体育单招数学模拟试卷(最新整理)
2025年全国体育单招考试全真数学模拟卷(三)

全国体育单招考试全真数学模拟卷(三)一、选择题:本题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={2,4,6,7}, B={x ∈N |0<x −1≤8},则C B A 元素的个数为( ) A.2 B.3 C.4D.52.已知函数f (x )=√x−2x−4的定义域为( ) A.[2,4)∪(4,+∞) B.(2,+∞) C.[2,4)D.[2,+∞)3.下列函数为偶函数且在(0,+∞)上单调递增的是( ) A.y =−x 2 B.y =2x C.y =|x |D.y =x 34.已知函数f (x )=sin x cos x +√32cos 2x 的最小正周期为( ) A.π4B. π2C.πD.2π5.已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +3)2+(y +1)2=4上运动,则线段AB 中点M 的运动轨迹方程为( ) A. (x +12)2+(y +1)2=1B. (x −12)2+(y +1)2=1C. (x +12)2+(y −1)2=1D. (x −12)2+(y −1)2=16.从编号为1,2,3,4的4个球中,任取2个球,则这两个球的编号之和为偶数的概率为( ) A.13 B.14 C.12D.237在△ABC 中,内角A,B,C 所对的边分别为a,b,c ,若B=60°,△ABC 的面积为√3,a+c=6则b=( ) A. 5 B. 2√6 C.2√7D. √308.关于三条不同直线a,b,l 以及两个不同平面α,β,则下面命题正确的是( ) A.若a ‖α,b ‖α,则a ∥bB. 若a ∥α,b ⊥α,则b ⊥αC. 若a ∥α,α⊥β,则a ⊥βD. 若a ⊂α,b ⊂α,且l ⊥a,l ⊥b ,则l ⊥α二、填空题:本题共4小题。
每小题8分,共32分。
9.不等式x 2−3x +2≤0的解集是____________ 10.若tan α=12,则2sin 2α+sin acos α=____________11.在数列{a n }中,a 1=3,a n+1−a n =2,n ∈N +,则a 10=____________12.已知向量a 与向量b 的夹角为π3,且|a |=1,|2a −b |=√7,则|b |=____________三、解答题:本题共3小题,每小题18分,共54分.解答应写出文字说明、证明过程或演算步骤。
体育单招试卷数学模拟试卷3(含答案)

体育单招-高考模拟试卷3一.选择题(共 小题,满分 分,每小题 分).( 分)集合 ﹣ ﹣ < , > ,若 ⊆ ,则实数 的取值范围是(). , ∞) .( , ∞) .(﹣∞,﹣ .(﹣∞,﹣ ).( 分)已知 , ,向量与的夹角为 ,则 (). . . ..( 分)若直线 与直线 ( ﹣ ) 平行,则 的值为(). . 或 . ..( 分)已知 ,则等于(). . . ..( 分)已知函数 ( )是定义在 上的增函数,若 ( ﹣ )> ( ﹣ ),则实数 的取值范围是().(﹣∞, ) .( , ) .( , ∞) .(﹣∞, )∪( , ∞).( 分)在( ﹣ ) 的展开式中, 的系数是(). .﹣ . .﹣ .( 分)等比数列 ,满足 > , ,则公比 () . . . ..( 分)四个大学生分到两个单位,每个单位至少分一个的分配方案有() . 种 . 种 . 种 . 种.( 分)圆锥的底面半径为 ,侧面展开图是半圆面,那么此圆锥的侧面积是(). . . ..( 分)已知 < ,则下列不等式一定成立的是(). . . ( ﹣ )>. ﹣ >二.填空题(共 小题,满分 分,每小题 分).( 分)函数 ( ) ,( <﹣ )的反函数是..( 分)已知正四棱锥的底面边长是 ,侧棱长是,则该正四棱锥的体积为. .( 分)在等差数列 中, > , , 为数列 的前 项和, ..( 分)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为..( 分)已知直线 ﹣ 与抛物线 相切,则 . .( 分)已知圆 ﹣ ﹣ 截直线 所得弦的长度为 ,则实数 的值是.三.解答题(共 小题,满分 分,每小题 分).( 分)已知函数 ( ) ( ),( > , > )的最小正周期为 ,且 ( ) .( )求 ( )的表达式;( )若 ( ) ( ) ,求 ( )的单调区间及最大值..( 分)已知双曲线 :( > , > ),直线 : ﹣ , , 为双曲线 的两个焦点, 与双曲线 的一条渐近线平行且过其中一个焦点.( )求双曲线 的方程;( )设 与 的交点为 ,求∠ 的角平分线所在直线的方程..( 分)如图,在三棱柱 ﹣ 中, ⊥底面 , , 为线段 的中点.( )求证:直线 ∥平面 ;( )求证:平面 ⊥平面 ;( )求三棱锥 ﹣ 的体积.体育单招 高考模拟训练参考答案与试题解析一.选择题(共 小题,满分 分,每小题 分).( 分)( 山西一模)集合 ﹣ ﹣ < , > ,若 ⊆ ,则实数 的取值范围是(). , ∞) .( , ∞) .(﹣∞,﹣ .(﹣∞,﹣ )【解答】解:∵集合 ﹣ ﹣ < (﹣ , )> ,若 > ,则﹣ ≥即 ≤﹣即实数 的取值范围是(﹣∞,﹣故选.( 分)( 吉林三模)已知 , ,向量与的夹角为 ,则 (). . . .【解答】解:∵已知 , ,向量与的夹角为 ,∴ × × ,∴ ,故选: ..( 分)( 揭阳一模)若直线 与直线 ( ﹣ ) 平行,则 的值为(). . 或 . .【解答】解:∵直线 与直线 ( ﹣ ) 平行,∴ ( ﹣ ) × ,∴ 或 ,经检验都符合题意.故选: ..( 分)( 广西模拟)已知 ,则等于() . . . .【解答】解:∵ ,∴ .故选: ..( 分)( 春 五华区校级月考)已知函数 ( )是定义在 上的增函数,若 ( ﹣ )> ( ﹣ ),则实数 的取值范围是().(﹣∞, ) .( , ) .( , ∞) .(﹣∞, )∪( , ∞)【解答】解:因为 ( )为 上的增函数,所以 ( ﹣ )> ( ﹣ ),等价于 ﹣ > ﹣ ,解得 < < ,故选 ..( 分)( 海淀区校级模拟)在( ﹣ ) 的展开式中, 的系数是(). .﹣ . .﹣【解答】解:在( ﹣ ) 的展开式中,通项公式为 ﹣ (﹣ ) ,令 ﹣ ,可得 ,故 的系数是(﹣ ) ﹣ ,故选 ..( 分)( 春 苍南县校级期末)等比数列 ,满足 > , ,则公比 (). . . .【解答】解:∵等比数列 ,满足 > , ,∴ ,∴ ﹣ ﹣ ,解得 ,或 ﹣ (舍)故选: ..( 分)( 永州二模)四个大学生分到两个单位,每个单位至少分一个的分配方案有(). 种 . 种 . 种 . 种【解答】解:根据题意,假设 个单位为甲单位和乙单位,分 种情况讨论:①、甲单位 人而乙单位 人,在 人中任选 个安排在甲单位,剩余 人安排在甲乙单位即可,有 种安排方法;②、甲乙单位各 人,在 人中任选 个安排在甲单位,剩余 人安排在甲乙单位即可,有 种安排方法;③、甲单位 人而乙单位 人,在 人中任选 个安排在甲单位,剩余 人安排在甲乙单位即可,有 种安排方法;则一共有 种分配方案;故选: ..( 分)( 江西二模)圆锥的底面半径为 ,侧面展开图是半圆面,那么此圆锥的侧面积是(). . . .【解答】解:若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的 倍∵圆锥的底面半径为 ,故圆锥的母线长为 ,故圆锥的侧面积 .故选 ..( 分)( 沈阳校级四模)已知 < ,则下列不等式一定成立的是(). . . ( ﹣ )> . ﹣ > 【解答】解: 是单调减函数,,可得 > > ,∴ ﹣ > .故选: .二.填空题(共 小题,满分 分,每小题 分).( 分)( 上海模拟)函数 ( ) ,( <﹣ )的反函数是.【解答】解:函数 ( ) ,( <﹣ ),则 > .可得 ,所以函数的反函数为:.故答案为:..( 分)( 江苏一模)已知正四棱锥的底面边长是 ,侧棱长是,则该正四棱锥的体积为.【解答】解:如图,正四棱锥 ﹣ 中, , ,设正四棱锥的高为 ,连结 ,则 .在直角三角形 中, .所以 ﹣ × × .故答案为:..( 分)( 濮阳二模)在等差数列 中, > , , 为数列 的前 项和, .【解答】解:∵等差数列 中, > , ,∴,解得 ,为数列 的前 项和,则 ( ) .故答案为: ..( 分)( 南通模拟)某学校有两个食堂,甲、乙、丙三名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为.【解答】解:甲、乙、丙三名学生选择每一个食堂的概率均为,则他们同时选中 食堂的概率为: ;他们同时选中 食堂的概率也为: ;故们在同一个食堂用餐的概率故答案为:.( 分)( 马鞍山二模)已知直线 ﹣ 与抛物线 相切,则 ﹣ .【解答】解:直线 ﹣ 与抛物线 联立,消去 可得: ﹣ ﹣ , ≠ ,因为直线 ﹣ 与抛物线 相切,所以△ ,解得 ﹣ .故答案为:﹣ ..( 分)( 天津一模)已知圆 ﹣ ﹣ 截直线 所得弦的长度为 ,则实数 的值是± .【解答】解:圆 ﹣ ﹣ 标准方程( ) ( ﹣ ) ,则圆心(﹣ , ),半径为 ,圆心(﹣ , )到直线 的距离 ,∵圆( ) ( ﹣ ) 截直线 所得弦长为 ,∴ ,解得 ± ,故答案为: ± .三.解答题(共 小题,满分 分,每小题 分).( 分)( 河北区一模)已知函数 ( ) ( ),( > , > )的最小正周期为 ,且 ( ) .