第8章 羰基化过程

合集下载

8羰基合成新详解

8羰基合成新详解

8.1 概述
主要内容:
1、基本概念(重点) 2、羰基合成反应类型(重点) 3、羰基合成反应催化剂
基本概念
1、羰基合成定义 :
烯烃与合成气(CO/H 2)或一定配比的一氧化碳 及氢气在过渡金属配合物的催化作用下发生加成反应, 生成比原料烯烃多一个碳原子的醛。这个反应被命名 为羰基合成 (oxo synthesis) ,也称作R? elen反应(即罗 兰反应)。
P(OR)3
3、各类催化剂的特点
①羰基钴催化剂 羰基钴催化剂的活性组分、热稳定性
差、容易分解;异构化活性高
P(OR)3
3、各类催化剂的特点
②膦羰基钴催化剂 热稳定性增加,对直链产物的选择性
增高,加氢的活性较高,副产物少, 不足:活性降低,对烯烃的氢甲酰化
反应的适应性较差。
P(OR)3
3、各类催化剂的特点
基本概念
3、羰基化反应(亦称羰化反应) 随着一碳化学的发展,有一氧化碳参与的反应类
型逐渐增多,通常将在过渡金属络合物(主要是羰基络 合物)催化剂存在下,有机化合物分子中引入 羰基 (>C=O) 的反应均归入羰化反应的范围。
羰基合成的重要性
①羰基合成的初级产品是醛。 在有机合成中醛是最活 泼的基团之一,可进行加氢成醇、氧化成酸、氨化成 胺以及歧化、缩合、缩醛化等一系列反应; ②原料烯烃的多种多样和醇、酸、胺等产物的后续加 工,由此构成 以羰基合成为核心的内容十分丰富的产 品网络,应用领域涉及化工领域的多个方面。
(2)烯烃衍生物的氢甲酰化
不饱和醇、醛、酯、醚,含卤素、含氮化合物等中的 双键都能进行羰基合成反应,但官能团不能参加反应。
HO
?
CH 2
?
CH
?

有机化学第八章醛酮醌

有机化学第八章醛酮醌
答:都可以。 注意:乙酸不可以(Why?)
乙酸中也含有CH3CO基团,但不发生碘仿反应,为什么?
乙酸在NaOI条件下,形成CH3COO-,氧负离子 与羰基共轭,电子均匀化的结果,降低了羰基碳的 正电性,因此氢活泼性降低,不能发生碘仿反应。
3、氧化反应
由于醛的羰基碳上有一个氢原子,所以醛比酮容易氧 化;使用弱的氧化剂都能使醛氧化:
• 凡碳上有氢原子的-羟基醛都容易失去一分子水,生成 ——烯醛。 • 含有氢原子的酮也能起类似反应,生成,-不饱和酮
补充: • 完成下列反应,写出主要产物。
• 两种不同的含有氢原子的羰基化合物之间进行羟醛 缩合反应(称为交叉羟醛缩合);若参加反应的一种 化合物不含-H原子,产物种类减少:
(黄色) 熔点 116℃
醌氢醌(暗绿色) 171 ℃
无色
• 对苯醌与对苯二酚可生成分子络合物,称为醌氢醌, 其缓冲溶液可用作标准参比电极。 • 对苯二酚的水溶液中加入FeCl3,溶液先呈绿色,再 变棕色,最后也析出暗绿色的醌氢醌晶体。
二、 萘醌 — 维生素K1、K3为萘醌衍生物。 黄
萘醌:有1,4-、1,2-和 2,6-三种异构体。
(3) 克莱门森(Clemmensen)还原——转化为烃 • 将醛、酮用锌汞齐加盐酸还原成烃:
• 这是将羰基还原成亚甲基的一个较好方法,在有机合成上
常应用(注意:对醛-CHO而言还原到甲基-CH3)。
•芳烃与直链卤烷进行傅-克烷基化反应有重排,所以可先进 行傅-克酰基化反应再用克莱门森还原反应制取直链烷基苯:
色 挥

•1,4-萘醌的制备1


•工业上用氧气氧化。

•1,4-萘醌的制备2
双烯合成
氧化

第8章羰基缩合反应

第8章羰基缩合反应

O H3C C OH
+
CX3
O H3 C C O
如果是CHI3,则出现黄色沉淀
二、a – 卤代反应
(1)Aldehyde and ketone
O H3C C CI3 O H3C C CI3 OH O H3C C O + O H3C C OH
OH
+ CI3
CHI3 (yellow)
碘仿反应:用于鉴别甲基酮和能氧化为甲基酮的醇
二、a – 卤代反应
(1)Aldehyde and ketone 酸催化机理:
H H H C C C C OH O Ⅰ 质子化相对容易 X C C OH H

C C OH X C C O Ⅱ
ห้องสมุดไป่ตู้
X X 快
比较I和II,由于卤素的吸电子作用,II中羰基氧上的电 子云密度降低,因此质子化能力降低,反应多停留在 一卤代阶段
二、a – 卤代反应
(1)Aldehyde and ketone
O H OH H3C C CH2X Ⅱ O H3C C CHX2 Ⅲ O H3C C CX3 Ⅳ
OH OH
O H3C C CH2X
O H3C C CH2
X-X -X
O H3C C CX2
O H3C C CX2
X-X -X
O H3C C CX3 OH + CHX3
五、a, - 不饱和羰基的亲核加成
1. Michael addition
• It is the addition of a a, -unsaturated carbonyl compound with an enolate as a nucleophile • ——1, 4 – addition • ——to form 1, 5-dicarbonyl compounds

