牛顿问题,俗称“牛吃草问题”
小学奥数之牛吃草问题含答案
小学奥数之牛吃草问题含答案This model paper was revised by LINDA on December 15, 2012.“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数?想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12?=60÷12?=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20?=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
英国大数学家牛顿曾编过这样一道数学题
英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
完整word版,小学奥数之牛吃草问题(含答案),推荐文档
“牛吃草问题就是追及问题,牛吃草问题就是工程问题。
”英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12=60÷12=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天?”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
例1 牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
牛顿问题(牛吃草问题)
牛顿问题(牛吃草问题)牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做“牛吃草问题”。
英国著名的物理学家牛顿曾编过这样一道:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,期间一直有草生长。
如果供给25头牛吃,可以吃多少天?基本思路:假设每头牛吃草的速度为"1"份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
基本特点:原草量和新草生长速度是不变的;关键问题:确定两个不变的量。
牛吃草问题常用到四个基本公式:(1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
牛顿问题(牛吃草问题),牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-生长的草量= 消耗原有的草量);4、最后求出牛可吃的天数。
想:这片草地天天以匀速生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把所有头牛分成两部分来研究,用其中一部分吃掉新长出的草,用另外一部分吃掉原有的草,即可求出全部头牛吃的天数。
解:设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220(份),16头牛10天吃草为1×16×10=160(份) (220-160)÷(22-10)=5(份),说明牧场上一天长出新草5份。
牛吃草问题例题和解答终审稿)
牛吃草问题例题和解答文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-小升初考试经典例题解析之牛吃草问题英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量4、最后求出可吃天数?想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:(10×22-16×1O)÷(22-1O)=(220-160)÷12?=60÷12?=5(头)这片草供25头牛吃的天数:(10-5)×22÷(25-5)=5×22÷20?=5.5(天)答:供25头牛可以吃5.5天。
----------------------------------------------------------------“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
牛顿问题 牛顿牛吃草问题
牛顿问题
英国伟大的科学家牛顿,曾经写过一本数学书。
书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”。
“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不
断生长的。
”
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162
(这162包括牧场原有的草和6天新长的草。
)
(2)23头牛9天所吃的牧草为:23×9=207
(这207包括牧场原有的草和9天新长的草。
)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
请你算一算。
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。
如果养15只羊,几天能把牧场上不断生长的草吃尽呢?。
牛吃草问题-牛顿问题
牛顿问题一、专题简析牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做牛吃草问题。
牛吃草问题的关键是牧场上牧草的总数量在不断地变化,因此要解答好这类题首先要分析清草的变化情况,即常说的“新生草量”。
然后再找出牧场上“原有草量”,只要你请注意了这两点,就能很好地把问题解答出来。
二、典例分析例1 牧场上有一片匀速生长的牧草,可供27头牛吃6天,或供23头牛吃9天,那么这片牧草可供多少头牛吃12天?例2 一只船发现漏水时,已经进了一些水,水匀速进入船内。
如果派10人淘水,6小时淘完;如果派6人淘水,18小时淘完。
