格构式柱的稳定计算

合集下载

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算

钢结构连接、钢结构强度稳定性、钢筋支架、格构柱计算◆钢结构连接计算一、连接件类别不焊透的对接焊缝二、计算公式1.在通过焊缝形心的拉力,压力或剪力作用下的焊缝强度按下式计算:2.在其它力或各种综合力作用下,σf,τf共同作用处。

式中N──-构件轴心拉力或轴心压力,取 N=100N;lw──对接焊缝或角焊缝的计算长度,取lw=50mm;γ─-作用力与焊缝方向的角度γ=45度;σf──按焊缝有效截面(helw)计算,垂直于焊缝长度方向的应力;hf──较小焊脚尺寸,取 hf=30mm;βt──正面角焊缝的强度设计值增大系数;取1;τf──按焊缝有效截面计算,沿焊缝长度方向的剪应力;Ffw──角焊缝的强度设计值。

α──斜角角焊缝两焊脚边的夹角或V形坡口角度;取α=100度。

s ──坡口根部至焊缝表面的最短距离,取 s=12mm;he──角焊缝的有效厚度,由于坡口类型为V形坡口,所以取he=s=12.000mm.三、计算结果1. 正应力:σf=N×sin(γ)/(lw×he)=100×sin(45)/(50×12.000)=0.118N/mm2;2. 剪应力:τf=N×cos(γ)/(lw×he)=100×cos(45)/(50×12.000)=0.118N/mm2;3. 综合应力:[(σf/βt)2+τf2]1/2=0.167N/mm2;结论:计算得出的综合应力0.167N/mm2≤对接焊缝的强度设计值ftw=10.000N/mm2,满足要求!◆钢结构强度稳定性计算一、构件受力类别:轴心受弯构件。

二、强度验算:1、受弯的实腹构件,其抗弯强度可按下式计算:Mx/γxWnx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.800×106 N·mm,10.000×106 N·mm;γx, γy──对x轴和y轴的截面塑性发展系数,分别取 1.2,1.3;Wnx,Wny──对x轴和y轴的净截面抵抗矩,分别取 947000 mm3,85900 mm3;计算得:Mx/(γxWnx)+My/(γyWny)=100.800×106/(1.2×947000)+10.000×106/(1.3×85900)=178.251 N/mm2受弯的实腹构件抗弯强度=178.251 N/mm2 ≤抗弯强度设计值f=215N/mm2,满足要求!2、受弯的实腹构件,其抗剪强度可按下式计算:τmax = VS/Itw ≤ fv式中V──计算截面沿腹板平面作用的剪力,取V=10.300×103 N;S──计算剪力处以上毛截面对中和轴的面积矩,取 S= 947000mm3;I──毛截面惯性矩,取 I=189300000 mm4;tw──腹板厚度,取 tw=8 mm;计算得:τmax = VS/Itw=10.300×103×947000/(189300000×8)=6.441N/mm2受弯的实腹构件抗剪强度τmax =6.441N/mm2≤抗剪强度设计值fv = 175 N/mm2,满足要求!3、局部承压强度计算τc = φF/twlz ≤ f式中φ──集中荷载增大系数,取φ=3;F──集中荷载,对动力荷载应考虑的动力系数,取 F=0kN;tw──腹板厚度,取 tw=8 mm;lz──集中荷载在腹板计算高度上边缘的假定分布长度,取lz=100(mm);计算得:τc = φF/twlz =3×0×103/(8×100)=0.000N/mm2局部承压强度τc =0.000N/mm2≤承载力设计值f = 215 N/mm2,满足要求!4、在最大刚度主平面内受弯的构件,其整体稳定性按下式计算:Mx/φbWx ≤ f式中Mx──绕x轴的弯矩,取100.8×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;Wx──对x轴的毛截面抵抗矩Wx,取 947000 mm3;计算得:Mx/φbwx = 100.8×106/(0.9×947000)=118.268 N/mm2≤抗弯强度设计值f= 215 N/mm2,满足要求!5、在两个主平面受弯的工字形截面构件,其整体稳定性按下式计算:Mx/φbWx + My/γyWny ≤ f式中 Mx,My──绕x轴和y轴的弯矩,分别取100.8×106 N·mm,10×106 N·mm;φb──受弯构件的整体稳定性系数,取φb= 0.9;γy──对y轴的截面塑性发展系数,取 1.3;Wx,Wy──对x轴和y轴的毛截面抵抗矩,分别取 947000 mm3, 85900 mm3;Wny──对y轴的净截面抵抗矩,取 85900 mm3计算得:Mx/φbwx +My/ γyWny =100.8×106/(0.9×947000)+10×106/(1.3×85900)=207.818 N/mm2≤抗弯强度设计值f=215 N/mm2,满足要求!◆钢筋支架计算公式一、参数信息钢筋支架(马凳)应用于高层建筑中的大体积混凝土基础底板或者一些大型设备基础和高厚混凝土板等的上下层钢筋之间。