( )求 ( )的表达式;( )若 ( ) ( ) ,求 ( )的单调区间及最大值.【解答】解:( )函数 ( ) ( ),∵最小正周期为 ,即,可得: .∴ ( ) ( ),又∵ ( ) , > 、∴ (× ),故得 .∴ ( )的表达式为: ( ) ( ).( )∵ ( ) ( ) ,∴ ( ) ( )由﹣ ≤, ∈可得: ﹣ ≤ ≤∴ ( )的单调增区间为 ﹣ , , ∈由 ≤, ∈可得: ≤ ≤∴ ( )的单调减区间为 , , ∈ .∵ ( )的最大值为 .∴ ( ) ,故得 ( )的最大值为 ..( 分)( 上海模拟)已知双曲线 :( > , > ),直线 : ﹣ , , 为双曲线 的两个焦点, 与双曲线 的一条渐近线平行且过其中一个焦点.( )求双曲线 的方程;( )设 与 的交点为 ,求∠ 的角平分线所在直线的方程.【解答】解:( )依题意,双曲线的渐近线方程为 ± ,焦点坐标为 (﹣ , ), ( , ),∴双曲线方程为 ﹣ ;( ),显然∠ 的角平分线所在直线斜率 存在,且 > ,,,于是.∴为所求..( 分)( 历下区校级三模)如图,在三棱柱 ﹣ 中, ⊥底面 , , 为线段 的中点.( )求证:直线 ∥平面 ;( )求证:平面 ⊥平面 ;( )求三棱锥 ﹣ 的体积.【解答】证明:( )连结 交 于点 ,连结 ,∵ 为 中点, 为 中点,∴ ∥ ,又∵ ⊄平面 , ⊂平面 ,∴ ∥平面 .( )∵ ⊥底面 , ⊂底面 ,∴ ⊥ .∵ , 为 中点,∴ ⊥ .又∵ ⊂ , ⊂平面 , ∩ ,∴ ⊥平面 ,∵ ⊂平面 ,∴平面 ⊥平面 .( )∵ , , ⊥ ,∴ .∵ ⊥底面 ,∴ 为三棱锥 ﹣ 的高,所以.。
体育单招数学模拟试题(一)及答案(最新整理)

(A) 5 (B) 5 (C) 12 (D) 12
12
12
5
5
5,等比数列 an 中, a1 a2 a3 30 , a4 a5 a6 120 ,则 a7 a8 a9 ( )
(A)240 (B) 240
6, tan 330 ( )
(A) 3
A4 , A8 ,A4 , A11 ,A8 , A11 ,共10 种.
………6 分
“从得分在区间 10, 20 内的运动员中随机抽取 2 人,这 2 人得分之和大于 25 ”(记为事件 B )的所有可能
结果有:A2 , A4 ,A2 , A11 ,A3 , A4 ,A3 , A8 ,A3 , A11 ,A4 , A8 ,
A4 , A11 ,A8 , A11 ,共 8 种.
………8 分
所以 P B 8 0.8 .
10
答 : 从 得 分 在 区 间 10, 20 内 的 运 动 员 中 随 机 抽 取 2 人 , 这 2 人 得 分 之 和 大 于 25 的 概 率 为 0.8
.
………10 分
14.(1)T=
(B) 3 3
(C) 480
(D) 480
(C) 3
(D) 3 3
7,
过椭圆 ()
x2 36
y2 25
1的焦点F1作直线交椭圆于A、B两点,F2 是椭圆另一焦 点,则△ABF2 的周长是
(A).12
(B).24
(C).22
(D).10
8,
函数
y
sin
2x
6
图像的一个对称中心是(
)
(A) ( , 0) 12
体育单招数学模拟试题(一)
一、 选择题
2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷7含答案

2024全国普通高校运动训练民族传统体育专业单招统一招生考试数学模拟试卷7本卷共15小题,满分:150分,测试时长:90分钟.一、单选题(每小题8分,共8小题,共64分)1.设集合{}03A x x =<≤,{}1,0,1,2,3B =-,则A B = ()A .{}1,2,3B .{}1,1,2,3-C .{}0,1,2D .{}1,0,1,2-2.函数()f x =的定义域为()A .[)1,-+∞B .[)2,+∞C .[)()1,22,-+∞ D .()(),22,-∞+∞ 3.若a ,b 为实数,则“1ab >”是“1b a >”的()A .充分但非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件4.cos12π=()A B C .D .5.已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a ab ⋅+= ()A .-2B .-1C .0D .26.)62的展开式中2x 的系数为()A .15B .15-C .60D .60-7.已知两圆2210x y +=和()()221320x y -+-=相交于A ,B 两点,则AB =()A .B .CD .8.如图在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法中不正确的是()A .M ,N ,P ,Q 四点共面B .QME CBD ∠=∠C .BCD MEQ △∽△D .四边形MNPQ 为梯形二、填空题(每小题8分,共4小题,共32分)9.不等式102x x -≥+的解集是_________.10.函数3()2f x x x =-在点(1,(1))f 处的切线方程为___________.11.某产品正品率为78,次品率为18,现对该产品进行测试,若第X 次首次测到正品,则()3P X ==______.12.已知直线m 、n ,平面α、β,给出下列命题:①若m α⊥,n β⊥,且m n ⊥,则αβ⊥;②若//m α,//n β,且//m n ,则//αβ;③若αβ⊥,//m α,n β⊥,则m n ⊥;④若//,,//,m n n m ααββ⊂⊄,则//m β;其中正确的命题序号是___________三、解答题(每小题18分,共3大题,共54分)13.在等差数列{}n a 中,n S 为其前n 项的和,已知1322a a +=,545S =.(1)求n a ;(2)求数列n S 的最大值.14.已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为红球的概率;(2)求取出的4个球中恰有1个红球的概率.15.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点为12,F F ,右焦点到左顶点的距离是6,且离心率等于2.(1)求双曲线C 的标准方程;(2)过1F 作斜率为k 的直线l 分别交双曲线的两条渐近线于第二象限的A 点和第一象限的B 点,若1AF AB =,求k的值答案一、单选题1.设集合{}03A x x =<≤,{}1,0,1,2,3B =-,则A B = ()A .{}1,2,3B .{}1,1,2,3-C .{}0,1,2D .{}1,0,1,2-【答案】A2.函数()f x =的定义域为()A .[)1,-+∞B .[)2,+∞C .[)()1,22,-+∞ D .()(),22,-∞+∞ 【答案】C3.若a ,b 为实数,则“1ab >”是“1b a >”的()A .充分但非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件【答案】D4.cos12π=()A .4B .4C .4D .4【答案】A5.已知向量,a b 满足2π1,2,,3a b a b ==<>= ,则()a a b ⋅+= ()A .-2B .-1C .0D .2【答案】C6.)62的展开式中2x 的系数为()A .15B .15-C .60D .60-【答案】C 7.已知两圆2210x y +=和()()221320x y -+-=相交于A ,B 两点,则AB =()A .B .CD .【答案】D 8.如图在四面体ABCD 中,M ,N ,P ,Q ,E 分别是AB ,BC ,CD ,AD ,AC 的中点,则下列说法中不正确的是()A .M ,N ,P ,Q 四点共面B .QME CBD ∠=∠C .BCD MEQ△∽△D .四边形MNPQ 为梯形【答案】D 二、填空题9.不等式102x x -≥+的解集是_________.【答案】()[),21,-∞-+∞ 10.函数3()2f x x x =-在点(1,(1))f 处的切线方程为___________.【答案】20x y --=11.某产品正品率为78,次品率为18,现对该产品进行测试,若第X 次首次测到正品,则()3P X ==______.【答案】751212.已知直线m 、n ,平面α、β,给出下列命题:①若m α⊥,n β⊥,且m n ⊥,则αβ⊥;②若//m α,//n β,且//m n ,则//αβ;③若αβ⊥,//m α,n β⊥,则m n ⊥;④若//,,//,m n n m ααββ⊂⊄,则//m β;其中正确的命题序号是___________【答案】①④三、解答题13.在等差数列{}n a 中,n S 为其前n 项的和,已知1322a a +=,545S =.(1)求n a ;(2)求数列n S 的最大值.【答案】(1)215n a n =-+(2)4914.已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为红球的概率;(2)求取出的4个球中恰有1个红球的概率.15.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点为12,F F ,右焦点到左顶点的距离是6,且离心率等于2.(1)求双曲线C 的标准方程;(2)过1F 作斜率为k 的直线l 分别交双曲线的两条渐近线于第二象限的A 点和第一象限的B 点,若1AF AB =,求k 的值.。
