偏微分方程数值解试题参考答案

合集下载

偏微分方程数值解期末试题及标准答案

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B )参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称,定义)(),(),(21)(n R x x b x Ax x J ∈-=,)()(0x x J λλϕ+=.若0)0('=ϕ,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分)反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的展开式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)(),,(|{11=∈=a u b a H u u H E为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v E ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdu p u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u E ∈,使)(m in )(1*u J u J EH u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧-====⨯=∈=∂∂+∂∂====x u u u u G y x y u x u y y x x 1||,0|,1|)1,0()1,0(),(,010102222 (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

偏微分方程数值解法试题与答案

偏微分方程数值解法试题与答案

一.填空(1553=⨯分)1.若步长趋于零时,差分方程的截断误差0→lmR ,则差分方程的解lm U 趋近于微分方程的解lm u . 此结论_______(错或对); 2.一阶Sobolev 空间{})(,,),()(21Ω∈''=ΩL f f f y x f H y x关于内积=1),(g f _____________________是Hilbert 空间;3.对非线性(变系数)差分格式,常用 _______系数法讨论差分格式的_______稳定性; 4.写出3x y =在区间]2,1[上的两个一阶广义导数:_________________________________, ________________________________________;5.隐式差分格式关于初值是无条件稳定的. 此结论_______(错或对)。

二.(13分)设有椭圆型方程边值问题用1.0=h 作正方形网格剖分 。

(1)用五点菱形差分格式将微分方程在内点离散化; (2)用截断误差为)(2h O 的差分法将第三边界条件离散化; (3)整理后的差分方程组为 三.(12)给定初值问题xut u ∂∂=∂∂ , ()10,+=x x u 取时间步长1.0=τ,空间步长2.0=h 。

试合理选用一阶偏心差分格式(最简显格式), 并以此格式求出解函数),(t x u 在2.0,2.0=-=t x 处的近似值。

1.所选用的差分格式是: 2.计算所求近似值:四.(12分)试讨论差分方程()ha h a r u u r u u k l k l k l k l ττ+-=-+=++++11,1111逼近微分方程0=∂∂+∂∂xu a t u 的截断误差阶R 。

思路一:将r 带入到原式,展开后可得格式是在点(l+1/2,k+1/2)展开的。

思路二:差分格式的用到的四个点刚好是矩形区域的四个顶点,可由此构造中心点的差分格式。

偏微分方程数值解试题参考答案

偏微分方程数值解试题参考答案

偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

偏微分方程数值习题解答

偏微分方程数值习题解答

偏微分⽅程数值习题解答李微分⽅程数值解习题解答 1-1 如果0)0('=?,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是⽅程组 b Ax =的解证明:由)(λ?的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλ?+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλ?+-=必要性:由0)0('=?,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλ?x Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的⼴义导数⼏乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的⼴义导数,由⼴义导数的定义可知,对于任意)()(0I C x ∞∈?,有-=ba ba dx x x f dx x x g )()()()('1?? ??-=ba ba dx x x f dx x x g )()()()('2?? 两式相减,得到)(0)()(021I C x g g ba ∞∈?=- 由变分基本引理,21g g -⼏乎处处为零,即21,g g ⼏乎处处相等.补充:证明),(v u a 的连续性条件(1.2.21) 证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=?11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的⼀阶⼴义导数,试⽤类似的⽅法定义)(x f 的k 阶导数,...2,1(=k ) 解:⼀阶⼴义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈?,有 ?-=bak kba dx x x f dx x x g )()()1()()()(??则称)(x f 有k 阶⼴义导数,)(x g 称为)(x f 的k 阶⼴义导数,并记kk dxfd x g =)(注:⾼阶⼴义导数不是通过递推定义的,可能有⾼阶导数⽽没有低阶导数.2.利⽤)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|??f f x x f x f n ba n -≤-?00'''|||||||||)())()((|??f f dx x x g x f n ba n -≤-?对于任意的)()(0I C x ∞∈?,成⽴=∞a ba n n dx x x f dx x x f )()()()(lim ??=∞→ba b a nn dx x x g dx x x f )()()()(lim '??由?-=ba n ba ndx x x f dx x x f )()()()(''??取极限得到dx x x f dx x x g ba ba ??-=)()()()('??即')(f x g =,即)(1I H f ∈,且0||||||||||||0''01→-+-=-f f f f f f n n n故)(1I H 中的基本列是收敛的,)(1I H 是完全的. 3.证明⾮齐次两点边值问题证明:边界条件齐次化令)()(0a x x u -+=βα,则0u u w -=满⾜齐次边界条件.w 满⾜的⽅程为00Lu f Lu Lu Lw -=-=,即w 对应的边值问题为==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w Ew E ∈=∈其中),(),(21)(0*w Lu f w w a w J --=.⽽Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*⽽200)()(),(),(C b u b p u u a u Lu +-=-β从⽽**)()()(~)(C b u b p u Jw J +-=β则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题(1.2.28)建⽴虚功原理解:令)(0a x u -+=βα,0u u w -=,则w 满⾜)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈?0),(),(0=--v Lu f v Lw应⽤分部积分,+-=-=-b a b a b a dx dx dv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),((还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈?,成⽴0)()(),(),(=--b v b p v f v u a β注:形式上与⽤v 去乘⽅程两端,应⽤分部积分得到的相同. 5试建⽴与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈⽤v 乘⽅程两端,应⽤分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu⽽??-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ??=+-=2222222222| 上式为),(][2222v f dx uv dx vd dx u d b a =+?定义dx uv dxvd dx u d v u a ba ][),(2222+=?,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈?),(),(v f v u a =1-41.⽤Galerkin Ritz -⽅法求边值问题==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==π?解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满⾜齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1,其中),...2,1(n i c i =满⾜的Galerkin Ritz -⽅程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑= ⼜xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ?-=+=+=ππππππππ)cos()cos(2)sin()sin()cos()cos()(),(1010210''-+πππjx ix sin sin 21由三⾓函数的正交性,得到≠=+=j i j i i a j i ,0,212),(22π??⽽]1)1[()(2)sin()1(),(3102--=-=-?jj j dx x j x x x x ππ? 于是得到+-=-=为偶数为奇数j j j j a x x c j j j j 0 )1()(8),(),(2232ππ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,⽤0)1(=u 代替右边值条件,)(x u n 是⽤Galerkin Ritz -⽅法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差.证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题(1.2.28)和基函数),...,2,1()()(n i a x x i i =-=?,写出Galerkin Ritz -⽅程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分⽅程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分⽅程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分⽅程为dx v qu x pv b v b p v f v w a ba ?--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=?,则Galerkin -Ritz ⽅程为∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβ?β??+=ba j i j i j i dx q p a ][),(''取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==221)(21)()()(21a b a b a b a b d -=---+-=ββ, )(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=3222)(34)(4),(a b dx a x a ba -=-=3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=??ββββ得到⽅程组为 --=----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有= 31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型⽅程有限元法§1.1 ⽤线性元求下列边值问题的数值解: 10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数. Galerkin 形式的变分⽅程为),(),(v f v Lu =,其中+-=10210"4),(uvdx vdx u v Lu π,?=1)(2sin 2),(dx x xv v f π⼜dx v u dx v u v u vdx u =+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''?+=π在单元],[1i i i x x I -=中,应⽤仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξ?-+++=++=1022210222222'111)1(41]41[]4[),(1021ξξπξξπ?πd h d hh dxa x x x x取2/1=h ,则计算得124),(211π??+=a122)1(41[),(210221πξξξπ??+-=-+-=?d h h a-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπ?d d h h f ??-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπ?d h f ?+=102)2121(2sin 2),(代数⽅程组为= ),(),(),(),(),(),(212122212111f f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,⽅程为4,3,2,1),(),(41==∑=j f ua j i iji应⽤局部坐标ξ表⽰,-+++=10221022])1(41[)41(),(ξξπξξπ??d hh d h h a j j248]88[21022πξξπ+=+=?dξξξπ??d hh a j j ])1(41[),(1021?-+-=++964)1(164212πξξξπ+-=-+-=?d 964),(21π??+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=??ξξξξ?d h d h f j-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπd h x h d h x h f j j j -++++=1010)1)](4 41(2sin[21)]44(2sin[42ξξξπξξξπd j d j++?=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就⾮齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元⽅程.解:设⽅程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈?)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表⽰为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =? 则有限元⽅程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=具体计算使⽤标准坐标ξ.。

