九年级数学上册第二十三章 旋转 单元检测题

合集下载

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

人教版九年级数学上册单元清 检测内容:第二十三章 旋转

检测内容:第二十三章旋转得分________卷后分________评价________一、选择题(每小题3分,共30分)1.(天水中考)下列图形中,是中心对称图形但不是轴对称图形的是( C )2.如图,△ABC绕点A逆时针旋转至△AEF,其旋转角是( A )A.∠BAE B.∠CAE C.∠EAF D.∠BAF第2题图第4题图第5题图3.(赤峰中考)下列图形绕某一点旋转一定角度都能与原图形重合,其中旋转角度最小的是( C )4.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为( A )A.(2,2) B.(2,-2) C.(2,5) D.(-2,5)5.如图,在平面直角坐标系中,A(1,0),B(-2,4),AB绕点A顺时针旋转90°得到AC,则点C的坐标是( C )A.(4,3) B.(4,4) C.(5,3) D.(5,4)6.如图,在平面直角坐标系中,已知菱形OABC的顶点A(1,2),B(3,3).作菱形OABC 关于y轴的对称图形OA′B′C′,再作图形OA′B′C′关于点O的中心对称图形OA″B″C″,则点C的对应点C″的坐标是( A )A.(2,-1) B.(1,-2) C.(-2,1) D.(-2,-1)第6题图第7题图第8题图第10题图7.(海南中考)如图,在Rt △ABC 中,∠C =90°,∠ABC =30°,AC =1 cm ,将Rt △ABC 绕点A 逆时针旋转得到Rt △AB ′C ′,使点C 落在AB 边上,连接BB ′,则BB ′的长度是( B )A .1 cm B. 2 cm C .3 cm D .23 cm8.(苏州中考)如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB ′C ′.若点B ′恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为( C )A .18°B .20°C .24°D .28°9.已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对的方向沿直线行走a .若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( D )A .(-1,- 3 )B .(-1, 3 )C .( 3 ,-1)D .(- 3 ,-1)10.(孝感中考)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( B )A .54B .154C .4D .92二、填空题(每小题3分,共24分)11.(衡阳中考)如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按顺时针方向旋转而得到的,则旋转的角度为__90°__.第11题图 第12题图 第13题图第14题图12.(镇江中考)点O 是正五边形ABCDE 的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O 至少旋转__72__°后能与原来的图案互相重合.13.(泰安中考)如图,将正方形网格放置在平面直角坐标系中,其中,每个小正方形的边长均为1,点A,B,C的坐标分别为A(0,3),B(-1,1),C(3,1).△A′B′C′是△ABC关于x轴的对称图形,将△A′B′C′绕点B′逆时针旋转180°,点A′的对应点为M,则点M的坐标为__(-2,1)__.14.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M逆时针方向旋转22°,则三角板的斜边与射线OA的夹角α为__22__度.15.如图,在平面直角坐标系中,点A,B,D的坐标分别为(1,0),(3,0),(0,1),点C在第四象限,∠ACB=90°,AC=BC.若△ABC与△A′B′C′关于点D成中心对称,则点C′的坐标为__(-2,3)__.第15题图第16题图第17题图第18题图16.(随州中考)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴的正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为17.在Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图),把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=__80或120__.18.(新疆中考)如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为.三、解答题(共66分)19.(6分)如图,AC是正方形ABCD的对角线,△ABC经过旋转后到达△AEF的位置.(1)指出它的旋转中心;(2)说出它的旋转方向和旋转角是多少度;(3)分别写出点A,B,C的对应点.解:(1)它的旋转中心为点A(2)它的旋转方向为逆时针方向,旋转角是45度(3)点A,B,C的对应点分别为点A,E,F20.(6分)(枣庄中考)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图①中,画出一个与△ABC成中心对称的格点三角形;(2)在图②中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图③中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.题图答图解:(1)答案不唯一.如图所示,△DCE 为所求作 (2)答案不唯一.如图所示,△ACD 为所求作 (3)如图所示,△ECD 为所求作21.(9分)(绥化中考)如图,在边长均为1个单位长度的小正方形组成的网格中,点A ,点B ,点O 均为格点(每个小正方形的顶点叫做格点).(1)作点A 关于点O 的对称点A 1;(2)连接A 1B ,将线段A 1B 绕点A 1顺时针旋转90°得点B 对应点B 1,画出旋转后的线段A 1B 1;(3)连接AB 1,求出四边形ABA 1B 1的面积.解:(1)如图所示,点A 1即为所求(2)如图所示,线段A 1B 1即为所求(3)如图,连接BB 1,过点A 作AE ⊥BB 1,过点A 1作A 1F ⊥BB 1,则S 四边形ABA 1B 1=S△ABB 1+S △A 1BB 1 =12 ×8×2+12×8×4=24 22.(9分)如图,把正方形ABCD 绕点C 按顺时针方向旋转45°得到正方形A ′B ′CD ′(此时,点B ′落在对角线AC 上,点A ′落在CD 的延长线上),A ′B ′交AD 于点E ,连接AA ′,CE .求证:(1)△ADA ′≌△CDE ;(2)直线CE 是线段AA ′的垂直平分线.证明:(1)由正方形的性质及旋转得AD =DC ,∠ADC =90°,AC =A ′C ,∠DA ′E =45°,∠ADA ′=∠CDE =90°,∴∠DEA ′=∠DA ′E =45°,∴DA ′=DE ,∴△ADA ′≌△CDE (2)由正方形的性质及旋转得CD =CB ′,∠CB ′E =∠CDE =90°,又CE =CE ,∴Rt △CEB ′≌Rt △CED ,∴∠B ′CE =∠DCE ,∵AC =A ′C ,∴直线CE 是线段AA ′的垂直平分线23.(10分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B ,C 的对应点分别是E ,D .(1)如图①,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图②,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形. 解:(1)∵∠ABC =90°,∠BAC =30°,∴∠ACB =60°,∵△ABC 绕点A 顺时针旋转α得到△AED ,点E 恰好在AC 上,∴CA =AD ,∠EAD =∠BAC =30°,∴∠ACD =∠ADC =12(180°-30°)=75°,∵∠EDA =∠ACB =60°,∴∠CDE =∠ADC -∠EDA =15° (2)证明:∵点F 是边AC 中点,∴BF =AF =12 AC ,∵∠BAC =30°,∴BC =12AC ,∠FBA =∠BAC =30°,∴BF =BC ,∵△ABC 绕点A 顺时针旋转60°得到△AED ,∴∠BAE =∠CAD =60°,CB =DE ,∠DEA =∠ABC =90°,∴DE =BF ,如图②,延长BF 交AE 于点G ,则∠BGE =∠GBA +∠BAG =90°,∴∠BGE =∠DEA ,∴BF ∥ED ,∴四边形BFDE 是平行四边形24.(12分)如图①,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°.若固定△ABC ,将△DEC 绕点C 旋转.(1)当△DEC 绕点C 旋转到点D 恰好落在AB 边上时,如图②.①当∠B =∠E =30°时,此时旋转角的大小为__60°__;②当∠B =∠E =α时,此时旋转角的大小为__2α__;(用含a 的式子表示)(2)当△DEC 绕点C 旋转到如图③所示的位置时,小杨同学猜想:△BDC 的面积与△AEC 的面积相等.试判断小杨同学的猜想是否正确,若正确,请你证明小杨同学的猜想;若不正确,请说明理由.题图 答图解:(2)小扬同学猜想是正确的,证明如下:过点B 作BN ⊥CD 于点N ,过点E 作EM ⊥AC 于点M ,∵∠ACB =∠DCE =90°,∴∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3.∵BN ⊥CD ,EM ⊥AC ,∴∠BNC =∠EMC =90°.∵△ACB ≌△DCE ,∴BC =EC ,∴△CBN ≌△CEM ,∴BN =EM ,∵S △BDC =12 ·CD ·BN ,S △ACE =12·AC ·EM ,且CD =AC ,∴S △BDC =S △ACE25.(14分)感知:如图①,在等腰直角三角形ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,过点D 作DE ⊥CB 交CB 的延长线于点E ,连接CD .(1)求证:△ACB ≌△BED ;(2)△BCD 的面积为__12 m 2__;(用含m 的式子表示) 拓展:如图②,在一般的Rt △ABC 中,∠ACB =90°,BC =m ,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,用含m 的式子表示△BCD 的面积,并说明理由;应用:如图③,在等腰△ABC 中,AB =AC ,BC =8,将边AB 绕点B 顺时针旋转90°得到线段BD ,连接CD ,则△BCD 的面积为__16__;若BC =m ,则△BCD 的面积为__14 m 2__.(用含m 的式子表示)解:感知:(1)证明:∵△ABC 是等腰直角三角形,∴CA =CB =m ,∠A =∠ABC =45°,由旋转的性质可知,BA =BD ,∠ABD =90°,∴∠DBE =45°=∠A ,又∵∠ACB =∠E =90°,∴△ACB ≌△BED拓展:作DG ⊥CB 交CB 的延长线于点G ,∵∠ABD =90°,∴∠ABC +∠DBG =90°,又∠ABC +∠A =90°,∴∠A =∠DBG .又∵∠ACB =∠G ,AB =BD ,∴△ACB ≌△BGD ,∴BC =DG =m ,∴S △BCD =12 BC ·DG =12m 2应用:点拨:作AN ⊥BC 于点N ,DM ⊥BC 交CB 的延长线于点M ,易证△ANB ≌△BMD (AAS),∴BN =DM =12 BC =4.∴S △BCD =12 BC ·DM =12×8×4=16,若BC =m ,则BN =DM =12 BC =12 m ,∴S △BCD =12 BC ·DM =12 ×m ×12 m =14m 2。

人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)

人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)

人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)一、单选题1.如图已知在ABC ∆中,AB AC =,90BAC ∠=,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 和AC 于点E 、F ,给出以下五个结论正确的个数有( ) ①AE CF =;②APE CPF ∠=∠;③BEP ∆≌AFP ∆;④EPF ∆是等腰直角三角形;⑤当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),12ABC AEPF S S ∆=四边形.A .2B .3C .4D .52.如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 可以由△AOB 旋转得到,则合理的旋转方式为( )A .绕点O 顺时针旋转90°B .绕点D 逆时针旋转60°C .绕点O 逆时针旋转90°D .绕点B 逆时针旋转135°3.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有( )A .①②B .②③C .①④D .③④4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .矩形C .等腰三角形D .正多边形5.下列四个图形中,既是轴对称图形又是中心对称图形的有( )个.A.0B.1C.2D.36.6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃围成的,图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心().A.顺时针旋转60︒得到B.顺时针旋转120︒得到C.逆时针旋转60︒得到D.逆时针旋转120︒得到7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.10.在下列四个汽车标志图案中,是中心对称图形的是()A.B.C.D.第II 卷(非选择题)二、填空题11.如图,在ABCD 中,AD=3,AB=5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'AC ,如果'A C BC ⊥,那么cos θ的值是______.12.已知两点P(1,1)、Q(1,-1),若点Q 固定,点P 绕点Q 旋转使线段PQ∥x 轴,则此时的点P 的坐标是_________________________;13.如图,在平面直角坐标系中,点1A 的坐标为(10),,以1OA 为直角边作12Rt OA A ∆,并使1260A OA ∠︒=,再以2OA 为直角边作23Rt OA A ∆,并使2360A OA ∠︒=,再以3OA 为直角边作34Rt OA A ∆,并使3460A OA ∠︒=…按此规律进行下去,则点2019A 的坐标为_______.14.在平面直角坐标系中,将函数y =2x 2+2的图象绕坐标原点0顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b ,10)在函数y =2x 2+2的图象上,若A’、B’是A 、B 旋转后的对应点,连结OA’,OB’,则S △OA’B’=____.(2)如图②,曲线与直线322y =相交于点M 、N ,则S △OMN 为_________.15.如图,在△ABC 中,∠ABC=112°,将△ABC 绕着点B 顺时针旋转一定的角度后得到△DBE (点A 与点D 对应),当A 、B 、E 三点在同一直线上时,可得∠DBC 的度数为_______.16.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD = ,10DM =.(1)在旋转过程中,当A D M ,,为同一直角三角形的顶点时,AM 的长为______________.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,2BD 的长为______________.17.如图,在△ABC 中,∠BAC=45°,AB=4cm ,将△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________.18.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.三、解答题19.已知正方形ABCD ,点P 是其内部一点.(1)如图1,点P 在边AD 的垂直平分线l 上,将DAP ∆绕点D 逆时针旋转,得到11DA P ∆,当点1P 落在DC 上时,恰好点1A 落在直线l 上,求ADP 的度数;(2)如图2,点P 在对角线AC 上,连接PB ,若将线段BP 绕点P 逆时针旋转90︒后得到线段1B P ,试问点1B 是否在直线CD 上,请给出结论,并说明理由;(3)如图3,若135APB ∠=︒,设PA a =,PD b =,PC c =,请写出a 、b 、c 这三条线段长之间满足的数量关系是____________.20.(1)问题发现如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上,请直接写出线段BE 与线段CD 的数量关系: ;(2)操作探究如图②,将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0<α<360),请判断线段BE 与线段CD 的数量关系,并说明理由.21.如图,四边形ABCD 是正方形,△ADF 绕着点A 顺时旋转90°得到△ABE ,若AF =4,AB =7.(1)求DE 的长度;(2)指出BE 与DF 的关系如何?并说明由.22.如图,已知:如图点()4,0A ,点B 在y 轴正半轴上,且5AB =,将线段BA 绕点A 沿顺时针旋转90,设点B 旋转后的对应点是点1B ,求点1B 的坐标.23.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.24.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.25.(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP 于点E,试判断四边形BPEP′的形状,并说明理由.26.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.27.已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC 添加条件,使旋转得到的四边形ABDE 为矩形,并说明理由参考答案1.D2.C3.A4.B5.B6.D7.B8.D9.C10.B11.72512.(-1,-1)或(3,-1)13.()201720172,23- 14.99415.44° 16.202或1010; 306.17.42【详解】 解: AC 与BA′相交于D ,如图,∵△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,∴∠ABA′=45°,BA′BA=4,△ABC ≌△A′BC′,∴S △ABC =S △A′BC′,∵S 四边形AA′C′B =S △ABC +S 阴影部分=S △A′BC′+S △ABA′,∴S 阴影部分=S △ABA′,∵∠BAC=45°,∴△ADB 为等腰直角三角形,∴∠ADB=90°,AD=222, ∴S △ABA′=12AD•BA′=12×2×2(cm 2), ∴S 阴影部分2cm 2.故答案为:42.18.1.6【详解】由旋转的性质可得:AD=AB ,∵∠B=60°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.19.(1)30;(2)点1B 在直线CD 上,理由见解析;(3)222320a b c -+= 连接1AA ,∵点1A 在边AD 的垂直平分线l 上,∴11AA DA =.又∵AD DA =,∴1AA D ∆是等边三角形,∴160ADA ∠=︒,∴1160PDP ADA ∠=∠=︒,∴19030ADP PDP ∠=︒-∠=︒.(2)点1B 在直线CD 上.证明如下:作PQ PB ⊥交CD 于点Q ,过点P 作//EF AD 交AB 于点E 交CD 于点F . ∴90BPQ BEP PFQ ∠=∠=∠=︒,∴90EBP EPB PQF FPQ ∠+∠=∠+∠=,90EPB FPQ ∠+∠=∴=EBP FPQ ∠∠又∵P 在正方形对角线AC 上,∴∠EAP=∠APE=45°∴AE EP =,∵AE EB EP PE +=+,∴BE FP =,∴()BEP PFQ ASA ∆≅∆,∴1BP PQ B P ==.即将线段BP 绕点P 8逆时针旋转90︒后得到线段1B P ,点1B 在直线CD 上.(3)如图,将△ABP 绕点A 逆时针旋转90°得到△AMD,由题意可知:∠APB=∠AAMD=135°,DM=BP,AP=AM=a ,∠PAM=90°∴∠AMP=45°∴∠PMD=90°∴在Rt△APM 中,22222PM AM AP a =+=在Rt△PMD 中,222PM DM PD +=∴2222DM b a =-将△ABP 绕点B 顺时针旋转90°得到△BNC,同理可证在Rt△PNC 中,22222PN PC NC c a =-=-在Rt△BPN 中,222PN BP BN =+ ∴2222==22PN c a BP - 所以可得:2222-2=2c a b a - 整理得:222320a b c -+=.20.(1)BE=CD ;(2)BE=CD ;证明见解析.【详解】解:(1)BE=CD ,理由如下;∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°, ∴AB=AC ,AE=AD ,∴AE ﹣AB=AD ﹣AC ,∴BE=CD ;故答案为:BE=CD .(2)∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD ,由旋转的性质得,∠BAE=∠CAD ,在△BAE 与△CAD 中,,∴△BAE ≌△CAD (SAS )∴BE=CD .21.(1)3;(2)BE =DF ,BE ⊥DF .【详解】解:(1)∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴AE =AF =4,AD =AB =7,∴DE =AD ﹣AE =7﹣4=3;(2)BE 、DF 的关系为:BE =DF ,BE ⊥DF .理由如下:∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴△ABE ≌△ADF ,∴BE =DF ,∠ABE =∠ADF ,∵∠ADF +∠F =180°﹣90°=90°, ∴∠ABE +∠F =90°, ∴BE ⊥DF ,∴BE 、DF 的关系为:BE =DF ,BE ⊥DF .22.1B 点的坐标为()7,4.【详解】解:如图,作1B C x ⊥轴于C ,∵4OA =,5AB =,∴22543OB -=,∵线段BA 绕点A 沿逆时针旋转90得1A B ,∴1BA A B =,且190BA B ∠=,∴190BAO B AC ∠+∠=而90BAO ABO ∠+∠=,∴1ABO B AC ∠=∠,在ABO 和1B AC 中111AOB B CA ABO B AC AB B A ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴1ABO B AC ≅,∴3AC OB ==,14B C OA ==,∴7OC OA AC =+=,∴1B 点的坐标为()7,4.23.(1)证明见解析;(2)DE=AD-BE试题解析:证明:(1)∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中CDA BEC DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∵DC+CE=DE ,∴AD+BE=DE .(2)DE=AD-BE ,理由:∵BE ⊥EC ,AD ⊥CE ,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,ACD CBEADC BECAC BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.24.(1)见解析;(2)3.【详解】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=12×3×2=3.25.(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.26.图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.【详解】这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.27.(1)AE∥BD,且AE=BD.(2)16;(3)当∠ACB=60°时,四边形ABFE为矩形.【解析】试题分析:(1)易证四边形ABDE是平行四边形,根据平行四边形的性质即可求解;(2)根据平行四边形的性质:平行四边形的对角线互相平分,即可得到平行四边形的面积是△ABC的面积的四倍,据此即可求解;(3)四边形ABDE是平行四边形,只要有条件:对角线相等即可得到四边形ABDE是矩形.试题解析:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.考点:1.旋转的性质;2.矩形的判定。

