一半模型之答案详解版
一半模型经典例题
一半模型经典例题
题目一
【例题】甲、乙、丙三人分一堆桃子。
甲分得桃子数是乙的2倍,丙最少,但也多于10个,三个人不能分完,且每次分的时候都是丙先拿,然后甲、乙两人拿。
这堆桃子共有多少个?
【解析】因为甲是乙的2倍,所以先分乙的,乙1份,甲2份,还剩5份。
而且丙先拿,拿的数量最少也要占总数量的(1/8),所以5份是总数的(1-1/8)=7/8,丙拿一份,是总数的1/8。
所以总数是5÷(7/8)=40/7的倍数。
因为丙拿的还要多于10个,所以总数的1/8要大于10,小于40/7。
所以总数是88。
题目二
【例题】有一堆围棋子,黑子和白子混在了一块,黑棋和白棋各有150颗,那么从中间摸出白子的可能性的大小是多少?
【解析】这道题目考查的是一半模型中的等可能性问题。
因为黑棋和白棋各有150颗,所以总共有300颗棋子。
从中随机摸出一颗棋子,摸到白棋的可能性是150/300=1/2。
2023中考数学常见几何模型《全等模型-半角模型》含答案解析
专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∵四边形ABCD 是正方形,∴AB =AD ,∠B =∠ADC =90°.把△ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '.E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O 的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明)②如图3,如果点E,F分别是BC,CD延长线上的动点,且45EAF∠=︒,则EF,BE,DF之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD的边长为6,AE=,求AF的长.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时, CEF的周长等于.(4)如图4,正方形ABCD中, AMN的顶点M、N分别在BC、CD边上,AH⊥MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=,求EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B Ð、D ∠都不是直角,则当B Ð与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在△ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD 中,∠MAN=45°,∠MAN 绕点A 顺时针旋转,它的两边分别交CB 、DC (或它们的延长线)于点M 、N .当∠MAN 绕点A 旋转到BM =DN 时,(如图1),易证BM +DN =MN .(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D ,E 在边BC 上,∠DAE =45°.若BD =3,CE =1,求DE 的长.小明发现,将△ABD绕点A按逆时针方向旋转90º,得到△ACF,联结EF(如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE=45°,可证△FAE≌△DAE,得FE=DE.解△FCE,可求得FE(即DE)的长.(1)请回答:在图2中,∠FCE的度数是,DE的长为.参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是边BC,CD上的点,∠BAD.猜想线段BE,EF,FD之间的数量关系并说明理由.且∠EAF=128.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD是正方形,一个等腰直角三角板的一个锐角顶点与A点重合,将此三角板绕A点旋转时,两边分别交直线BC,CD 于M,N.(1)如图1,当M,N分别在边BC,CD上时,求证:BM+DN=MN(2)如图2,当M,N分别在边BC,CD的延长线上时,请直接写出线段BM,DN,MN之间的数量关系(3)如图3,直线AN与BC交于P点,MN=10,CN=6,MC=8,求CP的长.9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关∠EAF=12系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在△ABC中,∠ACB=90°,CA=CB,点P在线段AB 上,作射线CP(0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD⊥CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
小学奥数题库《几何》-直线型-一半模型-4星题(含解析)
几何-直线型几何-一半模型-4星题课程目标知识提要一半模型•平行四边形的一半模型•梯形的一半模型•任意四边形一半模型精选例题一半模型1. 如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB上,EC交FG于点M,假设AB=6,△ECF的面积是12,那么△BCM的面积是.【答案】6【分析】根据一半模型,S△EFM+S△BMG=S÷2,长方形AFBG÷2S△FMC+S△CMG=S长方形FDCG所以÷2=6×6÷2=18.S△ECF+S△BMC=S正方形所以S△BMC=18−12=6.2. 如下列图所示,过平行四边形ABCD内的一点P作边的平行线EF、GH.假设△PAC的面积为6,求平行四边形PGDF的面积比平行四边形PEBH的面积大.【答案】12【分析】根据差不变原理,要求平行四边形PGDF的面积与平行四边形PEBH的面积差,相当于求平行四边形DAEF的面积与平行四边形ABHG的面积差.如下列图所示,连接BP、DP.根据一半模型.由于S△ADP+S△BCP=S△ABP+S△ACP+S△BCP=12S ABCD,所以S△ADP−S△ABP=S△ACP.而S△ADP=12S DAEF,S△ABP=12S ABHG,所以S DAEF−S ABHG=2(S△ADP−S△ABP)=2S△ACP=12.即平行四边形PGDF的面积比平行四边形PEBH的面积大12.3. 正方形ABCD的面积为9平方厘米,正方形EFGH的面积为64平方厘米.如下图,边BC 落在EH上.三角形ACG的面积为6.75平方厘米,那么三角形ABE的面积为平方厘米.【答案】 2.25【分析】连接EG,EG是正方形EFGH的对角线,∠GEH=45∘;AC是正方形ABCD的对角线,∠ACB=45∘.∠GEH=∠ACB,可以知道AC∥EG.所以△ACG与△AEC面积相等,都是6.75平方厘米,那么△ABE的面积是:6.75−9÷2= 2.25(平方厘米).4. 如下图,矩形ABCD的面积为36平方厘米,四边形PMON的面积是3平方厘米,那么阴影局部的面积是平方厘米.【答案】12【分析】因为三角形ABP面积为矩形ABCD的面积的一半,即18平方厘米,三角形ABO 面积为矩形ABCD的面积的1,即9平方厘米,又四边形PMON的面积为3平方厘米,所以4三角形AMO与三角形BNO的面积之和是18−9−3=6(平方厘米).又三角形ADO与三角形BCO的面积之和是矩形ABCD的面积的一半,即18平方厘米,所以阴影局部面积为18−6=12(平方厘米).5. 长方形ABCD的面积是40平方厘米,E、F、G、H分别为AD、AH、DH、BC的中点;三角形EFG的面积是平方厘米.