2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷(答案解析)

2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,12.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.23.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n - B.122n -C.112n-D.122n-8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为212.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.2024年全国普通高等学校运动训练、民族传统体育专业单招考试数学试卷答案解析一、单项选择题1.已知集合{}22|1A x x y =+=,{}2|B y y x ==,则A B = ()A.[]0,1 B.[)0,+∞ C.{}1,1- D.{}0,1【分析】集合{}22|1A x x y =+=是x 的取值范围,{}2|B y y x ==是函数的值域,分别求出再求交集.【详解】解:2210,11y x x =-≥-≤≤,{}[)2|0,B y y x ===+∞A B = [][)[]1,10,+=0,1=-∞ 故选:A【点睛】考查求等式中变量的范围以及集合的交集运算;基础题.2.已知复数()()23ai i ++在复平面内对应的点在直线y x =上,则实数a =()A.-2B.-1C.1D.2【答案】C 【解析】【分析】化简复数,求出对应点,代入直线方程求解即可.【详解】因为()()236(23)ai i a a i ++=-++,所以对应的点为()6,23a a -+,代入直线y x =可得623a a -=+,解得1a =,故选:C【点睛】本题考查了复数的运算法则、几何意义,直线的方程,考查了推理能力与计算能力,属于基础题.3.若log 0a b <(0a >且1a ≠),221b b ->,则()A.1a >,1b >B.01a <<,1b >C.1a >,01b << D.01a <<,01b <<【分析】先由221b b ->得,20b b ->,又由0b >,可得1b >,而log 0a b <,可得01a <<【详解】解:因为221b b ->,所以20b b ->,因为0b >,所以1b >,因为log 0a b <,1b >,所以01a <<,故选:B【点睛】此题考查的是指数不等式和对数不等式,属于基础题4.我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则说法不正确的是()A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短【答案】D 【解析】【分析】由题意可知夏至到冬至的晷长构成等差数列,其中115a =寸,13135a =寸,公差为d 寸,可求出d ,利用等差数列知识即可判断各选项.【详解】由题意可知夏至到冬至的晷长构成等差数列{}n a ,其中115a =寸,13135a =寸,公差为d 寸,则1351512d =+,解得10d =(寸),同理可知由冬至到夏至的晷长构成等差数列{}n b ,首项1135b =,末项1315b =,公差10d =-(单位都为寸).故选项A 正确;春分的晷长为7b ,7161356075b b d ∴=+=-= 秋分的晷长为7a ,716156075a a d ∴=+=+=,所以B 正确;立冬的晷长为10a ,10191590105a a d ∴=+=+=,即立冬的晷长为一丈五寸,C 正确; 立春的晷长,立秋的晷长分别为4b ,4a ,413153045a a d ∴=+=+=,41313530105b b d =+=-=,44b a ∴>,故D 错误.故选:D【点睛】本题主要考查了等差数列的通项公式,等差数列在实际问题中的应用,数学文化,属于中档题.5.有三个筐,一个装着柑子,一个装着苹果,一个装着柑子和苹果,包装封好然后做“柑子”“苹果”“混装”三个标签,分别贴到上述三个筐上,由于马虎,结果全贴错了,则()A.从贴有“柑子”标签的筐里拿出一个水果,就能纠正所有的标签B.从贴有“苹果”标签的筐里拿出一个水果,就能纠正所有的标签C.从贴有“混装”标签的筐里拿出一个水果,就能纠正所有的标签D.从其中一个筐里拿出一个水果,不可能纠正所有的标签【答案】C 【解析】【分析】若从贴有“柑子”或“苹果”标签的筐内拿出一个水果,无法判定剩余水果是一种还是两种,不能纠正所有标签,若从“混装”标签中取出一个,就能判断其余两个筐内水果.【详解】如果从贴着苹果标签的筐中拿出一个水果,如果拿的是柑子,就无法判断这筐装的全是柑子,还是有苹果和柑子;同理从贴着柑子的筐中取出也无法判断,因此应从贴着苹果和柑子的标签的筐中取出水果.分两种情况:(1)如果取出的是柑子,那说明这筐全是柑子,则贴有柑子的那筐就是苹果,贴有苹果的那筐就是苹果和柑子.(2)如果取出的是苹果,那说明这筐全是苹果,那贴有苹果的那筐就是柑子,贴有柑子的那筐就是苹果和柑子.故选:C【点睛】解决本题的关键在于,其中贴有混装的这筐肯定不是苹果和柑子混在一起,所以能判断不是苹果就是柑子,考查了逻辑推理能力,属于容易题.6.已知向量OP =,将OP 绕原点O 逆时针旋转45︒到'OP 的位置,则'OP =()A.()1,3B.()3,1-C.()3,1D.()1,3-【答案】D 【解析】【分析】设向量OP与x 轴的夹角为α,结合三角函数的定义和两角和与差的正弦、余弦函数公式,求得cos ,sin ,cos(),454si (5n )αααα++︒︒,得到点P '的坐标,进而求得'OP.【详解】由题意,向量OP =,则OP =设向量OP与x 轴的夹角为α,则cos αα==,所以4545sin sin 452210cos()cos cos ααα︒︒-︒=-+=223104545cos s sin()sin co in 452210s ααα︒︒+︒=++=,可得cos()(14510OP α+=-=︒-,45sin()310OP α︒+== 所以'(1,3)OP =-.故选:D.【点睛】本题主要考查了向量的坐标表示,以及三角函数的定义的应用和两角和与差的正弦、余弦函数的综合应用,着重考查推理与运算能力.7.已知函数()f x 对任意,x y R ∈,都有()()()2f x y f x f y +=,且()11f =,则01()ni f i ==∑()A.21n -B.122n -C.112n-D.122n-【答案】B 【解析】【分析】利用赋值法再结合条件,即可得答案;【详解】由所求式子可得(0)0f ≠,令0x y ==可得:(0)(0)(0)(0)22f f f f ⋅=⇒=,令1x y ==可得:(1)(1)1(2)22f f f ⋅==,令1,2x y ==可得:2(1)(2)1(3)22f f f ⋅==,令2x y ==可得:3(2)(2)1(4)22f f f ⋅==,∴11()2n f n -=,∴111011001(12)112222222()122n nni n n i i f i +---==-==++++==--∑∑ ,故选:B.【点睛】本题考查根据抽象函数的性质求函数的解析式,等比数列求和,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将抽象函数具体化.8.已知正四棱柱1111ABCD A B C D -,设直线1AB 与平面11ACC A 所成的角为α,直线1CD 与直线11A C 所成的角为β,则()A.2βα=B.2αβ= C.αβ= D.2παβ+=【答案】D 【解析】【分析】分别在正四棱柱中找到α和β,将α和β放在同一个平面图形中找关系即可.【详解】作正四棱柱1111ABCD A B C D -如下图:∵在正四棱柱1111ABCD A B C D -中,1AA ⊥平面1111D C B A ,∴111AA B D ⊥∵底面1111D C B A 是正方形∴1111B D AC ⊥又∵1111AA AC A ⋂=∴11BD ⊥平面1111D C B A ∴1B AO ∠是直线1AB 与平面11ACC A 所成的角,即1=B AO α∠∵11CD A B∥∴11BA C ∠是直线1CD 与直线11A C 所成的角,即11=BA C β∠∵11A B B A =,11A O B O =,OA OB =∴11A BO B AO △≌△∴111=BA C AB O β∠∠=∵11B D ⊥平面1111D C B A ∴1B O OA⊥∴11+=+2B AO AB O παβ∠∠=故选:D【点睛】本题主要考查直线与平面和异面直线的夹角,属于中档题.二、多项选择题9.随着我国经济结构调整和方式转变,社会对高质量人才的需求越来越大,因此考研现象在我国不断升温.某大学一学院甲、乙两个本科专业,研究生的报考和录取情况如下表,则性别甲专业报考人数乙专业报考人数性别甲专业录取率乙专业录取率男100400男25%45%女300100女30%50%A.甲专业比乙专业的录取率高B.乙专业比甲专业的录取率高C.男生比女生的录取率高D.女生比男生的录取率高【答案】BC 【解析】【分析】根据数据进行整合,甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;结合选项可得结果.