【5套打包】潍坊市初三九年级数学上(人教版)第二十三章旋转单元测试及答案

【5套打包】潍坊市初三九年级数学上(人教版)第二十三章旋转单元测试及答案

人教版九年级数学上册第23章旋转单元练习卷含答案(1)一、选择题1. 下列几个图形是国际通用的交通标志,其中不是中心对称图形的是()A. B. C. D.2.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( )A B C D3.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪4.如图是扬州“三菱”电梯的标志,它可以看作是由菱形通过旋转得到的,每次旋转了()A.60°B.90°C.120°D.150°5. 若点P(-m,m-3)关于原点对称的点是第二象限内的点,则m满足()A. m>3B. 0<m≤3C. m<0D. m<0或m>36.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是( )A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)7.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是()A.(1,1)B.(2,0)C.(0,1)D.(3,1)8. 如图,△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°.四边形ABCD是平行四边形,下列结论中错误的是()A. △ACE以点A为旋转中心,逆时针旋转90°后与△ADB重合B.△ACB以点A为旋转中心,顺时针旋转270°后与△DAC重合C. 沿AE所在直线折叠后,△ACE与△ADE重合D. 沿AD所在直线折叠后,△ADB与△ADE重合9.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转到ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.7 B.6 C.D.510.已知等边△ABC的边长为4,点P是边BC上的动点,将△ABP绕点A逆时针旋转60°得到△ACQ,点D是AC边的中点,连接DQ,则DQ的最小值是()A.B.C.2 D.不能确定二、填空题11. 钟表分针的运动可以看作是一种旋转现象,经过40分钟分针旋转了°. 12.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,点B,C旋转后的对应点分别是点D和E,连接BD,则∠BDE的度数是.13.如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为____.15. 如图,△ABC绕点A逆时针旋转30°后到△A′B′C′的位置,若∠B′=45°,∠C′=60°,则∠B′AC=.16.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.17.如图,在△ABC中、∠C=90°,AC=3,BC=4,点O是BC的中点,将△ABC绕点O 旋转得△A'B'C',则在旋转过程中点A,C'两点间的最大距离是__________.18.如图,正方形ABCD,将正方形AEFG绕点A旋转,连接DF,点M是DF的中点,连接CM,若AB=4,AE=1,则线段CM的最大值为.三、解答题19.如图,△ABC为等边三角形,△AP′B旋转后能与△APC重合,那么:(1)指出旋转中心;(2)求旋转角的度数;(3)求∠PAP′的度数.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;直接写出点B2的坐标;(3)作出△ABC关于原点O成中心对称的△A3B3C3,并直接写出B3的坐标.21.如图,在平面直角坐标系中,O为坐标原点,每个小方格的边长为1个单位长度,在第二象限内有横、纵坐标均为整数的A,B两点,点B(-2,3),点A的横坐标为-2,且OA = 5.(1)直接写出A点的坐标,并连接AB,AO,BO;(2)画出△OAB关于点O成中心对称的图形△OA1B1,并写出点A1,B1的坐标(点A1,B1的对应点分别为A,B);(3)将△OAB逆时针旋转90°得到△O1A2B2,画出△O1A2B2.22.如图,在正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看成是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.23.如图①,△ABC和△AEF都为等腰直角三角形,∠ACB=∠AEF=90°,连接EC、BF,点D为BF的中点,连接CD.(1)如图①,当点E落在AB边上时,请判断线段EC与DC的数量关系,并证明你的结论;(2)将△AEF绕点A顺时针旋转n°(n<180),如图②,请判断线段EC与DC的数量关系,并证明你的结论;(3)若AC=2,点P为BC中点,动点Q满足PQ=,如图③,将线段AQ绕点A逆时针旋转90°到线段AM,连PM,则线段PM的最小值为.图①图②人教新版九年级数学上第23章旋转单元练习试题含详细答案一.选择题(共10小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是()A.36°B.60°C.72°D.90°3.如图,△ODC是由△OAB绕点O顺时针旋转50°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为130°,则∠C的度数是()A.25°B.30°C.35°D.40°4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A.B.C.D.5.如图,将△ABC绕点A逆时针旋转110°,得到△ADE,若点D落在线段BC的延长线上,则∠B大小为()A.30°B.35°C.40°D.45°6.在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作()A.先逆时针旋转90°,再向左平移B.先顺时针旋转90°,再向左平移C.先逆时针旋转90°,再向右平移D.先顺时针旋转90°,再向右平移7.如图,香港特别行政区标志紫荆花图案绕中心旋转n°后能与原来的图案互相重合,则n 的最小值为()A.45 B.60 C.72 D.1448.在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A.(﹣3,1)B.(3,﹣1)C.(﹣1,3)D.(1,﹣3)9.如图,在平面直角坐标系xOy中,点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过()A.点M B.点N C.点P D.点Q10.如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′二.填空题(共9小题)11.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=度.12.如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕其顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小是.13.点A(﹣2,3)关于原点对称的点的坐标是.14.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为.15.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.16.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M 是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是.17.在△ABC中,∠C=90°,AC=BC,将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,连结C′B、BB′,则∠BB′C′=.18.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.19.如图,△ABC是边长为12的等边三角形,D是BC的中点,E是直线AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E的运动过程中,DF的最小值是.三.解答题(共6小题)20.如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.21.在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.22.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,2)请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1的坐标.(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,并写出A2的坐标.(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,并写出A3的坐标.23.在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(1,1),C(5,1).(1)把△ABC平移后,其中点A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2B2C2.24.将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.参考答案一.选择题(共10小题)1.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.2.解:根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.3.解:∵∠AOC的度数为130°,∠AOD=∠BOC=50°,∴∠AOB=130°﹣50°=80°,∵△AOD中,AO=DO,∴∠A=(180°﹣50°)=65°,∴△ABO中,∠B=180°﹣80°﹣65°=35°,由旋转可得,∠C=∠B=35°,故选:C.4.解:A、B、C中只能由旋转得到,不能由平移得到,只有D可经过平移,又可经过旋转得到.故选:D.5.解:∵△ABC绕点A逆时针旋转110°,得到△ADE∴AB=AD,∠BAD=110°由三角形内角和∠B=故选:B.6.解:屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,可以先逆时针旋转90°,再向左平移.故选:A.7.解:该图形被平分成五部分,旋转72°的整数倍,就可以与自身重合,故n的最小值为72.故选:C.8.解:如图所示,由旋转可得:∠AOA'=∠BOC=90°,AO=A'O,∴∠AOB=∠A'OC,而∠ABO=∠A'CO=90°,∴△AOB≌△A'OC,∴A'C=AB=1,CO=BO=3,∴点A'的坐标为(3,﹣1),故选:B.9.解:由图形可得:OA=,OM=,ON=,OP=,OQ=5,所以点A从(3,4)出发,绕点O顺时针旋转一周,则点A不经过P点,故选:C.10.解:观察图形可知,A、点A与点A′是对称点,故本选项正确;B、BO=B′O,故本选项正确;C、AB∥A′B′,故本选项正确;D、∠ACB=∠A′C′B′,故本选项错误.故选:D.二.填空题(共9小题)11.解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.12.解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,分两种情况:①如图,当正△AEF在正方形ABCD内部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(90°﹣60°)=15°②如图,当正△AEF在正方形ABCD外部时,在△ABE和△ADF中,∴△ABE≌△ADF(SSS),∴∠BAE=∠DAF=(360°﹣90°+60°)=165°故答案为:15°或165°.13.解:根据两个点关于原点对称,∴点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3);故答案为(2,﹣3).14.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.15.解:过点C作CE⊥x轴于点E,∵OB=2,AB⊥x轴,点A在直线y=x上,∴AB=2,OA==4,∴RT△ABO中,tan∠AOB==,∴∠AOB=60°,又∵△CBD是由△ABO绕点B逆时针旋转60°得到,∴∠D=∠AOB=∠OBD=60°,AO=CD=4,∴△OBD是等边三角形,∴DO=OB=2,∠DOB=∠COE=60°,∴CO=CD﹣DO=2,在RT△COE中,OE=CO•cos∠COE=2×=1,CE=CO•sin∠COE=2×=,∴点C的坐标为(﹣1,),故答案为:(﹣1,).16.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.17.解:∵∠C=90°,AC=BC,∴∠ABC=∠BAC=45°,∵将△ABC绕点A按顺时针方向旋转60°到△AB′C′的位置,∴∠AB′C′=∠ABC=45°,∠BAB′=60°,AB′=AB,∴AB′=B′B=BA,∴∠AB′B=60°,∴∠BB′C′=∠AB′B﹣∠AB′C′=60°﹣45°=15°,故答案为:15°.18.解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.19.解:取线段AC的中点G,连接EG,如图所示.∵△ABC为等边三角形,且AD为△ABC的对称轴,∴CD=CG=AB=6,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD和△ECG中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC时,EG最小,∵点G为AC的中点,∴此时EG=DF=CD=BC=3.故答案为3.三.解答题(共6小题)20.解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作21.解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,22.解:(1)画出△ABC关于y轴对称的△A1B1C1,如图所示,此时A1的坐标为(﹣2,2);(2)画出△ABC绕点B逆时针旋转90°后得到的△A2B2C2,如图所示,此时A2的坐标为(4,0);(3)画出△A2B2C2关于原点O成中心对称的△A3B3C3,如图所示,此时A3的坐标为(﹣4,0).23.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.24.解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.25.解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC ≌△ADB (SAS );(2)∵四边形ADFC 是菱形,且∠BAC =45°,∴∠DBA =∠BAC =45°,由(1)得:AB =AD ,∴∠DBA =∠BDA =45°,∴△ABD 为直角边为2的等腰直角三角形,∴BD 2=2AB 2,即BD =2,∴AD =DF =FC =AC =AB =2,∴BF =BD ﹣DF =2﹣2.人教版九年级上册第二十三章旋转单元测试(含答案)(2)一、选择题:(每小题3分共30分)1.如图,在等腰直角△ABC 中,∠C =90°,将△ABC 绕顶点 A 逆时针旋转 80°后得△AB′C′,则∠CAB′的度数为( )A .45°B .80°C .125°D .130°2.如图,把ABC ∆绕着点A 逆时针旋转20︒得到ADE ∆,30BAC ∠=︒,则BAE ∠的度数为( )A .10︒B .20︒C .30°D .50︒3.图中,不能由一个基本图形通过旋转而得到的是( )A.B.C.D.4.在以下几种生活现象中,不属于旋转的是()A.下雪时,雪花在天空中自由飘落B.钟摆左右不停地摆动C.时钟上秒针的转动D.电风扇转动的扇叶5.下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.等腰直角三角形C.平行四边形D.菱形7.如图,将绕点逆时针旋转一定的角度,得到,且.若,,则的大小为()A. B. C. D.8.如图①,在△AOB 中,∠AOB=90°,OA=3,OB=4,AB=5.将△AOB 沿x 轴依次绕点A、B、O 顺时针旋转,分别得到图②、图③、…,则旋转得到的图⑩的直角顶点的坐标为()A.(30,0) B.(32,0) C.(34,0) D.(36,0)△绕点B顺时针旋转60 得到DBE,点C的对应点E落在AB的延长9.如图,将ABC线上,连接,AD AC 与DE 相交于点F .则下列结论不一定正确的是( )A .60ABD CBE ︒∠=∠=B .ADB △是等边三角形C .BC DE ⊥D .60EFC ︒∠=10.在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC=5,BD=4,则以下四个结论中:①△BDE 是等边三角形; ②AE ∥BC ; ③△ADE 的周长是9; ④∠ADE=∠BDC .其中正确的序号是( )A .②③④B .①②④C .①②③D .①③④二、填空题:(每小题3分共18分)11.在平面直角坐标系中,点(45)P -,与点Q(4,1m -+)关于原点对称,那么m =_____;12.如图,等腰△ABC 中,∠BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.13.如图,在ΔABC 中,AB=8,AC=6,∠BAC=30°,将ΔABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为________.14.如图,两块相同的三角板完全重合在一起,30,10A AC ∠==,把上面一块绕直角顶点B 逆时针旋转到''A BC ∆的位置,点'C 在AC 上,''A C 与AB 相交于点D ,则'BC =______.15.如图,在矩形ABCD 中,3AD =,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且60DAG ∠=︒,若EC =AB =__.16.如图,点D 是等边ABC △内部一点,1BD =,2DC =,AD =ADB ∠的度数为=________°.三、解答题:(共72分)17.如图,已知△ABC 的顶点A ,B ,C 的坐标分别是A (-1,-1),B (-4,-3),C (-4,-1).(1)作出△ABC 关于原点O 中心对称的图形△A ’B ’C ’;(2)将△ABC 绕原点O 按顺时针方向旋转90°后得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点A 1的坐标.18.已知,P 为等边三角形内一点,且BP=3,PC=4,将BP 绕点B 顺时针旋转60°至BP′的位置.(1)试判断△BPP′的形状,并说明理由;(2)若∠BPC=150°,求PA 的长度.19.如图,在平面直角坐标系中,直线:3l y x =-+与x 轴、y 轴分别交于点A ,B ,将点B 绕坐标原点O 顺时针旋转60︒得点C ,解答下列问题:(1)求出点C 的坐标,并判断点C 是否在直线l 上;(2)若点P 在x 轴上,坐标平面内是否存在点Q ,使得以P 、C 、Q 、A 为顶点的四边形是菱形?若存在,请直接写出Q 点坐标;若不存在,请说明理由.20.在Rt△ABC中,∠ACB=90°,,点D是斜边AB上一动点(点D与点A、B 不重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接AE,DE.(1)求△ADE的周长的最小值;(2)若CD=4,求AE的长度.21.四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=3,AB=7,求(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?请说明理由.22.如图所示:已知∠ABC=120°,作等边△ACD,将△ACD旋转60°,得到△CDE,AB=3,BC=2,求BD和∠ABD.23.如图,把一副三角板如图①放置,其中,∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm.把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图②).(1)求∠OFE1的度数;(2)求线段AD1的长.24.如图,在正方形ABCD 中,点M 、N 是BC 、CD 边上的点,连接AM 、BN ,若BM=CN(1)求证:AM ⊥BN(2)将线段AM 绕M 顺时针旋转90°得到线段ME ,连接NE ,试说明:四边形BMEN 是平行四边形;(3)将△ABM 绕A 逆时针旋转90°得到△ADF ,连接EF ,当1 BM BC n时,请求出四边形四边形ABCD AMEFS S 的值。

