设数法解题 《举一反三》六年级奥数教案
(完整)六年级奥数教案
教育学生养成认真计算的习惯,理清解题思路,探索简算方法
教学难点
理解并运用简算公式,掌握简算技巧
教学过程
一、复习导入
异分母分数的加减运算
让学生回顾异分母分数的运算过程并进行讲授
二、新课讲授
由回顾内容,导入新课公式
三、例题分析|习题强化
布置作业
拓展应用部分
思路要点
复习导入→新课讲授(公式)
课堂小结
教学难点
理解并运用倒推法
教学过程
一、导入概念
有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
六年级数学
《举一反三》
教案
第一讲简便运算
授课时间:课时:授课形式:讲解+练习教师:
教学目标
1.通过对多则运算转化为简便运算的过程,让学生养成独立思考、积极探索规律的良好学习习惯
2.化繁为简的过程中,让学生获得成就感,逐渐爱上做题,爱上探索
3.事物均有规律可循,探索的过程中,让学生爱上数字,积极探索数学世界
(可通过画图或画数轴进行分析)
2、情景问题讲解
三、例题分析|习题强化
类型题进行讲解+习题巩固
3、类型题回顾
布置作业
思路要点
例题+画题干分析变量不变量+思路启示+讲解+细节要求+习题
例:(课本典例1)有两筐苹果,乙筐是甲筐的 ,从甲筐取出6千克装入乙筐后,乙筐的苹果是甲筐的 ,问:甲乙两筐苹果共重多少千克?
2.能够理清题干中逻辑关系
3.能够对利用分数解决应用题有一个系统的知识领会过程
六年级奥数举一反三教案
2.贯穿公式:工作效率= ,工作时间= ,
工作总量=工作效率 工作时间
三、例题分析|习题强化
题型进行讲解+习题巩固
布置作业
思路要点
基本关系梳理+导入公式+分析讲解
例:印刷厂有一批书要装订,甲单独要15天完成,乙单独要12天完成,两人一起装订多长时间完成?
基本关系梳理:
教学重点
教育学生养成认真计算的习惯,理清解题思路,探索简算方法
教学难点
理解并运用简算公式,掌握简算技巧
教学过程
一、复习导入
异分母分数的加减运算
让学生回顾异分母分数的运算过程并进行讲授
二、新课讲授
由回顾内容,导入新课公式
三、例题分析|习题强化
布置作业
拓展应用部分
思路要点
复习导入→新课讲授(公式)
课堂小结
本课主要探索了有规律可循的多则运算的简算技巧,更深入地了解了分数的加减乘除运算
第二讲巧算与估算
授课时间:课时:授课形式:讲解+练习教师:
教学目标
1.通过进一步学习分数求和问题,解决更复杂的分数运算
2.通过假设掌握估算的方法和技巧,让学生对估算形成概念
3.通过分数裂项相加法、提取公因式法、错位相减法等数学解题方法,进一步加强学生对分数的认识和理解
教学重点
深入研究分数的加减乘除混合运算
教学难点
分数解题方法和思路的理解和应用
教学过程
一、复习导入(公式)
二、例题分析|习题强化
1.通过例题学习新课,其中穿插分数解题方法的导入
(1)分数裂项相加法
(2)提取公因式法
(3)错位相减法
2.导入估算概念
小学奥数教材举一反三六年级课程40讲全整理之欧阳理创编
欧阳阳理创编 2021.03.04修改整理加入目录,方便查用,六年级奥数举一反三目录第1讲定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b等于a和b两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1、将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2、设a*b=a2+2b,那么求10*6和5*(2*8)。
3、设a*b=3a-b×1/2,求(25*12)*(10*5)。
【例题2】设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”3△(4△6)=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=6513*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26是新的运算符号。
练习2:1、设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
【讲义】六年级 奥数《举一反三》 第9讲 设数法解题