【详解】由题意可得甲专业录取了男生25人,女生90人;乙专业录取了男生180人,女生50人;甲专业的录取率为259028.75%100300+=+,乙专业的录取率为1805046%400100+=+,所以乙专业比甲专业的录取率高.男生的录取率为2518041%100400+=+,女生的录取率为905035%300100+=+,所以男生比女生的录取率高.故选:BC.【点睛】本题主要考查频数分布表的理解,题目较为简单,明确录取率的计算方式是求解的关键,侧重考查数据分析的核心素养.10.已知函数()sin()(0,0)f x x ωϕωϕπ=+><<,将()y f x =的图像上所有点向左平移6π个单位,然后纵坐标不变,横坐标缩短为原来的12,得到函数()y g x =的图像.若()g x 为偶函数,且最小正周期为2π,则()A.()y f x =图像关于点(,0)12π-对称B.()f x 在5(0,)12π单调递增C.()()2x f x g =在5(0,)4π有且仅有3个解 D.()g x 在5()124ππ,有且仅有3个极大值点【答案】AC 【解析】【分析】根据题意求得2ω=,6π=ϕ,进而求得()cos 4g x x =,()sin(26f x x π=+,然后对选项逐一判断即可.【详解】解:将()y f x =的图像上所有点向左平移6π个单位后变为:sin 6x ωπωϕ⎛⎫++ ⎪⎝⎭,然后纵坐标不变,横坐标缩短为原来的12后变为:sin 26x ωπωϕ⎛⎫++ ⎪⎝⎭,所以()sin 26g x x ωπωϕ⎛⎫=++⎪⎝⎭.因为()g x 的最小正周期为2π,所以222ππω=,解得:2ω=.所以()sin 43g x x πϕ⎛⎫=++ ⎪⎝⎭,又因为()g x 为偶函数,所以,32ππφkπk Z +=+∈,所以6,k k Z πϕπ=+∈.因为0ϕπ<<,所以6π=ϕ.所以()sin 4cos 42g x x x π⎛⎫=+= ⎪⎝⎭,()sin(26f x x π=+.对于选项A ,因为()sin 2()sin 0012126f πππ⎡⎤-=-+==⎢⎥⎣⎦,所以()y f x =图像关于点(,0)12π-对称,故A 正确.对于选项B ,因为x ∈5(0,)12π时,2,66x πππ⎛⎫+∈ ⎪⎝⎭,设26t x π=+,则()sin ,,6f t t t ππ⎛⎫=∈ ⎪⎝⎭,因为()f t 在,6π⎛⎫π⎪⎝⎭不是单调递增,所以()f x 在5(0,)12π不单调递增,故B 错误.对于选项C ,()cos 22x g x =,()sin(2)6f x x π=+,画出(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像如图所示:从图中可以看出:(),2x f x g ⎛⎫⎪⎝⎭在5(0,4π图像有三个交点,所以()()2x f x g =在5(0,)4π有且仅有3个解,故C 正确.对于选项D ,()cos 4g x x =在5()124ππ,的图像如图所示:从图中可以看出()g x 在5(124ππ,有且仅有2个极大值点,故D 选项错误.故选:AC .【点睛】本题主要考查正弦型函数、余弦型函数的周期、对称中心、奇偶性、单调性等,考查学生数形结合的能力,计算能力等,属于中档题.11.已知抛物线()220y px p =>上三点()11,A x y ,()1,2B ,()22,C x y ,F 为抛物线的焦点,则()A.抛物线的准线方程为1x =-B.0FA FB FC ++=,则FA ,FB ,FC 成等差数列C.若A ,F ,C 三点共线,则121y y =-D.若6AC =,则AC 的中点到y 轴距离的最小值为2【答案】ABD 【解析】【分析】把点(1,2)B 代入抛物线22y px =即可得到本题答案;根据抛物线的定义,以及0FA FB FC ++=,可得122x x +=,从而可证得2FA FC FB += ;由A ,F ,C 三点共线,得121211y y x x =--,结合22112211,44x y x y ==,化简即可得到本题答案;设AC 的中点为00(,)M x y ,由AF CF AC +≥,结合1201122AF CF x x x +=+++=+,即可得到本题答案.【详解】把点(1,2)B 代入抛物线22y px =,得2p =,所以抛物线的准线方程为1x =-,故A 正确;因为1122(,),(1,2),(,),(1,0)A x y B C x y F ,所以11(1,)FA x y =-,(0,2)FB = ,22(1,)FC x y =- ,又由0FA FB FC ++=,得122x x +=,所以121142FA FC x x FB +=+++== ,即FA ,FB,FC 成等差数列,故B 正确;因为A ,F ,C 三点共线,所以直线斜率AF CF k k =,即121211y y x x =--,所以122212111144y y y y =--,化简得,124y y =-,故C 不正确;设AC 的中点为00(,)M x y ,因为AF CF AC +≥,1201122AF CF x x x +=+++=+,所以0226x +≥,得02x ≥,即AC 的中点到y 轴距离的最小值为2,故D 正确.故选:ABD【点睛】本题主要考查抛物线定义的应用以及抛物线与直线的相关问题,考查学生的分析问题能力和转化能力.12.已知函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=,且11f e e⎛⎫= ⎪⎝⎭,则()A.1'0f e ⎛⎫= ⎪⎝⎭B.()f x 在1x e=处取得极大值C.()011f << D.()f x 在()0,∞+单调递增【答案】ACD 【解析】【分析】根据题意可设()21ln 2f x x x bx =+,根据11f e e⎛⎫= ⎪⎝⎭求b ,再求()f x '判断单调性求极值即可.【详解】∵函数()f x 的定义域为()0,∞+,导函数为()'f x ,()()'ln xf x f x x x -=即满足()()2'ln xf x f x x x x-=∵()()()2'f x xf x f x x x '-⎛⎫=⎪⎝⎭∴()ln f x x x x '⎛⎫=⎪⎝⎭∴可设()21ln 2f x x b x =+(b 为常数)∴()21ln 2f x x x bx=+∵211111ln 2b f e e e e e ⎛⎫=⋅+= ⎪⎝⎭,解得12b =∴()211ln 22f x x x x =+∴()112f =,满足()011f <<∴C 正确∵()()22111ln ln =ln 10222f x x x x '=+++≥,且仅有1'0f e ⎛⎫= ⎪⎝⎭∴B 错误,A、D 正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.三、填空题13.()()52x y x y +-的展开式中24x y 的系数为________.【答案】15-【解析】【分析】把5()x y -按照二项式定理展开,可得5(2)()x y x y +-的展开式中24x y 的系数.【详解】()5051423455555233245551(2)()(2)x y x y x y C x C x y C x y C x y C x y C y +-=+⋅⋅⋅+⋅-⋅+⋅-⋅-,故它的展开式中24x y 的系数为5543215C C -=-,故答案为:15-.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.14.已知l 是平面α,β外的直线,给出下列三个论断,①//l α;②αβ⊥;③l β⊥.以其中两个论断为条件,余下的论断为结论,写出一个正确命题:________.(用序号表示)【答案】若①③,则②或若②③,则①(填写一个即可);【解析】【分析】利用空间直线与平面的位置关系进行判断,//l α,αβ⊥时,l 与β可能平行或者相交.【详解】因为//l α,αβ⊥时,l 与β可能平行或者相交,所以①②作为条件,不能得出③;因为//l α,所以α内存在一条直线m 与l 平行,又l β⊥,所以m β⊥,所以可得αβ⊥,即①③作为条件,可以得出②;因为αβ⊥,l β⊥,所以//l α或者l α⊂,因为l 是平面α外的直线,所以//l α,即即②③作为条件,可以得出①;故答案为:若①③,则②或若②③,则①(填写一个即可);【点睛】本题主要考查空间位置关系的判断,稍微具有开放性,熟悉空间的相关定理及模型是求解的关键,侧重考查直观想象的核心素养.15.已知双曲线()222210,0x y a b a b-=>>过左焦点且垂直于x 轴的直线与双曲线交于P ,Q 两点,以P ,Q ,则双曲线的离心率为________.【答案】32【解析】【分析】首先求,P Q 两点的坐标,代人圆心到直线的距离,由已知条件建立等式求得2b a =,最后再求双曲线的离心率.【详解】设(),0F c -,当x c =-,代人双曲线方程22221c ya b-=,解得:2b y a =±,设2,b Pc a ⎛⎫- ⎪⎝⎭,2,b Q c a ⎛⎫-- ⎪⎝⎭根据对称性,可设与两圆相切的渐近线是by x a =,则,P Q 两点到渐近线的距离22bc b bc b ---++=,c b > ,上式去掉绝对值为22bc b bc b c c +-+=,即52b a =,那么32c a ==.∴双曲线的离心率32e =.故答案为:32【点睛】本题考查双曲线的离心率,重点考查转化与化归的思想,计算能力,属于基础题型.16.我国的西气东输工程把西部的资源优势变为经济优势,实现了气能源需求与供给的东西部衔接,工程建设也加快了西部及沿线地区的经济发展输气管道工程建设中,某段管道铺设要经过一处峡谷,峡谷内恰好有一处直角拐角,水平横向移动输气管经过此拐角,从宽为27米峡谷拐入宽为8米的峡谷.