计算机组成原理课程设计——

合集下载

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计1. 引言计算机组成原理是计算机科学与技术专业中一门重要的基础课程。

通过学习计算机组成原理,可以了解计算机的基本组成结构、工作原理和性能提升方法。

为了更好地掌握和应用所学知识,本文将介绍一项针对计算机组成原理课程的设计任务。

2. 任务描述本次课程设计任务要求设计一个简单的单周期CPU,实现基本的指令执行功能。

具体要求如下:•CPU的指令集包括加载(Load)、存储(Store)和算术逻辑运算(ALU)指令,需要支持整数加法、减法、乘法和除法运算。

•CPU需要具备基本的流水线功能,包括取指(Instruction Fetch)、译码(Decode)、执行(Execute)和写回(Write Back)。

•CPU需要支持基本的寄存器操作,包括寄存器读取(Register Read)和寄存器写入(Register Write)。

•CPU的指令和数据存储器使用单端口RAM,指令和数据的访问都需要经过存储器。

3. 设计思路针对上述需求,我们可以采用以下设计思路:3.1 CPU总体设计•CPU采用单周期结构,即每个指令都在一个时钟周期内完成。

•CPU主要分为指令存储器、数据存储器、寄存器文件和控制逻辑四个部分。

3.2 指令存储器设计•指令存储器采用单端口RAM,每个指令的长度为固定的32位。

•指令存储器需要实现读取指令的功能,每次从内存中读取一个指令。

3.3 数据存储器设计•数据存储器也采用单端口RAM,每个数据的长度为固定的32位。

•数据存储器需要实现读取数据和写入数据的功能,执行指令时需要从存储器中读取数据,计算结果需要写回存储器。

3.4 寄存器文件设计•寄存器文件包含若干个通用寄存器,用于存储指令执行过程中的临时数据。

•寄存器文件需要实现读取寄存器和写入寄存器的功能,执行指令时需要读取和写入寄存器。

3.5 控制逻辑设计•控制逻辑负责根据当前指令的操作码和操作数生成控制信号,控制CPU的工作流程。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计
计算机组成原理课程设计是计算机科学与技术专业的一门核心课程,其目的是帮助学生更深入地理解计算机的组成原理和工作原理,培养学生分析和设计计算机硬件的能力。

在这个课程设计中,我选择了设计一个简单的单周期CPU。

首先,我会设计CPU的指令集,包括处理器指令的类型、指
令格式、寻址方式等。

然后,根据指令集的要求,设计并实现CPU的控制器,控制指令的执行流程。

接着,我会设计并实
现CPU的数据通路,包括寄存器、ALU、存储器等组件,实
现指令的操作。

在设计过程中,我会遵循计算机组成原理的基本原理和设计原则,如冯·诺伊曼体系结构、指令周期、数据通路和控制单元
的相互协调等。

我会使用硬件描述语言,如VHDL或Verilog,进行设计,通过仿真和验证来测试设计的正确性。

同时,我还会考虑CPU的性能和效率,尽量优化各个部分的设计,以提
高CPU的运行速度和处理能力。

在设计完成后,我还会进行性能测试和功能验证,测试CPU
在不同工作负载下的性能表现,并根据测试结果对设计进行优化。

最后,我会编写报告,详细介绍我的设计思路、实现过程和测试结果,以及可能存在的问题和改进的方向。

通过这个课程设计,我将深入理解计算机组成原理的相关知识,并掌握CPU设计的基本方法和技术。

这对于我今后的学习和
工作都具有重要意义,不仅可以加深我对计算机硬件的理解,
还可以提高我的问题分析和解决能力,为我未来的研究和工作奠定坚实的基础。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计目录目录第一章设计内容及目标 (1)1.1程序设计的目标 (1)1.2程序设计的内容和要求 (1)1.3需要器材 (1)第二章设计原理 (2)2.1设计思路 (2)2.2设计工作原理 (2)2.2.1 设计基本原理 (2)2.2.2 机器指令 (2)2.2.3 数据通路 (3)2.2.4 微指令格式 (4)2.2.5 微程序地址的转移 (4)2.2.6 机器指令的写、读和执行 (5)第三章设计步骤 (6)3.1连接实验线路 (6)3.2设计机器指令代码及数据 (7)3.3微程序流程图 (7)3.4设计微指令二进制代码 (9)3.5微指令代码装入与检查 (9)3.6机器指令代码装入与检查 (10)第四章实现方法及关键技术 (11)4.1程序实现方法 (11)4.1.1 单步运行程序 (11)4.1.2 连续运行程序 (11)4.2实现关键技术 (11)第五章设计问题分析 (12)5.1遇到的问题 (12)5.2解决方法 (12)设计总结 (13)第一章设计内容及目标本课程设计的教学目的是在掌握计算机系统组成及内部工作机制、理解计算机各功能部件工作原理的基础上,深入掌握信息流和控制信息流的流动过程,进一步加深计算机系统各模块间相互关系的认识和整机的概念,培养开发和调试计算机的技能。

再设计实践中提高应用所学专业知识分析问题和解决问题的能力。

1.1程序设计的目标1.在掌握部件单元电路实验的基础上,进一步将其组成系统,构造一台基本模型计算机。

2.为其定义若干条机器指令,并编写相应的微程序,上机调试,掌握整机概念。

1.2程序设计的内容和要求1、掌握设计题目所要求的机器指令的操作功能,除了4条必做指令外,每组另外设计2条机器指令。

4条选做指令,供有能力的学生完成。

2、为要设计的机器指令设计操作码和操作数,并安排在RAM(6116芯片)中的地址,形成“机器指令表”。

3、分析并理解数据通路图。

《计算机组成原理》教案

《计算机组成原理》教案

《计算机组成原理》教案一、课程简介1.1 课程背景计算机组成原理是计算机科学与技术专业的一门核心课程,旨在帮助学生了解和掌握计算机的基本组成、工作原理和性能优化方法。