第9讲 设数法解题一、知识要点在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法〞,即对题目中“缺少〞的条件,随便假设一个数代入〔当然假设的这个数要尽量的方便计算〕,然后求出解答。
二、精讲精练【例题1】如果△△=□□□,△☆=□□□□,那么☆☆□=〔 〕个△。
练习1:1、△=○○□□,△○=□□,☆=□□□,问△□☆=〔 〕个○。
2、五个人比拟身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?【例题2】足球门票15元一张,降价后观众增加一倍,收入增加51,问一张门票降价多少元?练习2:1、某班一次考试,平均分为70分,其中43及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?2、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度。
练习3:1、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
2、张师傅骑自行车往返A 、B 两地。
去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?【例题4】某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多51,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?练习4:1、某班男生人数是女生的32,男生平均身高为138厘米,全班平均身高为132厘米。
问:女生平均身高是多少厘米?2、某班男生人数是女生的54,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?【例题5】狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。
小学六年级奥数举一反三PPT课件
32 =3 ×25 +25.4×6.4+12.5×6.4
55
=(3.6+6.4)×25.4+12.5×8×0.8
=254+80
CHENLI
22
【练习4】
CHENLI
23
【例题5】 计算81.5×15.8+81.5×51.8+67.6×18.5 原式=81.5×(15.8+51.8)+67.6×18.5 =81.5×67.6+67.6×18.5 =(81.5+18.5)×67.6 =100×67.6 =6760
x⊙16=4x-2×16+1/2×x×16
=12x-32
12x-32 = 34
12x= 66
x=5.512x-32 = 34,求出x的值。列算式为
CHENLI
12
【练习5】 1.设a⊙b=3a-2b,已知x⊙(4⊙1)=7求x。
2 . 对 两 个 整 数 a 和 b 定 义 新 运 算 “ △” : a△b= , 求 6△4+9△8。
CHENLI
3
【例题1】 假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】
这题的新运算被定义为:a*b等于a和b两数之和加上两数之 差。这里的“*”就代表一种新运算。在定义新运算中同样规 定了要先算小括号里的。因此,在13*(5*4)中,就要先算 小括号里的(5*4)。
【思路导航】这题的新运算被定义为:@ = (a-1)×a× (a+1),据此,可以求出1/⑥-1/⑦ =1/(5×6×7)-1/ (6×7×8),这里的分母都比较大,不易直接求出结果。 根据1/⑥-1/⑦ =1/⑦×A,可得出A = (1/⑥-1/⑦)÷1/⑦ = (1/⑥-1/⑦)×⑦ = ⑦/⑥ -1。即
小学奥数六年级举一反三完整版
小学奥数六年级举一反三Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】第一周定义新运算专题简析:定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些特殊算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、等,这是与四则运算中的“、、、·”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
例题1。
假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