《化学工艺学》教学大纲

《化学工艺学》教学大纲

《化学工艺学》教学大纲中文名称:化学工艺学授课专业:化学工程与工艺学时:40 学分:2.5相关课程:化工原理化工热力学传递过程反应工程分离工程课程内容:本课程根据化学工业的结构特点,以反应单元为主线组织教学,共介绍了8类主要的反应单元:烃类热裂解、芳烃转化、合成气的生产、加氢过程、脱氢过程、烃类选择性氧化、羰基化过程和氯化过程。

每一个反应单元均介绍典型产品的生产原理(包括主副反应、反应机理、催化剂组成等),工艺条件(包括从热力学和动力学上分析影响因素和寻找最佳工艺条件)和工艺流程(包括反应器选型、组织原则、生产方法比较及最新进展)。

根据新技术、新工艺发展趋势,介绍绿色化学化工概论、绿色化学工艺技术进展专题等内容。

课程教学的基本要求:本课程的教学环节包括课堂讲授,答疑和期末考试。

重点放在分析和讨论典型产品生产工艺的化学反应、分离部分的原理、影响因素、确定工艺条件的依据、反应设备的结构特点、流程的组织等。

同时,对工艺路线、流程的经济技术指标、能量回收利用、副产物的回收利用及废物处理作一定的评价。

培养学生理论联系实际的能力,为其将来从事化工过程的开发、设计、建设和科学管理打下牢固的化学工艺基础。

课程教学内容和学时分配:第1章绪论(1学时)基本要求:了解化学工艺学的研究内容,化学工业的概况、主要化工原料及产品。

重点:化学工艺与化学工程的关系,主要的化工原料难点:介绍化学工艺与化学工程研究内容的差别和相互关系,使学生认识到化工工艺在化工生产、科研中的主导地位,激发其学习热情。

第2章化学工艺基础(2学时)基本要求:了解主要化工原料及其加工过程;化学工艺学的基本概念。

重点:石油的一次加工和二次加工的工艺和特点;化工过程的主要效率指标;热量衡算和物料衡算难点:掌握化工生产工艺流程的组织的基本方法,学会分析复杂流程的单程转化率、全程转化率、选择性等效率指标,建立初步的工程概念。

第3章烃类热裂解(4学时)基本要求:了解烃类热裂解的化学反应及其热力学和动力学特征;掌握烃类裂解的一次反应和二次反应以及对烯烃收率影响规律;掌握各个工艺参数和原料性质对裂解产物分布的影响;了解管式裂解炉的结构、材料和炉型;掌握裂解气的各种净化方法、原理和工艺条件;熟悉不同分离顺序流程及精馏分离的工艺参数。

091104-10_第八章_羰基化合物的反应

091104-10_第八章_羰基化合物的反应

而在PH=6时,
以单负离子存在。
PH=6时的单负离子能产生亲核催化作用:
例8-4:
乙酰基水杨酸的水解动力学研究也显示出负离子质体水解比中性质体 快,这说明也存在分子内催化作用。可能存在以下方式 ①亲核催化:
这是一个亲核催化过程,但同位素标记法否定了这个过程,因为 酚还不是一个好的离去基团。
但乙酰水杨酸在H2O18中水解产物中没有18O进入。可见水杨酸与乙酸 的混合酸酐并不是乙酰水杨酸水解反应的中间体。
第八章 习题
判定下列分子可能有几种方式进行分子内催化酯水解反应,写出反应 机理及能体现该催化作用的过渡态:
中间体的稳定性降低金属锂试剂与羰基化合物的加成速度是与其聚合程度有关的二聚体比四聚体快10倍左右二聚体的反应一般是经过一个环状过度态
第八章 羰基化合物的反应
羰基是最常见的官能团,同时也是反应极其丰富的官能团。羰基 化合物构成了有机化学中相当大一部分,醛、酮是最能反映羰基性质 的化合物,而羧酸、酯,酰胺等,也由于在分子中存在羰基结构而在 性质上有所表现。 在羰基的大部分反应中,亲核性质体对羰基中心碳的进攻(加成) 是关键的一步:
8.2.2 含NH2化合物对羰基的加成
亲核性质体对羰基化合物加成产生的四面体中间体,通常是不稳 定的,会继续断裂形成新的双键。含氨基化合物对羰基的加成是此类 反应中较典型的:
这些反应都是可逆的,常常通过这些反应的逆反应即水解反应 来对其机理进行研究。
亚胺在酸性水溶液中极易水解,水解机理随底物及体系PH值而变化:
羧酸根负离子也可作为亲核催化剂,此时要求R’O- 的碱性< R’’CO2-。
在中间体中,如果R”CO2-的离去比-OR’快,则观察不到催化现象。
8.6 酯的胺解