钢结构格构柱分析

钢结构格构柱分析

T
A
l1
V1/2
a/2
分离体Ⅱ
构造设计要点: ① 同一截面处缀板(或采用型钢的横杆)线刚度 之和不得小于柱肢线刚度的6倍。如果柱截面接近正方 形,且x和y方向的长细比又接近相等时,可取
b1
2a 3

t
1a 40

6mm
b1
b1 ——缀板宽度
a ——肢件间距离(形心轴至形心轴)
1x
t ——缀板厚度
条自身稳定性)折减系数R为:
等边角钢
R=0.6+0.0015
V1
短边相连的不等边角钢 R=0.5+0.0025 (4-
长边相连的不等边角钢 R=0.7
85)
——中间无联系时,按最小回转半径计算的长细比。
且当 <20时,取=20 )。 缀条设计公式为:
Nt At
R f

Nt f
R At
At——单个缀条截面面积 此外,也可根据缀条查,用公式
1
2EIx
l
2 x
1
1
2Ix
2l
2 x
Ad
sin
c os2
1
22x
Ad
2A sin
c os2
若取=20º~50º,则,sincos2=0.36
1
27
A
A12x
2x
lx2 ix2
lx2 A Ix
式中,A——两个柱肢的毛截面面积;
A1——两根斜杆的毛截面面积( A1=2Ad)。
③ 计算 x
x
1
27
Vmax l Ncr ym
L z
z Ncr
ym y
y

格构柱计算

格构柱计算

塔吊桩基础的计算书一. 参数信息塔吊型号: QTZ63 自重(包括压重):F1=450.80kN 最大起重荷载: F2=60.00kN塔吊倾覆力距: M=630.00kN.m 塔吊起重高度: H=101.00m 塔身宽度: B=1.80m桩混凝土等级: C35 承台混凝土等级:C35 保护层厚度: 50mm矩形承台边长: 4.00m 承台厚度: Hc=1.35m 承台箍筋间距: S=200mm承台钢筋级别: Ⅱ级承台预埋件埋深:h=0.5m 承台顶面埋深: D=0.00m桩直径: d=0.80m 桩间距: a=2.00m 桩钢筋级别: Ⅱ级桩入土深度: 34.00 桩型与工艺: 泥浆护壁钻(冲)孔灌注桩二. 塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=450.80kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力 F=F1+F2=510.80kN塔吊的倾覆力矩 M=1.4×630.00=882.00kN.m三. 矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。

1. 桩顶竖向力的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.1.1条)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=510.80kN;G──桩基承台的自重,G=25.0×Bc×Bc×Hc+20.0×Bc×Bc×D=540.00kN;M x,M y──承台底面的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i──单桩桩顶竖向力设计值(kN)。

经计算得到单桩桩顶竖向力设计值:最大压力:N=1.2×(510.80+540.00)/4+882.00×(2.00×1.414/2)/[2×(2.00×1.414/2)2]=627.12kN最大拔力:N=(510.80+540.00)/4-882.00×(2.00×1.414/2)/[2×(2.00×1.414/2)2]=-49.18kN2. 矩形承台弯矩的计算(依据《建筑桩基础技术规范》JGJ94-94的第5.6.1条)其中 M x1,M y1──计算截面处XY方向的弯矩设计值(kN.m);x i,y i──单桩相对承台中心轴的XY方向距离(m);N i1──扣除承台自重的单桩桩顶竖向力设计值(kN),N i1=N i-G/n。

格构式柱的稳定计算

格构式柱的稳定计算
柱子绕yiy5526578cm7208188879缀条面积a127aa11107150满足综上整体稳定性满足分肢稳定计算圆环惯性矩i314896189m按两端铰接lol100cmloi100618916157max16367后于整体稳定破坏最大分肢轴心压力n1n13m305m4310351508knmn1500knni518kn16157查表得到0988nia51809882747510001908nmm综上所述分肢稳定满足要求
圆环惯性矩I= =(3.14*1804-3.14*1704/64=cm4
圆环面积A= D2 =27.475cm2
柱子绕x轴
IX=(a2A+I)*2+I=(50*50*27.475+1052.6)*2+1052.6=159479.6 cm4
ix= = =43.99cm
按一端固定,一端铰接L0x=0.8*900=720cm
综上整体稳定性满足
分肢稳定计算
圆环惯性矩I= =(3.14*894-3.14*854)/64=517.198cm4
本身回转半径ix= = =6.189m
按两端铰接=lo=l=100cm
λ=lo/i=100/6.189=16.157<λmax=16.367,后于整体稳定破坏
最大分肢轴心压力N1=N*1/3+M/(3^0.5/2)
M=43.1*0.35=15.08KNm
N=1500KN
NI=518KN
由λ=16.157查表得到Ψ=0.988
NI/ΨA=518/0.988/2747.5*1000=190.8N/mm2<f=215N/mm2
综上所述分肢稳定满足要求
λ=lox/ix=720/43.99=16.367cm<[λ]=150满足

格构柱计算.

格构柱计算.