13*5=(13+5)+(13-5)=18+8=265*4=(5+4)+(5-4)=1013*(5*4)=13*10=(13+10)+(13-10)=26练习11..将新运算“*”定义为:a*b=(a+b)×(a-b).求27*9。
2.设a*b=a2+2b,那么求10*6和5*(2*8)。
3.设a*b=3a-×b,求(25*12)*(10*5)。
例题2。
设p、q是两个数,规定:p△q=4×q-(p+q)÷2。
求3△(4△6).3△(4△6).=3△【4×6-(4+6)÷2】=3△19=4×19-(3+19)÷2=76-11=65练习21.设p、q是两个数,规定p△q=4×q-(p+q)÷2,求5△(6△4)。
2.设p、q是两个数,规定p△q=p2+(p-q)×2。
求30△(5△3)。
3.设M、N是两个数,规定M*N=+,求10*20-。
例题3。
如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44。
奥数推理举一反三教学设计
奥数推理举一反三教学设计引言:奥数(即奥林匹克数学)是一种富有挑战性和创造性的数学竞赛。
奥数推理举一反三则是奥数题目中一种常见的题型,要求学生能够通过观察、分析,并将已知条件应用到其他问题中。
本文将介绍一种奥数推理举一反三的教学设计,帮助学生培养逻辑思维、推理能力以及创新思维。
第一部分:目标设定1. 培养学生的逻辑思维能力。
通过奥数推理举一反三的题目,激发学生思考问题的多种可能性,并通过逻辑推理找到解决问题的方法。
2. 提升学生的推理能力。
通过多样化的题目设计,引导学生运用已有的数学知识和技巧解决新的问题。
3. 发展学生的创新思维。
鼓励学生在解决问题的过程中采用不同的思路和方法,培养他们的创造力和发散性思维。
第二部分:教学方法奥数推理举一反三的教学设计可以采用以下方法:1. 观察和分析。
要求学生认真观察题目中给出的信息,分析各个条件之间的关系,并尝试找出其中的规律。
2. 利用已知条件推理。
学生可以根据已知条件进行推理,猜测未知结果,并进行验证。
3. 扩展应用。
学生可以将已知条件应用到其他问题中,进一步探索解决问题的方法。
4. 启发式教学。
引导学生提出问题,发散思维,培养学生自主思考和解决问题的能力。
第三部分:教学步骤1. 导入阶段:通过实例引入奥数推理举一反三的题型,激发学生的兴趣。
2. 示范阶段:教师引导学生一起观察和分析一个奥数推理举一反三的题目,解释解题的思路和方法。
3. 练习阶段:学生通过解答一些奥数推理举一反三的练习题,巩固掌握解题方法。
4. 拓展阶段:学生尝试将已知条件应用到其他问题中,发散思维,并探索解决问题的不同方法。
5. 总结与归纳:教师带领学生总结奥数推理举一反三的解题思路和方法,并与学生一起分析解题中遇到的困难和突破口。
6. 拓展应用:鼓励学生利用奥数推理举一反三的方法解决实际生活中的问题,拓展数学应用能力。
第四部分:教学评估教学评估是教学过程中不可或缺的一部分,通过评估可以了解学生对奥数推理举一反三的理解和掌握程度。
小学六年级奥数举一反三--假设法解题
小学奥数举一反三假设法解题(一)一、知识要点假设法解体的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。
有些题目用假设法思考,能找到巧妙的解答思路。
运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系;也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。
二、精讲精练【例题1】甲、乙两数之和是185,已知甲数的1/4与乙数的1/5的和是42,求两数各是多少?【思路导航】假设将题中“甲数的1/4”、“乙数的1/5”与“和为42”同时扩大4倍,则变成了“甲数与乙数的4/5的和为168”,再用185减去168就是乙数的1/5。
解:乙:(185-42×4)÷(1-1/5×4)=85答:甲数是100,乙数是85。
练习1:1.甲、乙两人共有钱150元,甲的1/2与乙的1/10的钱数和是35元,求甲、乙两人各有多少元钱?2.甲、乙两个消防队共有338人。
抽调甲队人数的1/7,乙队人数的1/3,共抽调78人,甲、乙两个消防队原来各有多少人?3.海洋化肥厂计划第二季度生产一批化肥,已知四月份完成总数的1/3多50吨,五月份完成总数的2/5少70吨,还有420吨没完成,第二季度原计划生产多少吨?【例题2】彩色电视机和黑白电视机共250台。