【答案】5【分析】 三角形 EFG 的面积是三角形 AHD 的 14,三角形 AHD 的面积是长方形 ABCD 面积的 12,故三角形 EFG 的面积是长方形 ABCD 面积的 18,三角形 EFG 的面积为 40×18=5(平方厘米).6. 如图,阴影局部四边形的外接图形是边长为 10cm 的正方形,那么阴影局部四边形的面积是 cm 2.【答案】 48【分析】 如下图,分别过阴影四边形 EFGH 的四个顶点作正方形各边的平行线,相交得长方形 MNPQ ,易知长方形 MNPQ 的面积为4×1=4(平方厘米).从图中可以看出,原图中四个空白三角形的面积之和的 2 倍,等于 AENH 、BFME 、CGQF 、DHPG 四个长方形的面积之和,等于正方形 ABCD 的面积加上长方形 MNPQ 的面积,为10×10+4=104(平方厘米),所以四个空白三角形的面积之和为104÷2=52(平方厘米),那么阴影四边形 EFGH 的面积为100−52=48(平方厘米).7. 四边形ABCD是平行四边形,BC:CE=3:2,三角形ODE的面积为6平方厘米.那么阴影局部的面积是平方厘米.【答案】21平方厘米【分析】连接AC.由于ABCD是平行四边形,BC:CE=3:2,所以CE:AD=2:3,根据梯形蝴蝶模型,S△COE:S△AOC:S△DOE:S△AOD=22:2×3:2×3:32=4:6:6:9,所以S△AOC=6(平方厘米),S△AOD=9(平方厘米),又S△ABC=S△ACD=6+9=15(平方厘米),阴影局部面积为6+15=21(平方厘米).8. 如图,长方形ABCD中,AB=67,BC=30.E、F分别是AB、BC边上的两点,BE+ BF=49.那么,三角形DEF面积的最小值是.【答案】717【分析】由于长方形ABCD的面积是一定的,要使三角形DEF面积最小,就必须使△ADE、△BEF、△CDF的面积之和最大.由于△ADE、△BEF、△CDF都是直角三角形,可以分别过E、F作AD、CD的平行线,可构成三个矩形ADME、CDNF和BEOF,如下图.容易知道这三个矩形的面积之和等于△ADE、△BEF、△CDF的面积之和的2倍,而这三个矩形的面积之和又等于长方形ABCD的面积加上长方形MDNO的面积.所以为使△ADE、△BEF、△CDF的面积之和最大,只需使长方形MDNO的面积最大.长方形MDNO的面积等于其长与宽的积,而其长DM=AE,宽DN=CF,由题知AE+CF=(AB+BC)−(BE+BF)=67+30−49=48,根据〞两个数的和一定,差越小,积越大〞,所以当AE与CF的差为0,即AE与CF相等时它们的积最大,此时长方形MDNO的面积也最大,所以此时三角形DEF面积最小.当AE与CF相等时,AE=CF=48÷2=24,此时三角形DEF的面积为:67×30−(67×30+24×24)÷2=717.9. 下列图ABCD是一个长方形,其中有三块面积分别为12、47、33,那么图中阴影局部为.【答案】92【分析】如下列图所示,设阴影局部面积为S,其他未知局部的面积为a、b、x和y.那么÷2x+S+y=a+S+b=S长方形ABCD(a+S+b)+(x+S+y)=S长方形ABCD根据覆盖的方法,那么阴影局部S=33+47+12=92.10. 如图,四边形ABCD中,DE:EF:FC=3:2:1,BG:GH:AH=3:2:1,AD:BC=1:2,四边形ABCD的面积等于4,那么四边形EFHG的面积=.【答案】43【分析】运用三角形面积与底和高的关系解题.连接AC、AE、GC、GE,因为DE:EF:FC=3:2:1,BG:GH:AH=3:2:1,所以,在△ABC中,S△BCG=12S△ABC,在△ACD中,S△AED=12S△ACD,在△AEG中,S△AEH=12S△HEG,在△CEG中,S△CFG=12S△EFG.因为S△BCG+S△AED=12S△ABC+12S△ACD=12(S△ABC+S△ACD)=12S ABCD=2S△BCG.所以S AGCE=S ABCD−(S△BCG+S△AED)=4−2=2.又因为S AGCE=S△AEH+S△HEG+S△CFG+S△EFG=12S△HEG+S△HEG+12S△EFG+S△EFG=32(S△HEG+S△EFG)=32S EFGH,所以S EFGH=2÷32=43.11. 如下列图所示,梯形ABCD的面积是48,E是下底BC上的一点,F是腰CD的中点,并且甲、乙、丙三个三角形面积相等,那么图中阴影局部的面积是.【答案】19.2【分析】因为三角形乙、丙的面积相等,且DF=FC,所以三角形乙、丙的高相等,于是AE∥DC,四边形AECD是平行四边形,易知S乙+S丙=S阴影=12S四边形AECD,因此,阴影局部的面积是48÷5×2=19.2.12. 正方形的边长为10,EC=3,BF=2,那么S四边形ABCD=.【答案】53【分析】如图,作BM⊥AE于M,CN⊥BM于N.那么四边形ABCD分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形ABCD周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为3×2=6,所以S四边形ABCD =10×10−3×22+3×2=53.13. 如图,三角形ABC的面积为60平方厘米,D、E、F分别为各边的中点,那么阴影局部的面积是平方厘米.【答案】12.5【分析】阴影局部是一个不规那么的四边形,不方便直接求面积,可以将其转化为两个三角形的面积之差.而从图中来看,既可以转化为△BEF与△EMN的面积之差,又可以转化为△BCM与△CFN的面积之差.〔法一〕如图,连接DE.由于D、E、F分别为各边的中点,那么BDEF为平行四边形,且面积为三角形ABC面积的一半,即30平方厘米;那么△BEF的面积为平行四边形BDEF面积的一半,为15平方厘米.根据几何五大模型中的相似模型,由于DE为三角形ABC的中位线,长度为BC的一半,那么EM:BM=DE:BC=1:2,所以EM=13 EB;EN:FN=DE:FC=1:1,所以EN=12 EF.那么△EMN的面积占△BEF面积的12×13=16,所以阴影局部面积为15×(1−16)=12.5(平方厘米).〔法二〕如图,连接AM.根据燕尾定理,S△ABM:S△BCM=AE:EC=1:1,S△ACM:S△BCM=AD:DB=1:1,所以S△BCO=13S△ABC=13×60=20(平方厘米),而S△BDC=12S△ABC=12×60=30(平方厘米),所以S△FCN=14S△BDC=7.5(平方厘米),那么阴影局部面积为20−7.5=12.5(平方厘米).【总结】求三角形的面积,一般有三种方法:〔1〕利用面积公式:底×高÷2;〔2〕利用整体减去局部;〔3〕利用比例和模型.14. 如图,正方形的边长为12,阴影局部的面积为60,那么四边形EFGH的面积是.【答案】6【分析】如下图,设AD上的两个点分别为M、N.连接CN.根据面积比例模型,△CMF与△CNF的面积是相等的,那么△CMF与△BNF的面积之和,等于△CNF与△BNF的面积之和,即等于△BCN的面积.而△BCN的面积为正方形ABCD面积的一半,为122×12=72.又△CMF与△BNF的面积之和与阴影局部的面积相比拟,多了2个四边形EFGH的面积,所以四边形EFGH的面积为:(72−60)÷2=6.15. 下列图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB,BC,CD,DA的中点,如果左图中阴影局部与右图中阴影局部的面积之比是最简分数mn,那么,(m+n)的值等于.