§6-7格构式轴心受压构件6.7.1 格构式轴心受压构件绕实轴的整体稳定格构式受压构件也称为格构式柱(latticed columns,其分肢通常采用槽钢和工字钢,构件截面具有对称轴(图6.1.1)。

当构件轴心受压丧失整体稳定时,不大可能发生扭转屈曲和弯扭屈曲,往往发生绕截面主轴的弯曲屈曲。

因此计算格构式轴心受压构件的整体稳定时,只需计算绕截面实轴和虚轴抵抗弯曲屈曲的能力。

格构式轴心受压构件绕实轴的弯曲屈曲情况与实腹式轴心受压构件没有区别,因此其整体稳定计算也相同,可以采用式(6.4.2按b类截面进行计算。

6.7.2 格构式轴心受压构件绕虚轴的整体稳定1. 双肢格构式轴心受压构件实腹式轴心受压构件在弯曲屈曲时,剪切变形影响很小,对构件临界力的降低不到1%,可以忽略不计。

格构式轴心受压构件绕虚轴弯曲屈曲时,由于两个分肢不是实体相连,连接两分肢的缀件的抗剪刚度比实腹式构件的腹板弱,构件在微弯平衡状态下,除弯曲变形外,还需要考虑剪切变形的影响,因此稳定承载力有所降低。

根据弹性稳定理论分析,当缀件采用缀条时,两端铰接等截面格构式构件绕虚轴弯曲屈曲的临界应力为:构式轴心受压构件(图6.1.2d缀条的三肢组合构件(图6.1.2d6.7.3 格构式轴心受压构件分肢的稳定和强度计算格构式轴心受压构件的分肢既是组成整体截面的一部分,在缀件节点之间又是一个单独的实腹式受压构件。

所以,对格构式构件除需作为整体计算其强度、刚度和稳定外,还应计算各分肢的强度、刚度和稳定,且应保证各分肢失稳不先于格构式构件整体失稳。

一、分肢稳定和强度的计算方法1.分肢内力的确定构件总挠度曲线为2.分肢稳定的验算①对缀条式构件:图7.7.1格构式轴心受压构件弯曲屈曲稳定和强度求v0的简化计算方法(规范规定的方法①由钢构件制造容许最大初弯曲l/1000,考虑其它初始缺陷按经验近似地规定v0=l/500右l/400等。

②根据构件边缘纤维屈服准则来确定v0。

格构柱受力计算书

格构柱受力计算书

格构柱受力计算书
计算依据:
(1)《钢结构设计规范》(GB50017-2003)。

(2)《钢结构设计与计算》
1. 格构柱截面的力学特性:
格构柱的截面尺寸为×;
主肢选用:18号角钢b×d×r=180×18×18mm;
缀条选用:20号角钢b×d×r=180×24×18mm;
主肢的截面力学参数为A0=,Z0=,
Ix0=,Iy0=;
缀条的截面力学参数为At=;
格构柱截面示意图
格构柱的y-y轴截面总惯性矩:
格构柱的x-x轴截面总惯性矩:
经过计算得到:
Ix=4×[+×(65/2]=;
Iy=4×[+×(65/2]= cm4;
2. 格构柱的长细比计算:
格构柱主肢的长细比计算公式:
其中H ──格构柱的总计算长度,取;
I ──格构柱的截面惯性矩,取,Ix=,Iy=;
A0 ──一个主肢的截面面积,取。

经过计算得到x=,y=。

3. 格构柱的整体稳定性计算:
格构柱在弯矩作用平面内的整体稳定性计算公式:
其中N ──轴心压力的计算值(N);取N=4×105N;
A──格构柱横截面的毛截面面积,取4×;
──轴心受压构件弯矩作用平面内的稳定系数;
根据换算长细比0x=,0y=≤150(容许长细比)满足要求!
经过计算得到:
X方向的强度值为mm2,不大于设计强度205N/mm2,所以满足要求!
Y方向的强度值为mm2,不大于设计强度205N/mm2,所以满足要求!。

钢结构稳定性例题

钢结构稳定性例题

Iy
=
2 × tb3 12
=
2× 1 × 2× 503 12
=
41667cm4
ix =
Ix = A
145683 = 24.14cm 250
iy =
Iy = A
41667 = 12.91cm 250
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
二、截面验算:
1.强度:σ
=
N An
=
1
y
z0
一个斜缀条的长度为:l
=
l1
sin θ
=
41 sin 450
= 58cm
角钢的最小回转半径为:imin = 0.89cm
x
x
1
y
b
λ = l = 58 = 65.1
imin 0.89
4.2 轴心受压构件的整体稳定性
第4章 单个构件的承载力-稳定性
λ = 65.1 属b类截面,查得ϕ=0.78
I x = 2× 50× 2.2× 24.12 +1.6× 463 /12 = 140756cm4 I y = 2× 2.2× 503 /12 = 45833cm4
ix =
Ix = A
140756 = 21.9cm; 293.6
iy =
Iy = A
45833 = 12.5cm 293.6
4.2 轴心受压构件的整体稳定性
z0 = 2.49cm,I1 = 592cm4
Iy
=