如果彩色电视机卖出1/9,则比黑白电视机多5台。
问:两种电视机原来各有多少台?【思路导航】从图中可以看出:假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。
黑白电视机增加5台后,相当于彩色电视机的(1-1/9)= 8/9。
(250+5)÷(1+1-1/9)=135(台)250-125=115(台)答:彩色电视机原有135台,黑白电视机原有115台。
练习2:1.姐妹俩养兔120只,如果姐姐卖掉1/7,还比妹妹多10只,姐姐和妹妹各养了多少只兔?2.学校有篮球和足球共21个,篮球借出1/3后,比足球少1个,原来篮球和足球各有多少个?3.小明甲养的鸡和鸭共有100只,如果将鸡卖掉1/20,还比鸭多17只,小明家原来养的鸡和鸭各有多少只?【例题3】师傅与徒弟两人共加工零件105个,已知师傅加工零件个数的3/8与徒弟加工零件个数的4/7的和为49个,师、徒各加工零件多少个?【思路导航】假设师、徒两人都完成了4/7,一个能完成(105×4/7)=60个,和实际相差(60-49)=11个,这11个就是师傅完成将零件的3/8与完成加工零件的4/7相差的个数。
小学奥数举一反三(六年级)之欧阳光明创编
第1讲 定义新运算欧阳光明(2021.03.07)一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题的新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里的“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△3△(4△6)=3△【4×6-(4+6)÷2】 =3△19=4×19-(3+19)÷2 =76-11=6513*5=(13+5)+(13-5)=18+8=26 5*4=(5+4)+(5-4)=10 13*(5*4)=13*10=(13+10)+(13-10)=26(6△4)。
举一反三数学奥数教案
举一反三数学奥数教案
教学目标:
1. 帮助学生理解和掌握奥数中的“举一反三”解题方法;
2. 培养学生的逻辑思维和推理能力;
3. 提高学生的数学解题速度和准确率。
教学内容:
1. “举一反三”解题方法的定义和原理;
2. 经典奥数题型的“举一反三”解法示例;
3. 学生实际操作,进行“举一反三”解题。
教学难点与重点:
难点:如何准确找到题目中的关键点,进行“举一反三”。
重点:“举一反三”在各类题型中的应用。
教具和多媒体资源:
1. 黑板或投影仪,用于展示题目和解法;
2. 数学教学软件,可用于实时解题演示。
教学方法:
1. 激活学生的前知:回顾与“举一反三”相关的基础数学知识;
2. 教学策略:结合实例,边讲解边演示;
3. 学生活动:小组讨论,分享不同题型的“举一反三”
解法。
教学过程:
1. 导入:故事导入,讲述数学大师如何运用“举一反三”解决问题;
2. 讲授新课:详细解释“举一反三”的原理,并通过实例进行演示;
3. 巩固练习:提供多道奥数题,让学生运用“举一反三”进行解答;
4. 归纳小结:总结本节课学到的“举一反三”解题方法。
评价与反馈:
1. 设计评价策略:小组报告,展示解题过程;
2. 为学生提供反馈:针对学生的解题方法和答案,给予指导性的意见。
作业布置:布置5道奥数题,要求学生运用“举一反三”进行解答。
教师自我反思:本节课通过举例与实战相结合的方式让学生理解举一反三在数学题目中的实际应用,效果不错。
小学六年级奥数举一反三
第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
【思路导航】这题新运算被定义为:a*b 等于a 和b 两数之和加上两数之差。
这里“*”就代表一种新运算。
在定义新运算中同样规定了要先算小括号里的。
因此,在13*(5*4)中,就要先算小括号里的(5*4)。
练习1:1.将新运算“*”定义为:a*b=(a+b)×(a-b).。
求27*9。
2.设a*b=a2+2b ,那么求10*6和5*(2*8)。
3.设a*b=3a -b ×1/2,求(25*12)*(10*5)。
【例题2】设p 、q 是两个数,规定:p △q=4×q-(p+q)÷2。
求3△(4△6)。
【思路导航】根据定义先算4△6。
在这里“△”是新的运算符号。