通过本课程的学习,学生将能够理解计算机硬件系统的整体结构,掌握各种计算机组件的功能和工作原理,为后续学习操作系统、计算机网络等课程打下基础。

1.2 课程目标(1)了解计算机系统的基本组成和各部分功能;(2)掌握计算机指令系统、中央处理器(CPU)的工作原理;(3)熟悉存储器层次结构、输入输出系统及总线系统;(4)学会分析计算机系统的性能和优化方法。

二、教学内容2.1 计算机系统概述(1)计算机的发展历程;(2)计算机系统的层次结构;(3)计算机系统的硬件和软件组成。

2.2 计算机指令系统(1)指令的分类和格式;(2)寻址方式;(3)指令的执行过程。

2.3 中央处理器(CPU)(1)CPU的结构和功能;(2)流水线技术;(3)多核处理器。

2.4 存储器层次结构(1)存储器概述;(2)随机存取存储器(RAM);(3)只读存储器(ROM);(4)缓存(Cache)和虚拟存储器。

2.5 输入输出系统(1)输入输出设备;(2)中断和DMA方式;(3)总线系统。

三、教学方法3.1 讲授法通过讲解、举例、分析等方式,使学生掌握计算机组成原理的基本概念、原理和应用。

3.2 实验法安排实验课程,使学生在实践中了解和验证计算机组成原理的相关知识。

3.3 案例分析法分析实际案例,使学生了解计算机组成原理在实际应用中的作用和意义。

四、教学评价4.1 平时成绩包括课堂表现、作业完成情况、实验报告等。

4.2 期末考试采用闭卷考试方式,测试学生对计算机组成原理知识的掌握程度。

五、教学资源5.1 教材《计算机组成原理》(唐朔飞著,高等教育出版社)。

5.2 辅助资料包括课件、实验指导书、案例分析资料等。

5.3 网络资源推荐学生访问相关学术网站、论坛,了解计算机组成原理的最新研究动态和应用成果。

计算机组成原理课程设计报告

计算机组成原理课程设计报告

计算机组成原理课程设计报告一、引言计算机组成原理是计算机科学与技术专业的重要课程之一,通过学习该课程,我们可以深入了解计算机的硬件组成和工作原理。

本次课程设计旨在通过设计一个简单的计算机系统,加深对计算机组成原理的理解,并实践所学知识。

二、设计目标本次课程设计的目标是设计一个基于冯·诺依曼体系结构的简单计算机系统,包括中央处理器(CPU)、存储器、输入输出设备等。

通过该设计,我们可以掌握计算机系统的基本组成和工作原理,加深对计算机组成原理的理解。

三、设计方案1. CPU设计1.1 硬件设计CPU由控制单元和算术逻辑单元组成。

控制单元负责指令的解码和执行,算术逻辑单元负责算术和逻辑运算。

1.2 指令设计设计一套简单的指令集,包括算术运算指令、逻辑运算指令、数据传输指令等。

1.3 寄存器设计设计一组通用寄存器,用于存储数据和地址。

2. 存储器设计2.1 主存储器设计一块主存储器,用于存储指令和数据。

2.2 辅助存储器设计一个简单的辅助存储器,用于存储大容量的数据。

3. 输入输出设备设计3.1 键盘输入设备设计一个键盘输入设备,用于接收用户的输入。

3.2 显示器输出设备设计一个显示器输出设备,用于显示计算结果。

四、实施步骤1. CPU实现1.1 根据CPU的硬件设计,搭建电路原型。

1.2 编写控制单元的逻辑电路代码。

1.3 编写算术逻辑单元的逻辑电路代码。

1.4 进行仿真验证,确保电路的正确性。

2. 存储器实现2.1 设计主存储器的存储单元。

2.2 设计辅助存储器的存储单元。

2.3 编写存储器的读写操作代码。

2.4 进行存储器的功能测试,确保读写操作的正确性。

3. 输入输出设备实现3.1 设计键盘输入设备的接口电路。

3.2 设计显示器输出设备的接口电路。

3.3 编写输入输出设备的读写操作代码。

3.4 进行输入输出设备的功能测试,确保读写操作的正确性。

五、实验结果与分析通过对CPU、存储器和输入输出设备的实现,我们成功设计了一个基于冯·诺依曼体系结构的简单计算机系统。

计算机组成原理 课程设计

计算机组成原理 课程设计

目录一、实验计算机的设计 (2)1.整机逻辑框设计 (2)2.指令系统设计 (3)3.微操作控制部件设计 (3)4.设计组装实验计算机连接图 (7)5.编写调试程序 (7)二、课程设计总结 (10)三、参考文献 (11)一、实验计算机的设计1.整机逻辑框设计图1-1模型机结构框图2.指令系统设计本机共有16条基本指令,其中算术逻辑指令9条,访问内存指令和程序控制指令4条。

输入输出指令2条,其他指令1条,表1-1列出了各条指令的格式、会变符号和指令功能。

表1-1 实验指令格式3.微操作控制部件设计3.1微指令编码的格式设计系统设计的微程序字长共24位,其控制顺序如下:注:其中uA5-uA0为6位的后续的微地址,F1、F2、F3为三个译码字段,分别由三个控制位译码出多位。

F3字段包含P1-P4四个测试字位。

其功能是根据机器指令及相应微代码进行译码,使微程序转入相应的位地址入口,从而实现微程序的顺序、分支、循环运行。

3.2微操作控制信号设计:表1-3 操作控制信号3.3微程序顺序控制方式设计:3.3.1微程序控制部件组成原理指令寄存器IR图1-2 控制部件组成原理3.3.2微程序入口地址形成方法由于每条机器指令都需要取指操作,所以将取指操作编制成一段公用微程序,通常安排在控存的0号或特定单元开始的一段控存空间内。

每一条机器指令对应着一段微程序,其入口就是初始微地址。

首先由“取指令”微程序取出一条机器指令到IR中,然后根据机器指令操作码转换成该指令对应的微程序入口地址。

这是一种多分支(或多路转移)的情况,常用三种方式形成微程序入口地址3.3.3控存的下地址确定方法在程序顺序运行时,控存的下地址有微指令的顺序控制字段直接提供;当程序出现分支转移时,即“取指”微指令时,该微指令的判别测试字段P1、P2、P3、P4测试,出现分支转移,当分支位地址单云固定后,剩下的其他地方就可以一条微指令占用控存一个位地址单元随意填写。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计一、设计背景计算机组成原理是计算机科学与技术专业的一门基础课程,旨在培养学生对计算机硬件组成和工作原理的深刻理解。