592 +
75×
46 2

2.49
2
=
64222cm4
iy =
Iy = A

格构柱长细比计算公式

格构柱长细比计算公式

格构柱长细比计算公式格构柱长细比是建筑设计中常用的一个参数,用于评估结构柱的稳定性和安全性。

在设计建筑物时,合理的格构柱长细比可以确保结构的稳定性,避免柱子过于细长而导致的失稳和倒塌风险。

本文将介绍格构柱长细比的定义、计算公式以及对设计的影响。

我们来了解一下格构柱长细比的定义。

格构柱长细比是指结构柱的高度与其截面最小尺寸的比值,用L/d表示。

其中,L为柱子的高度,d为柱子截面最小尺寸(通常为长方形截面的最小边长)。

计算格构柱长细比的公式如下:L/d = 柱子的高度 / 柱子截面最小尺寸在实际设计中,格构柱长细比的数值范围通常有限制。

一般来说,较小的格构柱长细比数值表示柱子相对较短、较粗,具有较好的稳定性。

而较大的格构柱长细比数值则意味着柱子相对较高、较细,可能存在较大的失稳和倒塌风险。

因此,在设计过程中,需要根据具体的结构要求和安全标准来确定格构柱长细比的合理范围。

格构柱长细比对设计的影响主要体现在以下几个方面:1. 结构稳定性:较小的格构柱长细比数值可以提高柱子的稳定性,减少失稳和倒塌的风险。

这对于需要承受较大荷载或者处于地震区域的建筑结构尤为重要。

2. 结构材料的选择:格构柱长细比的数值也会对结构材料的选择产生影响。

较小的格构柱长细比数值通常需要使用较大截面的柱子,因此可能需要更多的材料。

而较大的格构柱长细比数值则可能需要采用更高强度的材料或者增加柱子的截面尺寸。

3. 施工难度:较大的格构柱长细比数值可能会增加结构施工的难度。

细长的柱子在施工过程中更容易出现变形和偏斜,需要采取相应的措施来保证施工质量。

4. 空间利用率:格构柱长细比的数值也会对建筑空间的利用率产生影响。

较小的格构柱长细比数值可以减少柱子的占用空间,使得建筑内部空间更加灵活和高效利用。

格构柱长细比是一个重要的设计参数,对建筑结构的稳定性和安全性有着直接的影响。

在设计过程中,需要综合考虑结构要求、安全标准、材料性能以及施工难度等因素,确定合理的格构柱长细比范围。

格构柱计算书

格构柱计算书
1000
1、杆件轴心受拉强度验算
分肢毛截面积之和:
A=4A0=4×32.51×100=13004mm2
σ=N/A=500000/13004=38.45N/mm2≤[f]=205N/mm2
满足要求!
2、格构式钢柱换算长细比验算
整个格构柱截面对X、Y轴惯性矩:
Ix=4[I0+A0(a/2-Z0)2]=4×[604+32.51×(45/2-3.9)2]=47404.638cm4
32.51
分肢对最小刚度轴的回转半径iy0(cm)
2.76
分肢平行于对称轴惯性矩I0(cm4)
604
分肢形心轴距分肢外边缘距离Z0(cm)
3.9
分肢材料强度设计值fy(N/mm2)
235
分肢材料抗拉、压强度设计值f(N/mm2)
205
格构柱缀件参数
格构柱缀板材料
400×100×10
格构柱缀板截面积A1x'(mm2)
整个构件长细比:λx=λy=L0/(Ix/(4A0))0.5=150/(47404.638/(4×32.51))0.5=7.856
分肢长细比:λ1=l01/iy0=35/2.76=12.681
分肢毛截面积之和:A=4A0=4×32.51×100=13004mm2
格构式钢柱绕两主轴的换算长细比:
λ0max=(λx2+λ12)0.5=(7.8562+12.6812)0.5=14.917
格构柱计算书
计算依据:
1、《钢结构设计标准》GB50017-2017
一、基本参数
格构柱轴向力设计值N(kN)
500
格构柱计算长度L0(mm)
1500
格构柱参数

格构式柱计算内容概括

格构式柱计算内容概括

格构式柱计算内容概括:
一、柱身计算
1、 强度: f A N
n ≤
2、 刚度:实轴:[]λλ≤y 、 虚轴:换算长细比[]λλ≤ox 缀板式:212λλλ+=x ox 缀条式:x x ox A A 1227+=
λλ 3、 整体稳定性:实轴:f A N y ≤ϕ 、虚轴:f A N
x ≤ϕ
4、 局部稳定:型钢所以满足
二、分肢稳定:保证分肢不先于柱身失稳,限制分肢长细比 缀条式:max 17.0λλ≤ ;缀板式:max 15.0λλ≤和40
{}y ox λλλ,max max =,且当为缀板式时还应不小于50。