2024年考研数学偏微分方程题目详解与答案

2024年考研数学偏微分方程题目详解与答案

2024年考研数学偏微分方程题目详解与答案在2024年的考研数学试卷中,偏微分方程题目一直是考生们关注和备考的重点。

本文将详细解析2024年考研数学偏微分方程题目,并提供详细的解答和答案。

一、第一题题目描述:给定二阶常系数线性偏微分方程 $\frac{{\delta^2u}}{{\delta x^2}} + c\frac{{\delta u}}{{\delta t}} + ku = f(x, t)$,其中 $u = u(x, t)$ 为未知函数,$c, k$ 为常数,$f(x, t)$ 为已知连续函数。

要求求解此偏微分方程。

解析:根据题目所给的偏微分方程可知,我们需要求解二阶常系数线性偏微分方程。

此类方程的典型特点是对时间 $t$ 的导数项和对空间$x$ 的二阶导数项。

我们可以采用特征线法来求解此类方程。

首先,我们设方程的通解形式为 $u(x, t) = X(x)T(t)$,其中$X(x)$ 和 $T(t)$ 分别是 $x$ 和 $t$ 的函数。

将通解带入方程中得到:$\frac{{X''}}{{X}} + c\frac{{T'}}{{T}} + k = \frac{{f(x, t)}}{{XT}}$由于方程的左侧只与 $x$ 有关,右侧只与 $t$ 有关,故两侧等于某个常数 $-\lambda$。

得到两个常微分方程:$X'' + \lambda X = 0$ 和 $T' + \left(c -\lambda\right) T = 0$对于方程 $X'' + \lambda X = 0$,根据 $\lambda$ 的值分为三种情况讨论:1. 当 $\lambda > 0$ 时,方程的通解为 $X(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$。