【答案】5【分析】左、右两个图中的阴影局部都是不规那么图形,不方便直接求面积,观察发现两个图中的空白局部面积都比拟好求,所以可以先求出空白局部的面积,再求阴影局部的面积.如下列图所示,在左图中连接EG.设AG与DE的交点为M.左图中AEGD为长方形,可知△AMD的面积为长方形AEGD面积的14,所以三角形AMD的面积为12×12×14=18.又左图中四个空白三角形的面积是相等的,所以左图中阴影局部的面积为1−18×4=12.如上图所示,在右图中连接AC、EF.设AF、EC的交点为N.可知EF∥AC且AC=2EF.那么三角形BEF的面积为三角形ABC面积的14,所以三角形BEF的面积为12×12×14=18,梯形AEFC的面积为12−18=38.在梯形AEFC中,由于EF:AC=1:2,根据梯形蝴蝶定理,其四局部的面积比为:12:1×2:1×2:22=1:2:2:4,所以三角形EFN的面积为38×11+2+2+4=124,那么四边形BENF的面积为18+124=16.而右图中四个空白四边形的面积是相等的,所以右图中阴影局部的面积为1−16×4=13.那么左图中阴影局部面积与右图中阴影局部面积之比为12:13=3:2,即mn=32,那么m+n=3+2=5.16. 如图,正方形ABCD的边长为10,AE=2,CF=3.长方形EFGH的面积为.【答案】94.【分析】连接DE,DF.在正方形ABCD中,S△DEF=S△ABCD−S△ADE−S△EBF−S△DFC,在长方形DEFG中,S△DEF=12S△EFGH,因为BE=10−2=8,BF=10−3=7,所以S△DEF=10×10−2×10÷2−8×7÷2−3×10÷2=47,所以S△EFGH=47×2=94.17. ABCD是边长为12的正方形,如下图,P是内部任意一点,BL=DM=4、BK=DN=5,那么阴影局部的面积是.【答案】34【分析】〔方法一〕特殊点法.由于P是内部任意一点,不妨设P点与A点重合〔如下列图〕,那么阴影局部就是△AMN和△ALK.而△AMN的面积为(12−5)×4÷2=14,△ALK的面积为(12−4)×5÷2=20,所以阴影局部的面积为14+20=34.〔方法二〕寻找可以利用的条件,连接AP、BP、CP、DP可得下列图所示:那么有:S△PDC+S△PAB=12S ABCD=12×122=72.同理可得:S△PAD+S△PBC=72;而S△PDM:S△PDC=DM:DC=4:12=1:3,即S△PDM=13S△PDC;同理:S△PBL=13S△PAB,S△PND=512S△PDA,S△PBK=512S△PBC;所以:(S△PDM+S△PBL)+(S△PND+S△PBK)=13(S△PDC+S△PAB)+512(S△PDA+S△PBC)而(S△PDM+S△PBL)+(S△PND+S△PBK)=(S△PNM+S△PLK)⏟阴影面积+(S△DNM+S△BLK);S△DNM=S△BLK=12×4×5=10;所以阴影局部的面积是:S△PNM+S△PLK=13(S△PDC+S△PAB)+512(S△PDA+S△PBC)−(S△DNM+S△BLK),即为:1 3×72+512×72−10×2=24+30−20=34.18. 下列图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,那么ABCD的面积是平方厘米.【答案】 180【分析】 解法一:蝴蝶模型与一半模型. 〔1〕E 是 CD 的中点,DE:AB =1:2,所以S △DEF :S △DAF :S △BEF :S △ABF =1:2:2:4.〔2〕设平行四边形面积为“1〞.E 是 CD 的中点,所以 S △ABG 、S △ADG 、S △BEC 占平行四边形面积的 14,梯形 S ABED 占平行四边形面积的 34; 〔3〕所以S △DAF =34×21+2+2+4=16,S △GAF =14−16=112, 同理可知 S △GHB =112.〔4〕根据一半模型,S △ABE =12,S 四边形EHGF =12−14−112−112=112;〔5〕ABCD 的面积是15÷112=180(cm 2).解法二:相似模型、等积变形与一半模型.〔1〕E 是 CD 的中点,DE:AB =1:2,所以 DF:FB =1:2,而 DG =GB ,DF:FG =11+2:(12−11+2)=2:1;〔2〕设平行四边形面积为“1〞.E 是 CD 的中点,所以 S △ABG 、S △ADG 占平行四边形面积的 14,所以S △GAF =14×12+1=112,同理可知 S △GHB =112.〔3〕根据一半模型,S △ABE =12,S 四边形EHGF =12−14−112−112=112;〔4〕ABCD 的面积是15÷112=180(cm 2).解法三:燕尾模型与一半模型.〔1〕设平行四边形面积为“1〞.S △ADC =12.〔2〕E 是 CD 的中点,G 为 AC 的中点,连接 FC ,设 S △DEF 为 1 份,S △ECF 也为 1 份,根据燕尾 S △ADF 为 2 份,再根据燕尾 S △ACF 也为 2 份,根据按比例分配,S △AGF 、S △GCF 都为 1 份,所以S △GAF =12÷(2+1+1+1+1)=112,同理可知 S △GHB =112.〔3〕根据一半模型,S △ABE =12,S 四边形EHGF =12−14−112−112=112;〔4〕ABCD 的面积是15÷112=180(cm 2).解法四:风筝模型与一半模型. 连接 EG 同样可解.19. 如图,正方形ABCD的边AD上有一点E,边BC上有一点F,G是BE的中点,H是CE 的中点,如果正方形的边长是2,那么阴影局部的面积是.【答案】1【分析】2×2÷2÷2=1.20. 如下列图所示,在长方形内画出一些直线,边上有三块面积分别是13,35,49.那么图中阴影局部的面积是多少?【答案】97【分析】三角形ABC的面积+三角形CDE的面积+(13+35+49) =长方形面积+阴影部分面积;又因为三角形ABC的面积=三角形CDE的面积=12长方形面积,所以可得:阴影部分面积=13+35+49=97.21. 如下列图所示长方形ADEH由上、中、下三个小长方形组成,AB+CD=BC,三角形ABI的面积为3,四边形GIJF的面积为12,求四边形CDEJ的面积.【答案】9【分析】因为AB+CD=BC,所以长方形BCFG的面积等于长方形ADEH面积的一半,即S梯形BCJI +S梯形IJFG=12S长方形ADEH,又S△ABI+S梯形BCJI+S梯形CDEJ=12S长方形ADEH,所以S△ABI+S梯形CDEJ =S梯形IJFG,故四边形CDEJ的面积是12−3=9.22. 如下图,O是长方形ABCD一条对角线的中点,图中已经标出两个三角形的面积3和4,那么阴影直角三角形的面积是多少?【答案】 318【分析】 由 S △AOD =4 可知 S △BCD =12×S 长方形ABCD =12×4×S △AOD =8.而 △CDF 与 △CDB 从 C 出发的高相同,那么 DF DB =S △CDF S △CDB=58.由于 EF ∥CD ,把线段的比例转移到 BC 上,那么有 CE BC =DF DB =38,从而得到 BE BC =1−38=58,所以阴影 △BEF 的面积是 △BCF 面积的 58.于是阴影三角形的面积是58×S △BCF =58×(S △BCD −S △CDF )=58×(8−3)=258.23. 如图,正六边形的面积为 120,P 是其内任意一点,求 △PBC 和 △PEF 的面积之和.【答案】 40【分析】 由一半模型,两个三角形面积和等于四边形 BCEF 面积的一半,而这个四边形的面积又是六边形面积的 23,所以所求面积和就是正六边形面积的 13,为 40.24. 