人教版九年级数学上册《第23章旋转》单元测试题含答案

人教版九年级数学上册《第23章旋转》单元测试题含答案

九年级数学二十三章测试题题号一二三合计得分一、选择题(每小题4分,共40分)1.在平面内将一个图形绕一个定点沿某个方向转动一个角度这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是( C )2.下列图形中,为中心对称图形的是(B)3.下列图形中是轴对称图形,但不是中心对称图形的是(B)4.下列图标中,既是轴对称图形,又是中心对称图形的是(D)5.将点P(-2,3)向右平移3个单位长度得到点P1,则点P1关于原点的对称点的坐标是(C)时间:120分钟满分:150分A.(-5,-3) B.(1,-3) C.(-1,-3) D.(5,-3)6.如下所示的4组图形中,左边图形与右边图形成中心对称的有(C)A.1组B.2组C.3组D.4组7.已知a<0,则点P(-a2,-a+1)关于原点对称的点在(D)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为(A)A.42° B.48°C.52° D.58°9.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是(D)A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格,第10题图)10.如图,在△ABO中,AB⊥OB,OB=3,AB=1,将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标是(B)A.(-1,3) B.(-1,3) 或(1,-3)C.(-1,-3) D.(-1,3)或(-3,-1)二、填空题(每小题4分,共24分)11.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.,第11题图),第12题图),第13题图),第14题图),第16题图)13.如图,将△ABC绕A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=__2__.14.如图,在△ABC中,∠CAB=70°,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′的度数是__40°__.15.已知点A(m,m+1)在直线y=12x+1上,则点A关于原点的对称点的坐标是__(0,-1)__.16.如图,将一张直角三角板纸片ABC沿中位线DE剪开后,在平面上将△BDE绕着CB的中点D逆时针旋转180°,点E到了点E′位置,则四边形ACE′E 的形状是__平行四边形__.三、解答题(本大题共8小题,共86分)17.(8分)如图,△ABC中,∠B=10° ,∠ACB=20°,AB=4,△ABC 逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.解:(1)旋转中心是点A ,∵∠CAB =180°-∠B -∠ACB =150°,∴旋转角是150°.(2)∠BAE =360°-150°×2=60°,由旋转的性质得△ABC ≌△ADE , ∴AB =AD ,AE =AC ,又∵点C 是AD 的中点,∴AC =12AD =12AB =12×4=2,∴AE =2.18.(8分)如图,D 是△ABC 的边BC 的中点,连接AD 并延长到点E ,使DE =AD ,连接BE.(1)图中哪两个图形成中心对称?(2)若△ADC 的面积为4,求△ABE 的面积.解:(1)△ADC 与△EDB 成中心对称;(2)∵△ADC 与△EDB 关于点D 中心对称,∴△ADC ≌△EDB ,∴S △ADC =S △EDB =4,∵D 是BC 中点,∴BD =CD ,∴S △ABD =S △ACD =4,∴S △ABE =S △ABD +S △BED =8.19.(8分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上.(1)画出△ABC关于原点成中心对称的△A′B′C′,并直接写出△A′B′C′各顶点的坐标;(2)连接BC′,B′C,求四边形BCB′C′的面积.解:(1)如图,△A′B′C′即为所求,A′(4,0),B′(3,3),C′(1,3).(2)∵B′(3,3),C′(1,3),∴B′C′∥x轴,B′C′=2,∵B(-3,-3),C(-1,-3),∴BC∥x轴,BC=2,∴BC∥B′C′,BC=B′C′,∴四边形BCB′C′是平行四边形,∴S BCB′C′=2×6=12.20.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B2,C2的坐标;(3)若点P(a,b)是△ABC内任意一点,试写出将△ABC绕点O逆时针旋转90°后点P的对应点P2的坐标.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求,B2的坐标是(-2,4),C2的坐标是(-5,3);(3)点P2的坐标是(-b,a).21.(12分)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF可以由△ADE绕旋转中心__A__点,按顺时针方向旋转__90__度得到;(3)若BC=8,DE=2,求△AEF的面积.解:(1)∵四边形ABCD是正方形,∴AD=AB,∠D=∠ABC=90°,而F是CB的延长线上的点,∴∠ABF=∠D=90°.又∵AB=AD,DE=BF,∴△ADE≌△ABF(SAS);(3)∵BC=8,∴AD=8,在Rt△ADE中,DE=2,AD=8,∴AE=AD2+DE2=217,∵△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90°得到,∴AE=AF,∠EAF=90°.∴△AEF的面积=12AE2=12×4×17=34.22.(12分)如图,在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°得到的△OA1B1;(2)线段OA1的长度是________,∠AOB1的度数是________;(3)连接AA1,求证:四边形OAA1B1是平行四边形.(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6,∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1,∴∠A1OA =90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.23.(12分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.解:(1)由旋转的性质可知,CA=CD.∵∠ACB=90°,∠B=30°,∴∠A=60°.∴△ACD为等边三角形.∴∠ACD=60°,即n=60;(2)四边形ACFD是菱形.理由:∵F是DE的中点,∴CF=12DE=DF.∵∠EDC=∠A=60°,∴△FCD为等边三角形,∴CF=DF=CD.∵△ACD为等边三角形,∴AC=AD=CD.∴AC=AD=DF=CF,∴四边形ACFD是菱形.24.(14分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.(1)解:四边形ABDF是菱形,理由如下:∵△ABD绕边AD的中点旋转180°得△DFA,∴△ABD≌△DFA,又∵AB =BD,∴AB=DF=BD=AF,∴四边形ABDF是菱形;(2)证明:∵四边形ABDF是菱形,∴AB∥DF,AB=DF,∵△ABC绕边AC的中点旋转180°得△CEA,∴△ABC≌△CEA,∴AB=EC,AE=BC,∴四边形ABCE是平行四边形,∴AB=CE,AB∥CE,又∵AB∥DF,AB=DF,∴EC∥DF,EC=DF,∴四边形CDFE是平行四边形.。

人教版-数学-九年级上册上第二十三章 旋转 单元测试

人教版-数学-九年级上册上第二十三章 旋转 单元测试

第23章旋转单元测试题一、选择题: (每题3分,共27分)1、下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D、在平移和旋转图形中,对应角相等,对应线段相等且平行2、如图1,△DEF是由△ABC经过平移后得到的,则平移的距离是()A、线段BE的长度;B、线段EC的长度C、线段BC的长度;D、线段EF的长度3、如图2,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()A、点A与点A'是对称点;B、 BO=B'O;C、AB∥A'B';D、∠ACB= ∠C'A'B'(1)FED CB AOC'B'A'(2)CBA4、下列图形中既是轴对称图形,又是中心对称图形的是()A、平行四边形B、等边三角形C、正方形D、直角三角形5、将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?()A、顺时针方向500;B、逆时针方向 500;C、顺时针方向1900;D、逆时针方向19006、下列说法不正确的是()A.中心对称图形一定是旋转对称图形; B、轴对称图形一定是中心对称图形C、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分D、在平移过程中,对应点所连的线段也可能在一条直线上7、如图3,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )A、300B、600C、900D、12008、如图4,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()A、24cm2B、36cm2C、48cm2D、无法确定9、如图5,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为()A、100B、150C、200D、250(3)(4)FE DCB A(5)FEDC BA二、填空题:(每空3分,共18分)10、等边三角形至少旋转__________度才能与自身重合。

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。

人教版九年级数学上册第23章旋转单元测试题含答案

人教版九年级数学上册第23章旋转单元测试题含答案



(25)
24.解:(1)根据对称中心的性质,可得 对称中心的坐标是 D1D 的中点, ∵D1,D 的坐标分别是(0,3),(0,2), ∴对称中心的坐标是(0,2.5). (2)∵A,D 的坐标分别是(0,4),(0,2),
∴正方形 ABCD 与正方形 A1B1C1D1 的边长都是:4﹣ 2=2, ∴B,C 的坐标分别是(﹣ 2,4),(﹣ 2,2),
A.
B.
C.
D.
4.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )
A.
B.
C.
D.
5.如图,在△ABC 中,∠CAB=65°,将△ABC 在平面内绕点 A 旋转到△AB′C′的位置,使
CC′∥AB,则旋转角的度数为( )
A.35°
B.40°
C.50°
D.65°
(5 题图)
(9 题图)
人教版九年级数学上册第 23 章旋转单元测试题(含答案)
一.选择题(共 10 小题)
1.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,中是旋转的有( )A.①②
B.②③
C.①④
D.③④
2.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
3.如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转 72°后,能与 原图形完全重合的是( )
8.在平面直角坐标系中,把点 P(﹣ 3 ,2)绕原点 O 顺时针旋转 180°,所得到的对应点 P′
的坐标为( )
A.(3,2)
B.(2,﹣ 3 )
C.(﹣ 3 ,﹣ 2) D.(3,﹣ 2)

人教版九年级数学上册第二十三章旋转单元测试(含答案)

人教版九年级数学上册第二十三章旋转单元测试(含答案)

第二十三章旋转单元测试一、单项选择题(共10 题;共 30 分)1、以下图,以下图能够看作是一个菱形经过几次旋转获得的,每次可能旋转()。

A、 30°B、60°C、90°D、150°2、平面直角坐标系内一点(-3 , 4)对于原点对称点的坐标是()A、( 3,4)B、(-3,-4) C 、( 3, -4 )D、(4,-3)3、如图,在正方形网格中,将△ ABC绕点 A 旋转后获得△ADE,则以下旋转方式中,切合题意的是()A、顺时针旋转90°B、逆时针旋转90°C、顺时针旋转45°D、逆时针旋转45°4、以以下图,有一池塘,要测池塘两头A、B 的距离,可先在平川上取一个能够直接抵达 A 和 B 的点 C ,连结 AC并延伸到 D ,使 CD=CA ,连结 BC并延伸到 E ,使 CE=CB ,连结 DE , A 、 B 的距离为()A、段 AC的度B、段BC的度C、段DE度D、没法判断5、如,将矩形ABCD点 A 旋至矩形AB′ C′ D′地点,此AC的中点恰巧与 D 点重合, AB′交CD于点 E.若 AB=3,△ AEC的面()A、 3B、1.5C、D、6、已知 a< 0,点 P( a2,a+1)对于原点的称点P′在()A、第一象限B、第二象限C、第三象限D、第四象限7、( 2016 春?无校月考)已知点A( 1, x)和点 B( y, 2)对于原点称,必定有()A、 x= 2, y= 1B、x=2,y= 1C、x=2,y=1D、x=2,y=18、有两个完好重合的矩形,将此中一个始保持不,另一个矩形其称中心O按逆方向行旋,每次均旋45°,第 1 次旋后获得①,第 2 次旋后获得②,⋯,第10 次旋后获得的形与①~④中同样的是()A、①B、②C、③D、④9、如图,在 Rt △ABC中,∠ ACB=90°,∠ A=40°,以直角极点C 为旋转中心,将△ ABC旋转到△ A′ B′C 的地点,此中A′、 B′分别是A、B 的对应点,且点 B 在斜边 A′ B′上,直角边CA′交 AB于 D,则旋转角等于()A、 70°B、80°C、60°D、50°10、如图,矩形OABC的极点 O为坐标原点,点A在 x 轴上,点 B 的坐标为( 2,1).假如将矩形0ABC 绕点 O旋转 180°旋转后的图形为矩形OA1B1C1,那么点B1的坐标为()A、( 2,1)B、(﹣2,1)C、(﹣2,﹣1)D、(2,﹣l)二、填空题(共8 题;共 25 分)11、已知点P(﹣ b, 2)与点 Q( 3, 2a)对于原点对称,则a=________,b=________.12、如图,在直角坐标系中,点A在y 轴上,△ OAB是等腰直角三角形,斜边OA=2,将△ OAB绕点 O逆时针旋转90°得△,则点的坐标为________13、如图,将矩形 ABCD绕点 A 顺时针旋转到矩形A′B′ C′ D′的地点,旋转角为α ( 0°<α< 90°),若∠ 1=110°,则∠α =________ .14、如图,在△ ABC中,∠ BAC=35°,将△ ABC绕点 A 顺时针方向旋转50°,获得△ AB′ C′,则∠ B′AC的度数是 ________.15、如图,在6× 4 方格纸中,格点三角形甲经过旋转后获得格点三角形乙,则其旋转中心是________.16、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,获得线段 AB′,则点 B′的坐标为 ________.17、以下图,△ ABC中,∠ BAC=33°,将△ ABC绕点 A 按顺时针方向旋转50°,对应获得△AB′ C′,则∠ B′ AC的度数为 ________.18、有六张分别印有三角形、正方形、等腰梯形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不一样外,其余均同样).现将有图案的一面朝下随意摆放,从中随意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为________.三、解答题(共 5 题;共 35 分)19、以以下图所示,利用对于原点对称的点的坐标特点,作出与线段AB 对于原点对称的图形.20、在如图的方格纸中,每个小方格都是边长为 1 个单位的正方形,的三个极点都在格点上(每个小方格的极点叫格点).⑴画出△ ABC对于点 O的中心对称的△A1B1C1;⑵假如成立平面直角坐标系,使点 B 的坐标为(- 5,2),点 C 的坐标为(- 2, 2),求点 A1的坐标;⑶将△ ABC绕点 O顺时针旋转90°,画出旋转后的△A2 B2C2,并求线段 BC扫过的面积 .21、如图,在平面直角坐标系中,△ ABC的三个极点坐标为A( 1,﹣ 4),B( 3,﹣ 3),C( 1,﹣ 1).(每个小方格都是边长为一个单位长度的正方形)( 1)将△ ABC沿 y 轴方向向上平移 5 个单位,画出平移后获得的△( 2)将△ ABC绕点 O顺时针旋转90°,画出旋转后获得的△A2B2 C2A1B1C1;,并直接写出点 A 旋转到点A2所经过的路径长.22、如图,将其补全,使其成为中心对称图形.23、如图,△ ABC的极点坐标分别为A( 4, 6)、 B( 5, 2)、 C( 2, 1),假如将△ABC绕点 C 按逆时针方向旋转90゜,获得△ A′ B′C′,绘图,并写出点 A 的对应点A′的坐标及 B 点的对应点B′的坐标.四、综合题(共 1 题;共 10 分)24、( 2012?贺州)如图,△ABC的三个极点都在格点上,每个小方格边长均为 1 个单位长度,成立如图坐标系.(1)请你作出△ ABC对于点 A 成中心对称的△ AB1C1(此中 B 的对称点是 B1, C 的对称点是 C1),并写出点B1、 C1的坐标. (2) 挨次连结 BC1、 C1B1、B1C.猜想四边形 BC1B1C 是什么特别四边形?并说明原因.答案分析一、单项选择题1、【答案】 B【考点】利用旋转设计图案【分析】【解答】设每次旋转角度x°,则6x=360,解得 x=60,∴每次旋转角度是 60°,应选 B.【剖析】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的地点挪动.此中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.依据所给出的图, 6 个角正好组成一个周角,且 6 个角都相等,即可获得结果.2、【答案】 C【考点】对于原点对称的点的坐标【分析】【剖析】依据对于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答,故平面直角坐标系内一点P( -3 , 4) 对于原点对称点的坐标(3, -4).【评论】本题主要考察了对于原点对称的点的坐标的特点,熟记特点是解题的重点。

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册 第二十三章 旋转 单元测试卷(人教版 2024年秋)

