛f ,最小值为()291=-f 。

点评:本题考查可导函数最值的求法。

求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。

考点七:导数的综合性问题。

例8. 设函数3()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线670x y --=垂直,导函数'()f x 的最小值为12-。

(1)求a ,b ,c 的值;(2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

解析: (1)∵()f x 为奇函数,∴()()f x f x -=-,即33ax bx c ax bx c --+=---∴0c =,∵2'()3f x ax b =+的最小值为12-,∴12b =-,又直线670x y --=的斜率为16,因此,'(1)36f a b =+=-,∴2a =,12b =-,0c =.(2)3()212f x x x =-。

2'()6126(f x x x x =-=,列表如下:所以函数()f x 的单调增区间是(,-∞和)+∞,∵(1)10f -=,f =-,(3)18f =,∴()f x 在[1,3]-上的最大值是(3)18f =,最小值是f =-答案:(1)2a =,12b =-,0c =;(2)最大值是(3)18f =,最小值是f =- 点评:本题考查函数的奇偶性、单调性、二次函数的最值、导数的应用等基础知识,以及推理能力和运算能力。

导数强化训练(一) 选择题1. 已知曲线24x y =的一条切线的斜率为12,则切点的横坐标为( A )A .1B .2C .3D .42. 曲线1323+-=x x y 在点(1,-1)处的切线方程为 ( B )A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y3. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( D )A .1B .2C .3D .44. 已知函数)(,31)(x f x x f 则处的导数为在=的解析式可能为 ( A )A .)1(3)1()(2-+-=x x x fB .)1(2)(-=x x fC .2)1(2)(-=x x fD .1)(-=x x f5. 函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( D )(A )2 (B )3 (C )4 (D )56. 函数32()31f x x x =-+是减函数的区间为( D ) (A)(2,)+∞(B)(,2)-∞(C)(,0)-∞(D)(0,2)7. 若函数()c bx x x f ++=2的图象的顶点在第四象限,则函数()x f '的图象是( A )8. 函数231()23f x x x=-在区间[0,6]上的最大值是( A) A .323B .163C .12D .99. 函数x x y 33-=的极大值为m ,极小值为n ,则n m +为 ( A ) A .0B .1C .2D .410. 三次函数()x ax x f +=3在()+∞∞-∈,x 内是增函数,则 ( A )A . 0>aB .0<aC .1=aD .31=a 11. 在函数x x y 83-=的图象上,其切线的倾斜角小于4π的点中,坐标为整数的点的个数是( D ) A .3B .2C .1D .012. 函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( A )A .1个B .2个C .3个D . 4个(二) 填空题13. 曲线3x y =在点()1,1处的切线与x 轴、直线2=x 所围成的三角形的面积为____38____。

14. 已知曲线31433y x =+,则过点(2,4)P “改为在点(2,4)P ”的切线方程是A xDCxB__044=+-x y _15. 已知()()n f x 是对函数()f x 连续进行n 次求导,若65()f x x x =+,对于任意x R ∈,都有()()n f x =0,则n 的最少值为 7 。

相关文档
最新文档