如下图,E、H、F、G是四边形ABCD的AD、BC边上的三等分点,四边形ABCD的面积为18平方厘米,那么四边形EFGH的面积是平方厘米.【答案】6【分析】首先连接BE、DG、BD,如下列图所示:可以看出,三角形ABD的面积是三角形ABE面积的3倍,三角形BCD的面积是三角形GCD 的面积的3倍,所以三角形ABE与三角形GCD的面积和是6平方厘米,那么四边形BGDE 的面积是12平方厘米.再利用不规那么四边形中的一半模型可得,EFGH的面积是BFDG的一半,也就是6平方厘米.25. 如图,在三角形ABC中,BC=8厘米,BC边对应的高是6厘米,E、F分别为AB和AC 的中点,那么三角形EBF的面积是多少平方厘米?【答案】6【分析】S△ABC=8×6÷2=24(平方厘米),因为F是中点,所以S△AFB=S△FBC=24÷2=12(平方厘米),因为E是中点,所以S△BEF=S△EFA=12÷2=6(平方厘米).26. 如下图,P为长方形ABCD内的一点.三角形PAB的面积为5,三角形PBC的面积为13请问:三角形PBD的面积是多少?【答案】8【分析】图1阴影局部的面积是整个长方形的一半,而图2阴影局部的面积也是整个长方形的一半,两个阴影局部有一块公共局部,那就是△APD.去掉这块公共局部之后,剩下的阴影局部仍然应该相等,因此就有S1=S2+S3.由题意,S1=13,S2=5,所以S3=13−5= 8.27. 一张面积为7.17平方厘米的平行四边形纸片WXYZ放在另一张平行四边形纸片EFGH上面,如下列图所示,得出A、C、B、D四个交点,并且AB∥EF,CD∥WX.问纸片EFGH的面积是多少平方厘米?说明理由.【答案】7.17【分析】连接AC、CB、BD、DA如下列图所示,因为AB∥EF∥GH,所以△ABC的面积是平行四边形AEFB面积的一半,△ABD的面积是平行四边形AHGB的面积的一半,因此四边形ACBD的面积是平行四边形EFGH面积的一半.同理可证,四边形ACBD的面积也是平行四边形WXYZ面积的一半.因此,平行四边形EFGH的面积=平行四边形WXYZ的面积=7.17平方厘米.28. 如下列图所示,在平行四边形ABCD中,三角形ABP、BPC的面积分别是73、100,求三角形BPD的面积.【答案】27【分析】根据平行四边形的一半模型可知,S△APD+S△BPC=S△APD+S△APB+S△BPD=1 2S平行四边形ABCD,所以有S△BPC=S△APB+S△BPD,那么三角形BPD的面积等于100−73=27.29. 如图,ABCD为正方形,AM=NB=DE=FC=1cm且MN=2cm,请问四边形PQRS 的面积为多少?【答案】23cm2【分析】〔法1〕由AB∥CD,有MP MN = PC DC,所以PC=2PM,又MQ QC = MB EC,所以MQ=QC=12 MC,所以PQ=12MC−13MC=16MC,所以S SPQR占S AMCF的16,得到S SPQR=16×1×(1+1+2)=23(cm2).〔法2〕如图,连结AE,那么S△ABE=12×4×4=8(cm2),而RB AB = ER EF,所以RB EF =ABEF=2,S△ABR=23S△ABE=23×8=163(cm2).而S△MBQ=S△ANS=12×3×4×12=3(cm2),因为MN DC = MP PC,所以MP=13 MC,那么S△MNP=12×2×4×13=43(cm2),阴影局部面积等于S△ABR−S△ANS−S△MBQ+S△MNP=163−3−3+43=23 (cm2).30. 在长方形ABCD内部有一点O,形成等腰△AOB的面积为16,等腰△DOC的面积占长方形面积的18%,那么阴影△AOC的面积是多少?【分析】 先算出长方形面积,再用其一半减去 △DOC 的面积〔长方形面积的 18%〕,再减去 △AOD 的面积,即可求出 △AOC 的面积.根据模型可知 S △COD +S △AOB =12S ABCD , 所以 S ABCD =16÷(12−18%)=50,又 △AOD 与 △BOC 的面积相等,它们的面积和等于长方形面积的一半,所以 △AOD 的面积等于长方形面积的 14,所以 S △AOC=S △ACD −S △AOD −S △COD =12S ABCD −25%S ABCD −18%S ABCD =25−12.5−9=3.5.31. 如下列图所示,点 P 及点 Q 在正方形 ABCD 之内部,假设 △ABP 与 △DPC 的面积比为 3:2,△ADP 与 △BCP 的面积比为 3:7,△ABQ 与 △CDQ 的面积比为 3:5,并且 △ADQ 与 △BCQ 的面积比为 4:1.请问四边形 APCQ 的面积〔阴影局部〕与正方形 ABCD 的面积比是多少?【分析】根据一半模型,△ABP与△DPC的面积和为正方形面积的一半,△ADP与△BCP的面积和为正方形面积的一半,△ABQ与△CDQ的面积和为正方形面积的一半,△ADQ与△BCQ的面积和也为正方形面积的一半,那么△DPC的面积占整个图形的25×12=15,△ADP的面积占整个图形的310×12=320,△ABQ的面积占整个图形的38×12=316,△BCQ的面积占整个图形的15×12=110,那么阴影局部占正方形面积的1−15−320−316−110=2980.32. 如图,有一个长6cm,宽4cm的长方形ABCD.在各边上取点E,F,G,H,再连接H,F的线上取点P,与点E和点G相连.当四边形AEPH的面积是5cm2时,求四边形PFCG的面积.【答案】8cm2.【分析】连结EH,EF,FG,GH,题目中的线段长度如右图所示.所求四边形的面积可以化为三角形FGP与FCG的面积和.易见中间的四边形EFGH是平行四边形.根据一半模型,S△EHP+S△FGP=12S EFGH.S平行四边形EFGH=4×6−2×3÷2×2−1×4÷2×2=14(cm2),那么S△EHP+S△FGP=14÷2=7(cm2).S△EHP=5−3=2(cm2),所以S△FGP=7−2=5(cm2).因此四边形PFCG的面积是5+2×3÷2=8(cm2)33. 在图中,正方形ADEB和正方形ECFG底边对齐,两个正方形边长分别为6和4.三角形BDF的面积是多少?【答案】18【分析】连接FE,那么三角形BFO的面积与三角形DOE的面积相等.那么图中阴影局部的面积为正方形ABDE面积的一半,为6×6÷2=18.34. 如图,阴影局部四边形的外接图形是边长为12厘米的正方形,那么阴影局部四边形的面积是多少平方厘米?【答案】68【分析】如下图,分别过阴影四边形EFGH的四个顶点作正方形各边的平行线,相交得长方形MNPQ,易知长方形MNPQ的面积为4×2=8平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于AENH、BFME、CGQF、DHPG四个长方形的面积之和,等于正方形ABCD的面积加上长方形MNPQ的面积,为12×12+8=152平方厘米,所以四个空白三角形的面积之和为152÷2=76平方厘米,那么阴影四边形EFGH的面积为144−76=68平方厘米.35. 一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的15%,黄色三角形面积是21cm2.问:长方形的面积是多少平方厘米?【答案】60.【分析】由一半模型知:黄+绿=长方形的面积一半,所以绿占长方形面积的:12−15%=720,所以长方形的面积为:21÷720=60〔平方厘米〕.36. 如下图,长方形ABCD的长是12厘米,宽是8厘米,三角形CEF的面积是32平方厘米,那么OG=厘米.【答案】4【分析】由于AD与FG平行,因此S△FDO+S△CFO=S△CEF=32(平方厘米).