如图所示,位于峡谷悬崖壁上两点E 、F 的连线恰好经过拐角内侧顶点O (点E 、O 、F 在同一水平面内),设EF 与较宽侧峡谷悬崖壁所成角为θ,则EF 的长为________(用θ表示)米.要使输气管顺利通过拐角,其长度不能低于________米.【答案】(1).278sin cos θθ+(2).【解析】【分析】分别计算出OE 、OF ,相加可得EF 的长;设()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,利用导数求得()f θ的最小值,即可得解.【详解】如下图所示,过点O 分别作OA AE ⊥,OB BF ⊥,则OEA BOF θ∠=∠=,在Rt OAE △中,27OA =,则27sin sin OA OE θθ==,同理可得8cos OF θ=,所以,278sin cos EF OE OF θθ=+=+.令()2780sin cos 2f πθθθθ⎛⎫=+<< ⎪⎝⎭,则()3333222222278cos tan27cos8sin8sin27cos8 sin cos sin cos sin cosfθθθθθθθθθθθθθ⎛⎫-⎪-⎝⎭=-+='=,令()00fθ'=,得327tan8θ=,得03tan2θ=,由22003tan2sin cos1sin0θθθθ⎧=⎪⎪+=⎨⎪>⎪⎩,解得sin13cos13θθ⎧=⎪⎪⎨⎪=⎪⎩,当00θθ<<时,()0fθ'<;当02πθθ<<时,()0fθ'>.则()()min1313f fθθ===.故答案为:278sin cosθθ+;.【点睛】本题考查导数的实际应用,求得函数的解析式是解题的关键,考查计算能力,属于中等题.。
2023年高校体育单招考试数学模拟试卷三(含答案详解)

2023年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试数学模拟试卷(三)一、选择题(本大题共8小题,每小题8分,共64分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2Z 230A x x x =∈+-≤,{|1}B x x =≥-,则集合A ∩B 的元素个数为()A.1B.2C.3D.42.下列函数中,在其定义域内既是奇函数又是减函数的是A .R x x y ∈-=,3B .Rx x y ∈=,sin C .Rx x y ∈=,D.R x x y ∈=,)21(3.不等式11x -≤的解集是()A.{}2x x ≤ B.{}02x x ≤≤ C.{}x x ≥ D.{}14.函数()()ln 11x f x x-=+的定义域是()A.(-1,1)B.()(),11,1-∞-⋃- C.(0,1) D.()()1,11,-⋃+∞5.已知向量()()2,4,2,a b m ==-,若a b + 与b的夹角为60°,则m =()A.33-B.33 C.233-D.336.记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则()A .a n =2n ﹣5B .a n =3n ﹣10C .S n =2n 2﹣8nD .S n =21n 2﹣2n 7.若π3sin 45α⎛⎫-= ⎪⎝⎭,则sin 2α=()A.725-B.2425-C.725D.24258.如图,在正方体ABCD ﹣A 1B 1C 1D 1中,M ,N 分别为AC ,A 1B 的中点,则下列说法错误的是()A .MN ⊥CDB .直线MN 与平面ABCD 所成角为45°C .MN ∥平面ADD 1A 1D .异面直线MN 与DD 1所成角为60°二、填空题(本大题共4小题,每小题8分,共32分.)9.记S n 为等比数列{a n }的前n 项和,若11a =,且13S ,22S ,3S 成等差数列,则4a =______.10.已知圆C :22850x y x ay +++-=经过抛物线E :24x y =的焦点,则抛物线E 的准线与圆C 相交所得弦长是__________.11.某班级计划从甲,乙,丙,丁,戊五位同学中选择三人作为代表参加师生座谈会,每人被选中的机会均等,则甲和乙同时被选中的概率为___________.12.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为24,则这个球的体积为.三、解答题(本题共3小题,每小题18分,共54分)13.某大学毕业生参加一个公司的招聘考试,考试分笔试和面试两个环节,笔试有A B 、两个题目,该学生答对A B 、两题的概率分别为12和13,两题全部答对方可进入面试.面试要回答甲、乙两个问题,该学生答对这两个问题的概率均为12,至少答对一题即可被聘用(假设每个环节的每个问题回答正确与否是相互独立的).(I)(II)求该学生被公司聘用的概率.14.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin B +b cos A =c .(1)求B ;(2)设a =2c ,b =2,求c .15.已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1,F2为双曲线的左、右焦点,且|MF1|+|MF2|=63,试判断△MF1F2的形状.答案和解析1.C 【详解】∵{}{}{}2Z 230Z 313,2,1,0,1A x x x x x =∈+-≤=∈-≤≤=---,∴{}1,0,1A B =- ,即集合A ∩B 的元素个数为3.故选:C.2.A 在其定义域内是奇函数但不是减函数;C 在其定义域内既是奇函数又是增函数;D 在其定义域内不是奇函数,是减函数;故选A.3.B 【详解】不等式11111x x -≤⇔-≤-≤,解得:02x ≤≤,所以不等式的解集是{}02x x ≤≤.故选:B4.B 【详解】要使()()ln 11x f x x-=+有意义,则101101x x x x -><⎧⎧⇒⎨⎨+≠≠-⎩⎩,所以函数()f x 的定义域是()(),11,1x ∈-∞-⋃-.故选:B5.D 【详解】由题意得(0,4)a b m +=+,故2()(4)1cos ,2|||||4|4a b b a b b a b b m m +⋅〈+〉==+⋅+⨯+,解得233m =±,其中233m =-不合题意,舍去,故233m =,故选:D 6.A 解:设等差数列{a n }的公差为d ,由S 4=0,a 5=5,得,∴,∴a n =2n ﹣5,,故选:A .7.C 【详解】因为π3sin 45α⎛⎫-= ⎪⎝⎭,所以ππsin 2cos 2cos 224ααα⎡⎤⎛⎫⎛⎫=-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,22π3712sin 124525α⎛⎫⎛⎫=--=-⨯=⎪ ⎪⎝⎭⎝⎭,故选:C 8.D 解:如图,连结BD ,A 1D ,由M ,N 分别为AC ,A 1B 的中点,知MN ∥A 1D ,而MN ⊄平面ADD 1A 1,A 1D ⊂平面ADD 1A 1,∴MN ∥平面ADD 1A 1,故C 正确;在正方体ABCD ﹣A 1B 1C 1D 1中,CD ⊥平面ADD 1A 1,则CD ⊥A 1D ,∵MN ∥A 1D ,∴MN ⊥CD ,故A 正确;直线MN 与平面ABCD 所成角等于A 1D 与平面ABCD 所成角等于45°,故B 正确;而∠A 1DD 1为异面直线MN 与DD 1所成角,应为45°,故D 错误.故选:D.9.27【详解】 13S ,22S ,3S 成等差数列,∴23143S S S =+即()13121243a a a a a a =++++,∴323a a =,∴等比数列{}n a 的公比323a q a ==,∴34127a a q ==.故答案为:27.【点睛】本题考查了等差数列、等比数列的综合应用,考查了运算求解能力,属于基础题.10.【详解】抛物线E:24x y =的准线为1y =-,焦点为(0,1),把焦点的坐标代入圆的方程中,得4a =,所以圆心的坐标为(4,2)--,半径为5,则圆心到准线的距离为1,所以弦长==.11.310【详解】从甲,乙,丙,丁,戊五位同学中选择三人,有3510C =种方法,甲和乙同时被选中的方法有133C =,所以甲和乙同时被选中的概率为310p =,故答案为:31012.解:由几何体的空间结构特征可知,正方体的体对角线为球的直径,设正方体的棱长为a ,则6a 2=24,∴a =2,设球的半径为R ,则:(2R )2=22+22+22=12,则,其体积:.故答案为:.13.解:记答对笔试A B 、两试题分别为事件11A B 、,记面试回答对甲、乙两个问题分别为事件C 、D ,则11111()()()()232P A P B P C P D ====,.(I)该学生没有通过笔试的概率为111()P A B - 1151236=-⨯=.答:该学生没有通过笔试的概率是56.(II)该学生被公司聘用的概率为11()1()P A B P C D ⎡⎤⋅-⎣⎦ 11111(123228=⨯-⨯=.答:该学生被公司聘用的概率为18.14.解:(1)由正弦定理得sin A sin B +sin B cos A =sin C ,因为sin C =sin[π﹣(A +B )]=sin (A +B )=sin A cos B +cos A sin B ,所以sin A sin B =sin A cos B ,又因为sin A ≠0,cos B ≠0,所以tan B =1,又0<B <π,所以.(2)由余弦定理b 2=c 2+a 2﹣2ac cos B ,,可得,解得c =2.15.解:(1)椭圆方程可化为92x +42y =1,焦点在x 轴上,且c =49-=5,故设双曲线方程为22a x -22b y =1(a >0,b >0),则有⎪⎩⎪⎨⎧=+=-,5,1492222b a b a 解得a 2=3,b 2=2,所以双曲线的标准方程为32x -22y =1.(2)不妨设M 点在右支上,则有|MF 1|-|MF 2|=23,又|MF 1|+|MF 2|=63,解得|MF 1|=43,|MF 2|=23,又|F 1F 2|=25,因此在△MF 1F 2中,MF 1边最长,而cos ∠MF 2F 1=||||2||||||2122122122F F MF MF F F MF -+<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