九年级数学上册第二十三章旋转单元测试卷(人教版2024年秋)一、选择题(本题有10小题,每小题3分,共30分)1.中国航天取得了举世瞩目的成就,为人类和平贡献了中国智慧和中国力量,下列是有关中国航天的图标,其文字上方的图案是中心对称图形的是()2.下列说法中正确的有()(1)如果把一个图形绕着一定点旋转后和另一个图形重合,那么这两个图形成中心对称;(2)如果两个图形关于一点成中心对称,那么其对应点之间的距离相等;(3)如果一个旋转对称图形有一个旋转角为120°,那么它不是中心对称图形;(4)如果一个旋转对称图形有一个旋转角为180°,那么它是中心对称图形.A.0个B.1个C.2个D.3个3.(2024重庆期末)如图,在△ABC中,∠BAC=135°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,下列结论不正确的是()A.△ABC≌△DEC B.∠ADC=45°C.AD=2AC D.AE=AB+CD(第3题)(第4题)(第5题)(第7题) 4.如图,将△ABC绕点A逆时针旋转55°得到△ADE,若∠E=75°且AD⊥BC于点F,则∠BAC的度数为()A.65°B.70°C.75°D.80°5.如图,在平面直角坐标系xOy中,若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,其中点C的对应点是F,点A的对应点是D,点B的对应点是E,则旋转中心的坐标是()A.(0,0)B.(1,0)C.(1,-1)D.(2.5,0.5) 6.在平面直角坐标系中,已知点A(2a,a-b+2),B(b,a+2)关于原点对称,则a,b的值是()A.a=-1,b=2B.a=1,b=2C.a=-1,b=-2D.a=1,b=-27.如图,以正六边形ABCDEF的顶点C为旋转中心,按顺时针方向旋转,使得新正六边形A′B′CD′E′F′的顶点E′落在直线BC上,则正六边形ABCDEF至少旋转的度数为()A.60°B.90°C.100°D.30°8.如图,点A-1,52,将OA绕点O顺时针旋转90°得到OA′,则点A′的坐标为()A.-1,-52 B.1,52 C.52,1 D.1,-52(第8题)(第9题)(第10题)(第11题)9.如图,已知在正方形ABCD内有一点P,连接AP,DP,BP,将△APD顺时针旋转90°得到△AEB,连接DE,点P恰好在线段DE上,AP=2,BP=10,则DP的长度为()A.2 B.6C.22 D.1010.如图,在平面直角坐标系中,四边形OABC的顶点O在原点上,OA边在x 轴的正半轴上,AB⊥x轴,AB=CB=2,OA=OC,∠AOC=60°.将四边形OABC绕点O逆时针旋转,每次旋转90°,则第2025次旋转结束时,点C 的坐标为()A.(3,3)B.(3,-3)C.(-3,1)D.(1,-3)二、填空题(本题有6小题,每小题4分,共24分)11.镇江是一座底蕴深厚、人文荟萃的历史文化古城,如图是镇江的一个古建筑的装饰物(里面是一个个小等边三角形),该图形绕旋转中心(点O)至少旋转________度后可以和自身完全重合.12.在平面直角坐标系xOy中,将点A(1,2)绕着旋转中心旋转180°,得到点B(-3,2),则旋转中心的坐标为__________.13.如图,D是△ABC的边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)△ADC和________成中心对称;(2)已知△ADC的面积为4,则△ABE的面积是________.(第13题)(第14题)(第15题)(第16题)14.(2023郴州期末)如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(6,0),顶点C的坐标为(2,2),若直线y=mx+2平分平行四边形OABC的面积,则m的值为________.15.(2024杭州期中)如图,在平面直角坐标系中,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,直角顶点B在x轴上.将Rt△OAB绕点O顺时针旋转90°得到△OCD,边CD与该抛物线交于点P,则CP的长为________.16.如图,在Rt△ACB中,∠ACB=90°,∠ABC=25°.O为AB的中点,将OA 绕着点O逆时针旋转θ(0°<θ<180°)至OP.(1)当θ=30°时,∠CBP=________;(2)当△BCP恰为等腰三角形时,θ的度数为____________.三、解答题(本题有7小题,共66分,各小题都必须写出解答过程)17.(8分)(2023丰台模拟)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点C逆时针旋转得到△DEC,使点A的对应点D落在BC边上,点B的对应点为E,求线段BD,DE的长.18.(8分)已知平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.19.(8分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,求∠ADC的度数.20.(10分)如图,在Rt△ABC中,∠C=90°.(1)将△ABC绕点B顺时针旋转90°,画出旋转后的△A′BC′;(2)连接AA′,若AC-BC=1,AA′=10,求BC边的长.21.(10分)在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,图①、图②、图③均为顶点在格点上的三角形(每个小方格的顶点叫格点).(1)在图中,图①经过________变换可以得到图②(填“平移”“旋转”或“轴对称”);(2)在图中画出图①绕点A逆时针旋转90°后得到的图形;(3)在图中,图③与图②关于某点中心对称,则其对称中心是点________(填“A”“B”或“C”).22.(10分)(2023北京)在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AF,AE,EF,请写出∠AEF的大小,并证明.23.(12分)某数学兴趣小组在一次综合与实践活动中探究这样一个问题:将足够大的直角三角尺PEF(∠EPF=90°,∠F=30°)的顶点P放在等腰直角三角形ABC的斜边AC的中点O处,S△ABC=4.(1)尝试探究如图①,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N,当PE⊥AB时,①PM________PN(填“>”“<”或“=”);②三角尺PEF与△ABC重叠部分的面积为________.(2)操作发现如图②,将三角尺PEF绕点O旋转,在旋转过程中,三角尺PEF的两条直角边分别与△ABC的边AB,BC交于点M,N(点M不与点A,B重合),PM 与PN相等吗?请说明理由.(3)类比应用在(2)的条件下,三角尺PEF与△ABC重叠部分的面积变化吗?若变化,请说明理由;若不变,请求出重叠部分的面积.答案一、1.C 2.B 3.D 4.B 5.C 6.A 7.B 8.C 9.B10.A 点拨:连接OB ,过点C 作CP ⊥OA ,垂足为P ,如图所示.∵AB =CB ,OA =OC ,OB =OB ,∴△AOB ≌△COB (SSS ).∴∠AOB =∠COB =12∠AOC =30°.在Rt △AOB 中,AB =2,∠AOB =30°,∴OB =2AB =4.∴OA =OB 2-AB 2=2 3.∴OC =2 3.在Rt △COP 中,∠POC =60°,∴∠OCP =30°.∴OP =12OC =3.∴CP =OC 2-OP 2=3.∴点C 的坐标为(3,3).∵每次旋转90°,360°÷90°=4,∴每旋转4次为一个循环.∵2025÷4=506……1,∴第2025次旋转结束时点C 的位置和最开始时点C 的位置相同.∴第2025次旋转结束时,点C 的坐标为(3,3).故选A.二、11.6012.(-1,2)13.(1)△EDB(2)814.-1415.4-216.(1)40°(2)50°或65°或80°点拨:(1)由题意结合旋转的性质可得OA =OB =OP ,进而得∠OBP =∠OPB ,然后根据三角形外角的性质得到∠OBP=12∠AOP=15°,进而求解.(2)连接AP,易得∠APB=90°.如图①,当BC=BP时,易证△ABC≌△ABP,∴∠ABP=∠ABC=25°,∴∠AOP=2∠ABP=50°;如图②,当BC=PC时,连接CO并延长交PB于H,根据线段垂直平分线的判定得到CH垂直平分PB,求得∠CHB=90°,再根据等腰三角形的性质及三角形外角的性质易得θ=80°;如图③,当PB=PC时,连接OC,易得OB=OC,延长PO交BC于G,易得PG垂直平分BC,得到∠BGO=90°,再根据三角形的内角和得到∠BOG =65°,∴θ=65°.综上,θ的度数为50°或65°或80°.三、17.解:根据题意,得△ABC≌△DEC,∴AB=DE,AC=DC.∵AC=3,∴DC=3.∵BC=4,∴BD=1.在Rt△ABC中,根据勾股定理,得AB=AC2+BC2=5,∴DE=5. 18.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2(不符合题意,舍去).∴x+2y=-1+2×(-3)=-7.19.解:∵将△ABC绕点C顺时针旋转90°得到△EDC,∴∠DCE=∠ACB=20°,∠ACE=90°,AC=CE.∴∠E=∠EAC=45°.∴∠ADC=∠E+∠DCE=45+20°=65°.20.解:(1)如图,△A′BC′即为所求.(2)如图,设BC=x,则AC=BC+1=x+1.在Rt△ABC中,AB2=BC2+AC2=x2+(x+1)2.由旋转的性质得A′B=AB,∠ABA′=90°.在Rt△AA′B中,A′A2=A′B2+AB2=2AB2.因为AA′=10,所以(10)2=2[x2+(x+1)2].整理得x2+x-2=0.解得x1=1,x2=-2(舍去).所以BC=1.21.解:(1)平移(2)图①绕点A逆时针旋转90°后得到的图形如图①所示.①(3)C点拨:如图②,连接DE,发现DE和FG相交于点C,所以对称中心是点C.②22.(1)证明:由旋转的性质,得DM=DE,∠MDE=2α.∵∠C=α,∴∠DEC=∠MDE-∠C=α.∴∠C=∠DEC.∴DE=DC.∴DM=DC.∴D是MC的中点.(2)解:∠AEF=90°.证明:如图,延长FE到H,使EH=FE,连接CH,AH.∵DF=DC,∴DE是△FCH的中位线.∴DE∥CH,CH=2DE.∴∠FCH=∠FDE.∵∠MDE=2α,∴∠FCH=2α.∵∠B=∠ACB=α,∴∠ACH=α,AB=AC.∴∠B=∠ACH.设DM=DE=m,CD=n,则CH=2m,CM=m+n,DF=n,∴FM=DF-DM=n-m.∵AM⊥BC,AB=AC,∴BM=CM=m+n.∴BF=BM-FM=m+n-(n-m)=2m.∴BF=CH.在△ABF和△ACH =AC,B=∠ACH,=CH,∴△ABF≌△ACH(SAS).∴AF=AH.又∵FE=EH,∴AE⊥FH.∴∠AEF=90°. 23.解:(1)①=②2(2)PM=PN.理由如下:连接BP.∵△ABC是等腰直角三角形,∴∠ABC=90°,∠C=45°,AB=BC.又∵O是AC的中点,P在O处,∴BP⊥AC,BP=PC且∠ABP=∠CBP=45°.11∴∠CPN +∠NPB =90°,∠ABP =∠C .∵MP ⊥PN ,∴∠BPM +∠NPB =90°.∴∠BPM =∠CPN .在△MPB 和△NPCBPM =∠CPN ,=CP ,MBP =∠C ,∴△MPB ≌△NPC (ASA ).∴PM =PN .(3)不变.∵S △ABC =4,O 是AC 的中点,P 在O 处,∴S △BCP =12S △ABC =2.由(2)知△MPB ≌△NPC ,∴三角尺PEF 与△ABC 重叠部分的面积=△MPB 的面积+△BON 的面积=△NPC 的面积+△BON 的面积=△BCP 的面积=2.。

人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。

人教版九年级数学上册第23章《图形的旋转》整章测试题(含答案)

人教版九年级数学上册第23章《图形的旋转》整章测试题(含答案)

第二十三章《旋转》整章测试题附答案一、填空题:(每题 3 分)1.( 2009 年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是()甲乙甲乙甲乙甲乙A .B.C.D.2(. 2008 江苏省盐城市)已知如图 1 所示的四张牌,若将其中一张牌旋转180 °后得到图 2.则旋转的牌是()图 1图 2A B C D3.( 2008 湖北省宜昌市)如图,将三角尺ABC(其中∠ ABC=60°,∠ C= 90°)绕 B 点按顺时针方向转动一个角A 1度到 A1BC1的位置,使得点A,B,C1在同一条直线上,C那么这个角度等于().B C1AA .120 °B. 90°C.60°D. 30°(第9题)4.( 2009 年崇左)已知点A的坐标为(a,b),O为坐标原点,连结OA,将线段OA绕点O 按逆时针方向旋转90°得OA1,则点A1的坐标为().A ( a,b)B.(a,b)C.( b,a) D .(b,a)5.( 2009 年山东省日照市)在下图4× 4 的正方形网格中,△MNP 绕D N1 M1某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是A B P1CA.点 A B.点 B C.点 CD.点 D P6. ( 2009 年牡丹江市)△ABC在如图所示的平面直角坐标系中,将MN △ ABC 向右平移3个单位长度后得△ A1B1C1,再将△ A1B1C1绕点y O 旋转 180°后得到△A2B2C2,则下列说法正确的是()4AA .A1的坐标为31,B.S四边形ABB1A133BC21C.B2C 2 2D.AC2O 45°32 11 0 123 x237.( 2008 内蒙古自治区包头市)如图,已知两个全等直角三角形的直角顶点及一条直角边重合,将△ ACB 绕点 C 按顺时针方向旋转到AA △ A CB 的位置,其中 AC 交直线 AD 于点F AE , A B 分别交直线 AD,AC 于点GE BF,G ,则旋转后的图中,全等三角形共有BC D C D()A.2 对B.3 对C.4 对D.5 对8. (2008 河北省)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图 -1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90 ,则完成一次变换.图-2,图 -3 分别表示第 1 次变换和第 2 次变换.按上述规则完成第9 次变换后,“众” 字位于转盘的位置是()第1次变换第2次变换众成志城成城志志城众成成众志城成众城志众图 -1图-2图 -3A .上B.下C.左D.右二、填空题:(每题 3 分)9. ( 2008 甘肃省白银九市)已知等腰三角形的一条腰长是5,底边长是 6,则它底边上的高为.10( 2008 吉林省长春市)如图,在平面内将Rt△ ABC 绕着直角顶点AC 逆时针旋转90 得到Rt△EFC.若 AB5, BC1,则线F段 BE 的长为.E BC11. (2008 辽宁省大连市, 3 分)如图, P 是正△ ABC 内的一点,若将△PAC 绕点 A 逆时针旋转到△ P′AB,则∠ PAP′的度数为.BA P AP′PPB C C CB BA C(第 12(第 13 题)(第 11 题)题)12.( 2008 江苏省扬州市)如图△ ABC 是等腰直角三角形,BC 是斜边, P 为△ ABC 内一点,将△ ABP 绕点 A 逆时针旋转后与△ACP′重合,如果 AP=3 ,那么线段PP的长等于 ____.13.( 2008 四川省宜宾市)将直角边长为5cm 的等腰直角△ABC绕点A逆时针旋转15后得到△ AB C ,则图中阴影部分的面积是cm 2.14.. ( 2008 福建省厦门市)如图,点G 是△ ABC 的重心, CG 的延C长线交 AB于D,GA5cm , GC4cm , GB3cm ,将△ADG绕点 D旋转180得到△ BDE ,则 DE cm,G B D△ ABC 的面积cm2.AE15.( 2007 湖南株洲课改)如图,将边长为 3 的正方形ABCD绕点A逆时针方向旋转30o后得到正方形AB C D ,则图中阴影部分的面积为____________平方单位.16. ( 2007 江苏泰州课改)如图,直角梯形ABCD 中, AD ∥ BC ,EAB BC,AD2,BC 3,BCD45 ,将腰CD以点D为A D中心逆时针旋转90至 ED ,连结 AE,CE ,则△ ADE 的面积B C是.答案:三、解答题:(共 52 分)A17.( 6 分)( 2008 云南省双柏市)如图是某设计师在方格纸中设计图案的一部分,请你帮他完成余下的工作:( 1)作出关于直线AB 的轴对称图形;O( 2)将你画出的部分连同原图形绕点O 逆时针旋转;90°( 3)发挥你的想象,给得到的图案适当涂上阴影,让它变得更加美丽.B18.(9 分)( 2008 山西省)如图,在 4× 3 的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).( 1)(2)(3)19.( 12 分)(2008 江苏省徐州市)如图,方格纸中的每个小方格都是边长为 1 个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点 B 的坐标为 (1,0) .(1)画出△ ABC 关于 x 轴对称的△ A1B1C1;(2)画出将△ ABC 绕原点 O 按逆时针方向旋转 90 所得的△ A2B2C2;(3)△ A1B1C1与△ A2B2C2成轴对称吗?若成轴对称,画出所有的对称轴;(4)△ A1B1C1与△ A2B2C2成中心对称吗?若成中心对称,写出对称中心的坐标.解:yACO B x20.( 12 分)( 2008 山东省枣庄市)把一副三角板如图甲放置,其中∠ ACB ∠ DEC 90 ,∠ A 45 , ∠ D 30 ,斜边 AB6cm , DC 7cm .把三角板 DCE 绕点 C 顺时针旋转 15°得到△ D 1CE 1(如图乙).这时 AB 与 CD 1 相交于点 O ,与 D 1 E 1 相交于点 F .( 1)求 ∠ OFE 1 的度数; ( 2)求线段 AD 1 的长;( 3)若把三角形 D 1CE 1 绕着点 C 顺时针再旋转 30°得△ D 2CE 2,这时点 B 在△ D 2CE 2 的内部、外部、还是边上?说明理由.DD 1AAOFCEBCB(甲)(乙)E 121.( 13 分)(2009 年牡丹江)已知 Rt △ ABC 中, AC B C ,∠ C90 ,D 为 AB 边的中点,EDF 90°, EDF 绕 D 点旋转,它的两边分别交 AC 、 CB (或它们的延长线)于E 、F .当EDF 绕 D 点旋转到 DE AC 于 E 时(如图△△ 1 .1),易证S CEFS ABCS DEF2当 EDF 绕 D 点旋转到 DE 和 AC 不垂直时, 在图 2 和图 3 这两种情况下, 上述结论是否成立?若成立,请给予证明;若不成立, S △DEF 、 S △CEF 、 S △ ABC 又有怎样的数量关系?请写出你的猜想,不需证明.AAADE DDCECBFFBBCFE图 3图 1图 2参考答案一、选择题:1.C2.A3.A4.C5.B6.D7.C8.C二、填空题:9. 90 10. 311. 6012.3225313.14. 2, 1815. 33 16.16三、解答题:17. 答案:如图.三步各计 2 分,共 6 分.AOB 18.解:( 1)(2)(3)19解:(1)如图;(2)如图;(3)成轴对称,对称轴如图;1 1 (4)成中心对称,对称中心坐标( , ) .2 220.解:( 1)如图所示, 3 15,E190 ,AD1∴1275 .5又B45,O4F C3 21∴OFE 1B14575120 .B ( 2)OFE1120 ,∴∠D1FO=60°.E1 CD1 E130,∴490 .又 AC BC, AB 6,∴ OA OB 3.ACB90,∴ CO 1AB163.22又 CD17 ,∴ OD1CD1OC73 4 .在 Rt △ AD1O 中,AD1OA2OD123242 5 .( 3)点B在△D2CE2内部.理由如下:设BC (或延长线)交D2E2于点 P,则PCE2 15 30 45 .在 Rt △ PCE2中, CP2CE272,2CB 3272CP ,∴点 B 在△D2CE2内部.,即 CB221.解:图 2 成立;图 3 不成立.证明图 2:过点 D 作 DM AC,DN BC则DME DNF MDN90°再证MDE NDF ,DM DN有△ DME ≌△ DNFS△DME S△DNFS SDECF S△D EF△SC E F四边形DMCN四边形由信息可知 S四边形DMCN 1S△ABC12S△D EF△△SCEF2S ABC1S△ABC图 3 不成立,S△DEF 、S△CEF、S△ABC的关系是:S△DEF S△CEF2。