如果派22人淘水,多少小时可以淘完?例3 某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多.从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟.如果同时打开7个检票口,那么需多少分钟?附加问题:在开始检票前几分钟,就有人在排队了?例4 两个顽皮的孩子逆着自动滚梯行走,男孩每秒可走3级台阶,女孩每秒可走2级台阶,结果从滚梯一端到达另一端,男孩走了100秒,女孩走了300秒,该滚梯共有多少级?例5 由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少.已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天.照此计算,可供多少头牛吃10天?例6 自动扶梯以均匀速度由下往上行驶着,两位性急的孩子要从扶梯上楼.已知男孩每分钟走80级梯级,女孩每分钟走60级梯级,结果男孩用了0.5分钟到达楼上,女孩用了0.6分钟到达楼上.问:该扶梯共有多少级?例7 有三块草地,面积分别为5,15和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?牛吃草问题练习1. 一片牧场长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,或可供15头牛吃10天,问:可供2. 一片均匀生长的牧草,如果9头牛吃,12天吃光所有的草,如果8头牛吃16天吃完所有的草。
牛吃草问题又叫牛顿问题
牛吃草问题又叫牛顿问题“牛吃草问题”主要有两种类型:1、求时间2、求头数除了总结这两种类型问题相应的解法,在实践中还要有培养运用“牛吃草问题”的解题思想解决实际问题的能力。
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求知数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据“(原有草量”+若干天里新生草量)÷天数”,求出只数解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度=(相应的牛头数×吃草速度)×吃的较多天数-(相应的牛头数×吃草速度)×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=(相应的牛头数×吃草速度)×吃的天数草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(相应的牛头数×吃草速度-草的生长速度);(4)牛头数=(原有草量÷吃的天数+草的生长速度)÷吃草速度。
这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的数量关系(基本变形)是:1.(相应的牛头数×吃草速度×吃草较多的天数-相应的牛头数×吃草速度×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
牛吃草问题及应用
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用到四个基本公式,分别是︰(1)草的生长速度=(对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`(3)吃的天数=原有草量÷(牛头数-草的生长速度);(理解记忆)(4)牛头数=原有草量÷吃的天数+草的生长速度。
(理解记忆)这四个公式是解决消长问题的基础。
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
正是由于这个不变量,才能够导出上面的四个基本公式。
牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。
由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
这类问题的基本数量关系是:1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。
2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。
简析【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供25头牛吃多少天?A.3B.4C.5D.6【答案】C【例2】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【答案】C【演变题目例3】如果22头牛吃33公亩牧场的草,54天后可以吃尽,17头牛吃28公亩牧场的草,84天可以吃尽,那么要在24天内吃尽40公亩牧场的草,需要多少头牛?A.50B.46C.38D.35【答案】D【注释】这里面牧场的面积发生变化,所以每天长出的草量不再是常量。
牛吃草问题即牛顿问题,因由牛顿提出而得名
牛吃草问题即牛顿问题,因由牛顿提出而得名牛吃草问题即牛顿问题,因由牛顿提出而得名。
英国著名的物理学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?典型的牛吃草问题的条件是假设草在不断生长且生长速度固定不变,牛在不断吃草且每头牛每天吃的草量相同,供不同数量的牛吃,需要用不同的时间,给出牛的数量,求时间。
由于牛在吃草的过程中,草是不断生长的,所以解决此问题的重点是要想办法从变化中找到不变量。
牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。
利用这些不变量,我们解决牛吃草问题时可将其转化为相遇或追及模型来考虑。
一、牛吃草问题的基本题型(一)追及——一个量使原有草量变大,一个量使原有草量变小原有草量=(牛每天吃掉的草-每天生长的草)天数例:牧场上一片青草,每天牧草都匀速生长。
这片牧草可供10头牛吃20天,或者可供15头牛吃10天。
问:可供25头牛吃几天?按照公式,设每头牛每天吃的草量为“1”,每天生长的草量为X,可供25头牛吃T天,所以(10-X)20=(15-X)10=(25-X)T,先求出X=5,再求得T=5。