体育单招试卷数学模拟试卷一定稿版

体育单招试卷数学模拟试卷一精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x 2.(6分)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3B.2 C.2√3D.33.(6分)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.ggg312C.log32 D.√34.(6分)函数y=sinx?cosx,x∈R的最小正周期为()A.2 B.πC.2πD.1g5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.456.(6分)(g−1g)6的展开式中含x2的项的系数是()A.﹣20 B.20 C.﹣15 D.15 7.(6分)设a,b是两条不同的直线,α,β是两个不同的平面,则()A.若a∥α,b∥α,则a∥b B.若a∥α,a∥β,则α∥βC.若a∥b,a⊥α,则b⊥αD.若a∥α,α⊥β,则α⊥β8.(6分)已知双曲线g 2g2−g2=1的焦点为(2,0),则此双曲线的渐近线方程是()A.y=±√5x B.y=±√55g C.y=±√33g D.y=±√3x9.(6分)圆x2+y2﹣4x+6y=0的圆心坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)10.(6分)不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2}C.{x|x≥2或x≤﹣1} D.{x|x>2或x<﹣1}二.填空题(共6小题,满分36分,每小题6分)11.(6分)在等差数列{an }中,a2=10,a4=18,则此等差数列的公差d= .12.(6分)从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成个四位数.13.(6分)函数g=gg√3g−4的定义域.14.(6分)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是.15.(6分)抛物线y2=2x的准线方程是.16.(6分)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= .三.解答题(共3小题,满分54分,每小题18分)17.(18分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=√3cosC,其中C为锐角.(1)求角C的大小;(2)a=1,b=4,求边c的长.18.(18分)椭圆的中心为坐标原点,长、短轴长之比为3,一个焦点是(0,﹣2).2(1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.20170417-体育单招模拟试卷一参考答案与试题解析一.选择题(共10小题,满分60分,每小题6分)1.(6分)(2013秋?福州校级期中)下列函数是奇函数的是()A.y=x﹣1 B.y=2x2﹣3 C.y=x3D.y=2x【解答】解:A、D两项图象既不关于y轴对称,也不关于原点对称,所以它们不是奇函数.B项图象关于y轴对称,所以它是偶函数.故选C.2.(6分)(2017?济南一模)在△ABC中,AC=√13,BC=1,B=60°,则△ABC的面积为()A.√3 B.2 C.2√3D.3【解答】解:∵AC=√13,BC=1,B=60°,∴由余弦定理可得:AC2=AB2+BC2﹣2ABBCsinB,即:13=AB2+1﹣AB,∴解得:AB=4或﹣3(舍去),∴S△ABC =12ABBCsinB=12×4×1×√32=√3.故选:A.3.(6分)(2016秋?道里区校级期末)若函数y=log3x的反函数为y=g(x),则g(12)的值是()A.3 B.ggg312 C.log32 D.√3【解答】解:由y=log3x可得 x=3y,故函数y=log3x的反函数为y=g(x)=3x,则g(12)=312=√3,故选D.4.(6分)(2017河西区模拟)函数y=sinxcosx,x∈R的最小正周期为()A.2 B.π C.2πD.1g【解答】解:函数y=sinx?cosx=12sin2x.周期T=2g|g|=2g2=g.故选B5.(6分)(2017?淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是()A.15B.25C.35D.45【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4g52=410=25,故选B.6.(6分)(2017?凉山州模拟)(g−1g)6的展开式中含x2的项的系数是()A.﹣20 B.20 C.﹣15 D.15【解答】解:(x ﹣1g )6展开式的通项为T r+1=(﹣1)r C 6r x 6﹣2r,令6﹣2r=2,解得r=2故展开式中含x 2的项的系数是C 62=15,故选:D7.(6分)(2017?抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b ,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a β或a ∥β或a ⊥β,故D 错.故选:C .8.(6分)(2017?河西区模拟)已知双曲线g 2g 2−g 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√5xB .y=±√55g C .y=±√33g D .y=±√3x【解答】解:依题意可知√g2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1g x=±√33x故选C9.(6分)(2017?怀柔区模拟)圆x2+y2﹣4x+6y=0的圆心坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:将圆x2+y2﹣4x+6y=0化成标准方程,得(x﹣2)2+(y+3)2=13∴圆表示以C(2,﹣3)为圆心,半径r=√13的圆故选:D.10.(6分)(2016?长沙模拟)不等式(x+1)(x﹣2)≤0的解集为()A.{x|﹣1≤x≤2} B.{x|﹣1<x<2} C.{x|x≥2或x≤﹣1} D.{x|x>2或x<﹣1}【解答】解:不等式(x+1)(x﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x|﹣1≤x≤2}.故选:A.二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016?眉山模拟)在等差数列{an }中,a2=10,a4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{an }中a2=10,a4=18,∴公差d=g4−g24−2=18−102=4故答案为:412.(6分)从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成216 个四位数.【解答】解:从l,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C32C32A44=216个,故答案为:21613.(6分)(2010秋?湖南校级期末)函数g=gg√3g−4的定义域(43,+∞).【解答】解:要使得 3x﹣4>0,等价于3x>4解得x>43,所以,函数f(x)的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017?黄浦区一模)以点(2,﹣1)为圆心,且与直线x+y=7相切的圆的方程是(x﹣2)2+(y+1)2=18 .【解答】解:将直线x+y=7化为x+y﹣7=0,圆的半径r==3√2,√2所以圆的方程为(x﹣2)2+(y+1)2=18.故答案为(x﹣2)2+(y+1)2=18..15.(6分)(2017?丰台区一模)抛物线y2=2x的准线方程是g=−12【解答】解:抛物线y2=2x,∴p=1,∴准线方程是x=﹣12故答案为:﹣1216.(6分)(2017?南通一模)设集合A={1,3},B={a+2,5},A∩B={3},则A∪B= {1,3,5} .【解答】解:集合A={1,3},B={a+2,5},A∩B={3},可得a+2=3,解得a=1,即B={3,5},则A∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016?浙江学业考试)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2C=√3cosC,其中C为锐角.(1)求角C的大小;(2)a=1,b=4,求边c的长.【解答】解:(1)在△ABC中,由sin2C=√3cosC,可得:2sinCcosC=√3cosC,因为C为锐角,所以cosC≠0,可得sinC=√32,可得角C的大小为g3.(2)由a=1,b=4,根据余弦定理可得:c2=a2+b2﹣2abcos g3=13,可得边c的长为√13.18.(18分)(2017春?济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b,c=2,∴√94g2−g2=2,∴b2=165,∴a=√5,∴椭圆的离心率e=gg =√5 3;(2)椭圆的方程g 236 5+g2165=1.19.(18分)(2017春?东湖区校级月考)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM平面MBD,AN平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴g g−ggg=g g−ggg=g g−ggg=13g△ggg×13gg=13×9×1=3.。