练习2:1.设p 、q 是两个数,规定p △q =4×q -(p+q )÷2,求5△(6△4)。
2.设p 、q 是两个数,规定p △q =p2+(p -q )×2。
求30△(5△3)。
3.设M 、N 是两个数,规定M*N =M/N+N/M ,求10*20-1/4。
【例题3】如果1*5=1+11+111+1111+11111,2*4=2+22+222+2222,3*3=3+33+333,4*2=4+44,那么7*4=________;210*2=________。
小学奥数教材举一反三六年级课程40讲全整理
修改整理加入目录,方便查用,六年级奥数举一反三目录第1讲定义新运算 (3)第2讲简便运算(一) (6)第3讲简便运算(二) (9)第4讲简便运算(三) (11)第5讲简便运算(四) (14)第6讲转化单位“1”(一) (17)第7讲转化单位“1”(二) (19)第8讲转化单位“1”(三) (22)第9讲设数法解题 (25)第10讲假设法解题(一) (28)第11讲假设法解题(二) (31)第12讲倒推法解题 (34)第13讲代数法解题 (37)第14讲比的应用(一) (40)第15讲比的应用(二) (43)第16讲用“组合法”解工程问题 (47)第17讲浓度问题 (50)第18讲面积计算(一) (54)第19讲面积计算(二) (59)第20讲面积计算 (64)第二十一周抓“不变量”解题 (69)第二十二周特殊工程问题 (71)第二十三周周期工程问题 (75)第二十四周比较大小 (83)第二十五周最大最小问题 (87)第26周加法、乘法原理 (90)第27周表面积与体积(一) (92)第28周表面积与体积(二) (101)第二十九周抽屉原理(一) (104)第三十周抽屉原理(二) (109)第三十一周逻辑推理(一) (114)第三十二周逻辑推理(二) (122)第三十三周行程问题(一) (129)第三十四周行程问题(二) (137)第三十五周行程问题(三) (148)第三十六周流水行船问题 (155)第三十七周对策问题 (158)第三十八周应用同余问题 (160)第三十九周“牛吃草”问题 (162)第四十周不定方程 (165)第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
转化单位1A 《举一反三》六年级奥数教案
《举一反三》六年级奥数教案P38--P43 一、教学内容:举一反三二、教学目标:”有更深入的理解。
1通过转化训练,使学生对单位“ 三、教学难点:利用列表的形式理解数量关系的实质。
四、教学设计:、复习1乙是丙的
a/b,若甲是乙的,则乙是甲a/b;若甲是乙的ac/bd 则甲是丙的c/d,c/d=ad/bca/b ÷乙是甲的;
a/b=bc/adc/d ÷则甲是乙的,c/d是乙的a/b若甲的;b/a的。
”的量,要注意分析题中分率和具体数量1总结:解题时要注意抓住单位“ 的对应关系。
、新课内容2 】1【例题:图解【分析】)2(、)1(1练习:疯狂操练,关键是找到两个相比较的量,弄清总结:连续求“一个数的几分之几” 1楚每一步中谁是单位“ ,谁是谁的几分之几,同时找准中间量。
” 】2【例题:图解【分析】)1(2练习:疯狂操练)3(、”的量,弄清分率与数量的对应关系。
1总结:关键是找出单位“ 、能力提升。
3 】3【例题:图解【分析】)1(3练习:疯狂操练,”1“一定要找准所给分数对应的单位时,”1“当题中出现多个单位总结:
”的几分之几就等于对应的1”乘对应量占单位“1做到正确对应,然后用单位“ 数量。
、作业4 )
3(1疯狂操练 P33P34 )2(2疯狂操练)3(3疯狂操练 P35。
教案:六年级奥数举一反三第9周设数法解题
第9周设数法解题志成教育中心韩钰教学目的:能解决一些看起来缺少条件的,按常规解法似乎无解的题目重点:假设的这个数要尽量方便计算难点:明白在什么条件下可以设数解决问题教学过程:例题一:(纯图形的等式问题,把其中的一个图形假设成一个数,要比直接用图形代换少费周折,使学生体会设数法的方便、快捷)疯狂操练11、与例题相似,一般找第一个等式,按两个图形个数的比恰当赋予他们的值。
2、在题目中的第一个条件里找出单位“1”所代表的量,根据题意设一个恰当的数,解决问题。
3、与第二题类似,题目中有相同的量,根据题意设一个恰当的数,解决问题。
例题二:(题目中缺少观众人数这个条件,其实与答案无关设原观众数为1个)疯狂操练21、与例题相似,题目中缺少学生人数,恰好这个条件在题目中又是以分数形式变化,设这个量为4人。