而S△CFD=12×8÷2=48(厘米),所以S△CDO=S△CFD−S△FDO−S△CFO=48−32=16(平方厘米),故OG=2S△CDO÷CD=2×16÷8=4(厘米).37. 图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影局部面积是多少?【答案】 4.8【分析】设△ADF的面积为“上〞,△BCF的面积为“下〞,△ABF的面积为“左〞,△DCF 的面积为“右〞.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,那么EF:DF=S△AEF:S△AED=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有\[ {S}_{\vartriangle {{ACE }}}=0.4\times{S}_{\vartriangle {{ACD}}} $ =0.4\times(3+9)=4.8. \]即阴影局部面积为4.8.38. 如图,ABCD是一个直角梯形.以AD为边长向外做一个长方形ADEF,其面积是10平方厘米,连结BE交AD于P,再连接PC,那么图中阴影局部的面积是多少平方厘米?【答案】5平方厘米【分析】连结BD,如下列图.因为AD∥BC,所以S△PCD=S△PBD,所以阴影局部的面积等于S△EBD,再根据FB∥ED,所以阴影的面积就是长方形AFED面积的一半,即10÷2=5(平方厘米).39. 有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影局部的面积?【答案】80cm2【分析】如下列图左所示,S阴①=4S1.S阴①=16×16÷2=128(cm2)如下列图中所示,此时斜放的正方形面积为128cm2,S=S阴②.S=S阴②=128÷2=64(cm2)如图右所示,此时外面正方形面积为64,图中S阴③=64÷2÷2=16(cm2)所以,图中阴影局部总面积为:S阴②+S阴③=64+16=80(cm2)40. 如图,四边形ABCD中,DE=4FC,EF=3FC,BG=4AH,GH=3AH,四边形ABCD 的面积等于24,那么四边形EFHG的面积=.【答案】9【分析】首先连接AE、CG、AC,由条件看出E、G分别为CD和AB的中点,那么根据所学的一半模型,四边形AECG的面积占ABCD的一半,也就是面积为12.接下来连结EG,又可看出HEG面积是HEA的3倍,以及FGE面积是FGC的3倍,所以推出四边形EFGH的面积是12÷(1+3)×3=9.41. 如图,长方形被其内的一些直线划分成了假设干块,边上有3块面积分别是13,35,49.那么图中阴影局部的面积是多少?【答案】97【分析】如下列图所示,为了方便表达,将局部区域标上序号,设阴影局部面积为“阴〞:(49+①+35)+(13+②)=12矩形的面积①+阴+②=12矩形的面积.比拟上面两个式子可得阴影局部的面积为97.42. 如图,将平行四边形ABCD的边DC延长一倍至点E,三角形BCE的面积是10平方厘米,阴影局部面积是多少平方厘米?【答案】10【分析】连接AC.因为DC=CE=AB,且AB∥CE,所以四边形ABEC是平行四边形.推知S△ABF=S△BEF,因为DC=CE,所以S△DCF=S△CEF,可得S△ABF+S△DCF=S△BEF+S△CEF.那么阴影局部的面积是10平方厘米.43. 如图,平行四边形ABCD的面积为36,三角形AOD的面积为8.三角形BOC的面积为多少?【答案】10.−8=10.【分析】由根本一半模型知:三角形BOC的面积为36×1244. 如图,四边形ABCD中,DE=3FC,EF=2FC,BG=3AH,GH=2AH,四边形ABCD 的面积等于24,那么四边形EFGH的面积=.【答案】8.【分析】首先连接AE、CG、AC,由条件看出E、G分别为CD和AB的中点,那么根据所学的一半模型,四边形AECG的面积占四边形ABCD面积的一半,也就是面积为12.接下来连结EG,又可看出HEG面积是HEA的2倍,以及FGE面积是FGC的2倍,所以推出四边形EFGH的面积是12÷(1+2)×2=8.45. 如下列图,正方形ABCD的面积是20,正三角形△BPC的面积是15,求阴影△BPD的面积.【答案】10【分析】连接AC交BD于O点,并连接PO.如上图所示,可得PO∥DC,所以△DPO与△CPO面积相等〔同底等高〕,所以有:S△BPO+S△CPO=S△BPO+S△PDO=S△BPD,因为S△BOC=14S ABCD=14×20=5,所以S△BPD=15−5=10.46. 如图,在一个梯形内有两个三角形的面积分别为10与12,梯形的上底长是下底长的23.那么余下阴影局部的面积是多少?【答案】23【分析】不妨设上底长2,那么下底长3,那么上面局部的三角形的高为10÷2×2=10,下面局部的三角形的高为12÷3×2=8,那么梯形的高为10+8=18.所以梯形的面积为1 2×(2+3)×18=45,所以余下阴影局部的面积为45−10−12=23.47. 如下图,BD、CF将长方形ABCD分成4块,△DEF的面积是5平方厘米,△CED的面积是10平方厘米.问:四边形ABEF的面积是多少平方厘米?【答案】25厘米【分析】连接BF,根据梯形模型,可知三角形BEF的面积和三角形DEC的面积相等,即其面积也是10平方厘米,再根据蝴蝶定理,三角形BCE的面积为10×10÷5=20(平方厘米),所以长方形的面积为(20+10)×2=60(平方厘米),四边形ABEF的面积为60−5−10−20=25(平方厘米).48. 如图,正六边形ABCDEF的面积为1,那么阴影局部的面积是多少?【答案】14【分析】把三角形EGD移到三角形CHB的位置,那么长方形DHBG面积为六边形面积一半,阴影面积又为此长方形面积一半,因此为1÷2÷2=1 4 .49. 下列图中的大正方形ABCD的面积是1,其他点都是它所在的边的中点.请问:阴影三角形的面积是多少?【答案】 332【分析】 图中有大、中、小三个正方形,每个面积是前一个的 12,所以小正方形面积是 14,将小正方形各顶点标上字母,如下列图所示,很容易看出 $\triangle JFG\text{面积}=\triangle IHG\text{面积}=\dfrac 1 4\times \text{正方形$ EFGH $面积}$,$\triangle EJI\text{面积}=\dfrac 1 4\times \triangle EFH\text{面积}=\dfrac 1 8\times \text{正方形$ EFGH $面积}$.所以阴影 △JGI 面积=(1−14−14−18)×小正方形面积=38×小正方形面积=332.50. 三角形 ABC 中,BD =CD ,三角形 ABD 的面积为 20 平方厘米,AD =8 厘米,求高 CE 的长是多少厘米?【答案】5【分析】因为三角形ACD的面积=20平方厘米,同时三角形ACD的面积=AD×CE÷2,所以CE=20×2÷8=5〔厘米〕.51. 平行四边形内有一个点N,连接这个点和平行四边形的四个顶点,把平行四边形分成几块,各块的面积如下图,那么阴影局部的面积应该是多少?【答案】6【分析】平行四边形中也有一半模型.8+2−4=6就是阴影的面积.52. 如图是由5个大小不同的正方形叠放而成的,如果最小的正方形〔阴影局部〕的周长是8,那么最大的正方形的边长是多少?【答案】8厘米【分析】最小正方形的面积是2×2=4(平方厘米)最大的正方形的面积是4×2×2×2×2=64(平方厘米)那么最大的正方形的边长是8厘米.53. 如图,长方形ABCD的边上有两点E、F,线段AF、BF、CE、BE把长方形分成假设干块,其中三个小木块的面积标注在图上,阴影局部面积是多少平方米?