(二)相遇——两个量都使原有草量变小原有草量=(牛每天吃掉的草+其他原因每天减少的草量)天数例:由于天气逐渐冷起来,牧场上的草不仅不长大,反而以固定的速度在减少。
已知某块草地上的草可供20头牛吃5天,或可供15头牛吃6天。
照此计算,可供多少头牛吃10天?中公解析:牛在吃草,草在匀速减少,所以是牛吃草问题中的相遇问题,原有草量=(牛每天吃掉的草+每天减少的草)天数,设每头牛每天吃的草量为“1”,每天减少的草量为X,可供Y头牛吃10天,所以(20+X)5=(15+X)6=(Y+X)10,先求出X=10,再求得Y=5。
二、牛吃草问题的升级版题型牛吃草问题出了以上两种基本模型,在此基础上还有一些其他的变形。
牛吃草问题
第二讲牛吃草问题一.牛吃草问题是个有趣的话题,早在17世纪英国科学家牛顿的《普遍算术》一书中,曾提出了类似问题,所以也叫牛顿问题。
是说一些牛在吃一片未割的青草,牛一边吃草一边长。
假定单位时间里长出的草量相同,怎样求吃完全部草(包括吃的过程中新长出的草)所用的时间呢?二.三变与三不变三变:时间变、牛的头数变、牛吃的草也随这变三不变:原有的草、每天长的新草、每头牛每天吃的草三. 一个规定:规定1头1天(或1周)的吃草量为1份。
四. 基本关系式:原有总草量=吃的总草量-相应时间新生的总草量吃的总草量=牛的头数×吃的时间新生总草量=新草长速×草长时间五. 特殊的牛吃草问题:牛喝水(水管问题)、牛吃人(进站检票问题)牛走路(行程问题)、牛吃楼梯(自动扶梯问题)例1.一块牧场的青草每天都在匀速生长,可供15头牛吃10天;或供10头牛吃20天。
这块牧场的青草供25头牛吃多少天?例2.一水手发现船舱里已经进了一些水,水还在匀速的涌入船舱。
如果6人16分钟可以把水淘完;如果3人40分钟可以把水淘完。
那么5人多少分钟可以把水淘完?例3.一水池的进水管在匀速的进水。
若打开3根排水管45分钟可把池中水排完;若打开5根排水管25分钟可把池中水排完。
要15分钟把池中水排完,需同时打开多少根排水管?例4.一片草地,可供80只羊吃12天;或供16头牛吃20天。
一头牛相当于4只羊的吃草量。
60只羊和10头牛一起多少天可吃完这片草?例5.一牧场的青草,可供19头牛吃24天,或供17头牛吃30天。
现有一些牛吃6天以后,又卖掉4头牛,余下的牛又吃2天将草吃完。
那么原来共有多少头牛?例6.一水池每天不断地向外渗水,每天渗水量相等。
若9头牛饮用,5天饮完,若6头牛饮完则要7天。
那么,只有2头牛来饮,多少天池中没有水?例7.一片草场,可供20头牛吃9天或供25头牛吃6天,要使牛永远有草吃,最多养多少头牛?例8.“秦始皇兵马俑博物馆”开门前已有100名游客在排队等待,开始检票后每分钟新来人数是相等的。
牛吃草问题经典例题
牛吃草问题经典例题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?解题关键:?牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:?1、求出每天长草量;?2、求出牧场原有草量;?3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);?4、最后求出可吃天数?想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
?解:新长出的草供几头牛吃1天:?(10×22-16×1O)÷(22-1O)?=(220-160)÷12?=60÷12?=5(头)?这片草供25头牛吃的天数:?(10-5)×22÷(25-5)?=5×22÷20?=5.5(天)?答:供25头牛可以吃5.5天。
?----------------------------------------------------------------?“一堆草可供10头牛吃3天,这堆草可供6头牛吃几天”这道题太简单了,一下就可求出:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
数量关系之牛吃草问题
数量关系之牛吃草问题牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的。
典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。
由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化。
解决牛吃草问题常用到四个基本公式,分别是:(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;(3)吃的天数=原有草量÷(牛头数-草的生长速度);(4)牛头数=原有草量÷吃的天数+草的生长速度。
解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
例题1.(2006贵州省第21题)牧场上长满牧草,每天牧草都匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天。
那么,供25头牛可以吃多少天?( )A.3B.4C.5D.6【解析】设牧场原有草量A,牧场每天生长的草量为B,牛每天吃的草量为C,则可列如下方程:A+20×B=10×20×C,A+10×B=15×10×C,可得B=5C,A=100C,再设25头牛可吃x天,则有A+x×B=25×x×C,将B=5C,A=100C代入,可得x=5。
故选C。
例题2.(2005北京市(应届)第18题)有一池水,池底有泉水不断涌出,要想把水池的水抽干,10台抽水机需抽8小时,8台抽水机需抽12小时,如果用6台抽水机需抽多少小时?( )A.16B.20C.24D.28【解析】设池子原有泉水为A,池子每小时涌出为B,抽水机每小时抽水为C,则可列如下方程:A+8×B=10×8×C,A+12×B=8×12×C,可得B=4C,A=48C,再设6台抽水机需抽x小时,则A+x×B=6×x×C,将B=4C,A=48C代入,可得x=24。
牛吃草问题
【例1】有一块牧场,可供10头牛吃 20天,15头牛吃10天,则它可供25 头牛吃多少天?