2、缺少学生总数这个条件,恰好这个条件在题目中又是以百分数形式变化,设这个量为10人或100人。
3、设全部男生为5人,或10人,在运用设数法的时候,人数可以是小数或分数。
例题三:(题目里出现了四个速度,但是缺少单程的路程,设路程是这四个数的最小公倍数)疯狂操练31、与例题相似2、与例题相似3、本题已知了平均速度和其中的一个速度,同样求这两个已知量的最小公倍数,做此类题忽略平均速度,按速度对待例题四:(题目缺少的是人数,因为女孩的人数是单位“1”,先设女孩的个数,是对应分数分母的倍数,通常就设成分母本身,再把男孩的身高看做单位“1”计算)疯狂操练41、设女生人数是3人2、设女生人数是5人,类似例题3、先把题目中的10%化到最简分数110,再设边长为10例题五:(先根据第二个条件设出狗跑一步为7,马跑一步为4;再根据第一个条件设出马跑三步和狗跑五步的时间都为1;再推出狗和马的速度比)速度和步长问题,较难疯狂操练51、与例题相似2、与例题相似3、先算狗和兔的速度,再从狗算出A、B间的路程,再算兔的时间,再转换成兔的步数,用兔的步数减狗的步数教学反思:1、图形问题的设数要根据等式两边图形的个数比,了解个数比与它们所代表的值成倒数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《举一反三》六年级奥数教案
一、教学内容:举一反三P44—P48
二、教学目标:
1、学会用“设数法”解题。
2、理解所设的数只要便于列式计算,它们的大小与解答的结果无关。
三、教学难点:怎样设数才能使解题最简便。
四、教学设计:
1、复习上次课所学内容,讲解作业。
P40疯狂操练2(1)P40疯狂操练2(2)
2、新课内容
I、为什么要设数?
【例题1】:如果△△=□□□,△☆=□□□□,那么☆☆□=()个△。
【分析】:由第一个等式可以设△=3,□=2,代入第二式得☆=5,再代入第三式左边是12,所以右边括号内应填4。
总结:本题如果不用设数代入法,直接用图形互相代换,显然要多费周折。
有些题目直接解答比较困难,设一个具体数后,解答的难度可以适当降低,也便于理解,这种方法叫做设数法。
【例题2】足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
【分析】:初看似乎缺少观众人数这个条件,如果设原来有a名观众,则每张票降价:15-15a×(1+1/5)÷2a=6(元)。
方法二:见书P45例题2【思路导航】答:略。
总结:在用设数法解题时,我们知道所设的数只要便于列式计算,它们的大小(但不能是0)与解答的结果没有关系。
所以我们设的这个数要尽量方便计算。
II、怎样设数?怎样设数最简便?
【例题3】小王在一个小山坡来回运动。
先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,
每分钟跑200米,求小王的平均速度。
【分析】:很多同学看到题目后,立刻列出算式:(200+240+150+200)/4。
切记:求平均速度时,我们用公式:平均速度=总路程/总时间。
1)为什么设单程路程:我们知道平均速度=总路程/总时间,要求小王的平均速度,题目所给条件似乎不够,此时,我们可以假设总路程(4个单程路程之和)或总时间(4个单程时间之和),又4个单程时间都不同,所以我们假设总路程要更简便。
2)为什么设单程路程为1200米:因为题中出现了四个速度,为方便计算,我们取4个速度的最小公倍数,(怎样取最小公倍数?)即1200米,即设一个单程是1200米。
具体过程见书P46例题3【思路导航】答:略。
总结:在设数法求解较复杂应用题时,我们一般假设题中不变的量,这样求解最简单。
3、能力提升。
【例题4】
【分析】初看题目似乎无从下手,那么我们从题目问题开始。
我们知道男生的平均身高=男生的总身高/男生人数,所以我们假设男生人数较简便。
由已知可得:男生人数=(1+1/5)×女生人数,当女生人数为5人时,男生人数为6人。
所以总身高=(5+6)×115=1265(厘米),又
总身高=男生总身高+女生总身高
=6×男生平均身高+5×女生平均身高,又女生平均身高=(1+10%)×男生平均身高
=6×男生平均身高+5×(1+10%)×男生平均身高
=[6+5×(1+10%)]×男生平均身高
所以男生平均身高=1265÷[6+5×(1+10%)]=110(厘米)
答:这个班男孩平均身高为110厘米。
方法二:见书P47例题4【思路导航】。