2. 当 $\lambda = 0$ 时,方程的通解为 $X(x) = Ax + B$。

偏微分方程数值解法期末考试题答案

偏微分方程数值解法期末考试题答案

偏微分⽅程数值解法期末考试题答案期末考试试题答案及评分标准学年学期:专业:数学与应⽤数学班级:数学课程:偏微分⽅程数值解法教学⼤纲:《偏微分⽅程数值解法》教学⼤纲(⾃编,2006)使⽤教材:《偏微分⽅程数值解法》教材作者:陆⾦甫、关治出版社:清华⼤学出版社⼀、判断题(每⼩题1分,共10分) 1、(O ) 2、(O ) 3、(X ) 4、(X ) 5、(O ) 6、(O ) 7、(O ) 8、(X )9、(X ) 10、(O )⼆、选择题(每⼩题2分,共10分) 11、(D ) 12、(A ) 13、(C ) 14、(B )15、(C )三、填空题(每⼩题2分,共20分)16、22222212nx x x +++ 17、A=[4 5 9;23 5 17;11 23 1] 18、y=exp(-t/3)*sin(3*t) 19、help 20、zeros(m,n) 21、inva(A)*b 或者A/b 22、A=sym('[cos(x-y),sin(x+y);exp(x-y),(x-1)^3]')23、22221[()]2()()[()]0a s b s s c s '''-+= 24()i xv e d λλλ+∞-∞25、1(,)(,)j n j n u x t u x t τ+-四、计算题:(每⼩题12分,共36分)26、写成对流⽅程0u ua t x+=(,0x R t ∈>)的有限差分⽅程(两层显⽰格式,⽤第n 层计算第n+1层),并把有限差分⽅程改写为便于计算的迭代格式/h λτ=为⽹格⽐。

解:在点(,)j n x t 处,差分⽅程为110n n n nj jj ju u u u ahτ++--+=(0,1,2,j =±±,0,1,2,n =)(8分)便于计算的形式为11()n n n n j j j j u u a u u λ++=--,/h λτ= (4分)27、写出扩散⽅程22u ua t x=的有限差分⽅程(中⼼差分格式,⽤第n 层计算第n+1层),并把有限差分⽅程改写为便于计算的迭代格式,2/h µτ=为⽹格⽐。

偏微分方程数值解期末试题及参考答案

偏微分方程数值解期末试题及参考答案

《偏微分方程数值解》试卷参考答案与评分标准专业班级信息与计算科学开课系室考试日期 2006.4.14命题教师王子亭偏微分方程数值解试题(06A)参考答案与评分标准信息与计算科学专业一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使 )(min )(0x J x J nRx ∈=;(2)求下列方程组的解:b Ax =解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、 对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{110==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du pv u a b a ba ==+=⎰⎰,),(10b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(10*b a H u ∈,使)(min )(1*u J u J H u ∈= (4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