• 练习: • 1.一牧场上的青草每天都匀速生长。 这片青草可供27头牛吃6周或供23头牛 吃9周。那么,可供21头牛吃几周?
【例2】有一块牧场,可供10头牛吃20 天,15头牛吃10天,则它可供多少头 牛吃4天?
牛吃草问题
“一堆草可供10头牛吃3天,片正在生长 的草地”,问题就不那么简单了,因为草每 天都在生长,草的数量在不断变化。这类工 作总量不固定(均匀变化)的问题就是牛吃 草问题,牛吃草问题是牛顿问题的俗称。
牛吃草问题又称为消
长问题或牛顿牧场 。
【例3】有-牧场,21头牛20天可将草 吃完,25头牛则15天可将草吃完,现 有牛若干头,吃6天后卖了4头,余下 的牛再吃2天则将草吃完,问原有牛多 少头?
练习 2、-片草地如果9头牛吃12天吃完所 有的草,如果8头牛吃,16天吃完所 有的草。现在开始只有4头牛,从第7 天起又增加了若干头牛,再6天吃完 所有草。问增加了多少头牛?
牛顿问题牛吃草的解题思路
"牛顿问题"是一个经典的物理问题,也被称为"牛吃草问题"。
它涉及到一个在平坦草原上的牛,以一定速度和一定的角度吃草,然后向前移动,问题是要求确定牛吃草的路径。
解决"牛顿问题"可以使用几何和物理学的基本原理。
以下是解题思路的一般步骤:
1.确定初始条件:了解牛在草原上的初始位置和姿势,以及牛吃草的
速度和角度。
这些信息对于确定牛吃草的路径很重要。
2.分解速度:将牛的速度分解为水平速度(沿着草原表面的移动)和
垂直速度(身体向上或向下的移动)。
这样,我们可以专注于水平方向上的运动。
3.计算运动轨迹:基于水平速度,可以根据运动的匀速直线运动原理
计算牛在水平方向上的位移,也就是草原表面上的水平位移。
4.确定角度和时间:根据牛吃草的角度和速度,可以确定牛吃草的时
间。
结合水平位移计算出的时间,可以确定牛吃草的路径。
请注意,具体的计算过程会根据问题中给出的条件和模型的复杂程度而有所不同。
解决"牛顿问题"可能需要运用几何学、三角学和运动学等相关的物理和数学知识。
值得一提的是,"牛顿问题"也可以是一个具有多个变量和复杂条件的问题。
在这种情况下,解决问题可能需要使用更高级的数学工具和技巧,如微积分和微分方程等。
请根据具体问题的条件和要求来确定适用的计算方法和模型,并根据实践中的实际情况对解题思路进行调整和应用。
牛吃草问题
• 规律总结 • 牛顿问题的难点在于草每天都在不断生长,草的数量 都在不断变化。解答这类题目的关键是想办法从变化中找 出不变量,我们可以把总草量看成两部分的和,即原有的 草量加新长的草量。显而易见,原有的草量是一定的,新 长的草量虽然在变,但如果是匀速生长,我们也能找到另 一个不变量——每天(每周)新长出的草的数量。 • 方法指导: 方法指导:通常思路 • ①把每头牛每天(周)的吃草量看作是“1”;②求出 每天(周)的新生长的草量是多少;③求出原来的草量是 多少;④假设几头牛专门去吃新生长的草,剩下的牛吃原 来的草所用几天(周)数即为所求。
• 解题关键 • 牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均 匀生长。解题环节主要有四步: • 1、求出每天长草量; • 2、求出牧场原有草量; • 3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗 原有草量); • 4、最后求出可吃天数 • (1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的 较少天数÷(吃的较多天数-吃的较少天数); • (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;` • (3)吃的天数=原有草量÷(牛头数-草的生长速度); • (4)牛头数=原有草量÷吃的天数+草的生长速度 • 核心公式: 草场草量=(牛数-每天长草量)×天数 • 基本不变量:单位面积牧场上原有草量不变, 一般用来列方程 • 每头牛每天吃草量不变, 一般设为“1” • 单位面积牧场上每天新增草量不变, 一般设为“X” ------------------------------------------------------------------------------------------