第八章缩合反应

第八章缩合反应

第八章缩合反应
四、酯—酮缩合
➢ 1mol酮与1mol酯进行混合缩合,就得 到β—二酮类化合物。因为酮旳α—活泼 氢一般比酯旳α—活泼氢活泼,故在碱性 催化剂作用下,因应首先形成负碳离子, 然后与酯旳羰基进行亲核加成,缩合反应 旳成果是酮旳α—碳原子酰基化。例如
第八章缩合反应
➢若用酮与不含α—活泼氢旳能进行混合 缩合,能得到纯度较高旳产物。例如
第八章缩合反应
三、分子内旳酯—酯缩合
二元酸酯能够发生分子内旳和分子间旳酯缩合 反应。假如分子中旳两个酯基被三个以上旳碳 原子隔开时,就会发生分子内旳缩合反应,形 成五员环或六员环旳酯。这种环化酯缩合反应 又称为狄克曼(Dieckmann)反应。例如
第八章缩合反应
假如两个酯基之间只被三个或三个下列旳碳原子隔开 时,就不能发生闭环酯缩合反应因为这么就要形成四 员环或不大于四员环旳体系。但能够利用这种二元酸 酯与不合α—活泼氢旳二元酸进行分子间缩合,一样也 可得到环状羰基酯。例如在合成樟脑时,其中有一步 反应就是用β—二甲基戊二酸酯与草酸酯缩合,得到五 员环旳二β—羰基酯。例如
Michael反应常用旳碱能够是较强旳碱,如叔丁 醇钾、乙醇钠(钾)、氢化钠、氨基钠、金属钠等, 也能够用吡啶、六氢吡啶、三乙胺等较弱旳碱。 碱旳选择一般取决于反应物旳活性大小及反应条 件。对于高活性反应物,常用六氢吡啶作催化剂, 它具有副反应少旳优点,但反应速度较慢;对于 低活性物质,则需选择更强旳碱。
第八章缩合反应
三、羰基合成反应 在铁、钴、镍等过渡金属羰基化合物旳催化下,烯烃
和一氧化碳在氢气存在下反应生成醛,或在水(或醇) 存在下生成羧酸(或羧酸酯)旳反应,被统称为羰基合 成反应。
➢烯烃旳反应活性与其本身旳构造有关,一般地 说,直链末端烯烃>直链非末端烯烃>支链末端 烯烃;环烯旳反应速度为C5>C6>C7>C8,即甲 酰基优先导入位阻小旳一边,叔碳原子处不发生 甲酰化。例如

第八章 醛、酮

第八章 醛、酮

>H
R
C=O
>(
)
>
CH3 C=O R
由于HCN是一种极易挥发的剧毒液体,一般采用 NaCN 或 KCN 水溶液与醛酮混合,再慢慢滴加硫酸。 这样可使反应产生的HCN随即与醛酮反应。即使这样 操作也必须在通风厨中进行。
18
2. 加亚硫酸氢钠
R H C=O + NaHSO3
O-Na+ S O R H C OH SO3Na R H
O O O O O O H C H R C H Ar C H CH3CCH3 R CCH3 R-C-R
烃基的斥电子效应和空间位阻增大
O Ar-C-Ar
课堂练习2.下列各化合物发生加成反应活性顺序?
O CH3 (CH 2 )2 CHO
O
C6H5CHO
(A)
(B)
(C)
CH3
(D)
C CH2C6H5
A >C > B > D
H(R)
碳与氧相连 氢易被氧化
α碳有吸电子基 α-H有弱酸性
羰基碳有亲电性 可与亲核试剂结合
12
不同结构醛酮的反应活性
亲核加成反应的活性与羰基碳原子亲电性强弱、 羰基所连R基大小,即诱导效应、空间效应等因 素有关。
诱导效应
羰基碳原子连有吸电子基团将使羰基碳原子的正电 性↑,从而有利于亲核试剂的进攻;反之,连有斥 电子基团将使羰基碳原子的正电性↓,不利于亲核 试剂的进攻。
(—)
白色结晶
3. 加醇——形成缩醛(或缩酮)
在干燥HCl存在的条件下,醇与醛加成生成半缩 醛;然后,半缩醛又与另一分子醇反应,生成缩醛。
OR' OH O HOR' 干HCl R C H + H2O R C H R C H + HOR' 干HCl OR' OR'

医本有机化学第8章羟基酸和酮酸

医本有机化学第8章羟基酸和酮酸

羟基酸的代表化合物
H2C HO C H2C COOH HC COOH COOH COOH H HO C 酶 +H2O HC H2C COOH COOH COOH COOH COOH 酶 C COOH -H2O H2C COOH O C 氧化酶 -2H HC H2C COOH COOH COOH
顺-乌头酸 脱羧 -CO2 O C H2C
H CH3 C C COOH O
O
+ CO2
O
CH3 C CH2
+ CO2
酮式-烯醇式互变异构现象
乙酰乙酸乙酯的制备:
O H3C C O C2H5 H CH2
NaOC2H5
O C O C2H5
O
O
H3C C CH 2 C O C2H5 + H5C2 OH
乙酰乙酸乙酯或β-丁酮酸乙酯
Claisen酯缩合反应 凡有α− H的酯,在醇钠作用下都可发生 Claisen酯缩合反应。
-COOH > -SO3H > (RCO)2O > -COOR > -COX > -CONH2 > -CN > -CHO > -CO- >-OH > ArOH > -NH2 > C-O-C > >C=C< > C C > -X
-R,-X,-NO2 不能作为母体基团,只能作为取代基命名
羟基酸的化学性质
受诱导效应、共轭效应和邻位效应的影响,
酚酸的化学性质
2.酚酸与三氯化铁显色反应 酚酸含有酚羟基,能与FeCl3水溶液发生颜色反 应。 COOH COOH
OH 浓 H 2SO 4 + (CH 3CO) 2O OCOCH 3 + CH 3COOH