通过课程设计,学生可以巩固和应用所学的知识,提高解决实际问题的能力。

二、设计目标本次计算机组成原理课程设计的目标是让学生通过实践,加深对计算机硬件组成和工作原理的理解,培养学生的设计和实现能力。

具体目标包括:1. 设计并实现一个简单的计算机系统,包括中央处理器(CPU)、存储器、输入输出设备等。

2. 熟悉计算机指令系统的设计与实现,包括指令的编码、解码和执行过程。

3. 学会使用硬件描述语言(如VHDL)进行计算机硬件的设计和仿真。

4. 掌握计算机系统的性能评估方法,包括指令周期、时钟频率等。

三、设计内容本次计算机组成原理课程设计的内容为设计并实现一个简单的基于冯·诺依曼结构的计算机系统。

具体设计内容包括以下几个方面:1. 计算机系统的总体设计根据冯·诺依曼结构的原理,设计计算机系统的总体框架。

包括中央处理器(CPU)、存储器、输入输出设备等。

2. 指令系统的设计与实现设计并实现一个简单的指令系统,包括指令的编码、解码和执行过程。

指令集可以包括算术运算、逻辑运算、数据传输等常见指令。

3. 中央处理器(CPU)的设计与实现设计并实现一个简单的中央处理器,包括指令寄存器、程序计数器、算术逻辑单元等。

通过对指令的解码和执行,实现计算机的基本功能。

4. 存储器的设计与实现设计并实现一个简单的存储器模块,包括指令存储器和数据存储器。

通过存储器的读写操作,实现程序的加载和数据的存储。

5. 输入输出设备的设计与实现设计并实现一个简单的输入输出设备,如键盘和显示器。

通过输入输出设备,实现用户与计算机系统的交互。

6. 系统性能评估对设计的计算机系统进行性能评估,包括指令周期、时钟频率等指标的测量和分析。

通过性能评估,优化计算机系统的性能。

四、设计步骤本次计算机组成原理课程设计的步骤如下:1. 确定设计的整体框架和目标,明确设计的内容和要求。

东北大学计算机组成原理课程设计

东北大学计算机组成原理课程设计

计算机组成原理课程设计报告班级:班姓名:学号:完成时间:一、课程设计目的1.在实验机上设计实现机器指令及对应的微指令(微程序)并验证,从而进一步掌握微程序设计控制器的基本方法并了解指令系统与硬件结构的对应关系;2.通过控制器的微程序设计,综合理解计算机组成原理课程的核心知识并进一步建立整机系统的概念;3.培养综合实践及独立分析、解决问题的能力。

二、课程设计的任务针对COP2000实验仪,从详细了解该模型机的指令/微指令系统入手,以实现乘法和除法运算功能为应用目标,在COP2000的集成开发环境下,设计全新的指令系统并编写对应的微程序;之后编写实现乘法和除法的程序进行设计的验证。

三、课程设计使用的设备(环境)1.硬件●COP2000实验仪●PC机2.软件●COP2000仿真软件四、课程设计的具体内容(步骤)1.详细了解并掌握COP 2000模型机的微程序控制器原理,通过综合实验来实现该模型机指令系统的特点:①总体概述:COP2000模型机包括了一个标准CPU所具备所有部件,这些部件包括:运算器ALU、累加器A、工作寄存器W、左移门L、直通门D、右移门R、寄存器组R0-R3、程序计数器PC、地址寄存器MAR、堆栈寄存器ST、中断向量寄存器IA、输入端口IN、输出端口寄存器OUT、程序存储器EM、指令寄存器IR、微程序计数器uPC、微程序存储器uM,以及中断控制电路、跳转控制电路。

其中运算器和中断控制电路以及跳转控制电路用CPLD来实现,其它电路都是用离散的数字电路组成。

微程序控制部分也可以用组合逻辑控制来代替。

模型机为8位机,数据总线、地址总线都为8位,模型机的指令码为8位,根据指令类型的不同,可以有0到2个操作数。

指令码的最低两位用来选择R0-R3寄存器,在微程序控制方式中,用指令码做为微地址来寻址微程序存储器,找到执行该指令的微程序。

而在组合逻辑控制方式中,按时序用指令码产生相应的控制位。

在本模型机中,一条指令最多分四个状态周期,一个状态周期为一个时钟脉冲,每个状态周期产生不同的控制逻辑,实现模型机的各种功能。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计姓名:班号:指导老师:时间:实验一:计算y=x2+2*x+3一、原理图二、实验目标1、掌握微程序控制器的组成原理;2、掌握伪指令格式的简化和归并;1)常量要存放在那个寄存器中建立其相应的编号;寄存器编号在寄存器中存储的数据寄存器(00) 2寄存器(01) 2寄存器(11) 3寄存器(10) 12)根据确定好的数据所在寄存器的编号,将上面的函数指令辨识出来,翻译成二进制的程序代码;y=x*x+3*x+1指令如下:MUL R00 R01 ------ 0010 00 01MUL R00 R11 ------- 0010 00 11ADD R01 R11 --------- 0000 01 11ADD R11 R10 --------- 0000 11 103)将写好的二进制代码输入到内存(堆)中,控制KRD KWE KLD KRR PR的值来进行检验所输入的指令和数据是否正确,调节PR进行运行程序,当DP置一,其它置零时,按QD则可以进行一步一步的运行程序,观察每一步程序运行的过程和结果,运行程序完成后,通过读寄存器中数据的值检验程序运行的是否正确。