• •
• • • • • • • • • •
牛吃草问题解法与算法公式
牛吃草问题问题解法与算法公式解题关键:牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数。
1、牧场上有一片青草,牛每天吃草,草每天以均匀的速度生长。
这片青草供给10头牛可以吃20天,供给15头牛吃,可以吃10天。
供给25头牛吃,可以吃多少天分析:如果草的总量一定,那么,牛的头数与吃草的天数的积应该相等。
现在够10头牛吃20天,够15头牛吃10天,10×20和15×10两个积不相等,这是因为10头牛吃的时间长,长出的草多,所以,用这两个积的差,除以吃草的天数差,可求出每天的长草量。
①、求每天的长草量( 10×20-15×10 )÷( 20-10 )=5 ( 单位量)说明牧场每天长出的草够5头牛吃一天的草量。
②、求牧场原有草量因为牧场每天长出的草量够5头牛吃一天,那么,10头牛去吃,每天只有10-5=5 ( 头)牛吃原有草量,20天吃完,原有草量应是:( 10-5 )×20=100 ( 单位量)或:10头牛吃20天,一共吃草量是10×20=200 ( 单位量)一共吃的草量-20天共生长的草量=原有草量200 -100 =100(单位量)③、求25头牛吃每天实际消耗原有草量因为牧场每天长出的草量够5头牛吃一天,25头牛去吃,(吃的-长的=消耗原草量)即:25 -5=20 ( 单位量)④、25头牛去吃,可吃天数牧场原有草量÷25头牛每天实际消耗原有草量=可吃天数100 ÷20 =5 ( 天)解:( 10×20-15×10 )÷( 20-10 )=50÷10=5 (单位量) ------- 每天长草量( 10-5 )×20=5×20=100 ( 单位量) ------- 原有草量100÷( 25-5 )=100÷20=5 (天)答:可供给25头牛吃5 天。
牛顿问题
牛顿问题
英国伟大的科学家牛顿,曾经写过一本数学书。
书中有一道非常有名的、关于牛在牧场上吃草的题目,后来人们就把这类题目称为“牛顿问题”。
“牛顿问题”是这样的:“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。
如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
”
这类题目的一般解法是:把一头牛一天所吃的牧草看作1,那么就有:
(1) 27头牛6天所吃的牧草为:27×6=162
(这162包括牧场原有的草和6天新长的草。
)
(2) 23头牛9天所吃的牧草为:23×9=207
(这207包括牧场原有的草和9天新长的草。
)
(3) 1天新长的草为:(207-162)÷(9-6)=15
(4) 牧场上原有的草为:27×6-15×6=72
(5) 每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:
72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
请你算一算。
有一牧场,如果养25只羊,8天可以把草吃尽;养21只羊,12天把草吃尽。
如果养15只羊,几天能把牧场上不断生长的草吃尽呢?。
牛吃草问题经典例题.doc
牛吃草问题经典例题精心整理英国大数学家牛顿曾编过这样一道数学题:牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天??解题关键:?牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:?1、求出每天长草量;?2、求出牧场原有草量;?3、求出每天实际消耗原有草量(牛吃的草量-牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天??解题关键:?牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:?1、求出每天长草量;?2、求出牧场原有草量;?3、求出每天实际消耗原有草量(牛吃的草量:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