2024年体育单招数学模拟试卷

2024年体育单招数学模拟试卷
2024年体育单招数学模拟试卷指的是针对2024年体育单独招生考试中的数学科目所编制的模拟试卷。
这种模拟试卷旨在帮助学生了解和适应考试的题型、难度和考试形式,通过模拟考试来提高他们的答题技巧和应试能力。
以下是两道示例的2024年体育单招数学模拟试卷的选择题和一道判断题:选择题:
1.题目:已知函数 f(x) = x^2 + 2x,则 f(-1) 的值为 ()
A.1
B.2
C.3
D. 4
答案:A
2.题目:若命题 p:方程 x^2 + mx + 1 = 0 有两个不相等的实根,命题 q:
方程 x^2 + 2x + m = 0 无实根,则 p 和 q 的否定分别是 ()
A.p 为真,q 为假
B.p 为假,q 为真
C.p 和 q 都为假
D. p 和 q 都为真
答案:B
判断题:
1.题目:函数 y = log₂(x - 3) 的定义域是 (3, +∞)。
答案:对。
总结:2024年体育单招数学模拟试卷指的是针对2024年体育单独招生考试中的数学科目所编制的模拟试卷。
这种模拟试卷旨在帮助学生了解和适应考试的题型、难度和考试形式,通过模拟考试来提高他们的答题技巧和应试能力。
通过这种模拟试卷,学生可以更好地备考体育单招考试,提高自己的数学水平和应试能力。
体育单招试卷数学模拟试卷一

体育单招模拟试卷一一.选择题(共10小题,满分60分,每小题6分)1.(6分)下列函数是奇函数的是( )A .y=x ﹣1B .y=2x 2﹣3C .y=x 3D .y=2x2.(6分)在△ABC 中,AC=√13,BC=1,B=60°,则△ABC 的面积为( )A .√3B .2C .2√3D .3 3.(6分)若函数y=log 3x 的反函数为y=g (x ),则g(12)的值是( )A .3B .log 312C .log 32D .√34.(6分)函数y=sinx•cosx ,x ∈R 的最小正周期为( )A .2B .πC .2πD .1π 5.(6分)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45 6.(6分)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .157.(6分)设a ,b 是两条不同的直线,α,β是两个不同的平面,则( )A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β 8.(6分)已知双曲线x 2a 2−y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( ) A .y=±√5x B .y=±√55x C .y=±√33x D .y=±√3x9.(6分)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)10.(6分)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}二.填空题(共6小题,满分36分,每小题6分)11.(6分)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= . 12.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 个四位数.13.(6分)函数y =lg √3x −4的定义域 .14.(6分)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 .15.(6分)抛物线y 2=2x 的准线方程是 .16.(6分)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= .三.解答题(共3小题,满分54分,每小题18分)17.(18分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.18.(18分)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2). (1)求椭圆的离心率;(2)求椭圆的方程.19.(18分)如图四棱锥P ﹣ABCD ,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,其中BC=2AB=2PA=6,M 、N 为侧棱PC 上的三等分点.(Ⅰ)证明:AN ∥平面MBD ;(Ⅱ)求三棱锥N ﹣MBD 的体积.【解答】解:函数y=sinx•cosx=12sin2x . 周期T=2π|ω|=2π2=π.故选B5.(6分)(2017•淮南一模)从数字1,2,3,4,5这五个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是( )A .15B .25C .35D .45【解答】解:由题意知本题是一个古典概型,∵从五个数中随机抽取2个不同的数有C 52种不同的结果,而这2个数的和为偶数包括2、4,1、3,1、5,3、5,四种取法,由古典概型公式得到P=4C 52=410=25,故选B .6.(6分)(2017•凉山州模拟)(x −1x )6的展开式中含x 2的项的系数是( )A .﹣20B .20C .﹣15D .15【解答】解:(x ﹣1x )6展开式的通项为T r +1=(﹣1)r C 6r x 6﹣2r ,令6﹣2r=2,解得r=2故展开式中含x 2的项的系数是C 62=15,故选:D7.(6分)(2017•抚州模拟)设a ,b 是两条不同的直线,α,β是两个不同的平面,则() A .若a ∥α,b ∥α,则a ∥b B .若a ∥α,a ∥β,则α∥βC .若a ∥b ,a ⊥α,则b ⊥αD .若a ∥α,α⊥β,则α⊥β【解答】解:A .若a ∥α,b ∥α,则a ∥b ,或a ,b 异面或a ,b 相交,故A 错;B .若a ∥α,a ∥β,则α∥β,或α∩β=b ,故B 错;C .若a ∥b ,a ⊥α,则b ⊥α,故C 正确;D .若a ∥α,α⊥β,则a ⊂β或a ∥β或a ⊥β,故D 错.8.(6分)(2017•河西区模拟)已知双曲线x 2a −y 2=1的焦点为(2,0),则此双曲线的渐近线方程是( )A .y=±√5xB .y=±√55xC .y=±√33xD .y=±√3x【解答】解:依题意可知√a 2+1=2∴a=±√3∴双曲线的渐近线方程为y=±1a x=±√33x 故选C9.(6分)(2017•怀柔区模拟)圆x 2+y 2﹣4x +6y=0的圆心坐标是( )A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(2,﹣3)【解答】解:将圆x 2+y 2﹣4x +6y=0化成标准方程,得(x ﹣2)2+(y +3)2=13∴圆表示以C (2,﹣3)为圆心,半径r=√13的圆故选:D .10.(6分)(2016•长沙模拟)不等式(x +1)(x ﹣2)≤0的解集为( )A .{x |﹣1≤x ≤2}B .{x |﹣1<x <2}C .{x |x ≥2或x ≤﹣1}D .{x |x >2或x <﹣1}【解答】解:不等式(x +1)(x ﹣2)≤0对应方程的两个实数根为﹣1和2,所以该不等式的解集为{x |﹣1≤x ≤2}.故选:A .二.填空题(共6小题,满分36分,每小题6分)11.(6分)(2016•眉山模拟)在等差数列{a n }中,a 2=10,a 4=18,则此等差数列的公差d= 4 .【解答】解:∵在等差数列{a n }中a 2=10,a 4=18,∴公差d=a 4−a 24−2=18−102=412.(6分)从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字组成四位数,共能组成 216 个四位数.【解答】解:从l ,3,5中选2个不同的数字,从2,4,6中选2个不同的数字,再把这四个数字任意排,故有C 32C 32A 44=216个,故答案为:21613.(6分)(2010秋•湖南校级期末)函数y =lg √3x −4的定义域 (43,+∞) .