三、连线过程根据以前做实验的情况,结合本次的“微程序控制器”,要将试验台的控制器端与执行器端相应的接口连在一起。

基本信息如图所示:四、实验结果通过读寄存器中数据的值,根据上面所写的程序,y最后得知应该存放在R10中,读出寄存器R10的值为11,则运行结果正确。

实验二:书203页的程序,通过读出寄存器中的值检验一、原理图:二、实验目标1、通过CPU运行九条机器指令(排除有关中断的指令)组成的简单程序,掌握机器指令与微指令的关系,牢固建立计算机整机的概念。

2、设计思路与实践过程:实验要完成的任务概述:在内存中存放两个数据,在寄存器中存放该数据的地址,然后根据数据的地址来确定数据的值,再写一段程序,对读出的数据进行操作。

1)首先确定好实验当中要用到的几个常量,确定形影的常量要存放在那个寄存器中建立其相应的编号;寄存器编号在寄存器中存储的数据寄存器(00)寄存器(01)0000 0000寄存器(11)0000 0001寄存器(10)内存中的数据地址和值内存地址数据的值0000 0000 20000 0001 62)根据确定好的数据所在寄存器的编号,将上面的函数指令辨识出来,谈后再翻译成二进制的程序代码;LDA R0 [R2] ------ 0101 1000LDA R1 [R3] ------ 0101 1011ADD R0,R1 ------ 0000 0100JC +5 ------ 1001 0101AND R2 R3 ------ 0011 0111SUB R3 R2 ------- 0001 1011STA R3 [R2] ------- 0100 1011MUL R0 R1 ------ 0010 0100STP ------- 0110 0000JMP[R1] ------- 1000 01003)将写好的二进制代码输入到内存(堆)中,控制KRD KWE KLD KRR PR的值来进行检验所输入的指令和数据是否正确,调节PR进行运行程序,当DP置一,其它置零时,按QD则可以进行一步一步的运行程序,观察每一步程序运行的过程和结果,运行程序完成后,通过读寄存器中数据的值检验程序运行的是否正确三、连线过程四、实验结果实验从第4部开始,就一个条件跳转语句,当有进位时执行该语句,当没有进位时,不执行该跳转。

计算机组成原理课程设计报告模板

计算机组成原理课程设计报告模板
7、启动程序,验证结果。将上述程序的起始地址输入PC寄存器,运行这段程序,运行时,可先作单步运行,便运行边检查程序运行的正、误和运行中间结果的正误。并根据这些结果,判别问题所在,反复检查硬件的故障和程序以及微程序的故障,并修改之,以至最终得出正确的运行结果。
三、课程设计的时间安排
序号
教学顺序
教学内容
2、控制信号的说明;
3、;实验的关键设计;
4、实验的步骤
5、实验运行图;
6、实验结果分析;
六、结论(应当准确、完整、明确精练;也可以在结论或讨论中提出建议、设想、尚待解决问题等。)
七、参考文献
(一)教科书
唐朔飞编著,《计算机组成原理》,高等教育出版社 第三版
(二)参考书
(1)李勇编著,《计算机原理与设计》,国防科技大学出版社
2、学生独立设计出对应每一条指令的一段微指令,并将若干段微程序写入控制存储器,并检查其正误。
3、把程序通过存储器写操作写入内存中
4、通过存储器读操作连续进行读操作,验证6、读寄存器对寄存器堆中的寄存器连续进行读操作,验证写的数据是否正确。
《计算机组成原理》课程设计
系院:
学生姓名:
专业:
年级:
完成日期
指导教师:
课程设计小组成员名单及分工
姓名
学号
主要完成内容
备注
一、课程设计的目的与要求
本课程设计是在完成了计算机组成原理的教学后进行的,目的在于让学生在掌握了计算机组成原理的基本理论之后,在实验室里老师指导下,自己动手,搭建一个简单的计算机的模型,其模型中包括计算机中的运算器、寄存器、译码电路、存储器、和存储微指令用的控制存储器。在此基础上,给出若干条计算机指令,要求学生自行设计出这若干条指令的微指令,并将其存放于控制存储器,然后用这几条指令设计一段程序。将该段程序存放于内存中,并运行此段程序,且显示该段程序运行后其结果的正、误,分析其原因。通过该实习,让学生在实际操作中加深对计算机的组成原理和指令在计算机中运行过程的理解。

计算机组成原理课程设计---简单计算机的设计

计算机组成原理课程设计---简单计算机的设计

计算机组成原理课程设计(Ver 3.1)计算机科学与工程学院2007年7月1、课程设计目的 (3)2、仪器设备 (3)3、基于微控器的模型机设计部分 (3)3.1、设计步骤 (3)3.2、准备知识 (6)3.3、设计内容 (11)题目一:设计一个具有带进位加法和立即数寻址方式的模型机11题目二:设计一个具有带进位加法和条件跳转的模型机 (11)题目三:设计一个具有循环左移功能的模型机 (12)题目四:设计一个具有带借位减法和存储功能的模型机 (13)4、可编程逻辑器件设计部分 (14)4.1、设计步骤 (14)4.2、准备知识 (14)4.3、设计内容 (16)题目五:利用CPLD设计一个并行加法器 (16)题目六:阵列乘法器设计 (16)题目七:硬联控制器设计 (17)5、具有中断处理功能的模型机设计 (19)5.1、设计内容 (19)5.2、准备知识 (20)5.3、设计步骤 (23)6、课程设计任务及要求 (27)7、考核办法 (27)8、参考资料 (27)9、附录 (28)附录1(数据通路): (28)附录2(系统连线参考图) (29)附录3(实验系统主要单元电路) (30)附录4(ispDesignEXPERT软件使用) (35)VIII.把设计适配到Lattice器件中 (47)IX.层次化操作方法 (47)《计算机组成原理》课程设计1、课程设计目的通过对一个简单计算机的设计,对计算机的基本组成,部件的设计、部件间的连接、微程序控制器的设计、微指令和微程序的编制与调试等过程有更深的了解,在此基础上完成一台基本计算机的组成设计,从而加深对理论课程的理解,锻炼学生的独立思考和动手能力。