【答案】97【分析】运用等积变换,S DFA+S FCB=12S ABCD,S BCE=12S ABCD=S DAF+S FCB,因此,阴影面积为15+36+46=97(平方米).54. 如图,正方形ABCD的边长为8,AE=2,CF=3.长方形EFGH的面积为.【答案】58【分析】连接DE,DF,正方形ABCD的面积为8×8=64,三角形AED的面积为8×2÷2=8,三角形DFC的面积为8×3÷2=12,三角形BEF的面积为(8−2)×(8−3)÷2=15,那么三角形DEF的面积为64−8−12−15=29,长方形EFGH的面积为29×2=58.55. 一个长方形分成4个不同的三角形,黄色的三角形面积是50平方厘米,绿色三角形的面积占长方形面积的20%,那么长方形的面积是多少平方厘米?【答案】5003【分析】由一半模型知:黄+绿=长方形的面积一半,所以绿占长方形面积的:1 2−20%=310,所以长方形的面积为:50÷310=5003(平方厘米).56. 如图,正方形ABCD的边长为6,AE=1.5,CF=2.长方形EFGH的面积是多少?【答案】33.【分析】连接DE,DF.在正方形ABCD中,S△DEF=S△ABCD−S△ADE−S△EBF−S△DFC,在长方形DEFG中,S△DEF=12S△EFGH,因为BE=6−1.5=4.5,BF=6−2=4,所以S△DEF=6×6−1.5×6÷2−2×6÷2−4.5×4÷2=16.5,。
五年级奥数一半模型
一、三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。
在等高模型中,(图1)当BD=CD 时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED ,DF=FC ,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE 时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构五年奥数一半模型【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。
是打“√”,不是打“×”。
三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。
如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。
四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】【例1】如图,已知长方形ABCD 的面积为24平方厘米,且线段EF,GH 把它分成四个小长方形,求阴影部分的面积。
24÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。
6×4÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
【例2】如图所示,平行四边形的面积是 50 平方厘米,阴影部分面积是( )平方厘米.例题精讲4【例3】如图,长方形AFEB 和长方形FDCE 拼成了长方形ABCD,长方形ABCD 的长是20,宽是12,则它内部阴影部分的面积是多少?A BF ED C【巩固】如图,正方形ABCD的边长为4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例4】【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例4】如图所示,长方形ABCD内的阴影面积之和为65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。
五年级奥数-一半模型-学生版-1
一半模型知识结构一、三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。
在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。
是打“√”,不是打“×”。
()()()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。
如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。
四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】例题精讲【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。
【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。
4【例2】如图所示,平行四边形的面积是50 平方厘米,阴影部分面积是()平方厘米.【例3】如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是20,宽是12,则它内部阴影部分的面积是多少?A BF ED C【巩固】如图,正方形ABCD的边长为4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例4】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是1 3,3 5,4 9.那么图中阴影部分的面积是多少A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例5】如图所示,长方形ABCD内的阴影面积之和为65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。
中考数学常见几何模型专题02 全等模型-半角模型(解析版)
专题02 全等模型--半角模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就半角模型进行梳理及对应试题分析,方便掌握。
模型1.半角模型【模型解读】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
【常见模型及证法】常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论. 1.(2022·湖北十堰·中考真题)【阅读材料】如图①,四边形ABCD 中,AB AD =,180B D ∠+∠=︒,点E ,F 分别在BC ,CD 上,若2BAD EAF ∠∠=,则EF BE DF =+.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD .已知100m CD CB ==,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,道路AD ,AB 上分别有景点M ,N ,且100m DM =,)501m BN =,若在M ,N 之间修一条直路,则路线M N →的长比路线M A N →→的长少_________m 1.7≈).【答案】370【分析】延长,AB DC 交于点E ,根据已知条件求得90E ∠=︒,进而根据含30度角的直角三角形的性质,求得,EC EB ,,AE AD ,从而求得AN AM +的长,根据材料可得MN DM BN =+,即可求解.