人教版数学九年级上第23章《旋转》单元检测试卷及答案解析

人教版数学九年级上第23章《旋转》单元检测试卷及答案解析

第23章《旋转》单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是()2.以下图的右边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是()3.用数学的方式理解“当窗理云鬓,对镜贴花黄”和“坐地日行八万里”(只考虑地球的自转),其中蕴含的图形运动是()A.平移和旋转B.对称和旋转C.对称和平移D.旋转和平移4.已知点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,则a+b的值为()A.1 B.5 C.6 D.45.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图是一个标准的五角星,若将它绕旋转中心旋转一定角度后能与自身重合,则至少应将它旋转的度数是()A.60°B.72°C.90°D.144°7.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50°B.60°C.40°D.30°8.在平面直角坐标系xOy中,A点坐标为(3,4),将OA绕原点O顺时针旋转180°得到OA′,则点A′的坐标是()A.(﹣4,3)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)9.如图,将Rt△ABC(其中∠B=30°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点B、A、B1在同一条直线上,那么旋转角等于()A.30°B.60°C.90°D.180°10.如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()A.2B.2C.4 D.2二、填空题(共6小题,每小题3分,共18分)11.如图,△ABC中,∠C=30°,将△ABC绕点A顺时针旋转60°得△ADE,AE与BC交于F,则∠AFB=_______°.12.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=图11B'C'CBA图1213.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,2),则点B2016的坐标为.14.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.15.时钟上的时针不停地旋转,从上午8时到上午11时,时针旋转的旋转角是.16.在等腰三角形ABC中,∠C=90°,BC=2cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在B′处,则BB′的长度为.三、解答题(共8题,共72分)17.(本题8分)如图,说出这个图形的旋转中心,它绕旋转中心至少旋转多大角度才能与原来图形重合?18.(本题8分)将下图所示的图形面积分成相等的两部分.(图中圆圈为挖去部分)19.(本题8分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.20.(本题8分)如图,已知AD=AE,AB=AC.(1)求证:∠B=∠C;(2)若∠A=50°,问△ADC经过怎样的变换能与△AEB重合?21.(本题8分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴,垂足为A.(1)将点B绕原点逆时针方向旋转90°后记作点C,求点C的坐标;(2)△O′A′B′与△OAB关于原点对称,写出点B′、A′的坐标.22.(本题10分)当m为何值时(1)点A(2,3m)关于原点的对称点在第三象限;(2)点B(3m﹣1,0.5m+2)到x轴的距离等于它到y轴距离的一半?23.(本题10分)直角坐标系中,已知点P(﹣2,﹣1),点T(t,0)是x轴上的一个动点.(1)求点P关于原点的对称点P′的坐标;(2)当t取何值时,△P′TO是等腰三角形?24.(本题12分)等边△OAB在平面直角坐标系中,已知点A(2,0),将△OAB绕点O顺时针方向旋转a°(0<a<360)得△OA1B1.(1)求出点B的坐标;(2)当A1与B1的纵坐标相同时,求出a的值;(3)在(2)的条件下直接写出点B1的坐标.第23章《旋转》单元测试卷解析一、选择题1.【答案】A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C2.【答案】以图的右边缘所在的直线为轴将该图形向右翻转180°后,黑圆在右上角,再按顺时针方向旋转180°,黑圆在左下角.故选:A.3.【答案】根据对称和旋转定义可知:“当窗理云鬓,对镜贴花黄”是对称;“坐地日行八万里”是旋转.故选B.4.【答案】∵点A(a,2013)与点A′(﹣2014,b)是关于原点O的对称点,∴a=2014,b=﹣2013,则a+b的值为:2014﹣2013=1.故选:A.5.【答案】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5,∴点M(m,n)在第一象限,故选A.6.【答案】如图,设O的是五角星的中心,∵五角星是正五角星,∴∠AOB=∠BOC=∠COD=∠DOE=∠AOE,∵它们都是旋转角,而它们的和为360°,∴至少将它绕中心顺时针旋转360÷5=72°,才能使正五角星旋转后与自身重合.故选:B.7.【答案】∵将△OAB绕点O逆时针旋转80°,∴∠A=∠C∠AOC=80°∴∠DOC=80°﹣α,∠D=100°∵∠A=2∠D=100°,∴∠D=50°∵∠C+∠D+∠DOC=180°,∴100°+50°+80°﹣α=180°解得α=50°,故选A8.【答案】根据题意得,点A关于原点的对称点是点A′,∵A点坐标为(3,4),∴点A′的坐标(﹣3,﹣4).故选B.9.【答案】∵B、A、B1在同一条直线上,∴∠BA B1=180°,∴旋转角等于180°.故选D.10. 【答案】由旋转的性质可知:BC=DE=1,AB=AD,∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:AB=AD=又旋转角为90°,∴∠BAD=90°,∴在RT△ADB中,BD=2即:BD的长为2故:选A二、填空题11.【答案】90º12.【答案】∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.13.【答案】∵AO=,BO=2,∴AB=,∴OA+AB1+B1C2=6,∴B2的横坐标为:6,且B2C2=2,∴B4的横坐标为:2×6=12,∴点B2016的横坐标为:2016÷2×6=6048.∴点B2016的纵坐标为:2.∴点B2016的坐标为:(6048,2).故答案为:(6048,2).14.【答案】令y=0,则﹣x+2=0,解得x=2,令x=0,则y=2,∴点A(2,0),B(0,2),∴OA=2,OB=2,∴∠BAO=30°,∴AB=2OB=2×2=4,∵△AOB绕点A顺时针旋转60°后得到△AO′B′,∴∠BAB′=60°,∴∠OAB′=30°+60°=90°,∴AB′⊥x轴,∴点B′(2,4).故答案为:(2,4).15.【答案】∵时针从上午的8时到11时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故答案为:90°.16.【答案】如图所示:在直角△OBC中,OC=AC=BC=1cm,则OB=(cm),则BB′=2OB=2(cm).故答案为:2cm.三、解答题17.【答案】这个图形的旋转中心为圆心;∵360°÷6=60°,∴该图形绕中心至少旋转60度后能和原来的图案互相重合.18.【答案】如图:19.答案】解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.【答案】(1)证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD;∴△AEB≌△ADC,∴∠B=∠C.(2)解:先将△ADC绕点A逆时针旋转50°,再将△ADC沿直线AE对折,即可得△ADC与△AEB重合.或先将△ADC绕点A顺时针旋转50°,再将△ADC沿直线AB对折,即可得△ADC与△AEB重合.21.【答案】(1)如图,点C的坐标为(﹣2,4);(2)点B′、A′的坐标分别为(﹣4,﹣2)、(﹣4,0).22.【答案】(1)∵点A(2,3m),∴关于原点的对称点坐标为(﹣2,﹣3m),∵在第三象限,∴﹣3m<0,∴m>0;(2)由题意得:①0.5m+2=(3m﹣1),解得:m=;②0.5m+2=﹣(3m﹣1),解得:m=﹣.23.【答案】(1)点P关于原点的对称点P'的坐标为(2,1);(2)(a)动点T在原点左侧,当时,△P'TO 是等腰三角形, ∴点(-,0),(b )动点T 在原点右侧,①当T 2O=T 2P'时,△P'TO 是等腰三角形,得:(,0),②当T 3O=P'O 时,△P'TO 是等腰三角形, 得:(,0),③当T 4P'=P'O 时,△P'TO 是等腰三角形, 得:点T 4(4,0). 综上所述,符合条件的t 的值为-,,,4.24.【答案】(1)如图1所示过点B 作BC ⊥OA ,垂足为C .图1yxOC BA∵△OAB 为等边三角形,∴∠BOC=60°,OB=BA . ∵OB=AB ,BC ⊥OA ,∴OC=CA=1. 在Rt △OBC 中,,∴BC=.∴点B 的坐标为(1,).(2)如图2所示:(A 1)图2yxOB 1C B A∵点B1与点A1的纵坐标相同,∴A 1B 1∥OA .①如图2所示:当a=300°时,点A 1与点B 1纵坐标相同. 如图3所示:A 1图3y xOB 1CBA当a=120°时,点A 1与点B 1纵坐标相同.∴当a=120°或a=300°时,点A 1与点B 1纵坐标相同.(3)如图2所示:由旋转的性质可知A 1B 1=AB=2,点B 的坐标为(1,2), ∴点B 1的坐标为(﹣1,).如图3所示:由旋转的性质可知:点B 1的坐标为(1,﹣).∴点B1的坐标为(﹣1,)或(1,﹣).。

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)

人教版九年级数学上册第二十三章《旋转》测试题(含答案)一.选择题1.下面生活中的实例,不是旋转的是()A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动2.下列图形绕某点旋转90°后,不能与原来图形重合的是()A.B.C.D.3.已知点A的坐标为(2,3),O为坐标原点,连接OA,将线段OA绕点A按顺时针方向旋转90°得AB,则点B的坐标为()A.(5,1)B.(﹣3,2)C.(﹣1,5)D.(3,﹣2)4.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分C.中心对称图形的对称中心是对称点连线的中心D.中心对称图形绕对称中心旋转180°后,都能与自身重合5.下列英语单词中,是中心对称图形的是()A.SOS B.CEO C.MBA D.SAR6.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.7.在平面直角坐标系中,点M(3,﹣5)关于原点对称的点的坐标是()A.(﹣3,﹣5)B.(3,5)C.(5,﹣3)D.(﹣3,5)8.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部分图形,其中不是轴对称图形的是()A.B.C.D.9.将图绕中心按顺时针方向旋转60°后可得到的图形是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=15,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为()A.48B.50C.55D.60二.填空题11.与电子显示的四位数6925不相等,但为全等图形的四位数是.12.若数字串“000”和数字串“101”既是轴对称图形,又是中心对称图形,那么数字串“110”是图形(填写“轴对称”、“中心对称”).13.如图,在△ABC中,AB=4,AC=3,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为.14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.15.如图,△ABC与△DEF关于O点成中心对称.则AB DE,BC∥,AC=.16.在平面直角坐标系中,点(﹣3,4)关于原点对称的点的坐标是.17.时钟从上午9时到中午12时,时针沿顺时针方向旋转了度.18.时钟的时针在不停地转动,从上午6时到上午9时,时针旋转的旋转角为度,从上午9时到下午5时时针旋转的旋转角为度.19.如图,把这个“十字星”形图绕其中心点O旋转,当至少旋转度后,所得图形与原图形重合.20.如图,在平面直角坐标系中,点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2020的坐标是.三.解答题21.在14×9的方格纸中,每个小正方形的边长都为1,△ABC与△A′B′C′的位置如图所示;(1)请说明△ABC与△A′B′C′的位置关系;(2)若点C的坐标为(0,0),则点B′的坐标为;(3)求线段CC′的长.22.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.23.(1)计算:+﹣2﹣1;(2)一串有趣的图案按一定规律排列.请仔细观察,按此规律画出的第10个图案是;在前16个图案中有个;第2008个图案是.24.在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.25.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角.例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90度.(1)判断下列命题的真假(在相应的括号内填上“真”或“假”).①等腰梯形是旋转对称图形,它有一个旋转角为180度.()②矩形是旋转对称图形,它有一个旋转角为180°.()(2)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是(写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,都有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形:;②既是轴对称图形,又是中心对称图形:.26.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A、O旋转后的对应点为A′、O′,记旋转角为a.(1)如图1,若a=90°,求AA′的长;(2)如图2,若a=120°,求点O′的坐标.参考答案一.选择题1.解:传送带传送货物的过程中没有发生旋转.故选:A.2.解:A、绕它的中心旋转90°能与原图形重合,故本选项不合题意;B、绕它的中心旋转90°能与原图形重合,故本选项不合题意;C、绕它的中心旋转90°能与原图形重合,故本选项不合题意;D、绕它的中心旋转120°才能与原图形重合,故本选项符合题意.故选:D.3.解:如图,过A作y轴的平行线,过B作x轴的平行线,交点为C,由∠C=∠ADO,∠BAC=∠AOD,AB=OA,可得△ABC≌△OAD,∴AC=OD=2,BC=AD=3,∴CD=5,点B离y轴的距离为:3﹣2=1,∴点B的坐标为(﹣1,5),故选:C.4.解:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误.故选:B.5.解:是中心对称图形的是A,故选A.6.解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称图形,故本选项符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、不是轴对称图形,是中心对称图形,故本选项不符合题意.故选:B.7.解:点M(3,﹣5)关于原点对称的点的坐标是(﹣3,5),故选:D.8.解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.9.解:将图绕中心按顺时针方向旋转60°后得到的图形是.故选:A.10.解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=15,∴△BCD为等边三角形,∴CD=BC=BD=15,∵AB===17,∴△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=8+15+15+17=55,故选:C.二.填空题11.答:5269.12.解:根据对称图形的概念,知110仅是轴对称图形,对称轴为正中水平直线.13.解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1=3,∠CAC1=60°,∴∠BAC1=90°,∴BC1===5,故答案为:5.14.解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.15.解:∵△ABC与△DEF关于O点成中心对称∴△ABC≌△DEFAB=DE,AC=DF又∵BO=OE,CO=OF,∠BOC=∠FOE∴△BOC≌△EOF∴∠BCO=∠OFEBC∥EF故填:=,EF,DF16.解:点(﹣3,4)关于原点对称的点的坐标是(3,﹣4).故答案为:(3,﹣4).17.解:从上午9时到中午12时,时针就从指向9,旋转到指向12,共顺时针转了3个“大格”,而每个“大格”相应的圆心角为30°,所以,30°×3=90°,故答案为:90.18.解:从上午6时到上午9时时针转过3个大格,所以,3×30°=90°,上午9时到下午5时时针转过8个大格,所以,8×30°=240°.故答案为:90;240.19.解:把这个“十字星”形图绕其中心点O旋转,当至少旋转360°÷4=90°后,所得图形与原图形重合,故答案为:90.20.解:∵点P1的坐标为(,),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;∴OP1=1,OP2=2,∴OP3=4,如此下去,得到线段OP4=23,OP5=24…,∴OP n=2n﹣1,由题意可得出线段每旋转8次旋转一周,∵2020÷8=252…4,∴点P2020的坐标与点P4的坐标在同一直线上,正好在y轴的负半轴上,∴点P2020的坐标是(0,﹣22019).故答案为:(0,﹣22019).三.解答题21.解:(1)△ABC与△A′B′C′成中心对称;(2)根据点C的坐标为(0,0),则点B′的坐标为:(7,﹣2);(3)线段CC′的长为:=2.22.解:(1)由图(1)可得,c=;(2)观察图形可知:当2个图(1)拼接时,总长度为:2a﹣2c=2a﹣2×=a+b;(3)结合(2)发现:用n个这样的图形拼出来的图形总长度为:a+(n﹣1)b,当a=4,b=3时,4+3(n﹣1)=28,解得:n=9.∴n的值为9.23.解:(1)原式==2;(2)根据分析,知应分别为,5,.24.解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.25.解:(1)等腰梯形必须旋转360°才能与自身重合;矩形旋转180°可以与自身重合.①等腰梯形是旋转对称图形,它有一个旋转角为180度.(假)②矩形是旋转对称图形,它有一个旋转角为180°.(真)(2)①只要旋转120°的倍数即可;②只要旋转90°的倍数即可;③只要旋转60°的倍数即可;④只要旋转45°的倍数即可.故是旋转对称图形,且有一个旋转角为120°的是①、③.(3)360°÷72°=5.①是轴对称图形,但不是中心对称图形:如正五边形,正十五边形;②既是轴对称图形,又是中心对称图形:如正十边形,正二十边形.26.解:(1)∵点A(4,0),点B(0,3),∴OA=4,OB=3.在Rt△ABO中,由勾股定理得AB=5.根据题意,△A′BO′是△ABO绕点B逆时针旋转900得到的,由旋转是性质可得:∠A′BA=90°,A′B=AB=5,∴AA′=5.(2)如图,根据题意,由旋转是性质可得:∠O′BO=120°,O′B=OB=3过点O′作O′C⊥y轴,垂足为C,则∠O′CB=90°.在Rt△O′CB中,由∠O′BC=60°,∠BO′C=30°.∴BC=O′B=.由勾股定理O′C=,∴OC=OB+BC=.∴点O′的坐标为(,).。