2、仪器设备硬件环境为PC-386以上微机,西安唐都科教仪器公司的TDN-CM+计算机组成原理实验台。

软件环境采用WINDOWS操作系统,西安唐都科教仪器公司的TDN-CM+计算机组成原理实验软件。

3、基于微控器的模型机设计部分3.1、设计步骤设计一台完整的计算机,大致需按如下的顺序来考虑:(1)确定设计目标确定所设计计算机的功能和用途。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计计算机组成原理课程设计一、课程背景计算机组成原理是一门涉及计算机硬件设计、结构原理及计算机工作原理的课程,通过本课程的学习,学生们可以掌握计算机系统的功能,掌握计算机系统结构及其各部分的功能特征等,为学习计算机学科的其他课程打下基础。

二、课程教学内容1. 计算机组成原理掌握计算机组成原理,以及不同分类方式下的计算机架构。

2. 计算机硬件系统的基础掌握计算机硬件系统的结构和功能,以及计算机硬件系统的技术特征和性能指标。

3. 掌握计算机组成与控制的基本原理掌握计算机组成原理,以及计算机控制的基本原理,包括计算机控制的思维方式和算法。

4. 计算机性能分析掌握计算机性能分析的基本知识,包括性能分析的概念、原理和方法及性能分析的工具等。

5. 计算机组成原理的实际应用通过课程设计,锻炼学生的计算机组成原理的实际应用能力,帮助学生在计算机设计过程中更好地使用计算机组成原理的技术。

三、课程教学安排1. 学习理论在本课程中,首先通过课堂讲解和实验室实习,学习相关理论知识,掌握计算机组成原理的基本概念、结构及性能分析的原理、计算机控制的基本原理及方法等。

2. 课程设计通过课程设计,锻炼学生的计算机组成原理的实际应用能力。

课程设计的内容包括:设计一个计算机系统结构,确定各部分的功能特点和性能指标;分析计算机性能,比较不同设计方案的优劣;分析计算机控制的基本原理,设计一个计算机控制系统;应用计算机组成原理设计一个系统等。

四、课程考核根据本课程实际教学情况,实行期中考试和期末考试相结合的考核制度,比重分别为50%和50%。

期中考试着重考查学生理论知识,期末考试着重考查学生的应用能力,两次考试比重相当,有助于引导学生良好的学习状态。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理 课程设计一、课程目标知识目标:1. 让学生掌握计算机硬件的基本组成,包括CPU、内存、硬盘、输入输出设备等,并了解各部件的功能和工作原理。

2. 使学生了解并理解计算机的指令系统,包括指令的种类、格式和执行过程。

3. 帮助学生理解计算机的性能指标,如主频、缓存、运算速度等,并学会分析不同硬件配置对计算机性能的影响。

技能目标:1. 培养学生运用所学知识分析和解决实际问题的能力,例如根据需求选择合适的计算机硬件配置。

2. 提高学生的动手实践能力,通过组装和拆解计算机硬件,加深对计算机组成原理的理解。

3. 培养学生查阅资料、自主学习的能力,以便在课后拓展相关知识。

情感态度价值观目标:1. 培养学生对计算机科学的兴趣和热情,激发他们探索计算机技术发展的积极性。

2. 增强学生的团队合作意识,通过小组讨论和实践活动,学会与他人合作共同解决问题。

3. 引导学生关注计算机技术在生活中的应用,认识到科技对社会的推动作用,培养创新精神和责任感。

本课程针对高中年级学生,结合计算机组成原理的教学要求,将课程目标分解为具体的学习成果,以便进行后续的教学设计和评估。

课程性质为理论联系实践,注重培养学生的实际操作能力和创新思维。

在教学内容上,紧密联系课本知识,突出重点,使学生能够在实践中掌握计算机组成原理的相关知识。

二、教学内容1. 计算机硬件基本组成- 课本第二章:介绍CPU、内存、硬盘、输入输出设备等硬件的基本概念、功能及工作原理。

- 教学大纲:安排2课时,通过讲解、图示和实物展示,使学生了解各硬件部件的作用及相互关系。

2. 计算机指令系统- 课本第三章:讲解指令的种类、格式和执行过程,以及指令系统的发展。

- 教学大纲:安排2课时,通过实例分析、指令执行流程图解,帮助学生理解计算机指令系统的基本原理。

3. 计算机性能指标与硬件配置- 课本第四章:介绍计算机性能指标,分析不同硬件配置对计算机性能的影响。

- 教学大纲:安排2课时,结合实际案例,让学生学会分析硬件配置对计算机性能的影响,并能根据需求选择合适的硬件配置。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计尊敬的教师:敬启者,我是您的学生,正在进行计算机组成原理课程设计。

我非常荣幸能够参与这个项目,并且准备了如下的设计报告:第一部分:引言在本设计中,我们将要研究和设计一台基于RISC体系结构的32位微处理器。

通过学习和探索计算机的基本组成原理,我们将能够深入了解计算机硬件的工作原理和设计过程。

在本文档中,我们将详细描述我们的设计思路、实现方法和实验结果,并通过性能测试来评估我们的设计。

第二部分:设计目标本设计的主要目标是实现一个高效、稳定和可扩展的32位微处理器。

我们的设计将满足以下要求:1. 支持基本的CPU指令集.2. 支持流水线技术,以提高指令执行速度.3. 支持浮点运算和向量指令扩展.4. 支持高性能和低功耗的设计.5. 具备良好的可扩展性和可维护性.6. 设计尽可能地简洁和高效.第三部分:设计思路我们的设计思路是基于经典的RISC体系结构,并结合了一些现代的设计理念和技术来达到我们的设计目标。