?解:新长出的草供几头牛吃1天:?(10×22-新长出的草供几头牛吃1天:?(10×22:?(10-5)×22÷(25-5)?=5×22÷20? =5.5(天)?答:供25头牛可以吃5.5天。
?-供25头牛可以吃5.5天。
?:3×10÷6=5(天)。
如果我们把“一堆草”换成“一片正在生长的草地”,问题就不那么简单了,因为草每天都在生长,草的数量在不断变化。
这类工作总量不固定(均匀变化)的问题就是牛吃草问题。
??例1牧场上一片青草,每天牧草都匀速生长。
牛吃草问题
牛顿问题,俗称“牛吃草问题”牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:1、求出每天长草量;2、求出牧场原有草量;3、求出每天实际消耗原有草量( 牛吃的草量-- 生长的草量= 消耗原有草量);4、最后求出可吃天数想:这片草地天天以匀速生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把所有头牛分成两部分来研究,用其中一头吃掉新长出的草,用其余头数吃掉原有的草,即可求出全部头牛吃的天数。
设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220份,16头牛10天吃草为1×16×10=160份(220-160)÷(22-10)=5份,说明牧场上一天长出新草5份。
220-5×22=110份,说明原有老草110份。
综合式:110÷(25-5)=5.5天,算出一共多少天。
牛顿曾提出的问题牛顿在其著作《普遍的算术》(1707年出版)中提出如下问题:"12条公牛在四个星期内吃掉了三又三分之一由格尔的牧草;21条公牛在9星期吃掉10由格尔的牧草,问多少条公牛在18个星期内吃掉24由格尔的牧草?"(由格尔是古罗马的面积单位,1由格尔约等于2,500平方米)。
这个著名的公牛问题叫做“牛顿问题”。
牛顿曾说过:“如果我看得比别人更远些,那是因为我站在巨人的肩膀上”。
题目解法牛顿的解法是这样的:在牧草不生产的条件下,如果12条公牛在四星期内吃掉三又三分之一由格尔的牧草、则按比例36头公牛四星期内,或16头公牛九个星期内,或八头公牛18星期内吃掉10由格尔的牧草,由于牧草在生长,所以21头公牛9星期只吃掉10由格尔牧草,即在随后的五周内,在10由格尔的草地上新长的牧草足够21-16=5头公牛吃9星期,或足够5/2头公牛吃18个星期,由此推得,14个星期(即18个星期减去初的四个星期)内新长的牧草可供7头公牛吃18个星期,因为5:14=5/2:7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿问题,俗称“牛吃草问题”
牧场上有一片青草,每天都生长得一样快。
这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃几天?
解题关键:
牛顿问题,俗称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。
解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量(牛吃的草量--生长的草量=消耗原有草量);
4、最后求出可吃天数
想:这片草地天天以同样的速度生长是分析问题的难点。
把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。
求出了这个条件,把25头牛分成两部分来研究,用5头吃掉新长出的草,用20头吃掉原有的草,即可求出25头牛吃的天数。
解:新长出的草供几头牛吃1天:
(10×22-16×1O)÷(22-1O)
=(220-160)÷12
=60÷12
=5(头)
这片草供25头牛吃的天数:(10-5)×22÷(25-5)
=5×22÷20
=5.5(天)
答:供25头牛可以吃5.5天。