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷含答案

人教版九年级数学(上)第二十三章《旋转》检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图形,既是轴对称图形,又是中心对称图形的是2.将大写字母E绕点P按顺时针方向旋转90°得到的图形是3.下列说法中,正确的有①平行四边形是中心对称图形;②两个全等三角形一定成中心对称;③中心对称图形的对称中心是连接两对称点的线段的中点;④一个图形若是轴对称图形,则一定不是中心对称图形;⑤一个图形若是中心对称图形,则一定不是轴对称图形.A.1个B.2个C.3个D.4个4.如图,已知点O是六边形ABCDEF的中心,图中所有的三角形都是等边三角形,则下列说法正确的是A.△ODE绕点O顺时针旋转60°得到△OBCB.△ODE绕点O逆时针旋转120°得到△OABC.△ODE绕点F顺时针旋转60°得到△OABD.△ODE绕点C逆时针旋转90°得△OAB5.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度,得到的点的坐标是A.(4,-3)B.(-4,3)C.(0,-3)D.(0,3)6.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,△ABC绕着点B逆时针旋转90°到△A'BC'的位置,则AA'的长为A.10√2B.10C.20D.5√27.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为A.30,2B.60,2D.60,√3C.60,√328.如图,在平面直角坐标系中,将△ABC绕点C(0,1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为A.(-a,-b)B.(-a,-b-1)C.(-a,-b+1)D.(-a,-b+2)9.有两个完全重合的直尺,将其中一个始终保持不动,另一个直尺绕其对称中心O按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是A.图①B.图②C.图③D.图④10.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM,DN分别与边AB,AC交于E,F两点.下列结论:①(BE+CF )=√22BC ;②S △AEF ≤14S △ABC ;③S 四边形AEDF =AD ·EF ;④AD ≥EF ;⑤AD 与EF 可能互相平分,其中正确结论的个数是A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,满分20分)11.已知a<0,则点P (-a 2,-a+1)关于原点的对称点P'在第 四 象限.12.如图所示,把一个直角三角尺ACB 绕着30°角的顶点B 顺时针旋转,使得点A 落在CB 延长线上的点E 处,则∠BDC= 15° .13.如图,在Rt △ABC 中,∠ACB=90°,∠BAC=60°,AB=6,Rt △AB'C'可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的,则线段B'C 的长为 3√7 .14.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,AC=6√3,BC 的中点为D ,将△ABC 绕点C 顺时针旋转任意一个角度得到△FEC ,EF 的中点为G ,连接DG 在旋转过程中,DG 的最大值是 9 .三、(本大题共2小题,每小题8分,满分16分)15.如图,四边形ABCD绕点O旋转后,顶点A的对应点为点E.试确定旋转后的四边形.解:如图所示,四边形EB'C'D'即为四边形ABCD绕点O旋转后的四边形.AB,请你用旋转的16.如图,在正方形ABCD中,E是AD的中点,F是BA延长线上一点,且AF=12方法说明线段BE和DF之间的关系.AB,∴AE=AF,解:∵四边形ABCD为正方形,∴AD=AB,∠BAD=90°,∵E是AD的中点,AF=12∴△DFA≌△BEA,∴把△ABE绕点A逆时针旋转90°可得到△ADF,∴BE=DF,BE⊥DF.四、(本大题共2小题,每小题8分,满分16分)17.△ABC在平面直角坐标系中的位置如图所示,A,B,C三点在格点上.(1)作出△ABC关于y轴对称的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标.答案图解:(1)如图,C 1(-3,2). (2)如图,C 2(-3,-2).18.已知点P (x+1,2x-1)关于原点的对称点在第一象限,试化简:|x-3|-|1-x|. 解:∵点P (x+1,2x-1)关于原点的对称点P'的坐标为(-x-1,-2x+1),点P'在第一象限,∴{-x -1>0,-2x +1>0,∴x<-1,∴|x-3|-|1-x|=-x+3-1+x=2.五、(本大题共2小题,每小题10分,满分20分)19.如图,在等边△ABC 中,AC=9,点O 在AC 上,且AO=3,点P 是AB 上的一动点,连接OP ,将线段OP 绕点O 逆时针旋转60°得到线段OD ,要使点D 恰好落在BC 上,求AP 的长. 解:如图,∵AC=9,AO=3,∴OC=6,∵△ABC为等边三角形,∴∠A=∠C=60°,∵线段OP绕点D逆时针旋转60°得到线段OD,要使点D恰好落在BC上,∴OD=OP,∠POD=60°,∵∠1+∠2+∠A=180°,∠1+∠3+∠POD=180°,∴∠1+∠2=120°,∠1+∠3=120°,∴∠2=∠3,在△AOP和△CDO中,{∠A=∠C,∠2=∠3, OP=OD,∴△AOP≌△CDO,∴AP=CO=6.20.在平面直角坐标系中,O为原点,B(0,6),A(8,0),以点B为旋转中心把△ABO逆时针旋转,得△A'BO',点O,A旋转后的对应点为O',A',记旋转角为β.(1)如图1,若β=90°,求AA'的长;(2)如图2,若β=120°,求点O'的坐标.解:(1)∵β=90°,∴∠A'BA=90°,∵A(8,0),B(0,6),∴OA=8,OB=6,根据勾股定理得,AB=√OA 2+OB 2=√82+62=10, 由旋转的性质得,A'B=AB=10,在Rt △A'BA 中,根据勾股定理得,AA'=√AB 2+A 'B 2=√102+102=10√2. (2)如图,过点O'作O'C ⊥y 轴于点C , 由旋转的性质得,O'B=OB=6,∵β=120°,∴∠OBO'=120°,∴∠O'BC=180°-120°=60°, ∴BC=12O'B=12×6=3,CO'=√O 'B 2-BC 2=√62-32=3√3,∴OC=OB+BC=6+3=9,∴点O'的坐标为(3√3,9).六、(本题满分12分)21.如图,在等腰△ABC 中,∠CAB=90°,P 是△ABC 内一点,PA=1,PB=3,PC=√7,将△APB 绕点A 逆时针旋转后与△AQC 重合.求: (1)线段PQ 的长; (2)∠APC 的度数.解:(1)∵△APB 绕点A 旋转与△AQC 重合,∴AQ=AP=1,∠QAP=∠CAB=90°, ∴在Rt △APQ 中,PQ=√AQ 2+AP 2=√2.(2)∵∠QAP=90°,AQ=AP,∴∠APQ=45°.∵△APB绕点A旋转与△AQC重合,∴CQ=BP=3.在△CPQ中,PQ=√2,CQ=3,CP=√7,∴CP2+PQ2=CQ2,∴∠CPQ=90°,∴∠APC=∠CPQ+∠APQ=135°.七、(本题满分12分)22.如图,▱ABCD中,AB⊥AC,AB=1,BC=√5,对角线BD,AC交于点O.将直线AC绕点O顺时针旋转分别交BC,AD于点E,F.(1)试说明在旋转过程中,AF与CE总保持相等;(2)证明:当旋转角为90°时,四边形ABEF是平行四边形;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能请说明理由;如果能,求出此时AC绕点O顺时针旋转的角度.解:(1)在▱ABCD中,AD∥BC,OA=OC,∴∠1=∠2,在△AOF和△COE中,{∠1=∠2,OA=OC,∠3=∠4,∴△AOF≌△COE(ASA),∴AF=CE.(2)由题意,∠AOF=90°(如图1),又∵AB ⊥AC ,∴∠BAO=90°,∴∠BAO=∠AOF ,∴AB ∥EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,即AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.(3)当EF ⊥BD 时,四边形BEDF 是菱形(如图2).由(1)知,AF=CE ,∵▱ABCD ,∴AD=BC ,AD ∥BC ,∴DF ∥BE ,DF=BE ,∴四边形BEDF 是平行四边形,又∵EF ⊥BD ,∴▱BEDF 是菱形,∵AB ⊥AC ,∴在△ABC 中,∠BAC=90°,∴BC 2=AB 2+AC 2, ∵AB=1,BC=√5,∴AC=√BC 2-AB 2=√(√5)2-12=2, ∵四边形ABCD 是平行四边形,∴OA=12AC=12×2=1, ∵在△AOB 中,AB=AO=1,∠BAO=90°, ∴∠1=45°,∵EF ⊥BD ,∴∠BOF=90°,∴∠2=∠BOF-∠1=90°-45°=45°,即旋转角为45°. 八、(本题满分14分)23.如图1,在正方形ABCD 中,点M ,N 分别在AD ,CD 上,若∠MBN=45°,易证MN=AM+CN. (1)如图2,在梯形ABCD 中,BC ∥AD ,AB=BC=CD ,点M ,N 分别在AD ,CD 上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 有怎样的数量关系?请写出猜想,并给予证明.(2)如图3,在四边形ABCD 中,AB=BC ,∠ABC+∠ADC=180°,点M ,N 分别在DA ,CD 的延长线上,若∠MBN=12∠ABC ,试探究线段MN ,AM ,CN 又有怎样的数量关系?请直接写出猜想,不需证明.解:(1)MN=AM+CN.理由如下:如图2,∵BC ∥AD ,AB=BC=CD ,∴梯形ABCD 是等腰梯形,∴∠A+∠BCD=180°,把△ABM 绕点B 顺时针旋转使AB 边与BC 边重合,则△ABM ≌△CBM',∴AM=CM',BM=BM',∠A=∠BCM',∠ABM=∠M'BC ,∴∠BCM'+∠BCD=180°,∴点M',C ,N 三点共线,∵∠MBN=12∠ABC ,∴∠M'BN=∠M'BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=12∠ABC ,∴∠MBN=∠M'BN ,在△BMN 和△BM'N 中,{BM =BM ',∠MBN =∠M 'BN ,BN =BN , ∴△BMN ≌△BM'N (SAS),∴MN=M'N ,又∵M'N=CM'+CN=AM+CN ,∴MN=AM+CN.(2)MN=CN-AM.。

人教版九年级数学上册第23章旋转单元测试卷(含答案解析)

人教版九年级数学上册第23章旋转单元测试卷(含答案解析)