偏微分方程数值习题解答

偏微分方程数值习题解答

李微分方程数值解习题解答 1-1 如果0)0('=ϕ,则称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解证明:由)(λϕ的定义与内积的性线性性质,得),()),((21)()(0000x x b x x x x A x x J λλλλλϕ+-++=+=),(2),()(200x Ax x b Ax x J λλ+-+=),(),()(0'x Ax x b Ax λλϕ+-=必要性:由0)0('=ϕ,得,对于任何n R x ∈,有0),(0=-x b Ax ,由线性代数结论知,b Ax b Ax ==-00,0充分性: 由b Ax =0,对于任何n R x ∈,0|),(),()0(00'=+-==λλϕx Ax x b Ax即0x 是)(x J 的驻点. §1-2补充: 证明)(x f 的不同的广义导数几乎处处相等.证明:设)(2I L f ∈,)(,221I L g g ∈为)(x f 的广义导数,由广义导数的定义可知,对于任意)()(0I C x ∞∈ϕ,有⎰⎰-=ba ba dx x x f dx x x g )()()()('1ϕϕ ⎰⎰-=ba ba dx x x f dx x x g )()()()('2ϕϕ 两式相减,得到)(0)()(021I C x g g ba ∞∈∀=-⎰ϕϕ 由变分基本引理,21g g -几乎处处为零,即21,g g 几乎处处相等.补充:证明),(v u a 的连续性条件证明: 设'|)(|,|)(|M x q M x p ≤≤,由Schwarz 不等式||||.||||||||.|||||)(||),(|'''''v u M v u M dx quv v pu v u a ba +≤+=⎰11*||||.||||2v u M ≤,其中},max{'*M M M =习题:1 设)('x f 为)(x f 的一阶广义导数,试用类似的方法定义)(x f 的k 阶导数,...2,1(=k ) 解:一阶广义导数的定义,主要是从经典导数经过分部积分得到的关系式来定义,因此可得到如下定义:对于)()(2I L x f ∈,若有)()(2I L x g ∈,使得对于任意的)(0I C ∞∈ϕ,有 ⎰⎰-=bak kba dx x x f dx x x g )()()1()()()(ϕϕ则称)(x f 有k 阶广义导数,)(x g 称为)(x f 的k 阶广义导数,并记kk dxfd x g =)(注:高阶广义导数不是通过递推定义的,可能有高阶导数而没有低阶导数.2.利用)(2I L 的完全性证明))()((1I H I H m 是Hilbert 空间.证明:只证)(1I H 的完全性.设}{n f 为)(1I H 的基本列,即0||||||||||||0''01→-+-=-m n m n m n f f f f f f因此知}{},{'n n f f 都是)(2I L 中的基本列(按)(2I L 的范数).由)(2I L 的完全性,存在)(,2I L g f ∈,使0||||,0||||0'0→-→-g f f f n n ,以下证明0||||1→-f f n (关键证明dxdfg =)由Schwarz 不等式,有00||||.|||||)())()((|ϕϕf f x x f x f n ba n -≤-⎰00'''|||||||||)())()((|ϕϕf f dx x x g x f n ba n -≤-⎰对于任意的)()(0I C x ∞∈ϕ,成立⎰⎰=∞→ba ba n n dx x x f dx x x f )()()()(lim ϕϕ⎰⎰=∞→ba b a nn dx x x g dx x x f )()()()(lim 'ϕϕ由⎰⎰-=b a nba ndxxxfdxxxf)()()()(''ϕϕ取极限得到dxxxfdxxxg baba⎰⎰-=)()()()('ϕϕ即')(fxg=,即)(1IHf∈,且||||||||||||''1→-+-=-ffffffnnn故)(1IH中的基本列是收敛的,)(1IH是完全的.3.证明非齐次两点边值问题证明:边界条件齐次化令)()(axxu-+=βα,则0uuw-=满足齐次边界条件.w满足的方程为LufLuLuLw-=-=,即w对应的边值问题为⎩⎨⎧==-=0)(,0)('b w a w Lu f Lw (P) 由定理知,问题P 与下列变分问题等价求)(min )(,**12*1w J w J H C w EHw E ∈=∈ 其中),(),(21)(0*w Lu f w w a w J --=.而Cu u a u Lu u J u u Lu f u u u u a w J +-+=-----=),(),()(~),(),(21)(000000*而200)()(),(),(C b u b p u u a u Lu +-=-β从而**)()()(~)(C b u b p u Jw J +-=β 则关于w 的变分问题P 等价于:求α=∈)(,12*a u H C u使得)(min )()(*1u J u J a u H u α=∈=其中)()(),(),(21)(b u b p u f u u a u J β--=4就边值问题()建立虚功原理 解:令)(0a x u -+=βα,0u u w -=,则w 满足)(,0)('00==-=-=b w a w Lu f Lu Lu Lw等价于:1E H v ∈∀0),(),(0=--v Lu f v Lw应用分部积分,⎰⎰+-=-=-b a b a b a dx dxdv dx dw p v dx dw p vdx dx du p dx d v dx dw p dx d |)()),(( 还原u ,)()(),(),(),(),(),(),(),(),(000b v b p v f v u a v u a v Lu v f v u a v Lu f v w a β--=-+-=--于是,边值问题等价于:求α=∈)(,1a u H u ,使得1E H v ∈∀,成立0)()(),(),(=--b v b p v f v u a β注:形式上与用v 去乘方程两端,应用分部积分得到的相同. 5试建立与边值问题等价的变分问题.解:取解函数空间为)(20I H ,对于任意)(20I H v ∈ 用v 乘方程两端,应用分部积分,得到0),(),(44=-+=-v f u dx ud v f Lu而⎰⎰-==b a b a b a dx dxdvdx u d v dx u d vdx dx u d v dx u d .|),(33334444 dx dxv d dx u d dx dx vd dx u d dx dv dx u d b a b a b a ⎰⎰=+-=2222222222| 上式为),(][2222v f dx uv dxvd dx u d b a =+⎰定义dx uv dxvd dx u d v u a ba ][),(2222+=⎰,为双线性形式.变分问题为:求)(20I H u ∈,)(20I H v ∈∀),(),(v f v u a =1-41.用Galerkin Ritz -方法求边值问题⎩⎨⎧==<<=+-1)1(,0)0(102"u u x x u u 的第n 次近似)(x u n ,基函数n i x i x i ,...,2,1),sin()(==πϕ解:(1)边界条件齐次化:令x u =0,0u u w -=,则w 满足齐次边界条件,且)1(,0)0(20==-=-=w w x x Lu Lu Lw第n 次近似n w 取为∑==n i i i n c w 1ϕ,其中),...2,1(n i c i =满足的Galerkin Ritz -方程为n j x x c a j ni i j i ,...,2,1),(),(21=-=∑=ϕϕϕ 又xd jx ix ij dx x j x i dxx j x i ij dx a j i jij i ⎰⎰⎰⎰-=+=+=ππππππππϕϕϕϕϕϕ)cos()cos(2)sin()sin()cos()cos()(),(1010210''⎰-+πππjx ix sin sin 21由三角函数的正交性,得到⎪⎩⎪⎨⎧≠=+=j i j i i a j i ,0,212),(22πϕϕ而]1)1[()(2)sin()1(),(3102--=-=-⎰jj j dx x j x x x x ππϕ 于是得到⎪⎩⎪⎨⎧+-=-=为偶数为奇数j j j j a x x c j j j j 0)1()(8),(),(2232ππϕϕϕ最后得到∑+=-+---+=]21[1233])12(1[)12(])12sin[(8)(n k n k k x k x x u ππ 2.