三、缀材计算
1求V : =V 23585y f Af
2、求缀材内力: 缀条:ααcos 2cos 1n V
n V N t == 缀板:剪力:a l V T 1=
弯矩:21l V M =
3、缀材验算: 缀条:按t N 作用下的轴心受压构件计算,并考虑强度折减系数η
1) 强度:f A N nL t
η≤
2) 刚度:[]λλ≤L max
3) 整体稳定:f A N L
t ηϕ≤min 4) 局部稳定: 型钢,∴ 安全。

缀板:强度:f W M
b ≤=σ, b A T 5.1=τ
刚度:缀板线刚度之和与分肢线刚度之比不小于6 611≥∑l I a I b
,:缀板中心距:分肢轴间距,1l a。

压弯构件的计算长度、格构式压弯构件的稳定性计算(PPT-27)

压弯构件的计算长度、格构式压弯构件的稳定性计算(PPT-27)

在缀件平面内取缀条相邻节点中 心间的距离或缀板间的净距。
V Af f y 85 235
在缀件平面外取侧向支承点之间的距离。
(一) 单层等截面框架柱
基本假定:横梁没有轴力或轴力很小,且各柱同时失稳。 1、单层单跨框架
(1)无侧移框架 横梁两端转角大小相等,方向相反
(2)有侧移框架
有侧移失稳的变形是反对称的,横梁两端的转角θ大小 相等方向相同。
横梁线刚度i1=I1/L与柱线刚度i=I/H的比值为K1=I1H/IL= i1/ i
H01 H 2.076 800 1661cm
强度
(2)求边柱的承载能力
弯距作用平面内稳定
N
mxM x
f
N
Mx
xA
f
xWx 1 0.8 N NEX
An xWn x
(2)求边柱的承载能力 边柱的截面特性
A = 36 1+2 301.2 =108cm2
Wx = 28800/19.2 =1500cm3
由N
mxM x
f
x A xWx 1 0.8 N NEX
P103
1.0 0.384P 106
0.546108102 1.051500103 1 0.8 P 2133.4
f 215N / mm2
P 461.5kN
由 N Mx f
An xWn x
P 103 108 102
0.384 P 106 1.05 1500 10
215 N / mm2
P 475kN
P的最小值为381.8kN, 边柱和中柱的承载能力分别为 381.8kN和763.6kN, 由中柱的稳定承载能力决定。
三、 格构式压弯构件的稳定性计算

格构柱稳定性的计算书

格构柱稳定性的计算书

格构柱稳定性的计算计算依据:(1)《钢结构设计规范》(GB50017-2003)。

(2)《钢结构设计与计算》1. 格构柱截面的力学特性:格构柱的截面尺寸为0.65×0.65m;主肢选用:18号角钢b×d×r=180×18×18mm;缀条选用:20号角钢b×d×r=180×24×18mm;主肢的截面力学参数为 A0=61.95cm2,Z0=5.13cm,I x0=1881.12cm4,I y0=3338.25cm4;缀条的截面力学参数为 A t=61.95cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:格构柱的x-x轴截面总惯性矩:经过计算得到:I x=4×[1881.12+61.95×(65/2-5.13)2]=193155.64cm4;I y=4×[1881.12+61.95×(65/2-5.13)2]=193155.64 cm4;2. 格构柱的长细比计算:格构柱主肢的长细比计算公式:其中 H ──格构柱的总计算长度,取18.40m;I ──格构柱的截面惯性矩,取,I x=193155.64cm4,I y=193155.64cm4; A0──一个主肢的截面面积,取61.95cm2。

经过计算得到x=65.90,y=65.90。

3. 格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:其中 N ──轴心压力的计算值(N);取 N=4×105N;A──格构柱横截面的毛截面面积,取4×61.95cm2;──轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比0x=65.9,0y=65.90≤150(容许长细比)满足要求!经过计算得到:X方向的强度值为20.85N/mm2,不大于设计强度205N/mm2,所以满足要求!Y方向的强度值为20.85N/mm2,不大于设计强度205N/mm2,所以满足要求!。