人教版九年级数学上册第23章旋转单元测试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.以正方形ABCD的对角线AC、BD所在的直线为坐标轴,建立平面直角坐标系,如图所示,已知点A的坐标是(,现将正方形ABCD绕原点O顺时针旋转45o,则旋转后点C的对应点坐标是( )A.B.( C.(-1,1) D.(1,-1) 2.如图,ABC中,90A∠=,若以点C为旋转中心,将ABC旋ACB∠=,25转θ到DEC的位置,使点B恰好落在边DE上,则θ等于()A.55B.50C.65D.703.若两个图形成中心对称,则下列说法:①对应点的连线一定经过对称中心;②这两个图形的形状和大小完全相同;③这两个图形的对应线段一定互相平行;④将一个图形围绕对称中心旋转180后必与另一个图形重合.其中正确的有()A.1个B.2个C.3个D.4个4.将AOB绕点O旋转180得到DOE,则下列作图正确的是()A.B.C.D.5.平移、旋转与轴对称都是图形之间的一些主要变换,下列关于图形经这些变换后说法错误的()A .对应线段的长度不变B .对应角的大小不变C .图形的形状和大小不变D .图形的位置不变6.如图,AOB 是等边三角形,()2,0B ,将AOB 绕O 点逆时针方向旋转90到''A OB 位置,则'A 坐标是( )A .(-B .()C .)1-D .(1,- 7.已知点()3,A a -和点(),2B b -关于原点对称,则a 与b 的值分别是( )A .2a =,3b =B .2a =-,3?b =C .2a =-,3b =-D .2a =,3b =- 8.如图,将Rt ABC 绕点A 按顺时针旋转一定角度得到Rt ADE ,点B 的对应点D 恰好落在BC 边上.若1AB =,60B ∠=,则CD 的长为( )A .0.5B .1.5CD .19.将点()A 绕着原点顺时针方向旋转60得到点B ,则点B 的坐标是( )A .)3-B .)C .(3,D .( 10.关于某一点成中心对称的两个图形,下列说法中,正确的个数有( )①这两个图形完全重合;②对称点的连线互相平行③对称点所连的线段相等;④对称点的连线相交于一点;⑤对称点所连的线段被同一点平分⑥对应线段互相平行或在同一直线上,且一定相等.A .3个B .4个C .5个D .6个二、填空题11.如图所示的图形为中心对称图形,点O 为它的对称中心,写出一组关于点O 的对称点是________.12.如图,△ABC 与△DEF 关于点O 成中心对称,则线段BC 与EF 的关系是___________.13.已知点()3,1P -,则点P 关于原点O 的对称点的坐标是________.14.坐标平面内点P (,2)与点Q (3,-2)关于原点对称,则_______. 15.在图案设计中常用的作图工具有________,________,________.16.如图,甲图怎样变成乙图:________.17.四个单位正方形以边对边方式相连接而成,可以拼成如图的五种不同形状.用一片“L ”形(图中第一个)分别于其余四个中的一片拼成轴对称图形,所有的可能共有________种.18.如图,在55⨯方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么正确的平移方法是________.19.如图,请画出一个图形经过两次轴对称变换之后得到的图形,其中图①中的两条对称轴是平行的,图②中的两条对称轴是垂直的.仔细观察上面的两个图形经过两次轴对称变换之后得到的图形.图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的________变换得到,图②中的图形还可以通过________变换得到.20.如图,在ABC 中,90C ∠=,3AC =,4BC =,点O 是BC 中点,将ABC绕点O 旋转得'A B C ',则在旋转过程中点A 、'C 两点间的最大距离是________.三、解答题21.如图,正方形网格中,小格的顶点叫做格点,连接任意两个格点的线段叫做格点线段.(1)如图1,格点线段AB 、CD ,请添加一条格点线段EF ,使它们构成轴对称图形;(2)如图2,格点线段AB 和格点C ,在网格中找一格点D ,使格点A 、B 、C 、D 四点构成中心对称图形;(3)在(2)的条件下,如果每一小正方形边长为1,那么四边形ABCD 的面积S 为_________. (请直接填写) 22.如图,将边长为1的等边OAP 按图示方式,沿x 轴正方向连续翻转2011次,点P 依次落在点1P ,2P ,3P ,4P ,…,2007P 的位置.试写出1P ,3P ,50P ,2011P 的坐标.23.观察图形由()()()()1234的变化过程,写出每一步图形中各顶点的坐标是如何变化的,图形是如何变化的.24.如图所示,把一个直角三角尺ABC 绕着60角的顶点B 顺时针旋转,使得点C 与AB 的延长线上的点D 重合,已知8BC =.(1)三角尺旋转了多少度?连结CD ,试判断BCD 的形状;(2)求AD 的长;(3)边结CE ,试猜想线段AC 与CE 的大小关系,并证明你的结论.25.如图,AC 与BD 互相平分且相交于点O ,点E 、F 分别在AB 、CD 上,且AE CF =,试利用“中心对称”的有关知识,说明点E 、O 、F 在同一直线上且OE OF =.26.如图是两个等边三角形拼成的四边形.()1这个图形是不是旋转对称图形?是不是中心对称图形?若是,指出对称中心. ()2若ACD 旋转后能与ABC 重合,那么图形所在平面上可以作为旋转中心的点共有几个?请一一指出.27.问题原型:如图①,在矩形ABCD 中,12AB BC a ==,点E 是BC 边中点,将线段AE 绕点E 顺时针旋转90得到线段'A E ,易得'BA E 的面积为212a . 初步探究:如图②,在Rt ABC 中,BC a =,90ACB ∠=,将线段AB 绕点B 顺时针旋转90,得到线段BE ,用含a 的代数式表示BCE 的面积,并说明理由. 简单应用:如图③,在等腰三角形ABC 中,AB AC =,6BC =,将线段AB 绕点B 顺时针旋转90得到线段BE ,直接写出BCE 的面积.28.阅读下面材料:如图(1),把△ABC沿直线BC平行移动线段BC的长度,可以变到△DEC的位置;如图(2),以BC为轴,把△ABC翻折180∘,可以变到△DBC的位置;如图(3),以点A为中心,把△ABC旋转180∘,可以变到△AED的位置.像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的.这种只改变位置,不改变形状大小的图形变换,叫做三角形的全等变换.回答下列问题:①在图(4)中,可以通过平行移动、翻折、旋转中的哪一种方法怎样变化,使△ABE变到△ADF的位置;②指图中线段BE与DF之间的关系,为什么?参考答案1.D【解析】【分析】利用旋转的性质结合正方形的性质得出EO=FO=1,进而得出旋转后点C的对应点坐标.【详解】如图所示:将正方形ABCD绕原点O顺时针旋转45°,得到如图所示图形,∵点A的坐标是(0),∴则EO=FO,故EO=FO=1,则旋转后点C的对应点坐标是:(1,-1).故选D.【点睛】此题主要考查了坐标与图形的性质以及正方形的性质,得出EO=FO的长是解题关键.2.B【解析】【分析】先根据互余计算出∠ABC=65°,再根据旋转的性质得CB=CE,∠BCE=∠ACD=θ,∠E=∠ABC=65°,则根据等腰三角形的性质得∠E=∠CBE=65°,然后在△BCE中根据三角形内角和定理可计算出∠BCE的度数.【详解】∵∠ACB=90°,∠A=25°,∴∠ABC=65°,∵△ABC旋转θ到△DEC的位置,使点B恰好落在边DE上,∴CB=CE,∠BCE=∠ACD=θ,∠E=∠ABC=65°,∴∠E=∠CBE=65°,∴∠BCE=180°−2×65°=50°,即θ=50°.故选B.【点睛】考查旋转的性质,旋转前后对应角相等,对应边相等.3.C【分析】根据两个图形成中心对称分别分析得出答案即可.【详解】①对应点的连线一定经过对称中心,根据成中心对称的性质得出,此选项正确;②这两个图形的形状和大小完全相同;根据成中心对称的性质得出,此选项正确;③这两个图形的对应线段一定互相平行或在一条直线上,故此选项在错误;④将一个图形围绕对称中心旋转180后必与另一个图形重合,根据成中心对称的性质得出,此选项正确;故正确的有3个.故选C.【点睛】此题主要考查了成中心对称图形的性质,熟练掌握定义与性质是解题关键.4.D【分析】把一个图形绕某一点O转动一个角度的图形变换叫做旋转.【详解】解:观察选项中的图形,只有D选项为△ABO绕O点旋转了180°.【点睛】本题考察了旋转的定义.5.D【解析】【分析】根据平移、旋转与轴对称的性质,这三种变换只是改变图形的位置,变化前和变化后的图形全等即可判断.【详解】根据平移、旋转与轴对称的性质可得A、B、C都正确,这三种变换都是图形位置的变化,故D错误;故选:D.【点睛】本题主要考查了平移、旋转与轴对称的性质,变化前和变化后的图形全等.6.B【解析】【分析】过点A′作A′C⊥x轴于C,根据点B的坐标求出等边三角形的边长,再求出∠A′OC=30°,然后求出OC、A′C,再根据点A′在第二象限写出点A′的坐标即可.【详解】如图,过点A′作A′C⊥x轴于C,∵B(2,0),∴等边△AOB的边长为2,又∵∠A′OC=90°-60°=30°,∴OC=2×2A′C=2×12=1,∵点A′在第二象限,∴点A′(1).故选:B.【点睛】本题考查了坐标与图形变化-旋转,等边三角形的性质,根据旋转的性质求出∠A′OC=30°,然后解直角三角形求出点A′的横坐标与纵坐标的长度是解题的关键.7.A【解析】【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数,求得a、b的值.【详解】∵点A(-3,a)和点B(b,-2)关于原点对称,∴a=2,b=3,故选:A.【点睛】本题主要考查了关于原点对称的点的坐标特点,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.8.D【分析】解直角三角形求出AB,再求出CD,然后根据旋转的性质可得AB=AD,然后判断出△ABD 是等边三角形,根据等边三角形的三条边都相等可得BD=AB,然后根据CD=BC-BD计算即可得解.【详解】∵∠B=60°,∴∠C=90°-60°=30°,∵∴,∴BC=2AB=2,由旋转的性质得,AB=AD,∴△ABD 是等边三角形,∴BD=AB=1,∴CD=BC-BD=2-1=1.故选D .【点睛】本题考查了旋转的性质,等边三角形的判定与性质,解直角三角形,熟记性质并判断出△ABD 是等边三角形是解题的关键.9.A【解析】【分析】如图,过B 点作BC ⊥x 轴,垂足为C ,由旋转的性质,∠COB=60°,解直角三角形可求OC ,BC ,确定B 点坐标.【详解】如图,过B 点作BC ⊥x 轴,垂足为C ,依题意,得∠COB=60°,在Rt △OBC 中,×12,∴B -3).故选:A .【点睛】本题考查了点的坐标与图形旋转变换的关系.关键是根据题意,画出图形,解直角三角形求10.A【解析】【分析】根据对称中心图形的性质分别判断得出即可.【详解】①这两个图形能够完全重合,此选项错误;②对称点的连线应相交于一点,故此选项错误;③对称点所连的线段不一定相等,此选项错误;④对称点的连线相交于一点,此选项正确;⑤对称点所连的线段被同一点平分,此选项正确;⑥对应线段互相平行或在同一直线上,且一定相等,此选项正确.故正确的有3个.故选:A.【点睛】此题主要考查了对称图形的性质,根据其定义得出是解题关键.11.点A与点C【解析】【分析】根据中心对称图形的概念进行解答即可.【详解】∵图形为中心对称图形,点O为它的对称中心,∴点A与点C关于点O的对称,故答案为:点A与点C.【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.平行且相等【分析】根据△ABC与△DEF关于O点成中心对称,得出对应边之间的关系即可得出答案.∵△ABC 与△DEF 关于O 点成中心对称.∴线段BC 与EF 的关系是:平行且相等.故答案为平行且相等.【点睛】考查了中心对称的性质,熟记中心对称对应边的关系是解决问题的关键.13.()3,1-【解析】【分析】根据“平面直角坐标系中任意一点P (x ,y ),关于原点的对称点是(-x ,-y ),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】根据关于原点对称的点的坐标的特点,∴点P (-3,1)关于原点过对称的点的坐标是(3,-1).故答案为:(3,-1).【点睛】本题主要考查了关于原点对称的点的坐标的特点,比较简单.14.-3【解析】∵关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=-3,15.直尺 圆规 三角尺【解析】【分析】直尺,圆规是尺规作图的必备工具;三角尺是画直角的常用工具.【详解】在图案设计中常用的作图工具有直尺,圆规,三角尺.【点睛】本题考查常用的作图工具.熟知尺规作图和画直角的工具是解答此题的关键.16.先将甲逆时针旋转30度,再向左平移5cm ,就能与乙图重合.【分析】根据两图的位置关系结合几何变换的知识即可作出回答.【详解】由题意得:先将甲逆时针旋转30度,再向左平移5cm,就能与乙图重合.故答案为:先将甲逆时针旋转30度,再向左平移5cm,就能与乙图重合.【点睛】本题考查利用平移、旋转设计图案的知识,难度不大,此题还可以(先将甲向左平移5cm,再将甲逆时针旋转30度).17.5【分析】根据轴对称的性质进行组合即可.【详解】解:如图,可得五种图形.故答案:5.【点睛】本题主要考查轴对称的性质,灵活组合图形是关键.18.向右平移2个格,再向下平移3个格(答案不唯一)【分析】根据图形,对比图①与图②中位置关系,对选项进行分析,排除错误答案.【详解】观察图形可知:平移是先向下平移3格,再向右平移2格,也可以是先向右平移2格,再向下平移3格,故答案为先向下平移3格,再向右平移2格或向右平移2个格,再向下平移3个格.【点睛】本题考查了图形的平移方法,认真观察图形是解题的关键.19.平移旋转【解析】【分析】根据轴对称是沿某条直线翻折得到新图形,旋转是绕某个点旋转一定角度得到新图形,可得答案.【详解】如图:,图①中的图形除经过两次轴对称变换得到之外,还可以通过我们学过的平移变换得到,图②中的图形还可以通过旋转变换得到,故答案为:平移,旋转.【点睛】本题考查了几何变换的类型,旋转是绕某个点旋转一定角度得到新图形,观察时要紧扣图形变换特点,认真判断.20.2【分析】连接OA,AC′,如图,易得OC=2,再利用勾股定理计算出质得OC′=OC=2,根据三角形三边的关系得到AC′≤OA+OC′(当且仅当点A、O、C′共线时,取等号),从而得到AC′的最大值.【详解】连接OA,AC′,如图,∵点O 是BC 中点,∴OC=12BC=2,在Rt △AOC 中,∵△ABC 绕点O 旋转得△A′B'C′,∴OC′=OC=2,∵AC′≤OA+OC′(当且仅当点A 、O 、C′共线时,取等号),∴AC′的最大值为即在旋转过程中点A 、C′两点间的最大距离是故答案为【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.21.(1)略(仅一种)(2′) (2)略(两种)(6′) (3)S="6" (8′)【详解】本题主要考查轴对称图形和中心对称图形.(1)做AO ⊥CD 于点O ,并延长到E ,使EO=AO ,连接BC 并延长至F ,使BC=CF,连接EF 即可;(2)利用中心对称图形的性质,可以做一个平行四边形;(3)根据所围成的长方形的面积减去周边三角形的面积,即可求得平行四边形的面积22.1P 点的坐标为()1,0,3P 点的坐标为52⎛ ⎝⎭,点50P 的坐标为()49,0,点2011P 的坐标为()2011,0.【解析】【分析】由图形可直接得到P 1点的坐标为(1,0);P 2点的坐标为(1,0);作P 3B ⊥CD 于B ,利用等边三角形的性质易得CB=12,P 3P 3点的坐标为(52;P 4点和P 5点的坐标可直接得到,都为(4,0);P 6点的坐标为(6-12,2,所以脚标数为3的倍数的点,它的横坐标为脚标数减12,纵坐标为2;脚标数除以3,余数为1和2的点的横坐标都等于余数为1的脚标数,纵坐标为0,依此规律易得P 50,P 2011的坐标.【详解】1P 点的坐标为()1,0;2P 点的坐标为()1,0;作3P B CD ⊥于B ,如图,∵3P CD 为等边三角形,∴1CB 2=,3P B =∴3P 点的坐标为52⎛ ⎝⎭;4P 点的坐标为()4,0;5P 点的坐标为()4,0;6P 点的坐标为162⎛- ⎝⎭; 而503162=⨯+,201136701=⨯+,∴点50P 的坐标为()49,0,点2011P 的坐标为()2011,0.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了等边三角形的性质.23.见解析.【分析】解题的关键是观察图形,找出图中图形坐标的变化情况,总结出规律.【详解】解:根据图形和坐标的变化规律可知:由()()12→:纵坐标没变,横坐标变为原来的2倍,因此图形做了横向拉伸变化; 由()()23→:点A 横坐标没变,纵坐标变为原来的相反数,因此图形关于x 轴对称; 由()()34→:图形中三个顶点的横坐标没变,纵坐标都增加了1-,即点A 、点O 、点B 向下平移一个单位.因此图形做了平移变化.【点睛】本题主要考查了图形的平移和轴对称变换,解题的关键是要掌握坐标的变化和图形之间对应的变化规律,根据坐标的变化特点可推出图形的变化.24.(1)见解析;(2)24;(3)AC CE =.理由见解析.【解析】【分析】(1)根据题意得∠EBD=∠ABC=60°则∠ABE=120°,所以三角尺旋转了120度;根据旋转的性质得BC=BD ,可判断△BCD 为等腰三角形;(2)含30度三角形三边的关系由∠A=30°,BC=8得到AB=2BC=16,则AD=AB+BD=24;(3)由∠EBD=∠ABC=60°得到∠EBC=60°,根据“SAS”可判断△ABC ≌△EBC ,所以AC=CE .【详解】(1)∵EBD ABC 60∠∠==,∴ABE 120∠=,∴三角尺旋转了120度;∵BC BD =,∴BCD 为等腰三角形;(2)在Rt ABC ,A 30∠=,BC 8=,∴AB 2BC 16==,∴AD AB BD 16824=+=+=;(3)AC CE =.理由如下:连结CE ,如图,∵EBD ABC 60∠∠==,∴EBC 60∠=,∴ABC EBC ∠∠=,在ABC 和EBC 中BA BE ABC EBC BC BC =⎧⎪∠=∠⎨⎪=⎩,∴()ABC EBC SAS ≅,∴AC CE =.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度三角形三边的关系和三角形全等的判定与性质.25.见解析.【解析】【分析】连接AD 、BC ,根据对角线互相平分的四边形是平行四边形求出四边形ABCD 是平行四边形,再根据平行四边形的中心对称性判断出E 、F 是对称点,然后根据轴对称性解答.【详解】证明:如图,连接AD 、BC ,∵AC 与BD 互相平分且相交于点O ,∴四边形ABCD 是平行四边形,∴点O 是平行四边形ABCD 的对称中心,∵AE CF =,∴点E 、F 是对称点,∴点E 、O 、F 在同一直线上且OE OF =.【点睛】本题考查了中心对称,主要利用了平行四边形的判定与中心对称性,对称点的连线经过对称中心并且被对称中心平分,熟记性质并作辅助线构造出平行四边形是解题的关键. 26.()1这个图形是旋转对称图形,对称中心为AC 的中点;()23个,点A ,点C ,AC 的中点【分析】(1)根据旋转对称图形的定义得出即可;(2)利用△ACD 旋转后能与△ABC 重合,结合图形得出旋转中心.【详解】解:()1这个图形是旋转对称图形,对称中心为AC 的中点;()23个,旋转中心可以为:点A ,点C ,AC 的中点.【点睛】本题考查了旋转对称图形、中心对称图形的性质,解题的关键是熟练的掌握旋转对称图形、中心对称图形的性质.27.初步探究:BCE 的面积为212a .理由见解析;简单应用:9BCE S =. 【解析】【分析】初步探究:作EF ⊥BC 于F ,如图2,由旋转的性质得AB=EB ,∠ABE=90°,再根据等角的余角相等得到∠A=∠EBF ,则可根据“AAS”可判断△ABC ≌△BEF ,所以BC=EF=a ,然后根据三角形面积公式可得到S △BCE ═12a 2; 简单应用:作AH ⊥BC 于H ,连结EH ,如图3,根据等腰三角形的性质得CH=BH=12BC=3,然后利用探究的结论得到S △BEH =12BH 2=92,于是有S △BCE =2S △BEH =9. 【详解】初步探究:BCE 的面积为21a 2.理由如下: 作EF BC ⊥于F ,如图2,∵线段AB 绕点B 顺时针旋转90,得到线段BE ,∴AB EB =,ABE 90∠=,∴ABC EBF 90∠∠+=,∵ABC A 90∠∠+=,∴A EBF ∠∠=,在ABC 和BEF 中ACB EFB A EBF AB BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC BEF ≅,∴BC EF a ==, ∴2BCE 11S BC EF a 22=⋅=; 简单应用:作AH BC ⊥于H ,连结EH ,如图3,∵AB AC =, ∴1CH BH BC 32===, ∵线段AB 绕点B 顺时针旋转90得到线段BE , ∴2BEH 19SBH 22==, ∴BCE BEH S 2S 9==.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是构建全等三角形.28.①旋转90∘;②BE=DF,BE⊥DF.证明见解析.【分析】①AB和AD是对应线段,那么应绕点A逆时针旋转90°得到;②关系应包括位置关系和数量关系.旋转前后的三角形是全等的,延长BE交DF于点G,利用对应角相等,可得到垂直.【详解】①在图4中可以通过旋转90∘使△ABE变到△ADF的位置.②由全等变换的定义可知,通过旋转90∘,△ABE变到△ADF的位置,只改变位置,不改变形状大小,∴△ABE≅△ADF.∴BE=DF,∠ABE=∠ADF.∵∠ADF+∠F=90∘,∴∠ABE+∠F=90∘,∴BE⊥DF.【点睛】本题主要考查翻折变换(折叠问题),关键在于熟悉旋转前后的三角形全等是个突破口.。