在题1中,用0)1(=u 代替右边值条件,)(x u n 是用Galerkin Ritz -方法求解相应问题的第n 次近似,证明)(x u n 按)1,0(2L 收敛到)(x u ,并估计误差. 证明:n u 对应的级数绝对收敛,由}{sin x i π的完全性知极限就是解)(x u ,其误差估计为338nR n π≤3.就边值问题和基函数),...,2,1()()(n i a x x i i =-=ϕ,写出Galerkin Ritz -方程解:边界条件齐次化,取)(0a x u -+=βα,0u u w -=, w 对应的微分方程为)(,0)('00==-=-=b w a w Lu f Lu Lu Lw对应的变分方程为0),(),(0=--v Lu f v w a)]([)(000a x q dx dpqu dx du p dx d Lu -++-=+-=βαβ⎰⎰+-=-ba b a dx x pv b v b p v dxdp )()()(' 变分方程为dx v qu x pv b v b p v f v w a ba ⎰--+=])([)()(),(),(0'ββ取n i a x x i i ,...,2,1,)()(=-=ϕ,则Galerkin -Ritz 方程为⎰⎰∑-++--+=-=ba i ba i i nj j jidxa x x q dx a x i x pb b p fc a )]()[()()()()(),(),(11βαβϕβϕϕϕ⎰+=ba j i j i j i dx q p a ][),(''ϕϕϕϕϕϕ取1,0,1===f q p ,具体计算1=n , )(1),(11a b dx a ba -==⎰ϕϕ221)(21)()()(21a b a b a b a b d -=---+-=ββ,)(211a b c -=,即解)(2101a x u u -+= 2=n :22111)()(2),(),(),(a b dx a x a a b a ba -=-=-=⎰ϕϕϕϕ3222)(34)(4),(a b dx a x a ba -=-=⎰ϕϕ3223222)(31)()()(31)(2)()(a b a b a b a b dxa x ab dx a x d ba b a -=---+-=---+-=⎰⎰ββββ 得到方程组为⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛----3221322)(31)(21c )(34)()(a b a b c a b a b a b a b特别取1,0==b a ,有⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛31213411121c c求解得到1,21,6131122=-=-=c c c其解为202)(21)(a x a x u u ---+=C h2 椭圆与抛物型方程有限元法§ 用线性元求下列边值问题的数值解:10,2sin242"<<=+-x x y y ππ0)1(,0)0('==y y此题改为4/1,0)1()0(,1"====+-h y y y y解: 取2/1=h ,)2,1,0(==j jh x j ,21,y y 为未知数.Galerkin 形式的变分方程为),(),(v f v Lu =,其中⎰⎰+-=10210"4),(uvdx vdx u v Lu π,⎰=1)(2sin 2),(dx x xv v f π又dx v u dx v u v u vdx u ⎰⎰⎰=+-=-10''10''10'10"|因此dx uv v u v u a )4(),(12''⎰+=π在单元],[1i i i x x I -=中,应用仿射变换(局部坐标)hx x i 1--=ξ节点基函数为)3,2,1(,0,,,1)(111=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤-=≤≤-=-=--+i other x x x h x x x x x h x x x i i i i i i i ξξξξϕ⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-+++=++=⎰⎰⎰⎰1022210222222'111)1(41]41[]4[),(1021ξξπξξπϕπϕϕϕd h d hh dxa x x x x取2/1=h ,则计算得124),(211πϕϕ+=a122)1(41[),(210221πξξξπϕϕ+-=-+-=⎰d h h a⎰⎰-+++=10101)1)(2121(2sin )0(2sin [2),(ξξξπξξξπϕd d h h f ⎰⎰-++=1010)1(4)1(sin 2sin ξξξπξξξπd d hξξξπϕd h f ⎰+=102)2121(2sin 2),(代数方程组为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛),(),(),(),(),(),(212122212111ϕϕϕϕϕϕϕϕϕϕf f y y a a a a 代如求值.取4/1=h ,未知节点值为4321,,,u u u u ,方程为4,3,2,1),(),(41==∑=j f ua j i ijiϕϕϕ应用局部坐标ξ表示,⎰⎰-+++=10221022])1(41[)41(),(ξξπξξπϕϕd hh d h h a j j248]88[21022πξξπ+=+=⎰dξξξπϕϕd hh a j j ])1(41[),(1021⎰-+-=++964)1(164212πξξξπ+-=-+-=⎰d 964),(21πϕϕ+-=-j j a系数矩阵为}964,248,964{222πππ+-++-=diag A取1=f ,41)1(),(1010=-+=⎰⎰ξξξξϕd h d h f j⎰⎰-+++=+10110)1)]((2sin[2)](2sin[2),(ξξξπξξξπϕd h x h d h x h f j j j ⎰⎰-++++=1010)1)](441(2sin[21)]44(2sin[42ξξξπξξξπd j d j⎰⎰++⨯=+++++-+=100110|)]8)1([cos(821]8)1(sin[21]8)1(sin[]8)(sin[21ξππξξπξξξπξπj d j d j j+2.就非齐次第三边值条件22'11')()(,)()(βαβα=+=+b u b u a u a u导出有限元方程.解:设方程为f qu pu Lu =+-='')( 则由),()]()[()()]()[()(),(|),)((''1122'''''v pu a u a v a p b u b v b p v pu v pu v pu b a----=-=αβαβ变分形式为:),(1b a H v ∈∀)()()()(),()()()()()()(),(),(1212''a v a p b v b p v f a v a u a p b v b u b p v qu v pu ββαα-+=-++)(),(0b u u a u u N ==记)()()()(),()()()()()()()(),(),(),(1212''a v a p b v b p v f v F a v a u a p b v b u b p v qu v pu v u A ββαα-+=-++=则上述变分形式可表示为)(),(v F v u A =设节点基函数为),...,2,1,0)((N j x j =ϕ 则有限元方程为),...,1,0()(),(0N j F u A j Ni i j i ==∑=ϕϕϕ具体计算使用标准坐标ξ.。