我们使用VHDL语言进行设计和验证,并且使用ModelSim进行仿真和验证。

我们将重点关注以下几个方面的设计:1. 指令集架构: 我们将实现一个基本的指令集架构,并根据需求进行扩展.2. 流水线设计: 我们将使用五级流水线来提高指令执行速度.3. 浮点运算和向量指令扩展: 我们将实现浮点运算指令和向量指令的硬件支持.4. 性能优化和功耗控制: 我们将采用一些优化技术来提高性能并降低功耗.5. 可扩展性和可维护性: 我们将设计一个可灵活扩展和易于维护的架构.第四部分:实现方法在实现过程中,我们将遵循以下步骤:1. 设计和验证: 我们将使用VHDL语言进行设计,使用ModelSim进行仿真和验证.2. 代码实现: 我们将根据设计思路编写代码,并对各个模块进行单元测试.3. 性能测试: 我们将使用一系列的测试程序对设计进行性能测试,并进行性能分析.4. 优化和调试: 我们将根据测试结果对设计进行优化和调试.5. 文档撰写: 我们将撰写设计报告,详细记录设计过程和实现细节.第五部分:实验结果与讨论在设计完成后,我们将对设计进行一系列的性能测试,并对结果进行分析和讨论。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计计算机组成原理课程设计是一个重要的课程项目,旨在帮助学生深入理解计算机的基本组成和工作原理。

以下是一个可能的计算机组成原理课程设计的简要概述:1. 课程设计目标:- 理解计算机的基本组成和工作原理;- 掌握计算机的层次结构和指令执行过程;- 学习计算机的数据表示和存储方式;- 熟悉计算机的中央处理器和存储器的设计与实现;- 掌握计算机的输入输出系统和总线结构。

2. 课程设计内容:- 计算机层次结构和指令执行过程的介绍;- 数据表示和存储方式的学习;- 中央处理器和存储器的设计与实现;- 输入输出系统和总线结构的研究。

3. 课程设计步骤:- 第一阶段:理论学习和研究- 学习计算机组成原理的基本概念和理论知识;- 研究计算机的层次结构和指令执行过程;- 学习计算机的数据表示和存储方式;- 研究计算机的中央处理器和存储器的设计与实现;- 学习计算机的输入输出系统和总线结构。

- 第二阶段:实践设计和实现- 设计并实现一个简单的计算机系统,包括中央处理器、存储器、输入输出系统和总线结构;- 学习使用硬件描述语言(如Verilog或VHDL)进行计算机系统的设计和仿真;- 进行计算机系统的功能测试和性能评估;- 优化计算机系统的设计和实现。

- 第三阶段:课程设计报告和演示- 撰写课程设计报告,包括设计思路、实现过程和结果分析;- 准备课程设计演示,展示计算机系统的功能和性能;- 进行课程设计的答辩和评审。

4. 课程设计评估:- 课程设计报告的质量和完整性;- 计算机系统的功能和性能;- 课程设计演示的表现和效果;- 学生对计算机组成原理的理解和应用能力。

以上是一个可能的计算机组成原理课程设计的简要概述,具体的设计内容和步骤可以根据教学目标和学生能力进行调整和补充。

计算机组成原理课程设计

计算机组成原理课程设计

1. 课程设计目的:运用《计算机组成原理》课程中理论知识,通过对知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,建立计算机整机概念。

对计算机的基本组成、部件的设计、部件间的连接、微程序控制器的设计、微指令和微程序的编制与调试等过程有更深的了解,加深对理论课程的理解。

锻炼学生的独立思考和动手能力。

在掌握部件单元电路实验的基础上,进一步将其组成系统地构造一台基本模型计算机,并且绘制出8位运算器移位运算电路图。

2课程设计设备:TDN-CM计算机组成原理实验系统,排线若干3课程设计内容:3.1课程设计原理3.1.1本课程设计采用六条机器指令:IN,ADD,STA,TRY,OUT,JMP,并依照指令进行相关操作。

其指令格式如下:内容助计符说明0000 0000 IN R0 “INPUT DEVICE(班号)”→R00001 0000 ADD [0AH],R0 R0+[0AH] →R00010 0000 STA R0,[0BH] R0→[0BH]0011 0000 OUT [0BH] [0BH]→LED0100 0000 JMP 00H 00H→PC其中IN为单字长(8)位,其余为双字长指令。