大学有机化学教程第八章醛和酮详解演示文稿

大学有机化学教程第八章醛和酮详解演示文稿
应可用来鉴别醛和甲基酮。
第25页,共68页。
a、反应机理
δ-O
δ+C R
H(CH3)+ SO3H
R C
CH3(H)
O SO3H
互变重排
R
OH
C
CH3(H) SO3
R
OH
Na
C
CH3(H) SO3Na (白)
羰基的碳原子是和硫原子结合的,HSO3-的亲核性
与CN-相近,二者反应机理也相似。
第26页,共68页。
b、反应范围
醛,脂肪族甲基酮以及C8以下的环酮均可与饱和NaHSO3溶液 反应。非甲基酮和芳香酮难发生此反应。
不 同 的 羰 基 化 合 物 与 1molNaHSO3 反 应 1hr 后 生成加成产物的百分数为:
CH3CHO (89%)
CH3COCH3 CH3CH2COCH3
(56%)
(36%)
O CH3CH2COCH2CH3 PhCOCH3
O CH3CCH2CH3
O CH3CCH3
二甲酮(丙酮)
甲基乙基甲酮
(甲乙酮)(丁酮)
O CH3CCH(CH3)2
甲异丙酮(异戊酮)
第6页,共68页。
(2)系统命名法
(a)选主链。选取包含羰基在内的最长碳链为主链,
并根据主链碳原子数命名为“某醛”或“某酮”。
(b)编号。从离羰基最近的一端开始编号。醛的羰
第4页,共68页。
2、醛酮的命名
(1) 普通命名法
醛与醇的习惯命名相似,相应的碳原子数的烃 基后面加一个“醛”字即可。
CH3CH2CHO
丙醛
CH2=CHCHO
丙烯醛
O CH3CH2CH2C H

8.羰基合成(新)

8.羰基合成(新)

(3) 甲醇羰化合成甲酸
CH 3OH CO HCOOCH3
HCOOCH3 CH 3OH HCOOHΒιβλιοθήκη 8.1.1.2 甲醇的羰化反应
(4) 甲醇羰化氧化合成碳酸二甲酯、草酸二甲酯或乙二醇 CH3OH + CO + O2 CO(OCH3) 2+ H2O 碳酸二甲酯 CH3OH + CO + O2 (COOCH3) 2+ H2O 草酸二甲酯 (COOCH3) 2 + 2H2O (COOH) 2+ 2CH3OH
以增产醋酸。
8.2.2 甲醇低压羰基化合成醋酸
(2)催化剂
低压法采用铑碘催化剂体系,具体是由可溶性的
铑络合物和助催化剂碘化物两部分组成,活性组分是
[Rh(CO)2I2]-负离子。 助催化剂可以是HI、I2、CH3I,常用的是HI,在反
应过程中HI和CHOH作用生产CH3I。
8.2.2 甲醇低压羰基化合成醋酸
基本概念
2、氢甲酰化反应 反应式: RCH=CH2十CO+H2 →RCH2CH2CHO+RCH(CHO)CH3
上式反应可以看作烯烃双键两端的C原子上分别加
上一个氢和一个甲酰基(-CHO),因此又称作氢甲酰 化反应。
基本概念
3、羰基化反应(亦称羰化反应) 随着一碳化学的发展,有一氧化碳参与的反应类 型逐渐增多,通常将在过渡金属络合物(主要是羰基络 合物)催化剂存在下,有机化合物分子中引入羰基
③膦羰基铑催化剂
选择性好,催化剂性能比较稳定,
活性比羰基氢钴高102~104倍,正/异构 醛比例也高 。 (方法:改变配位基和中心原子)
8.2 甲醇低压羰基化合成醋酸

8.羰基化过程.

8.羰基化过程.
羰基化反应。
2 低压法甲醇羰化反应合成醋酸基本原理
Monsanto低压法采用铑碘催化剂体系,主要 化学反应如下:
动力学研究表明,与BASF高压法不同,Monsanto低 压法合成醋酸反应对甲醇与一氧化碳为零级,对铑 及碘为一级,反应速率的控制步骤为碘甲烷的氧化 加成。动力学方程式如下:
反应速度常数为3.5×106e-14.7/RTL/mol·s,式中活化 能的单位是kJ/mol。
d.催化剂 HRh(Co)x(PPh3)y
x+y=4
PPh3↑ ,正/异丁醛↑ ,r ↓
(2)工艺流程
合成气 净化
丙烯 净化
放空