格构柱的立柱计算方式

格构柱的立柱计算方式

格构柱的立柱计算方式格构柱是一种常见的建筑结构,用于支撑建筑物的屋顶、桥梁或其他重要结构。

它有助于分散荷载并保持结构的稳定性。

立柱是格构柱的组成部分之一,承担着承压、受力等重要功能。

在计算格构柱的立柱时,需要考虑材料的强度、荷载、结构形式等多个因素。

本文将介绍格构柱的立柱计算方式。

首先要计算格构柱立柱的最大承载力。

这需要考虑立柱所使用的材料的抗压强度。

常用的材料包括钢、混凝土和木材。

这些材料的抗压强度是指材料能够承受的最大压力。

其次,需要考虑立柱的荷载。

荷载是指施加在结构上的力,包括自重、活载、风载、地震载等。

这些荷载会对立柱施加压力,因此在计算立柱时需要将这些荷载考虑进去。

接下来,需要确定立柱的结构形式。

常见的立柱形式有方形、圆形和矩形。

不同的结构形式具有不同的受力特点,需要根据具体情况进行选择。

在进行计算时,可以使用杨氏模量等力学性质来计算立柱的刚度。

杨氏模量是材料的一种物理特性,表示了材料在受力时的变形能力。

在计算过程中,还需要考虑立柱的长度和支撑条件。

立柱的长度会影响其承载能力,较长的立柱会有较大的变形和失稳风险。

支撑条件指立柱的两端是否有支撑点,支撑点可以减少立柱受到的压力和变形。

此外,还需要考虑立柱的安全系数。

安全系数是指在实际使用中,承载力与荷载之间的比值。

通常情况下,建筑结构的设计通常采用安全系数较大的值,以确保结构的安全性。

在实际计算中,可以使用一些计算方法和公式。

例如,对于方形和矩形立柱,可以使用Euler公式来计算其临界压力。

对于圆形立柱,则可以使用安全系数等来计算其承载力。

总之,格构柱的立柱计算方式涉及材料的抗压强度、荷载、结构形式、杨氏模量、长度和支撑条件等因素。

需要根据具体情况选择合适的计算方法和公式,并考虑安全系数,以确保格构柱的立柱能够承受预期的荷载和保持结构的稳定性。

学习-格构式轴压构件整体稳定性设计

学习-格构式轴压构件整体稳定性设计

临界力可表达为:
N 2 EI
cr
l2

1
1 2 EI


l2 GA
y yM yQ
N M=N·y
临界应力
cr
2E 2
x
1
1

2 EA
2 x


GA
2E 2
ox
x
式中: 2 2 EA
ox
x
N
为格构柱绕虚轴的稳定临界荷载换算为 按实腹柱计算时的换算长细比。
N
N’ N
V
V
V
y

V肢θl1缀 Nhomakorabea条
N
N
实腹柱
缀板柱
缀条柱
格构式轴心受压构件绕虚轴整体失稳时,因肢件之间并不是连 续的板而只是每隔一定距离用缀条或缀板联系起来。除弯曲变形 外,柱的剪切变形较大,剪力造成的附加挠曲影响就不能忽略。 稳 定承载力有所降低。
根据弹性稳定理论,当考虑剪切变形影响后,轴压构件
2、格构式轴压构件整体稳定性设计
格构式柱截面具有对称轴,当轴心受压丧失整体稳定时,不 大可能会发生扭转和弯扭屈曲,往往发生绕截面主轴的弯曲屈曲 , 应分别计算绕实轴和虚轴抵抗弯曲屈曲的能力。
(1)格构式轴心受压构件绕实轴的整体稳定性
格构式双肢轴心受压构件绕实轴丧
失整体稳定性时,相当于两个并列的实
x
腹式构件,其稳定承载力的计算方法与
实腹式轴心受压构件相同。
y
x
y
确定分 肢截面
(2)格构式轴心受压构件绕虚轴的整体稳定性
1)格构式轴心受压构件绕虚轴的整体稳定性计算方法 轴心受压构 件弯曲屈曲时,实际挠曲变形由弯曲变形和剪切

基坑支护中格构柱计算分析

基坑支护中格构柱计算分析

基坑支护中格构柱计算分析摘要:以实际基坑工程项目为例,分析基坑支护中格构柱的相关规范规定及计算方法,通过工程实例对格构柱的内力进行分步验算,方便设计人员在基坑支护设计中参考,有利于基坑支护工程设计及计算的标准化建设。

关键词:基坑支护;钢支撑;格构柱;计算算例为满足日益增长的市民出行,城市轨道交通的建设稳中有进。

地铁车站一般位于城市繁华地带,由于基坑周边建构筑物及交通等因素的限制,地铁车站的长条型基坑通常采用控制基坑变形较好且有利于重复使用的排桩+钢管内支撑结构进行支护,基坑宽度大于20m时,一般需要在基坑中间设置格构柱。

本文梳理了格构柱的相关规范规定,并通过计算实例进行格构柱的分析验算,便于设计人员参考使用。

我国现行《建筑基坑支护设计规程》JGJ 120-2012(以下简称“《支护规程》”)第4.9.10条第2款规定了单层支撑的立柱及多层支撑底层立柱的受压计算长度应取底层支撑底面至基坑底面的净高度与立柱直径或边长的5倍之和。

《支护规程》第4.9.15条规定了立柱长细比不宜大于25。

对于立柱计算,《支护规程》4.9.5条及4.9.10条规定,对于在内支撑结构上的竖向荷载较小,且内支撑结构的水平构件按连续梁计算时,立柱可按偏心受压构件计算。

对于钢支撑其竖向荷载较小,为简化计算,立柱按轴心受压构件考虑,但根据《支护规程》无法确定立柱的竖向轴力设计值,笔者查阅了相关规范,《广州地区建筑基坑支护技术规定》GJB 02-98(以下简称“《广州规定》”)第6.9.12条规定,立柱内力宜根据支撑条件按空间杆系结构力学计算,也可按轴心受压构件计算,轴线力设计值宜可按下式确定:其中结合以上规定,则可在围护计算查出支撑轴力标准值的情况下,较为简洁的进行立柱强度及稳定性验算。