3.1.2开关SWA和SWB的定义及数据通路框图如下:为了向RAM中装入程序和数据,先查写入是否正确,并能启动程序执行,还须设计三台控制台操作。

存储器度操作:拨动总清开关CLR后,控制台开关SWB、SWA为“00”时,按START 滚动开关,可对RAM连续手动读操作。

存储器写操作:拨动总清开关CLR后,控制台开关SWB、SWA为“01”时,按START滚动开关,可对RAM 连续手动写操作。

启动程序:拨动总清开关CLR 后,控制台开关SWB 、SWA 为“11”时,按START 滚动开关,即可转入到第01好“取址”微指令,启动程序运行。

上述三条控制台指令用到的两个开关SWB 、SWA 的状态设置,其定义如下:SWB SWA 控制台指令0 0 1 0 1 1 读内存(KRD ) 写内存(KWE ) 启动程序(RP )3.1.3设计用到的微指令的格式定义及微程序流程图如下:微指令格式定义3.1.4依照微程序流程图,生成如下指令代码表:微指令二进制代码表微地址S3S2S1S0M Cn W E A9A8 A B C μA5 ~μA0联机微地址微指令内容00Q 0 0 0 0 0 0 0 1 1 000 000 100 0 1 0 0 0 0 00H 018110H01Q 0 0 0 0 0 0 0 1 1 110 110 110 0 0 0 0 1 0 01H 01ED82H02Q 0 0 0 0 0 0 0 0 1 100 000 001 0 0 1 0 0 0 02H 00C048H03Q 0 0 0 0 0 0 0 0 1 110 000 000 0 0 0 1 0 0 03H 00E004H04Q 0 0 0 0 0 0 0 0 1 011 000 000 0 0 0 1 0 1 04H 00B005H05Q 0 0 0 0 0 0 0 1 1 010 001 000 0 0 0 1 1 0 05H 01A206H06Q 1 0 0 1 0 1 0 1 1 001 101 000 0 0 0 0 0 1 06H 959A01H07Q 0 0 0 0 0 0 0 0 1 110 000 000 0 0 1 1 0 1 07H 00E00DH10Q 0 0 0 0 0 0 0 0 0 001 000 000 0 0 0 0 0 1 08H 001001H11Q 0 0 0 0 0 0 0 1 1 110 110 110 0 0 0 0 1 1 09H 01ED83H12Q 0 0 0 0 0 0 0 1 1 110 110 110 0 0 0 1 1 1 0AH 01ED87H13Q 0 0 0 0 0 0 0 1 1 110 110 110 0 0 1 1 1 0 0BH 01ED8EH14Q 0 0 0 0 0 0 0 1 1 110 110 110 0 1 1 0 1 0 0CH 01ED9AH15Q 0 0 0 0 0 0 0 1 1 110 110 110 0 1 0 1 1 0 0DH 01ED96H16Q 0 0 0 0 0 0 0 0 1 110 000 000 0 0 1 1 1 1 0EH 00E00FH17Q 0 0 0 0 0 0 0 0 1 010 000 000 0 1 0 1 0 1 0FH 00A015H20Q 0 0 0 0 0 0 0 1 1 110 110 110 0 1 0 0 1 0 10H 01ED92H21Q 0 0 0 0 0 0 0 1 1 110 110 110 0 1 0 1 0 0 11H 01ED94H22Q 0 0 0 0 0 0 0 0 1 010 000 100 0 1 0 1 1 1 12H 00A117H23Q 0 0 0 0 0 0 0 1 1 000 000 000 0 0 0 0 0 1 13H 018001H24Q 0 0 0 0 0 0 0 0 0 010 000 000 0 1 1 0 0 0 14H 002018H25Q 0 0 0 0 0 1 1 1 0 000 101 000 0 0 0 0 0 1 15H 070A01H26Q 0 0 0 0 0 0 0 0 1 101 000 110 0 0 0 0 0 1 16H 00D181H27Q 0 0 0 0 0 1 1 1 0 000 101 000 0 1 0 0 0 0 17H 070A10H30Q 0 0 0 0 0 1 1 0 1 000 101 100 0 1 0 0 0 1 18H 068B11H31Q 0 0 0 0 0 0 0 0 0 000 000 000 0 0 0 0 0 0 19H 000000H32Q 0 0 0 0 0 0 0 0 1 110 000 000 0 1 1 0 1 1 1AH 00E01BH33Q 0 0 0 0 0 0 0 0 1 011 000 000 0 1 1 1 0 0 1BH 00B01CH34Q 0 0 0 0 0 0 0 1 1 010 001 000 0 1 1 1 0 1 1CH 01A21DH35Q 0 0 0 0 1 1 0 1 1 001 101 000 0 0 0 0 0 1 1DH 9D9A05H36Q 0 0 0 0 0 0 1 0 1 000 001 000 0 0 0 0 0 1 1EH 028201H3.1.5机器指令程序设计:机器指令程序序列地址内容助计符说明0000 0000 0000 0100 IN R0 “INPUT DEVICE(班号3)”→R0 0000 0001 0001 0000 ADD [0AH],R0 R0+[0AH] →R00000 0010 0000 10100000 0011 0010 0000 STA R0,[0BH] R0→[0BH]0000 0100 0000 10110000 0101 0011 0000 OUT [0BH] [0BH] →LED 0000 0110 0000 10110000 0111 0100 0000 JMP 00H 00H→ PC0000 1000 0000 00000000 10010000 1010 0010 0110 学号(20号同学) 0000 1011 求和结果(班号加学号) 3.2 实验步骤:3.2.1画出实验接线图如下:3.2.2 模型机实验预备操作步骤:3.2.2.1 按下图接线:按微程序控制器实验的步骤输入并检验上面的微指令代码表①将编程开关置为PROM(编程)状态。

计算机组成原理课程设计

计算机组成原理课程设计

计算机组成原理课程设计
计算机组成原理课程设计
一、课程介绍
本课程主要介绍计算机组成原理,包括计算机的结构,功能,性能,介绍CPU,存储器,总线,输入/输出系统,及这些部件之间的工作关系。

二、课程目标
1. 学生能够认识计算机的概念、主要组成部分及功能。

2. 了解计算机基本工作原理,包括CPU,存储器,总线,输入/输出系统,以及这些部件之间的工作关系。

3. 掌握主要软件技术,包括汇编语言,编译语言,操作系统等。

三、内容安排
本课程包括以下主要内容:
1. 计算机基本概念:计算机的构成,计算机系统和计算机网络。

2. CPU:架构、指令集、运算法则和程序控制。

3. 存储器:存储器的类型、特性和性能。

4. 总线:总线的结构、架构及特点。

5. 输入输出系统:计算机系统的输入输出结构、设备接口、通信协议。

6. 汇编语言程序设计:汇编语言基本语法,程序编写及调试。

7. 编译语言程序设计:编译语言程序设计,程序语言、数据结构、程序编写及调试。

8. 操作系统程序设计:操作系统概念、基本功能结构,虚拟存储器,任务调度,工作管理,系统文件管理等。

四、课程评价
课程主要采用学习报告、小组讨论、实验报告等方式进行评价。

计算机组成原理课程设计完整版

计算机组成原理课程设计完整版

目录1 需求分析 (1)1.1课程设计目的 (1)1.2课程设计内容及要求 (1)1.3TDN-CM++计算机组成原理实验教学系统特点 (2)1.4微指令格式分析 (2)1.5指令译码电路分析 (5)1.6寄存器译码电路分析 (6)1.7时序分析 (7)2 总体设计 (9)2.1数据格式和机器指令描述 (9)2.2机器指令设计 (11)3 详细设计 (16)3.1控制台微程序流程的详细设计 (16)3.2运行微程序流程的详细设计 (19)4 实现阶段 (31)4.1所用模型机数据通路图及引脚接线图 (31)4.2 测试程序及结果 (33)心得体会 (35)参考资料 (36)1 需求分析1.1 课程设计目的本课程设计是计算机科学与技术专业重要的实践性教学环节之一,是在学生学习完《计算机组成原理》课程后进行的一次全面的综合设计。

目的是通过一个完整的8位指令系统结构(ISA)的设计和实现,加深对计算机组成原理课程内容的理解,建立起整机系统的概念,掌握计算机设计的基本方法,培养学生科学的工作作风和分析、解决实际问题的工作能力。