【详解】解:如图,延长,AB DC 交于点E ,连接,CM CN ,60D ∠=︒,120ABC ∠=︒,150BCD ∠=︒,30A ∴∠=︒,90E ∠=︒,100DC DM ==DCM ∴是等边三角形,60DCM ∴∠=︒,90BCM ∴∠=︒,在Rt BCE 中,100BC =,18030ECB BCD ∠=︒-∠=︒,1502EB BC ==,EC ==100DE DC EC ∴=+=+Rt ADE △中,2200AD DE ==+150AE ==,∴200100100AM AD DM =-=+=+()AN AB BN AE EB BN =-=--())15050501=--150=,100150250AM AN ∴+=+=+Rt CMB △中,BM =)50501EN EB BN EC =+=+==ECN ∴是等腰直角三角形()1752NCM BCM NCB BCM NCE BCE DCB ∴∠=∠-∠=∠-∠-∠=︒=∠由阅读材料可得))100501501MN DM BN =+=+=,∴路线M N →的长比路线M A N →→的长少)250501200370+=+≈m .答案:370. 【点睛】本题考查了含30度角的直角三角形的性质,勾股定理,理解题意是解题的关键.2.(2022·河北邢台·九年级期末)学完旋转这一章,老师给同学们出了这样一道题:“如图1,在正方形ABCD 中,∠EAF =45°,求证:EF =BE +DF .”小明同学的思路:∠四边形ABCD 是正方形,∠AB =AD ,∠B =∠ADC =90°.把∠ABE 绕点A 逆时针旋转到ADE '△的位置,然后证明AFE AFE '≌△△,从而可得=EF E F '. E F E D DF BE DF ''=+=+,从而使问题得证.(1)【探究】请你参考小明的解题思路解决下面问题:如图2,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,12EAF BAD ∠=∠,直接写出EF ,BE ,DF 之间的数量关系.(2)【应用】如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,12EAF BAD ∠=∠,求证:EF =BE +DF .(3)【知识迁移】如图4,四边形ABPC 是O的内接四边形,BC 是直径,AB =AC ,请直接写出PB +PC 与AP 的关系. ADE ,证明∠AEF EAF ='E AF ∠先利用圆内接四边形的性质证明为等腰直角三角形,等量代换即得结论.AD 重合,点ADE=180°知,BAD,∠∠BAF=∠EAF=∠,∠EF=E F'∠ABE绕点【点睛】本题考查了旋转与全等三角形的综合应用、直径所对的圆周角是直角、圆内接四边形的性质、等腰直角三角形的判定及性质等知识点.解题关键是利用旋转构造全等三角形.3.(2022·福建·龙岩九年级期中)(1)【发现证明】如图1,在正方形ABCD 中,点E ,F 分别是BC ,CD 边上的动点,且45EAF ∠=︒,求证:EF DF BE =+.小明发现,当把ABE △绕点A 顺时针旋转90°至ADG ,使AB 与AD 重合时能够证明,请你给出证明过程.(2)【类比引申】①如图2,在正方形ABCD 中,如果点E ,F 分别是CB ,DC 延长线上的动点,且45EAF ∠=︒,则(1)中的结论还成立吗?若不成立,请写出EF ,BE ,DF 之间的数量关系______(不要求证明) ②如图3,如果点E ,F 分别是BC ,CD 延长线上的动点,且45EAF ∠=︒,则EF ,BE ,DF 之间的数量关系是_____(不要求证明).(3)【联想拓展】如图1,若正方形ABCD 的边长为6,AE =求AF 的长.180ADF ADG ∴∠+∠=︒,F ∴,D ,G 三点共线,45EAF ∠=︒,45BAE FAD ∴∠+∠=︒,45DAG FAD ∴∠+∠=︒,EAF FAG ∴∠=∠,AF AF =,()EAF GAF SAS ∴∆≅∆,EF FG DF DG ∴==+,EF DF BE ∴=+;(2)①不成立,结论:EF DF BE =-;证明:如图2,将ABE ∆绕点A 顺时针旋转90︒至ADM ∆,EAB MAD ∴∠=∠,AE AM =,90EAM =︒∠,BE DM =,45FAM EAF ∴∠=︒=∠,AF AF =,()EAF MAF SAS ∴∆≅∆,EF FM DF DM DF BE ∴==-=-;②如图3,将ADF ∆绕点A 逆时针旋转90︒至ABN ∆,AN AF ∴=,90NAF ∠=︒,45EAF ∠=︒,45NAE ∴∠=︒,NAE FAE ∴∠=∠,AE AE =,()AFE ANE SAS ∴∆≅∆,EF EN ∴=,BE BN NE DF EF ∴=+=+.正方形Rt EFC中,2CF CE+解得:2x=.2DF∴=,226AF AD DF=+=【点睛】本题属于四边形综合题,主要考查了正方形的性质、旋转的性质、全等三角形的判定与性质以及勾股定理的综合应用,解题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等进行推导.4.(2022·山东省青岛第二十六中学九年级期中)【模型引入】当几何图形中,两个共顶点的角所在角度是公共大角一半的关系,我们称之为“半角模型”【模型探究】(1)如图1,在正方形ABCD中,E、F分别是AB、BC边上的点,且∠EDF=45°,探究图中线段EF,AE,FC之间的数量关系.【模型应用】(2)如图2,如果四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,∠EAF=45°,且BC=7,DC=13,CF=5,求BE的长.【拓展提高】(3)如图3,在四边形ABCD中,AB=AD,∠ABC与∠ADC互补,点E、F分别在射线CB、DC上,且∠EAF12=∠BAD.当BC=4,DC=7,CF=1时,CEF的周长等于.(4)如图4,正方形ABCD中,AMN的顶点M、N分别在BC、CD边上,AH∠MN,且AH=AB,连接BD分别交AM、AN于点E、F,若MH=2,NH=3,DF=EF的长.(5)如图5,已知菱形ABCD中,∠B=60°,点E、F分别是边BC,CD上的动点(不与端点重合),且∠EAF=60°.连接BD分别与边AE、AF交于M、N,当∠DAF=15°时,求证:MN2+DN2=BM2.又AH=AN,AB=AD,∠∠ABH∠∠ADN(SAS),∠DN=BH,∠ABH=∠ADN,∠∠B=60°,且∠EAF=60°.∠∠BAD=120°,∠∠DAF+∠BAE=∠EAF=60°,∠∠BAG+∠BAE=∠EAF,即∠MAH=∠MAN,而AH=AN,AM=AM,∠∠AMH∠∠AMN(SAS),∠MN=MH,∠AMN=∠AMH,∠菱形ABCD,∠B=60°,∠∠ABD=∠ADB=30°,∠∠HBD=∠ABH+∠ABD=60°,∠∠DAF=15°,∠EAF=60°,∠∠ADM中,∠DAM=∠AMD=75°,∠∠AMN=∠AMH=75°,∠∠HMB=180°-∠AMN-∠AMH=30°,∠∠BHM=90°,∠BH2+MH2=BM2,∠DN2+MN2=BM2.【点睛】本题是四边形综合题,主要考查了旋转的性质、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题关键是学会用旋转法添加辅助线,构造全等三角形解决问题,学会利用探究的结论解决新的问题,属于中考压轴题.课后专项训练:1.