气液

分离

异丁醛 正丁醛
(3)反应器
不锈钢釜式反应器 搅拌器、冷却装置、气体分布器
(4)低压法特点
优点: 反应条件温和 副反应少,原料消耗少 催化剂易分离回收 污染少 缺点:
1.不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个 氢和一个甲酰基(-HCHO)
①烯烃的氢甲酰化 CH2=CH2+CO+H2→CH3CH2CHO
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
(2)氢羧基化(与CO和H2O反应)
(3)氢酯化(与CO和ROH反应)
烯烃与合成气(CO/H2)或一定配比的一氧化碳及氢 气在过渡金属配合物的催化作用下发生加成反应,生 成比原料烯烃多一个碳原子的醛。这个反应被命名为 羰基合成 (oxo synthesis),也称作Röelen反应。
过渡金属络合物(主要是羰基化合物)催化剂下,有 机化合物引入羰基。

第八章 羰基化过程(14版)

第八章 羰基化过程(14版)

HCo(CO)4
Co2(CO)8需要一定CO分压保持稳定
◆羰基钴催化剂的主要缺点
是热稳定性差,容易分解析出钴而失去活性, 在高的一氧化碳分压下操作,产品中正/异醛比例 较低。
●膦羰基钴催化剂
以配位基膦(PR3)、亚磷酸酯(P(OR)3) 、胂(AsR3)、
(SbR3)(各配位基中R可以是烷基、芳基、环烷基或
收率为59%。副产3.5%的甲烷和4.5%的其他液体副 产物。乙酸纯度为99.8%
●Monsanto低压法生产工艺流程
反应温度175-200℃,压力3MPa 甲醇+CO+催化剂母液+精制返回轻馏分+含水醋酸
催化剂母液
无水醋酸 脱重塔
脱轻塔
脱水塔 成品醋酸
反应产物+未反应物
醋酸 高级羧酸 废酸塔 重质酸
8.1.2 甲醇的羰化反应
●甲醇羰化合成醋酸(Monsanto法)
CH3OH+CO→CH3COOH
●醋酸甲酯羰化合成醋酐(Tennessce eastman)
CH3OH+CO→CH3COOH CH3COOH+CH3OH →CH3COOCH3 CH3COOCH3+CO → (CH3CO)2O3
●甲醇羰化合成甲酸
异构化活性很高,正/异醛比率只有50/50。
●膦羰基铑催化剂
膦配位基取代部分羰基-HRh(CO)(PPh3)3
异构化反应大大被抑制,正/异醛比率达到15:1
催化剂性能稳定
能在较低CO压力下操作。能反复循环使用。
催化剂母体商品名叫ROPAC,使用时溶于三苯基磷
Rh(C5H7O2)(CO)(PPh3) Rh≥20.9%
●烯烃衍生物的氢甲酰化

第八章酰化反应

第八章酰化反应
乙酸,乙酸钠 小于10℃
H3C
NHCOCH2Cl CH3 + HCl
反应过程中要维持介质的pH值在中性左右, 以防酰化剂水解。
2.芳羧酰氯及芳磺酰氯 酰化活性相对于低级脂肪羧酰氯要低
COCl COCl
NO2
SO2Cl
SO2Cl
SO2Cl
CH3
NO2
OC2H5 NH2 +
COCl
水,Na2CO3 85~90℃
色酚AS-RL
P257
工艺注意事项

①物料应该干燥 ②氯苯共沸去水 ③芳胺过量5-10% ④HCl去吸收,搪瓷设备 ⑤反应终点:130℃无HCl放出
酸式法(有两种可能见P258)
OH COOH
OH CONHAr
OH PCl3 COቤተ መጻሕፍቲ ባይዱl
ArNH2
钠盐法 近来有人用氯化亚砜先制得羧酰氯,再与芳胺 反应进行酰化。 P258
在水介质中,光气在低温下和两分子芳胺 反应生成二芳基脲衍生物
HO3S 2 OH NH2 + COCl2
水,NaOH Na2CO3,40℃
J酸
HO3S
O H N C
H N
SO3H
OH
OH
在偶氮染料中用作偶氮组分
猩红酸
在有机溶剂如甲苯、氯苯、邻二氯苯中,在 低温下能与等摩尔量的芳胺作用,生成芳胺基 甲酰氯,热处理可转变为芳基异氰酸酯。
加热
催化机理同样是生成反应活性高的酰基正碳离子
伯胺用酸酐酰化时,在一定条件下有可能 生成二酰化物。
R'NH2 R'NHCOR R'N(COR)2
但第二个酰基非常活泼,容易水解消除。
对于二元胺,如果希望只酰化一个氨基时, 可以先用等摩尔比的盐酸生成盐酸盐来保护, 然后酰化,再中和。

有机化学课件(邢其毅)-第08章

有机化学课件(邢其毅)-第08章
CH2(COOEt) 2, CH 3COCH 2COOR , CH 3NO2 , NCCH 2COOR , PhCH 2CN , RMgX , R 2CuLi
O
Michael加成产物的结构为:
C G
C
C
C
G为吸电子基。
8
8.1 不饱和羰基化合物
8.1.2 不饱和羰基化合物的化学性质 2 α,β-不饱和羰基化合物的性质 (2) Michael加成反应 例1 :
O O
1
8.1 不饱和羰基化合物
8.1.2 不饱和羰基化合物的化学性质 孤立不饱和羰基化合物兼有C=C与C=O的化学性质。
1 烯酮的性质
烯酮分子中羰基为sp杂化态,两个累积双键正交,并不共轭,化学性质非常活泼,并且有很 大的毒性。乙烯酮(气态)易二聚为液体。 二聚乙烯酮容易与其它亲核试剂发生加成反应。
在少量亚铜盐催化下,格氏试剂与α,β-不饱和羰基化合物也只发生1,4-加成反应。
O O CH3 CH3
+ CH3MgBr
CH3
1)
CuCl /H2O
CH3 CH3
2) H
CH3 CH3
Michael加成中,常用的共轭体系有:
O C C C O N