结合以上分析,下面给出一个钢结构格构柱立柱的计算实例,方便设计人员参考使用。

某基坑支护形式为两道支撑结构,底层支撑中心距离基底竖向高度5m,立柱采用460×460mm角钢缀板式格构柱,角钢采用等边160×14mm,缀板采用420×300×10mm,相邻缀板中心距为0.7m,钢材牌号均为Q235,第一道支撑轴力标准值为1255kN,第二道支撑轴力标准值为7945kN,上部支撑、连系梁及施工荷载自重为80kN,则支撑传到立柱上的竖向力标准值为80+0.1(1255+7945)=1000kN,基坑安全等级为一级,重要性系数,根据以上条件验算立柱稳定性。

格构柱稳定性计算

格构柱稳定性计算

格构柱稳定性的计算依据《钢结构设计规范》(GB50017-2003)。

1.格构柱截面的力学特性:格构柱的截面尺寸为0.45×0.45m;主肢选用:20号角钢b×d×r=200×24×18mm;缀条选用:20号角钢b×d×r=200×24×18mm;主肢的截面力学参数为A0=90.66cm2,Z0=5.87cm,I x0=3338.25cm4,I y0=3338.25cm4;缀条的截面力学参数为A t=90.66cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:格构柱的x-x轴截面总惯性矩:经过计算得到:I x=4×[3338.25+90.66×(45/2-5.87)2]=113644.70cm4;I y=4×[3338.25+90.66×(45/2-5.87)2]=113644.70cm4;2.格构柱的长细比计算:格构柱主肢的长细比计算公式:其中H──格构柱的总计算长度,取21.80m;I──格构柱的截面惯性矩,取,I x=113644.70cm4,I y=113644.70cm4;A0──一个主肢的截面面积,取90.66cm2。

经过计算得到x=123.15,y=123.15。

换算长细比计算公式:其中A──格构柱横截面的毛截面面积,取4×90.66cm2;A1──格构柱横截面所截垂直于x-x轴或y-y轴的毛截面面积,取2×90.66cm2;经过计算得到kx=123.47,ky=123.47。

3.格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:其中N──轴心压力的计算值(kN);取N=1130.42kN;A──格构柱横截面的毛截面面积,取4×90.66cm2;──轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比0x=123.47,0y=123.47≤150满足要求!查《钢结构设计规范》得到x=0.42,y=0.42。

钢柱结构的稳定性分析

钢柱结构的稳定性分析

钢柱结构的稳定性分析在钢构件的设计中,轴心受力构件和拉弯、压弯构件是重要的两种类型。

其中,轴心受拉构件和拉弯构件只需验算其强度和刚度;而轴心受压构件和压弯构件除验算其强度和刚度外,还需验算其稳定性。

局部稳定一般利用掌握板件的宽厚比保证,而整体稳定的计算状况比较多,是重点也是难点。

笔者对整体稳定的验算状况整理如下:关于长细比关于钢柱的整体稳定验算,首要问题是计算其长细比。

对于长细比的把握,主要从以下三方面入手:容许长细比:受压可参考钢标7.4.6条、受拉可参考钢标7.4.7条。

长细比计算:实腹式双轴对称截面长细比和单轴对称截面换算长细比可参考钢标7.2.2条、格构式绕实轴的长细比和绕虚轴的换算长细比可参考钢标7.2.3条。

计算长度:桁架和塔架杆件可参考钢标7.4.1~7.4.5条、框架柱可参考钢标8.3.1~8.3.5条。

轴心受压构件轴心受压构件的设计一般使两个方向具有等稳定性,当两个方向的长细比相差较大时,可在较大长细比方向设置侧向支撑。

一般需验算两个主轴方向的稳定性。

实腹式:绕强轴和绕弱轴,计算两个方向的稳定系数,采纳较小的稳定系数。

格构式:绕实轴和绕虚轴,计算两个方向的稳定系数,采纳较小的稳定系数。

对于格构式构件,为了保证分肢的稳定性,尚应掌握分肢长细比,可参考钢标7.2.4~7.2.6条。

压弯构件压弯构件的验算状况是最多的,可从四个方面把握:分别是实腹式、格构式,单向受弯、双向受弯,绕实轴、绕虚轴(或绕强轴、绕弱轴),平面内、平面外。

无论哪种状况,均需验算平面内稳定和平面外稳定,所以依据前三个方面的排列共8种状况。

实腹式构件单向受弯,无论绕强轴或是绕弱轴,计算状况是一样的,只需替换相应方向的参数即可,可削减一种情。

实腹式构件和格构式构件双向受弯时,两个方向都有弯矩,不再区分绕哪个方向,可削减两种状况。

所以,8种状况削减为5种,分别如下:实腹式单向压弯(一般绕强轴)构件平面内、平面外稳定性。

格构柱计算资料

格构柱计算资料

格构式轴心受压构件6.7.1 格构式轴心受压构件绕实轴的整体稳定格构式受压构件也称为格构式柱(latticed columns),其分肢通常采用槽钢和工字钢,构件截面具有对称轴(图6.1.1)。