【解答】解:要使得 3x ﹣4>0,等价于3x >4解得x >43, 所以,函数f (x )的定义域为(43,+∞)故答案为(43,+∞).14.(6分)(2017•黄浦区一模)以点(2,﹣1)为圆心,且与直线x +y=7相切的圆的方程是 (x ﹣2)2+(y +1)2=18 .【解答】解:将直线x +y=7化为x +y ﹣7=0,圆的半径r=√2=3√2,所以圆的方程为(x ﹣2)2+(y +1)2=18.故答案为(x ﹣2)2+(y +1)2=18.15.(6分)(2017•丰台区一模)抛物线y 2=2x 的准线方程是 x =−12 .【解答】解:抛物线y 2=2x ,∴p=1, ∴准线方程是x=﹣12 故答案为:﹣1216.(6分)(2017•南通一模)设集合A={1,3},B={a +2,5},A ∩B={3},则A ∪B= {1,3,5} .【解答】解:集合A={1,3},B={a +2,5},A ∩B={3},可得a +2=3,解得a=1,即B={3,5},则A ∪B={1,3,5}.故答案为:{1,3,5}.三.解答题(共3小题,满分54分,每小题18分)17.(18分)(2016•浙江学业考试)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin2C=√3cosC ,其中C 为锐角.(1)求角C 的大小;(2)a=1,b=4,求边c 的长.【解答】解:(1)在△ABC 中,由sin2C=√3cosC ,可得:2sinCcosC=√3cosC ,因为C 为锐角,所以cosC ≠0,可得sinC=√32,可得角C 的大小为π3. (2)由a=1,b=4,根据余弦定理可得:c 2=a 2+b 2﹣2abcos π3=13, 可得边c 的长为√13.18.(18分)(2017春•济南月考)椭圆的中心为坐标原点,长、短轴长之比为32,一个焦点是(0,﹣2).(1)求椭圆的离心率;(2)求椭圆的方程.【解答】解:(1)由题意a=32b ,c=2, ∴√94b 2−b 2=2,∴b 2=165,∴a=√5, ∴椭圆的离心率e=c a =√53;(2)椭圆的方程y 2365+x 2165=1.19.(18分)(2017春•东湖区校级月考)如图四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.(Ⅰ)证明:AN∥平面MBD;(Ⅱ)求三棱锥N﹣MBD的体积.【解答】(Ⅰ)证明:连结AC交BD于O,连结OM,∵底面ABCD为矩形,∴O为AC的中点,∵M、N为侧棱PC上的三等分点,∴CM=MN,∴OM∥AN,∵OM⊂平面MBD,AN⊄平面MBD,∴AN∥平面MBD;(Ⅱ)解:∵四棱锥P﹣ABCD,底面ABCD为矩形,侧棱PA⊥底面ABCD,BC=2AB=2PA=6,M、N为侧棱PC上的三等分点.∴V N−MBD=V A−MBD=V M−ABD=13S△ABD×13PA=13×9×1=3.。
2023年体育单招数学试卷

2023年体育单招数学试卷一、选择题(每题1分,共5分)1.下列函数中,奇函数是()A.y=x^3B.y=x^2C.y=|x|D.y=x+1/x2.已知函数f(x)=x^22x+1,那么f(x)的最小值是()A.0B.1C.-1D.无法确定3.下列等比数列中,公比是3的数列是()A.1,3,9,27,B.2,6,18,54,C.3,6,12,24,D.4,12,36,108,4.已知三角形ABC中,角A、角B、角C的对边分别为a、b、c,那么根据正弦定理,下列哪个选项是正确的?()A.a/sinA=b/sinB=c/sinCB.a/sinB=b/sinC=c/sinAC.a/sinC=b/sinA=c/sinBD.a/sinA=b/sinC=c/sinB5.下列方程中,不是一元二次方程的是()A.x^2+2x+1=0B.x^22x+1=0C.x^2+2x1=0D.x+2x+1=0二、判断题(每题1分,共5分)1.两个奇函数的乘积是偶函数。
()2.任何数列都有通项公式。
()3.两个等差数列的乘积还是等差数列。
()4.三角形的内角和为180度。
()5.一元二次方程的判别式Δ=b^24ac。
()三、填空题(每题1分,共5分)1.若函数f(x)=x^33x,那么f'(x)=_______。
2.若等差数列的首项为1,公差为2,那么第10项为_______。
3.若等比数列的首项为2,公比为3,那么第5项为_______。
4.若三角形ABC中,角A=30度,角B=60度,那么角C=_______度。
5.若一元二次方程ax^2+bx+c=0的解为x1=2,x2=3,那么b=_______。
四、简答题(每题2分,共10分)1.请简述函数的单调性及其判定方法。
2.请简述等差数列与等比数列的定义及其通项公式。
3.请简述三角形的内角和定理及其应用。
4.请简述一元二次方程的判别式及其意义。
5.请简述函数的极值及其判定方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数 学 试 卷
时间:100分钟 满分:150分
一.每大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,
请将正确选项的字母填在题目的括号内。
1.下列说法正确的个数是( )
①任何一条直线都有唯一的倾斜角; ②倾斜角为的直线有且仅有一条;0
30 ③若直线的斜率为,则倾斜角为; ④如果两直线平行,则它们的斜率相等
θtan θ
0个 1个 2个 3个
)(A )(B )(C )(D 2.若直线的倾斜角为,则 ( )
1=x α=αA .0 B
不存在
D C
2
4
π
π
3.直线与直线的位置关系是( )1:2310l x y ++=2:3240l x y +-= 平行 垂直 相交但不垂直
以上情况都不对
()A ()B ()C ()D 4..直线与平行,则的值等于(
)
06:1=++ay x l 023)2(:2=++-a y x a l a .-1或3
.1或3 .-3 .-1
)(A )(B )(C )(D
5,则正三棱锥的高是 ( )
A. 2
B. 3
C. 4
D. 6
6.已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )
A.3
B.-2
C. 2
D. 不存在
7.直线
,互相垂直,则的
1:(1)3l ax a y +-=2:(1)(23)2l a x a y -++=a
值为( )
A. B. C. 或 D. 或3-103
2-
13
-8.如图1,直线、、的斜率分别为、、,则必有
1l 2l 3l 1k 2k 3k . . .
)(A 231k k k <<)(B 213k k k <<)(C 321k k k <<)(D 123k k k <<9.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是(
)
11
212111
2112
211211211211..
.()()()()0.()()()()0
y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=
----=
-------=-----=10.直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )
A.a=2,b=5;
B.a=2,b=;
C.a=,b=5;
D.a=,b=.
5-2-2-5-二.填空题:本大题共7 小题,每小题5分,共35分,把答案填在题中横线上。
11.过点(1,2)且在两坐标轴上的截距相等的直线的方程
_
12.已知在四面体ABCD 中,,E F 分别是,AC BD 的中点,若2,4,AB CD EF AB ==⊥,
则EF 与CD 所成的角的度数为
13.如图,已知长方体ABCD A B C D ''''-
中,AB =
AD =2AA '=.(1)BC 和A C ''所成的角是 度,(2)AA '和BC '所成的角是
度。
14.过点(1,2)且与直线3x+4y-7=0垂直的直线方程是___________________
15.过点的直线与圆不相交,则直线的斜率的取值范围是 (0,2)l 2
2
230x y x +--=l k 16.用平面截球,截得小圆的面积为,若球心到平面的距离为2,则球的表面积是 a πa 17.已知三个顶点的坐标是A (3,0),B (-1,0),C (2,3)。
过A 作BC 的垂线。
则垂足的
ABC ∆坐标是
三.解答题:本大题共4小题,共55分。
解答应写出文字说明,证明过程或验算步骤。
18.(本题满分15分)
已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
(1)求AB 边所在的直线方程;(2)求中线AM 的长(3)求AB 边的高所在直线方程。
19.(本题满分15分)
已知直线的方程为,求的方程,使得:1l 34120x y +-=2l (1)与平行,且过点(-1,3);
2l 1l (2)与垂直,且与两坐标轴围成的三角形面积为4;
2l 1l 2l
20.(本题满分10分)
如图:S 是平行四边形ABCD 平面外一点,,M N 分别是
,SA BD
上的点,且
SM AM =ND
BN
, 求证://MN 平面SBC 21.(本题满分15分)
如图,直三棱柱中,AC=2,BC=BB’=1,是直角,M 是BB’的中点。
'''ABC A B C -ABC ∠(I )求平面与平面所成二面角的平面角的大小。
'AMC '''A B C
(II )求点到平面的距离。
'B 'AMC。