(完整word版)偏微分方程数值解法答案

(完整word版)偏微分方程数值解法答案

1. 课本2p 有证明2. 课本812,p p 有说明3. 课本1520,p p 有说明4. Rit2法,设n u 是u 的n 维子空间,12,...n ϕϕϕ是n u 的一组基底,n u 中的任一元素n u 可表为1nn i i i u c ϕ==∑,则,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑是12,...n c c c 的二次函数,(,)(,)i j j i a a ϕϕϕϕ=,令()0n jJ u c ∂=∂,从而得到12,...n c c c 满足1(,)(,),1,2...niji j i a c f j n ϕϕϕ===∑,通过解线性方程组,求的i c ,代入1nn i i i u c ϕ==∑,从而得到近似解n u 的过程称为Rit2法简而言之,Rit2法:为得到偏微分方程的有穷维解,构造了一个近似解,1nn i ii u c ϕ==∑,利用,1111()(,)(,)(,)(,)22j nnn n n n i j i j j i j j J u a u u f u a c c c f ϕϕϕ===-=-∑∑确定i c ,求得近似解n u 的过程Galerkin 法:为求得1nn i ii u c ϕ==∑形式的近似解,在系数i c 使n u 关于n V u ∈,满足(,)(,)n a u V f V =,对任意nV u ∈或(取,1j V j nϕ=≤≤)1(,)(,),1,2...nijij i a cf j n ϕϕϕ===∑的情况下确定i c ,从而得到近似解1nn i i i u c ϕ==∑的过程称Galerkin 法为 Rit2-Galerkin 法方程:1(,)(,)nijij i a cf ϕϕϕ==∑5. 有限元法:将偏微分方程转化为变分形式,选定单元的形状,对求解域作剖分,进而构造基函数或单元形状函数,形成有限元空间,将偏微分方程转化成了有限元方程,利用有效的有限元方程的解法,给出偏微分方程近似解的过程称为有限元法。

偏微分方程数值解例题答案

偏微分方程数值解例题答案

yyy[y例11110.1[1(101)]0.9,10.1[0.9(10.10.9)]0.9019,1(0.90.9019)0.900952p c y y y ì=-´´+´=ïï=-´´+´=íïï=+=î20.900950.1[0.90095(10.10.90095)]0.80274,0.900950.1[0.80274(10.20.80274)]0.80779,1(0.802740.80779)0.805262p c y y yì=-´´+´=ïï=-´´+´=íïï=+=î 这样继续计算下去,其结果列于表9.1. 表9.1 Euler 方法方法改进的Euler 方法方法准确值准确值n xn yny)(n x y0.1 0.9000000 0.9009500 0.9006235 0.2 0.8019000 0.8052632 0.8046311 0.3 0.7088491 0.7153279 0.7144298 0.4 0.6228902 0.6325651 0.6314529 0.5 0.5450815 0.5576153 0.5563460 0.6 0.4757177 0.4905510 0.4891800 0.7 0.4145675 0.4310681 0.4296445 0.8 0.3610801 0.3786397 0.3772045 0.9 0.3145418 0.3326278 0.3312129 1.0 0.2741833 0.2923593 0.2909884 从表9.1可以看出,Euler 方法的计算结果只有2位有效数字,而改进的Euler 方法确有3位有效数字,这表明改进的Euler 方法的精度比Euler 方法高. 例2 试用Euler 方法、改进的Euler 方法及四阶经典R-K 方法在不同步长下计算初值问题ïîïíì=££+-=1)0(,10),1(d d y x xy y xy 在0.2、0.4、0.8、1.0处的近似值,并比较它们的数值结果. 解 对上述三种方法,每执行一步所需计算)1(),(xy y y x f +-=的次数分别为1、2、4。

偏微分方程习题及答案

偏微分方程习题及答案

偏微分方程习题及答案【篇一:偏微分方程数值解法期末考试题答案】题答案及评分标准学年学期:专业:班级:课程:教学大纲:使用教材:教材作者:出版社:数学与应用数学数学偏微分方程数值解法《偏微分方程数值解法》教学大纲(自编,2006)《偏微分方程数值解法》陆金甫、关治清华大学出版社一、判断题(每小题1分,共10分)1、(o)2、(o)3、(x)4、(x)5、(o)6、(o)7、(o)8、(x)9、(x) 10、(o)二、选择题(每小题2分,共10分) 11、(d) 12、(a) 13、(c) 14、(b)15、(c)三、填空题(每小题2分,共20分)?2?216、2?2??x1?x2?2?2 17、a=[4 5 9;23 5 17;11 23 1] 18、y=exp(-t/3)*sin(3*t) ?xn19、help 20、zeros(m,n)21、inva(a)*b或者a/b22、a=sym([cos(x-y),sin(x+y);exp(x-y),(x-1)^3])?(s)?1?(s)?c[??(s)]2?023、a[?2(s)]2?2b?224????v(?)ed? 25、i?xu(xj,tn?1)?u(xj,tn)?四、计算题:(每小题12分,共36分)?u?u?0(x?r,t?0)的有限差分方程(两层显示26、写成对流方程?a?t?x格式,用第n层计算第n+1层),并把有限差分方程改写为便于计算的迭代格式???/h为网格比。

解:在点(xj,tn)处,差分方程为?1un?unjj??anunj?1?ujh?0(j?0,?1,?2,,n?0,1,2,)(8分)便于计算的形式为?1nnn???/h (4分) un?u?a?(u?ujjj?1j),?u?2u?a2的有限差分方程(中心差分格式,用第n层27、写出扩散方程?t?x计算第n+1层),并把有限差分方程改写为便于计算的迭代格式,???/h2为网格比。

最新偏微分方程数值解试题参考答案

最新偏微分方程数值解试题参考答案

偏微分方程数值解一(10分)、设矩阵A 对称正定,定义)(),(),(21)(n R x x b x Ax x J ∈-=,证明下列两个问题等价:(1)求n R x ∈0使)(min )(0x J x J n Rx ∈=;(2)求下列方程组的解:b Ax = 解: 设n R x ∈0是)(x J 的最小值点,对于任意的n R x ∈,令),(2),()()()(2000x Ax x b Ax x J x x J λλλλϕ+-+=+=, (3分)因此0=λ是)(λϕ的极小值点,0)0('=ϕ,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若nR x ∈0满足bAx =0,则对于任意的x ,)(),(21)0()1()(00x J x Ax x x J >+==+ϕϕ,因此0x 是)(x J 的最小值点. (4分)评分标准:)(λϕ的表示式3分, 每问3分,推理逻辑性1分二(10分)、对于两点边值问题:⎪⎩⎪⎨⎧==∈=+-=0)(,0)(),()(b u a u b a x f qu dxdu p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。