九年级数学上册 第二十三章 旋转 单元测试卷及答案(2023年人教版)

九年级数学上册 第二十三章 旋转  单元测试卷及答案(2023年人教版)

九年级数学上册第二十三章旋转单元测试卷及答案(人教版)一、选择题(每题3分,共30分)1.【教材P69习题T2拓展】垃圾混置是垃圾,垃圾分类是资源.下列可回收物、有害垃圾、厨余垃圾、其他垃圾四种垃圾回收标识中,既是轴对称图形又是中心对称图形的是()2.【教材P60例题变式】如图,将方格纸中的图形绕点O逆时针旋转90°后得到的图形是()3.【教材P69练习T2改编】点(-1,2)关于原点的对称点坐标是() A.(-1,-2) B.(1,-2) C.(1,2) D.(2,-1) 4.如图,四边形ABCD为正方形,O为对角线AC,BD的交点,则△COD绕点O经过下列哪种旋转可以得到△DOA?()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°(第4题)(第5题)(第6题)(第7题)5.【教材P77复习题T7变式】如图,点O是▱ABCD的对称中心,EF是过点O 的任意一条直线,它将平行四边形分成两部分,四边形ABOE和四边形CDOF 的面积分别记为S1,S2,那么S1,S2之间的关系为()A. S1>S2B. S1<S2C.S1=S2 D. 无法确定6.如图,将Rt△ABC(∠B=25°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C ,A ,B 1在同一条直线上,那么旋转角等于( )A .65°B .80°C .105°D .115°7.如图,四边形ABCD 是边长为5的正方形,E 是DC 上一点,DE =1,将△ADE绕点A 顺时针旋转到与△ABF 重合,则EF =( ) A.41 B.42 C .5 2 D .2138.如图,在平面直角坐标系中,将点P (2,3)绕原点O 顺时针旋转90°得到点P ′,则点P ′的坐标为( )A .(3,2)B .(3,-1)C .(2,-3)D .(3,-2)(第8题) (第9题) (第10题)9.如图,点P 是等腰直角三角形ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP′B =135°,P ′A ∶P ′C =1∶3,则P ′A ∶PB 等于( )A .1∶ 2B .1∶2 C.3∶2 D .1∶ 310.如图,在平面直角坐标系中,将边长为1的正方形OABC 绕点O 顺时针旋转45°后得到正方形OA 1B 1C 1;依此方式,绕点O 连续旋转2 022次得到正方形OA 2 022B 2 022C 2 022,那么点A 2 022的坐标是( )A.⎝ ⎛⎭⎪⎫22,-22 B .(-1,0) C.⎝ ⎛⎭⎪⎫-22,-22 D .(0,-1) 二、填空题(每题3分,共24分)11.【教材P 63习题T 5变式】如图,风车图案围绕着旋转中心至少旋转________度,会和原图案重合.(第11题) (第12题) (第13题)12.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为________.13.如图所示,图形①经过________变换得到图形②;图形①经过________变换得到图形③;图形①经过________变换得到图形④.(填“平移”“旋转”或“轴对称”)14.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=________.(第14题)(第15题)(第16题)(第17题) 15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M的坐标是__________,点N的坐标是__________.16.如图,在Rt△OAB中,∠OAB=90°,O A=AB=6,将△O AB绕点O按逆时针方向旋转90°得到△OA1B1.连接AA1,则四边形OAA1B1的面积为________.17.如图,将△ABC在平面内绕点A逆时针旋转40°到△AB′C′的位置,若CC′∥AB,则∠CAB′的度数为________.18.如图,将一个45°角的顶点与正方形ABCD的顶点A重合,在正方形的内部绕着点A旋转,角的两边分别与CD,CB边相交于F,E两点,与对角线BD交于N,M两点,连接EF,则下列结论:①AE=AF;②EF=BE+DF;③△CEF的周长等于正方形ABCD周长的一半;④S△AEF =S△ABE+S△ADF.其中正确的结论有____________(填序号).三、解答题(19~22题每题8分,23题10分,其余每题12分,共66分) 19.如图,在△ABC中,∠B=10°,∠ACB=20°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD的中点.(1)指出旋转中心,并求出旋转角的度数;(2)求∠BAE的度数和AE的长.20.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2,C2的坐标.21.【教材P70习题T4拓展】平面直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.22.如图,在6×6的网格中已经涂黑了三个小正方形,请按下列要求画图.(1)在图①中涂黑一个小正方形,使涂黑的四个小正方形组成一个轴对称图形.(2)在图②中涂黑一个小正方形,使涂黑的四个小正方形组成一个中心对称图形.23.如图,△BAD是由△BEC在平面内绕点B旋转60°得到的,且AB⊥BC,BE =CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.已知△ABC与△DEC是两个大小不同的等腰直角三角形.(1)如图①,连接AE,DB,试判断线段AE和DB的数量和位置关系,并说明理由;(2)如图②,连接DB,将线段DB绕D点顺时针旋转90°到DF,连接AF,试判断线段DE和AF的数量和位置关系,并说明理由.25.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,试判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α.答案一、1.B 2.C 3.B 4.C 5.C 6.D7.D8.D9.B10.B点规律:2022=252×8+6,则点A2022在点A6的位置,点A6与点C重合.二、11.6012.π13.轴对称;旋转;平移14.215.(-1,-3);(1,-3)16.3617.30°18.②③④点思路:将△ADF绕点A顺时针旋转90°,点D与点B重合,利用全等的知识判断.三、19.解:(1)旋转中心是点A.∵∠CAB=180°-∠B-∠ACB=150°,∴旋转角是150°.(2)∠BAE=360°-150°×2=60°.由旋转的性质得△ABC≌△ADE,∴AB=AD,AC=AE.又∵点C是AD的中点,∴AC=12AD=12AB=12×4=2.∴AE=2.20.解:(1)如图,△A1B1C1即为所求.(2)如图,△AB2C2即为所求.点B2的坐标为(4,-2),点C2的坐标为(1,-3).21.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.解得x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0.∴x=-1.∴x+2y=-7.22.解:(1)如图①所示:①、②、③、④处涂黑都可以使涂黑的四个小正方形组成一个轴对称图形;(2)如图②所示:①、②处涂黑都可以使涂黑的四个小正方形组成一个中心对称图形.23.(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°得到的,∴DB=CB,∠ABE=∠DBC=60°.∵AB⊥BC,∴∠ABC=90°.∴∠CBE=30°.∴∠DBE=30°.∴∠DBE=∠CBE.在△BDE和△BCE中,DB=CB,∠DBE=∠CBE,BE=BE,∴△BDE≌△BCE(SAS).(2)解:四边形ABED为菱形.理由:由(1)得△BDE≌△BCE,∴EC=ED.∵△BAD是由△BEC旋转得到的,∴△BAD≌△BEC.∴BA=BE,AD=EC.又∵BE=CE,EC=ED,∴BA=BE=AD=ED.∴四边形ABED为菱形.24.点方法:(1)可以用观察法初步判断AE和DB的数量、位置关系,通过边长DB交AE于点M,利用全等的知识进行验证.解:(1)AE=DB,AE⊥DB.理由:如图①,延长DB交AE于点M.由题意可知,CA=CB,CE=CD,∠ACE=∠BCD=90°,∴△ACE≌△BCD(SAS).∴AE=DB,∠AEC=∠BDC.∵∠ACE=90°,∴∠AEC+∠EAC=90°,∴∠BDC+∠EAC=90°.∴在△AMD 中,∠AMD =180°-90°=90°.∴AE ⊥DB .(2)DE =AF ,DE ⊥AF .理由:如图②,设ED 与AF 相交于点N ,由题意易知BE =AD .∵∠EBD =∠C +∠BDC =90°+∠BDC ,∠ADF =∠BDF +∠BDC =90°+∠BDC ,∴∠EBD =∠ADF .又∵DB =DF ,∴△EBD ≌△ADF (SAS).∴∠E =∠FAD ,DE =AF .∵∠E =45°,∴∠FAD =45°.又∵∠EDC =45°,∴∠AND =90°.∴DE ⊥AF .25.解:(1)∠ABD =30°-12α.(2)△ABE 为等边三角形.证明如下:连接AD ,CD .∵线段BC 绕点B 逆时针旋转60°得到线段BD ,∴BC =BD ,∠DBC =60°.∴△BCD 是等边三角形.∴BD =CD .∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 和△ACD 中,AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD (SSS).∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-12α150°=12α.∴∠BAD =∠BEC .在△ABD 和△EBC 中,∠BAD =∠BEC ,∠ABD =∠EBC ,BD =BC ,∴△ABD ≌△EBC (AAS).∴AB =BE .又∵∠ABE =60°,∴△ABE 为等边三角形.(3)由(2)可知△BCD 为等边三角形,∴∠BCD =60°.∵∠BCE =150°,∴∠DCE =150°-60°=90°.∵∠DEC =45°,∴△DCE 为等腰直角三角形,∴DC =CE =BC .∴∠CBE =∠BEC .∵∠BCE =150°,∴∠EBC =180°-150°2=15°.而由(2)知∠EBC =30°-12α,∴30°-12α=15°.∴α=30°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学上册第二十三章旋转单元检测题姓名:__________班级:__________考号:__________一﹨选择题(本大题共12小题,每小题4分,共48分。

)1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°3.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣1,0),B(﹣2,3),C(﹣3,1),将△ABC绕点A按顺时针方向旋转90°,得到△AB′C′,则点B′的坐标为()A.(2,1)B.(2,3)C.(4,1)D.(0,2)4.点P(﹣2,1)关于原点O对称的点的坐标是( )A.(﹣2,﹣1)B.(2,1)C.(1,﹣2)D.(2,﹣1)===,则这个四边形5.四边形ABCD的对角线相交于点O,且AO BO CO DO()A.仅是轴对称图形B.仅是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形,又不是中心对称图形6.如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是( ).A.△DEF是△ABC绕点O顺时针旋转90°得到的B.△DEF是△ABC绕点O逆时针旋转90°得到的C.△DEF是△ABC绕点O顺时针旋转60°得到的D.△DEF是△ABC绕点O顺时针旋转120°得到的7.时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是()A.30°B.60°C.90°D.9°8.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a) D.(b,﹣a)9.如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A.B.C.D.10.如图,∠AOB=90°,∠B=30°,△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的.若点A′在AB上,则旋转角α的大小可以是()A.30°B.45°C.60°D.90°11.图1为一张三角形ABC纸片,点P在BC上,将A折至P时,出现折痕BD,其中点D在AC上,如图2所示,若△ABC的面积为80,△ABD的面积为30,则AB与PC的长度之比为()A. 3:2 B. 5:3 C. 8:5 D. 13:812.如图所示,边长为2的正三角形ABO的边OB在x轴上,将△ABO绕原点O逆时针旋转30°得到三角形OA1B1,则点A1的坐标为()A.(,1)B.(,﹣1)C.(1,﹣) D.(2,﹣1)二﹨填空题(本大题共6小题,每小题4分,共48分)13.点A(a﹣1,4)关于原点的对称点是点B(3,﹣2b﹣2),则a= ,b= .14.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=.15.如图,△ABC的顶点坐标分别为A(4,6)﹨B(5,2)﹨C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是_______.16.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是_____17.两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= cm.18.如图,已知正方形ABCD的边长为3,E﹨F分别是AB﹨BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.三﹨解答题(本大题共8小题,共78分)19.如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.20.如图,△ABO与△CDO关于O点中心对称,点E﹨F在线段AC上,且AF=CE.求证:FD=BE.yx OCBA123456–1–2–3–4–5–6–1–2–3–4–5–612345621.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,-1),B(-5 ,-4),C(-2 ,-3)(1)作出△ABC向上平移6个单位,再向右平移7个单位的△A1B1C1。

(2)作出△ABC关于y轴对称的△A2B2C2,并写出点C2的坐标;(3)将△ABC绕点O顺时针旋转900后得到△A3B3C3,请你画出旋转后的△A3B3C322.如图,在Rt△ABC中,∠ACB=90°,点D,E分别在AB,AC上,CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CF,连接EF.(1)补充完成图形;(2)若EF∥CD,求证:∠BDC=90°.23.正方形ABCD的边长为3,E﹨F分别是AB﹨BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM;(2)当AE=1时,求EF的长.24.如图,在Rt△ABC中,∠ACB=90°,点D,F分别在AB,AC上,CF=CB.连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.25.如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转到△ABF的位置.完成下列问题:(1)旋转中心是点_______ ,旋转角度是___________度;(2)若连结EF,则△AEF是______________三角形;并证明;(3)若四边形AECF的面积为25,DE=2,求AE的长.26.旋转变换在平面几何中有着广泛的应用.特别是在解(证)有关等腰三角形﹨正三角形﹨正方形等问题时,更是经常用到的思维方法,请你用旋转交换等知识,解决下面的问题.如图1,△ABC与△DCE均为等腰直角三角形,DC与AB交于点M,CE与AB交于点N.(1)以点C为中心,将△ACM逆时针旋转90°,画出旋转后的△A′CM′(2)在(1)的基础上,证明AM2+BN2=MN2.(3)如图2,在四边形ABCD中,∠BAD=45°,∠BCD=90°,AC平分∠BCD,若BC=4,CD=3,则对角线AC的长度为多少?(直接写出结果即可,但在图中保留解决问题的过程中所作辅助线﹨标记的有关计算数据等)0.第二十三章旋转单元检测题答案解析一﹨选择题1.分析:逐一分析四个选项中的图形,可那个图形既是轴对称图形又是中心对称图形,由此即可得出结论.解:A.是轴对称图形不是中心对称图形;B﹨既不是轴对称图形又不是中心对称图形;C﹨既是轴对称图形又是中心对称图形;D﹨是轴对称图形不是中心对称图形.故选C.2..解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.3.解:如图所示:结合图形可得点B′的坐标为(2,1).故选A.4.分析:根据点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横﹨纵坐标都变成相反数,可得答案.解:点P(﹣2,1)关于原点O对称的点的坐标是(2,﹣1),故选:D.===,所以四边形ABCD是矩形.5.C解析:因为AO BO CO DO6.A.解:∵△ABC和△DEF为等边三角形,AB=DE,∴△ABC≌△DEF,∵点B,C,D在x轴上,点A,E,F在y轴上得出A与D是对应点,∴△DEF是△ABC绕点O顺时针旋转90°得到的,故选:A.7. 分析:时针12小时走360°,时针旋转的旋转角=360°×时间差÷12.解:∵时针从上午的6时到9时共旋转了3个格,每相邻两个格之间的夹角是30°,∴时针旋转的旋转角=30°×3=90°.故选C.8.分析:根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.9.分析:根据旋转的性质可得AC′=AC,∠BAC′=30°,然后利用∠BAC′的正切求出C′D的长度,再利用三角形的面积公式列式计算即可求解.解:根据题意,AC′=AC=1,∵∠B′AB=15°,∴∠BAC′=45°﹣15°=30°,∴C′D=AC′tan30°=,∴S阴影=AC′•C′D=×1×=.故选B.点评:本题考查了旋转的性质,等腰直角三角形的两直角边相等,锐角等于45°的性质,是基础题,难度不大.10.分析:根据旋转的性质:旋转变化前后,图形的大小﹨形状都不改变,进行分析.解:∵∠AOB=90°,∠B=30°,∴∠A=60°.∵△A′OB′可以看作是由△AOB绕点O顺时针旋转α角度得到的,∴OA=OA′.∴△OAA′是等边三角形.∴∠AOA′=60°,即旋转角α的大小可以是60°.故选C11. 分析:如图,作辅助线;首先求出△BDP的面积,进而求出△DPC的面积;借助三角形的面积公式求出的值;由旋转变换的性质得到AB=PB,即可解决问题.解:如图,过点D作DE⊥BC于点E;由题意得:S△ABD=S△PBD=30,∴S△DPC=80﹣30﹣30=20,∴=,由题意得:AB=BP,∴AB:PC=3:2,故选A.12. 解:如图,设A1B1与x轴相交于C,∵△ABO是等边三角形,旋转角为30°,∴∠A1OC=60°﹣30°=30°,∴A1B1⊥x轴,∵等边△ABO的边长为2,∴OC=×2=,A1C=×2=1,又∵A1在第四象限,∴点A1的坐标为(,﹣1).故选:B.二﹨填空题13.解:根据平面内两点关于关于原点对称的点,横坐标与纵坐标都互为相反数,∴a﹣1+3=0,4﹣2b﹣2=0,即:a=﹣2且b=1,故答案为:﹣2,1.14.解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.15.(-3,3)。

相关文档
最新文档