当构件轴心受压丧失整体稳定时,不大可能发生扭转屈曲和弯扭屈曲,往往发生绕截面主轴的弯曲屈曲。

因此计算格构式轴心受压构件的整体稳定时,只需计算绕截面实轴和虚轴抵抗弯曲屈曲的能力。

格构式轴心受压构件绕实轴的弯曲屈曲情况与实腹式轴心受压构件没有区别,因此其整体稳定计算也相同,可以采用式(6.4.2)按b类截面进行计算。

6.7.2 格构式轴心受压构件绕虚轴的整体稳定1.双肢格构式轴心受压构件实腹式轴心受压构件在弯曲屈曲时,剪切变形影响很小,对构件临界力的降低不到1%,可以忽略不计。

格构式轴心受压构件绕虚轴弯曲屈曲时,由于两个分肢不是实体相连,连接两分肢的缀件的抗剪刚度比实腹式构件的腹板弱,构件在微弯平衡状态下,除弯曲变形外,还需要考虑剪切变形的影响,因此稳定承载力有所降低。

根据弹性稳定理论分析,当缀件采用缀条时,两端铰接等截面格构式构件绕虚轴弯曲屈曲的临界应力为:构式轴心受压构件(图6.1.2d)缀条的三肢组合构件(图6.1.2d)6.7.3 格构式轴心受压构件分肢的稳定和强度计算格构式轴心受压构件的分肢既是组成整体截面的一部分,在缀件节点之间又是一个单独的实腹式受压构件。

所以,对格构式构件除需作为整体计算其强度、刚度和稳定外,还应计算各分肢的强度、刚度和稳定,且应保证各分肢失稳不先于格构式构件整体失稳。

一、分肢稳定和强度的计算方法1.分肢内力的确定构件总挠度曲线为2.分肢稳定的验算①对缀条式构件:图7.7.1格构式轴心受压构件弯曲屈曲稳定和强度求v0的简化计算方法(规范规定的方法)①由钢构件制造容许最大初弯曲l/1000,考虑其它初始缺陷按经验近似地规定v0=l/500右l/400等。

②根据构件边缘纤维屈服准则来确定v0。

钢结构格构式柱的结构设计计算

钢结构格构式柱的结构设计计算

钢结构格构式柱的结构设计计算摘要:本文通过对钢结构格构式柱的强度、整体稳定性、局部稳定性的实例设计计算,理论结合实际,指出在进行钢结构格构式柱设计中的部分误区及设计人员容易忽视的部分,避免设计人员在今后的设计工作中出现重大设计失误.关键词:钢结构格构式柱;强度;整体稳定性;局部稳定性一、引言工程实践中,我们常常遇到钢结构格构式柱如:钢结构厂房柱、钢结构民用建筑框架柱、钢结构管道支架等。

对于这些钢结构格构式柱在工程结构设计中,应该对柱的强度、整体稳定性、局部稳定性,逐一进行验算,只有这样才能使你的设计方案达到安全、经济、适有、美观。

但在实际工程设计中,对于设计经验不足设计人员,通常只注重柱的强度验算,而忽视柱的稳定性验算,认为只要构件强度满足要求就是安全的,对钢结构构件稳定性的重要程度认识不够,这个设计误区往往导致构件的失稳破坏,造成工程事故。

还有设计人员容易忽视的一个问题就是:在工况和作用力不变的情况下,由于施工现场实际情况,需要在不改变柱材料的情况下,增大柱的截面尺寸,部分设计人员认为,增大柱截面对柱自身的整体稳定性是起有利作用的。

对于这个问题,本人通过多年的设计经验和设计实例得出:在不改变工况、作用力和柱材料的情况下,增大柱的截面尺寸对格构式柱自身的整体稳定性是不利的。

以下通过设计实例来证实本人的以上论断。

二、设计实例本人于2012年设计的动力厂一轧钢北侧DN800煤气管线异地更换工程-钢结构格构式管道支架,燃气专业提供条件:煤气管线在事故状态下管道单重:300Kg/m,支架最大间距:17m,支架高度:6.143m,滑动支架摩擦系数:0.15。

采用Q235钢材。

1.荷载及作用力计算:(由于燃气专业提供的管道单重为事故状态下单重,所以在荷载及作用力计算时不再乘荷载分项系数)N=17X300X10=51000N=51KN; Vx=51X0.15=7.65KN;My=0KN/m;Mx=7.65X6.143≈47KN/m2.支架几何截面选型(见图示1):iy=0.4h=0.4X250=100mm;分肢截面参数:(2).局部稳定性验算:由于构件分肢为标准工字型钢,局部稳定性满足要求,无需验算.6.綴条稳定性验算:由于本构件Y方向没有剪力,綴条用于减小受压构件的长细比和连接固定分肢,所以不用验算綴条的稳定性,只验算綴条刚度即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档