1.2 课程设计内容及要求基于TDN-CM++计算机组成原理实验教学系统,设计和实现一个8位指令系统结构(ISA),通过调试和运行,使设计的计算机系统能够完成指定的功能。

设计过程中要求考虑到以下各方面的问题:(1)指令系统风格(寄存器-寄存器,寄存器-存储器,存储器-存储器);(2)数据类型(无符号数,有符号数,整型,浮点型);(3)存储器划分(指令,数据);(4)寻址方式(立即数寻址,寄存器寻址,直接寻址等);(5)指令格式(单字节,双字节,多字节);(6)指令功能类别(算术/逻辑运算,存储器访问,寄存器操作,程序流控制,输入/输出)。

要求学生综合运用计算机组成原理、数字逻辑和汇编语言等相关课程的知识,理解和熟悉计算机系统的组成原理,掌握计算机主要功能部件的工作原理和设计方法,掌握指令系统结构设计的一般方法,掌握并运用微程序设计(Microprogramming)思想,在设计过程中能够发现、分析和解决各种问题,自行设计自己的指令系统结构(ISA)。

计算机组成原理课程设计3篇

计算机组成原理课程设计3篇

计算机组成原理课程设计第一篇:CPU设计计算机中心处理器(Central Processing Unit, CPU)是计算机的心脏,它负责执行指令,完成计算和控制计算机的所有运算和数据传输。

在计算机组成原理课程设计中,设计一块CPU是非常重要的一步。

CPU的设计与制作需要有一定的基础和经验。

首先,需要了解CPU的工作原理和基本组成,包括寄存器、ALU、控制器和数据通路等。

其次,需要掌握数字逻辑、硬件描述语言和电子工艺制作等知识和技能,以实现CPU的具体功能。

设计一块CPU可分为以下几个步骤:1.确定CPU的整体架构和指令集。

根据需求和实际应用,确定CPU的整体架构和指令集。

可以参考现有的CPU设计,并根据实际情况进行优化和改进。

2.编写CPU的硬件描述语言代码。

使用硬件描述语言(如VHDL)编写CPU的硬件描述语言代码,包括寄存器、ALU、控制器和数据通路等。

3.使用仿真工具进行验证。

使用仿真工具模拟CPU的运行过程,验证硬件描述语言代码的正确性和功能实现。

4.设计和制作PCB电路板。

将CPU的硬件描述语言代码转换为PCB电路板设计,并制作出实际的电路板。

5.测试CPU的性能和功能。

对制作出的CPU进行测试,验证其性能和功能可靠性。

CPU的设计和制作是计算机组成原理课程设计中非常关键的一步,它直接影响到完成整个计算机系统的可靠性和性能。

因此,设计和制作一块优秀的CPU需要耐心和实践经验的积累。

第二篇:存储器设计存储器是计算机系统中重要的组成部分,用于存储数据和程序。

存储器需要具有读、写、删等常见操作,设计一块性能良好和容量适中的存储器是计算机组成原理课程设计的核心内容之一。

存储器的设计和制作需要掌握数字电路设计、电子工艺制作和人机交互等知识和技能。

下面是存储器设计的主要步骤:1.确定存储器的类型和容量。

根据实际需要和使用场景,确定存储器的类型和容量,包括SRAM、DRAM、FLASH等。

2.设计存储器的电路和控制线路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通大学计算机科学与技术学院

学号
指导教师
日期 2012.6.18~ 2012.6.21
一、设计目的
1、融会贯通教材各章的内容,通过知识的综合运用,加深对计算机系统各模块的工作原理及相互联系的认识,经阿什计算机工作中“时间-空间”概念的理解,从而清晰地建立计算机的整机概念。

2、学习设计和调试计算机的基本步骤和方法,培养科学研究的独立工作能力,取得工程设计和调试的实践和经验。

三、数据格式与指令系统
1、数据格式
数据字规定采用定点整数补码表示法,字长8位,其中最高位为符号位,其格式如下:7 6 5 4 3 2 1
2、指令格式
本实验设计使用5条机器指令,其格式与功能说明如下:
7 6 5 4 3 2 1 0
功能是将内存中以第二个字为地址的内存单元中的数据读出到数据总线,显示之。

JMP指令为双字长指令,第一个字为操作码,第二个字为操作数地址,其功能是程序无条件转移到第二个字指定的内存单元地址。

四.设计原理与电路图
原理图
按照原理图,完成模型机的数据通路的编辑、编译以及波形仿真工作。

,图中采用两个寄存器74273b来存放指令,一个用于存放操作码,另一个用于存放地址码。

(2)微程序控制器的逻辑图:
A 数据通路逻辑电路图
A.FA(加法器)
B.ALU(运算器)
封装图
C地址转移逻辑电路
设计地址转移逻辑电路,完成电路图的编辑、编译以及波形仿真工作。

仿真正确后,封装成芯片control。

地址转移逻辑通过指令的操作码的高3位和微指令的测试字段P1来确定下一条微指令的地址。

D、微程序控制器:
调用地址转移芯片control,存放微指令的ROM,两片74273b芯片以及一片74273芯片来完成电路图的编辑、编译以及波形仿真工作。

封装图
E.PC(程序计数器)
五、微程序流程图、代码表(1)微程序流程图
(2)代码表:
RAM.MIF
EPROM.MIF
ROM.MIF
六、系统调试情况
(1)测试结果(波形图):
(2)主要问题和解决办法:
1、此模型计算机为单总线结构,输入信号和输出信号均通过该总线进行传输,如果不加缓冲器就会产生输入信号和输出信号的传输冲突,使信号不能到达“IR”,所以要在存储器RAM后添加一个“74244”模块,使信号在进入总线进行传输前先通过“74244”进行一个缓冲,同时“74244”也有三态门的作用,从而使得总线上无信号冲突,这样就便于总线的连接和扩展。

转,从而使其能执行完所有的指令。

通过这次实践,充分认识到知识的综合运用的重要性,而且任何一个不严谨的地方都有可能导致错误,同时这次实践使自己对计算机的工作原理有了一个系统的认识,也为以后专业课的学习打下了基础。

相关文档
最新文档