C C
C OR

C C
C N

C C
C

O
产生碳负离子的体系(G-C-H)有:
NHR CH3 C R O
3
8.1 不饱和羰基化合物
8.1.2 不饱和羰基化合物的化学性质 1 烯酮的性质 工业上乙烯酮可由乙酸或丙酮热解制备。
CH3 C OH CH3 C CH3 O O 700℃ AlPO4 800℃ Fe CH2 C O + CH 4 CH2 C O + H2O

8.羰基化过程

8.羰基化过程

二. 甲醇羰化制醋酸的工艺流程
1 BASF高压法生产工艺流程
2 Monsanto低压法生产工艺流程
3 甲醇低压羰基合成醋酸的优缺点
甲醇低压羰化法制醋酸在技术经济上的优越性很大,其优点在于:
(1) 利用煤、天然气、重质油等为原料,原料路线多样化,不受原油 供应和价格波动影响。 (2) 转化率和选择性高,过程能量效率高。 (3) 催化系统稳定,用量少,寿命长。 (4) 反应系统和精制系统合为一体,工程和控制都很巧妙,结构紧凑。 (5) 虽然醋酸和碘化物对设备腐蚀很严重,但已找到了性能优良的耐 腐蚀材料-哈氏合金C(Hastelloy Alloy C),是一种Ni-Mo合金,解决 了设备的材料问题。 (6) 用计算机控制反应系统,使操作条件一 直保持最佳状态。 (7) 副产物很少,三废排放物也少,生产环境清洁。 (8) 操作安全可靠。 主要缺点是催化剂铑的资源有限,设备用的耐腐蚀材料昂贵。
1.不饱和化合物的羰化反应
(1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个 氢和一个甲酰基(-HCHO) ①烯烃的氢甲酰化 CH2=CH2+CO+H2→CH3CH2CHO
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
(2)氢羧基化(与CO和H2O反应)
(3)氢酯化(与CO和ROH反应)
8.3 甲醇羰基化合成醋酸

醋酸是重要的有机原料,主要用于生产醋酸 乙烯、醋酐、对苯二甲酸、聚乙烯醇、醋酸酯、 氯乙酸、醋酸纤维素等。醋酸也用于医药、农 药、染料、涂料、塑料和粘合剂等行业。 工业上醋酸的生产方法有乙醛氧化法、丁烷 或轻油氧化法以及甲醇羰基化法。以甲醇为原 料羰基合成醋酸工艺,原料价廉易得,醋酸的 选择性高达99%以上,投资省,生产费用低, 相对乙醛氧化法有明显的优势。现在世界上有 近40%的醋酸是用该工艺生产。

8.羰基合成(新)详解

8.羰基合成(新)详解
(3)反应机理及动力学
以Rh配合物和HI为催化剂系统的甲醇低压羰基
化反应具体反应方程式如下:
速率控制步骤 反 应 机 理
动力学方程—孟山都法
甲醇低压法羰基化合成乙酸法 研究表明:动力学方程式如下:
d [CH 3COOH ] k[CH 3 I ][ Rh 配合物 ] dr
2. 甲醇低压羰基化生产醋酸工艺流程
(4) 反应系统和精制系统合为一体; (5)副产物很少,三废排放物也少,生产环境清 洁
3 工艺的优缺点 主要缺点: 催化剂铑的资源有限,设备用的耐腐蚀 材料昂贵。
4、 甲醇低压羰基化合成醋酸研究新进展 主要方面:
1、开发出高活性、低水含量、 低消耗的高效催 化剂体系, 以大幅提高现有装置的产能, 有效 降低生产成本;
③膦羰基铑催化剂
选择性好,催化剂性能比较稳定,
活性比羰基氢钴高102~104倍,正/异构 醛比例也高 。 (方法:改变配位基和中心原子)
8.2 甲醇低压羰基化合成醋酸
主要内容:
1、醋酸生产方法简介 2、甲醇低压羰基化合成醋酸 (原理、工艺流程及其优缺点)
醋酸的用途
醋酸是一种重要的基本有机化工原料,主要
其他用途:溶剂、脱水剂、消泡剂、
分散剂、浮选剂、石油添加剂 。
8.3.1 丁辛醇生产方法简介
乙醛缩合法 发酵法 工业化生产主要方法 齐格勒法 羰基合成法
8.3.1 丁辛醇生产方法简介 1、乙醛缩合法:
P(OR)3
3、各类催化剂的特点
①羰基钴催化剂
羰基钴催化剂的活性组分、热稳定性
差、容易分解;异构化活性高
P(OR)3
3、各类催化剂的特点
②膦羰基钴催化剂
热稳定性增加,对直链产物的选择性

第8章基团的保护与反应性转换

第8章基团的保护与反应性转换
基团的保护与基团的反应性转换是指 在一化合物分子中为使其特定基团或位置 发生预期反应,其它基团或位置进行暂时 性保护或暂时性极性改变的过程,待反应 完成生成新化合物所采取的一种策略。
8.1 基团的保护和去保护
例如:

RR'C-CH2CH2OH
+
RCOCH2CH2OH + R'MgX
OH
③ Na R''X
C CMgBr
Me3SiCl
Br
C CSiMe3
Mg THF
Br
C CSiMe3
①CO2 ②H3O
MgBr
C CSiMe3
AgNO3/OH H3O
HOOC
COOH
+
Br
Li
SiMe3
① Et2O, 0 oC ② AgNO3/H2O/EtOH
Ag K_CANg/CHN2O
H
① EtMgBr, THF ② Me3SiCl
(2)缩醛和缩酮
CH2OH CH-OH CH2OH
CH3COCH3/H P hCHO/H
CH2OH CH-O CH3 CH2O CH3
① CH3(CH2)14COOH 干 燥 H Cl
② H2O
Ph O H
O
OH
① CH3(CH2)14COCl, P y ② H2/P d
H
CH2OCO(CH 2)14CH3 CH-OH CH2OH
H
SiMe3
CuCl, O2 CH3COCH3, TMEDA
SiMe3
>80% H H 90%
C CH
H
8.1 基团的保护和去保护
8.1.5 碳-氢键的保护 2.芳烃中C-H键的保护

羰基化过程

羰基化过程

第八章羰基化过程8.3 甲醇羰基化合成醋酸1.醋酸的用途:醋酸是重要的有机原料,主要用于生产醋酸乙烯、醋酐、对苯二甲酸、聚乙烯醇、醋酸酯、氯乙酸、醋酸纤维素等。

醋酸也用于医药、农药、染料、涂料、合成纤维、塑料和黏合剂等行业。

工业上醋酸的生产方法有多种,但以甲醇为原料羰基合成醋酸工艺,不但原料价廉易得,而且生成醋酸的选择性高达99%以上,基本上无副产物;投资省,生产费用低,相对乙醛氧化法有明显的优势。

8.3.1 甲醇羰化反应合成醋酸的基本原理甲醇羰化反应合成醋酸主要有BASF高压法与孟山都低压法,二种方法的化学原理基本相同,反应过程大同小异。

8.3.1.1 高压法甲醇羰化反应合成醋酸基本原理BAsF高压法采用钴碘催化循环,过程如图所示。

整个催化反应方程式如下:Co2(CO)8(催化剂)CH3COOH + HI HCo(CO)4CH3I + H2O(络合物1)CHCOI (络合物5) CH3(络合物2)+ HICH3COCo(CO)4CH3COCo(CO)4(络合物4)(络合物3)对应反应式见P380(8-22)-(8-29).上述反应中,首先是Co2(CO)8(催化剂原位)与H2O +CO反应得到HCo(CO)4 (络合物1),CH3OH与HI反应得到CH3I(碘甲烷),CH3I(碘甲烷)又与HCo(CO)4 (络合物1)反应得到CH3Co(CO)4(络合物2)+ HI,HI完成一个循环。

CH3Co(CO)4(络合物2)与H2O反应转化为CH3COCo(CO)4(络合物3), CH3COCo(CO)4(络合物3)与CO反应得到CH3COCo(CO)4络合物4), (络合物4)与HI反应得到(络合物5), (络合物5)与H2O反应的到CH3COOH + HCo(CO)4 +HI,HI完成了另一个循环, HCo(CO)4(络合物1)也完成了一个循环.上述一系列复杂的反应过程要求在较高的温度下才能保持合理反应速率,而为了在较高温度下稳定[Co(CO)4]-(络合物1)]配位化合物,必须提高一氧化碳分压,从而决定了高压法生产工艺的苛刻反应条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业上应用:钴和铑
配位体: CO基团--HM (CO)m 改变配位体影响整个配位化合物的电子结构和空 间结构
配位体改性:大多是第V主族元素的三价化合物。 提供孤对电子与配合物的中心原子 配位。
HM(CO)m+L→HM(CO)m-1L+CO HM(CO)m-1L+L→HM(CO)m-2L2+CO HM(CO)m-2L2+L→HM(CO)m-3L3+CO
艺条件促进主反应
(3)催化剂
①羰基钴
2Co + 8CO
Co2(CO)8
H2 2HCo(CO)4
催化剂稳定,必须保持足够高的CO 分压
T ↑ ,催化剂稳定所需PCO ↑ 催化剂↑ ,催化剂稳定所需PCO ↑
T( ℃) 20 150 150
PCO(MPa) 0.05 4 8
催化剂用量 0.2% 0.2% 0.9%
采用水溶液膦配位体改性的水溶性铑膦催化剂
8.2 烯烃的氢甲酰化
1.化学原理
(1)主、副反应(丙烯)
主: CH3CH=CH2 + H2 + CO 副: a.异构醛
b.加氢生成丙烷
CH3CH2CH2CHO
平行反应
c.醛加氢生成醇、缩醛--连串反应
(2)热力学
放热反应,热效应较大 平衡常数大,热力学有利,动力学控制 副反应比主反应热力学有利,选择催化剂和工
催化剂:以过渡金属M为中心的羰基氢化物 HxMy(CO)zLn
羰基合成催化剂评价
活性: 单位金属浓度在单位时间内催化产生的目 的产物量
选择性:化学选择性 区域选择性(醛基的位置--正构醛和 异构醛的摩尔比) 对映体选择性(不对称合成)
中心原子
第Ⅷ族过渡金属的羰基合成催化活性顺序: RhCoIr,RuOsPtPdFeNi
增强催化剂定向效应
三价膦是一个不等性sp3杂化轨道构型,配位
后呈四面体结构,因此比原先直线形的CO配体产 生更强的定向效应。大的方向位阻有利于生成正 构醛,使反应的n/i增加。
增强催化剂加氢活性 使生成的醛直接加氢为为醇,省去了加氢步
骤,另一方面烯烃加氢成烷烃的副反应也明显增 加。
配位体--水溶性基团引入有机膦配体
0.6
明显 醇/醛 8~9∶1
HRh(CO)(PPh3)3
90~110 1~2
0.01-0.1 低 醛
12~15∶1
(4)反应机理与动力学 动力学方程
d[醛] dt
K[烯][Co]
P(H2 ) P(CO)
醛的反应速度与烯烃浓度和催化剂浓度一次方成正比
反应机理
催化剂活性结构--HCo(CO)4
Co2(CO)8和H2首先生成HCo(CO)4,然后解离成 HCo(CO)3和CO,氢化羰基钴与烯烃生成π—烯烃络合物, 再重排生成羰基烷基钴。然后CO插入烷基和钴离子之间 形成酰基络合物,进一步生成四羰基络合物,后者即与H2 或HCoCO)4反应生成产物醛。
催化剂只溶于水而不溶于有机相。反应完成 后催化剂相(水相)和产物相(油相)可方便地完成分 离,实现催化剂的循环。
水溶性膦-铑催化剂
丙烯制丁醛