解: 设}0)()(),,(|{11==∈=b u a u b a H u u H 为求解函数空间,检验函数空间.取),(10b a H v ∈,乘方程两端,积分应用分部积分得到 (3分))().(),(v f fvdx dx quv dxdv dx du p v u a b a ba ==+=⎰⎰,),(1b a H v ∈∀ 即变分问题的Galerkin 形式. (3分)令⎰-+=-=b a dx fu qu dxdup u f u u a u J ])([21),(),(21)(22,则变分问题的Ritz 形式为求),(1*b a H u ∈,使)(m in )(10*u J u J H u ∈= (4分) 评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎪⎩⎪⎨⎧=⨯=∈-=∂∂+∂∂∂0|)1,0()1,0(),(,12222G u G y x yux u (1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

x ∈R n2 ( Ax, x) ,J ( x + x) = ϕ (1) = ϕ (0) + ( Ax, x) > J ( x ) ,因此 x 是 J ( x ) 的最小值点.(4 分)2 二(10 分)、对于两点边值问题: ⎨dx dx a(u , v) = ⎰b( p . + q u v)dx = ⎰b fvdx = f (v) , ∀ v ∈ H 1 (a , b )dx dx a a偏微分方程数值解一(10 分)、设矩阵 A 对称正定,定义 J ( x ) = 1 ( Ax , x ) - (b , x ) ( x ∈ R n ) ,证明下2列两个问题等价:(1)求 x ∈ R n 使 J ( x ) = min J ( x ) ;(2)求下列方程组的解:Ax = b解: 设 x ∈ R n 是 J ( x ) 的最小值点,对于任意的 x ∈ R n ,令ϕ(λ) = J ( x + λx) = J ( x ) + λ( Ax - b , x) +λ2(3 分)因此 λ = 0 是 ϕ(λ) 的极小值点 , ϕ ' (0) = 0 ,即对于任意的 x ∈ R n , ( Ax - b , x) = 0 ,特 0别取 x = Ax - b ,则有 ( Ax - b , Ax - b ) =|| Ax - b || 2 = 0 ,得到 Ax = b . (3 分)0 0反 之 , 若x ∈ R n满 足Ax = b, 则 对 于 任 意 的 x,10 0 0评分标准: ϕ(λ) 的表示式 3 分, 每问 3 分,推理逻辑性 1 分⎧d du ⎪Lu = - ( p ) + qu = f x ∈ (a, b )⎪⎩ u (a) = 0, u (b ) = 0其中 p ∈ C 1 ([a , b ]), p ( x ) ≥ min p ( x ) = px ∈[a,b ]min> 0, q ∈ C ([a , b ]), q ≥ 0, f ∈ H 0 ([a , b ])建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的 Ritz 形式和Galerkin 形式的变分方程。

解 : 设 H 1 = {u | u ∈ H 1 (a , b ), u (a ) = u (b ) = 0} 为求解函数空间 , 检验函数空间 . 取v ∈ H 1 (a, b ) ,乘方程两端,积分应用分部积分得到(3 分)du dv即变分问题的 Galerkin 形式.(3 分)1h2+h2=-1(5分)应用T ayloy展开得到,截断误差为h[∂u+∂u]+O(h4),其阶为O(h2)(3分)A=,F=(4分)0-1-11(3)矩阵为⎪,⎪B= ⎪⎪ -14⎪⎭-14-1令J(u)=1a(u,u)-(f,u)=1⎰b[p(du)2+qu2-fu]dx,则变分问题的Ritz形式为22a dx求u*∈H1(a,b),使J(u*)=m in J(u)0u∈H(4分)评分标准:空间描述与积分步骤3分,变分方程3分,极小函数及其变分问题4分,三(20分)、对于边值问题⎧∂2u∂2u⎪+⎨∂x2∂y2=-1,(x,y)∈G=(0,1)⨯(0,1)⎪⎩u|∂G=0(1)建立该边值问题的五点差分格式(五点棱形格式又称正五点格式),推导截断误差的阶。