一类是将配位催化剂用各种物理的或化学的 方法以固相形式担载在某种固相载体上,使用液 体或气体原料进行多相反应。
另一类是使催化剂和反应产物处于互不相溶 的两种液相之中,经简单的相分离,便可实现催 化剂分离--两相催化体系。
第八章 羰基化过程
过渡金属络合物(主要是羰基化合物) 催化剂下,有机化合物引入羰基。
均相反应,反应条件温和,选择性好。
8.1 反应类型
1.不饱和化合物的羰化反应 (1)氢甲酰化(与CO和H2反应)
在双键两端的C原子上分别加上一个氢和一个甲酰基 (-CHO)
①烯烃的氢甲酰化
CH2=CH2 + CO + H2
CH3CH2CHO
②烯烃衍生物的氢甲酰化 (不饱和醇、醛、酯、醚,含卤素、含氮化合物)
HOCH2CH=CH2 + H2 + CO
HOCH2CH2CH2CHO
CH2=CHCHO + CO + H2
CHOCH2CH2CHO
NC-CH=CH2 + H2 + CO
NC-CH2CH2CHO
(2)氢羧基化(与CO和H2O反应)
2.甲醇的羰化反应
(1)合成醋酸 (2)合成醋酐 (3)合成甲酸 (4)合成碳酸二甲酯、草酸酯、乙二醇
3.理论基础
配位催化 在催化反应中,凡催化剂以配合物的形式与
反应分子配位使其活化,反应分子在配合物体内 进行反应形成产物,产物自配合体中解配,最后 催化剂还原,这样的催化剂称为配位(络合)催化 剂
HRh(CO)(PPh3)3 催化剂母体商品名叫ROPAC,结构式为:
三种氢甲酰化催化剂性能比较
催化剂
HCo(CO)4
温度,℃
140~180
压力,MPa
20~30
催化剂浓度,% 0.1-1.0
生成烷烃量 产物 正/异比
低 醛/醇 3~4∶1
HCo(CO)3P(n- C4H9)3
160~200
5~10
缺点:正异构醛比例低,催化剂热稳定性差
②膦羰基钴
配位基膦(PR3) R可以是烷基、芳基、环烷基或杂环基
特点: a.稳定性增加,活性降低 b.直链产物选择性增加 C.加氢活性较高 d.醛缩合及醇醛缩合等副产物少 e.对不同原料烯烃氢甲酰化反应适应性差
③膦羰基铑
选择性好,活性高,正/异醛比例高 催化剂稳定,可在较低压力下操作
1,4-丁二醇 d1-谷氨酸
CH2=CH2 + CO + H2O
CH3CH2COOH
CH CH + CO + H2O
CH2=CHCOOH
(3)氢酯化(与CO和ROH反应)
RCH=CH2 + CO + R'OH
RCH2CH2COOR'
CH CH + CO + ROH
CH2=CHCOOR
(4)不对称合成 生成单一对映体的醛
膦改性羰基铑的反应机理由Wilkinson提出,催化剂活 性结构是一组三苯基膦羰基氢铑。其催化反应机理与羰基 钴基本相同。
配位体-- 三价膦(PR3)
增强催化剂稳定性 代C强O与的钴σ电配子位给后予,体增,大弱了的钴π原电子子上接的受负体电,荷PR密3取度。 钴将增强的负电荷密度再通过适当轨道反馈给未 取代的CO,从而加强了钴对CO的配合能力,使 整个分子的稳定性增加。
改性后的催化剂可以在较低的压力下进行反 应,但同时造成副作用是反应速度下降很多,必 须以提高催化剂浓度等方法加以弥补。
相关文档
最新文档