(2)取h=1/3,求边值问题的数值解(写出对应的方程组的矩阵形式,并求解)(3)就取h=1/N的一般情况写出对应方程组的系数矩阵(用分块矩阵表示)。

解:(1)区域离散x=jh,y=kh,差分格式为j kuj+1,k -2u+ujk j-1,kuj,k-1-2u+ujk j,k+124412∂x4∂y4jk(2)未知量为U=(u,u,u,u)T,矩阵形式为AU=F,其中11122122⎛4-1-10⎫⎛1⎫⎪ ⎪-140-1⎪1 1⎪-104-1⎪9 1⎪⎪ ⎪⎝4⎭⎝⎭解为u=1(1,1,1,1)T(3分)18⎛B -I ⎝-IB-I-I⎫⎛4-1⎫⎪ ⎪⎪⎪ ⎪B⎭⎝(5分)⎪ = a 四(20 分)、对于初边值问题 ⎪⎨ u ( x ,0) = ϕ ( x ), 0 < x < 1 τ= a 应 用 T a y l o 展 开 得 到 , 误 差 主 项 为 1 ( ∂ u ) k τ - ah ( ∂ u ) k + O (τ 2 + h 4 ) , 阶 为 r τ= aδ 2 (θu k +1 + (1 - θ )u k ) , (3 分)h 2 x 当 θ ≥ 1 格式恒稳定,当 θ < 1 ,稳定条件为 r ≤评分标准:第 1 问 8 分,格式 4 分,截断误差 4.(2) 7 分,方程 4 分,解 3 分.(3)5 分, 形式 3 分,B 的形式 2 分⎧ ∂u ∂ 2u, 0 < x < 1,0 < t ≤ T∂t ∂x 2⎪ u(0, t ) = u (1, t ) = 0,0 ≤ t ≤ T ⎪ ⎩(1)建立向前差分格式(最简显格式),推导截断误差的主项,指出误差阶;(2)写出差分格式的矩阵形式(即 AU k +1 = BU k + τ F 的形式),用矩阵方法分析 格式的稳定性(3)建立六点加权格式,写出计算形式,应用Fourier 方法(分离变量法)分析格式的稳定性。

解:(1) 区域离散,格式为u k +1 - u kj j1δ 2u k h 2 x j, (5 分)2 2 42 ∂t 2 j 12 ∂x 4 jO(τ + h 2)(3 分)(2) A = E, B = diag {r,1 - 2r, r } ,(4 分)稳定条件为 r ≤ 1/ 2(3 分)(3) 格式为u k +1 - u kj jj j1 2 2 1 - 2θ(2 分)五(10 分)、逼近 ∂u + a ∂u = 0 的三层差分格式j j -1 = 0 + a j +1⎨ n +j 1 ⎪⎩v 1 ⎪ = ⎪⎪ 1 ⎪ 1 0 ⎭⎝ w n ⎭w n +1 ⎪放大矩阵为 G = ⎛ ,特征方程为 | λE - G |=0 ⎪⎭ 1u n +1 - u n -1u n - u n j∂t ∂x 2τ2h分析格式的稳定性解:计算形式为 u n +1 = -ar(u n - u n ) + u n -1j j +1j -1j此为三层格式,化为两层格式.令 v n +1 = u n ,则有j j⎧⎪ u n +1 = -ar (u n - u n ) + v n j +1 j -1 j = u njj令 u n = w n e i αjh , v n = w n e i αjh ,代入格式,消去公因子,得到j 1j2⎛ w n +1 ⎫ ⎛ - 2iar sin α h 1 ⎫⎛ w n ⎫ ⎝ 2 ⎭ ⎝ 2- 2ar sin α hi 1 ⎫ ⎝(2 分)(4 分)(2 分)λ + 2ar sin αhi - 1 - 1 λ= λ2 + 2ar sin αhi λ - 1 = 0 , λ 1,2 - 2ar sin αh ± 4 - 4a 2 r 2 sin 2 αh= i2λ λ = 1 , max{| λ |,| λ |} ≤ 1 的充要条件为方程有相同的复根或一对共扼复根 ,即1 2 12∆ = 4 - 4a 2 r 2 sin 2 α h ≥ 0 .考虑到 α 的变化,稳定条件为 | ar |≤ 1 (2 分)六(10分)、建立波动方程∂u=a2∂u的初值问题的显格式,推导截断误差.截断误差为1⎛ ∂u⎫⎪τ2-a2⎛ ∂u⎫⎪h2+O(τ4+h4),阶为O(τ2+h2)4412 ∂t4⎪ ∂x4⎪七(10分)、对于二维抛物型方程∂u=a(∂u+∂u)建立向后差分格式(隐格式),τ=a(δ2u n+1+δ2u n+1)(4分) h2h2+b2h+cu k(a>0) 22∂t2∂x2解:差分格式为u n+1-2u n+u n-1j j jτ2=a21δ2u n,(5分)h2x jn nj ⎝⎭j(5分)22∂t∂x2∂y2指出截断误差阶,分析格式的稳定性。

解:差分格式为u n+1-u njk jkx jk y jk误差阶为O(τ+h2)(3分)放大因子为G(α,β,τ)=1,恒稳定.(3分)αhβh1+4r sin2+4r sin222八(10分)、分析差分格式u k+1-u k j jτ=au k-2u k+u kj+1j j-1u k-u kj+1j-1j的稳定性解:写出计算形式,忽略低阶项2分,写出放大因子3分条件 4μ - 2λ ≥ 0 可以写成 a τ ≤ 1 。

第二个条件可化为 2ντ ≤ 1 ,因此差分格式稳≤ 1, ≤ 1 (3 分)| G |= λ2 sin 2 kh + 1 - 4μ(1 - cos kh) + 4μ 2 (1 - cos kh)2= λ2 (1 - cos kh)(1 + cos kh) + 1 - 4μ(1 - cos kh) + 4μ 2 (1 - cos kh)2= 1 - (1 - cos kh)[4μ - 4μ 2 (1 - cos kh) - λ2 (1 + cos kh)](2 分)von Neumann 条件 | G |≤ 1 变为4μ - 4μ 2 (1 - cos kh) - λ2 (1 + cos kh) ≥ 0即 4μ - 2λ2 - (4μ 2 - λ2 )(1 - cos kh ) ≥ 0只需4μ - 2λ2 ≥ 0,2(λ2 - 4μ 2 ) + 4μ - 2λ2 ≥ 022ν h 2定的条件是a 2τ 2ντ2ν h 2。

相关文档
最新文档