(2022·重庆市育才中学二模)回答问题(1)【初步探索】如图1:在四边形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF=BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE∠∠ADG,再证明△AEF∠∠AGF,可得出结论,他的结论应是_______________;(2)【灵活运用】如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;(3)【拓展延伸】知在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请直接写出∠EAF与∠DAB的数量关系.2.(2022·江西九江·一模)如图(1),在四边形ABCD 中,180B D ∠+∠=︒,AB AD =,以点A 为顶点作EAF ∠,且12EAF BAD ∠=∠,连接EF .(1)观察猜想 如图(2),当90BAD B D ∠=∠=∠=︒时,①四边形ABCD 是______(填特殊四边形的名称);②BE ,DF ,EF 之间的数量关系为______.(2)类比探究 如图(1),线段BE ,DF ,EF 之间的数量关系是否仍然成立?若成立,请加以证明;若不成立,请说明理由.(3)解决问题 如图(3),在ABC 中,90BAC ∠=︒,4AB AC ==,点D ,E 均在边BC 上,且45DAE ∠=︒,若BD =,求DE 的长.证得ABE ADG ≌,得出证得AEF AGF ≌,之间的数量关系;(2)同(1)②即可得出,证得ABD ACM ≌,同(证得AEF AGF ≌,在Rt ECM 中,由勾股定理可解得90BAD B D =∠=∠=︒,ABCD 是矩形,又∠AB AD ,∠矩形CD 至点G ,使得DG=BE 90ADG ADF =∠=︒,∠∠,∠ABE ADG ≌,DG ,BAE DAG ∠=∠BAD ∠,∠BAE DAF ∠+∠∠AEF AGF ≌,∠EF DG EF =∠BE FD +在ABC 中,B ACB ∠=∠∠ABD ACM ≌,同(1)②的证明方法得DE ME =, 2BD =,22+BC AB AC ==DE ME =x -,Rt ECM 中,2EM ,2(2)(32+【点睛】本题考查了特殊的平行四边形的判定、全等三角形的性质和判定及勾股定理的应用,熟练应用相关定理和性质是解决本题的关键.3.(2022·山东聊城·九年级期末)(1)如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,连接EF ,求证:EF BE DF =+,试说明理由.(2)类比引申:如图2,四边形ABCD 中,AB AD =,90BAD ∠=︒,点E ,F 分别在边BC ,CD 上,∠EAF =45°,若B 、D ∠都不是直角,则当B 与D ∠满足等量关系______时,仍有EF BE DF =+,试说明理由.(3)联想拓展:如图3,在∠ABC 中,90BAC ∠=︒,AB AC =,点D ,E 均在边BC 上,且∠DAE =45,若1BD =,2EC =,求DE 的长.AB AD =∠ADC =∠B =90°∠则DAG ∠∠F AG =∠F AD理由:AB AD==∠BAE DAG∠=︒,BAD90∠+∠=ADC B在∠AFE和∠AFG∴=EF FG()3将∠ACE∠=BAC又∠∠F AB=∠则在∠ADF∠∠ADF∠∠∠∠C+∠ABD4.(2022·黑龙江九年级阶段练习)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时,(如图1),易证BM+DN=MN.(1)当∠MAN 绕点A 旋转到BM ≠DN 时(如图2),线段BM 、DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN 绕点A 旋转到如图3的位置时,线段BM 、DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想. 【答案】(1)BM DN MN +=,理由见解析;(2)DN BMMN -=,理由见解析【分析】(1)把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,然后证明得到AEM ANM ∆∆≌,从而证得ME MN =,可得结论;(2)首先证明ADQ ABM ∆∆≌,得DQ BM =,再证明AMN AQN ∆∆≌,得MN QN =,可得结论; (1)解:BM DN MN +=.理由如下:如图2,把ADN ∆绕点A 顺时针旋转90︒,得到ABE ∆,90ABE ADN ∴∠=∠=︒,AE AN =,BE DN =,180ABE ABC ∴∠+∠=︒,∴点E ,点B ,点C 三点共线,90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM ∆与ANM ∆中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ANM ∴∆∆≌(SAS ),ME MN ∴=, ME BE BM DN BM =+=+,DN BM MN ∴+=;(2)解:DN BM MN -=.理由如下:在线段DN 上截取DQ BM =,在ADQ ∆与ABM ∆中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ABM ∴∆∆≌(SAS ),DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN ∆和AQN ∆中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN AQN ∴∆∆≌(SAS ),MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.5.(2022·重庆南川·九年级期中)如图,正方形ABCD 中,45MAN ∠=︒,MAN ∠绕点A 顺时针旋转,它的两边分别交BC 、DC (或它们的延长线)于点M 、N .(1)当MAN ∠绕点A 旋转到BM DN =时(如图1),证明:2MN BM =;(2)绕点A 旋转到BM DN ≠时(如图2),求证:MN BM DN =+;(3)当MAN ∠绕点A 旋转到如图3位置时,线段BM 、DN 和MN 之间有怎样的数量关系?请写出你的猜想并证明.【答案】(1)见解析(2)见解析(3)DN BM MN -=,见解析【分析】(1)把ADN △绕点A 顺时针旋转90︒,得到ABE △,证得B 、E 、M 三点共线,即可得到AEM △∠ANM ,从而证得ME MN =;(2)证明方法与(1)类似;(3)在线段DN 上截取DQ BM =,判断出ADQ △∠ABM ,同(2)的方法,即可得出结论.(1)证明:如图1,∠把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=,BM DN =,2MN BM ∴=.(2)证明:如图2,把ADN △绕点A 顺时针旋转90︒,得到ABE △,ABE ∴∠ADN △,AE ANM ∴=,ABE D ∠=∠,四边形ABCD 是正方形,90ABC D ∴∠=∠=︒,90ABE ABC ∴∠=∠=︒,∴点E 、B 、M 三点共线.90904545EAM NAM ∴∠=︒-∠=︒-︒=︒,又45NAM ∠=︒,在AEM △与ANM 中,AE AN EAM NAM AM AM =⎧⎪∠=∠⎨⎪=⎩,AEM ∴△∠()ANM SAS ,ME MN ∴=,ME BE BM DN BM =+=+,DN BM MN ∴+=. (3)解:DN BM MN -= 理由如下:如图3,在线段DN 上截取DQ BM =,连接AQ ,在ADQ △与ABM中,AD AB ADQ ABM DQ BM =⎧⎪∠=∠⎨⎪=⎩,ADQ ∴∠()ABM SAS ,DAQ BAM ∴∠=∠,QAN MAN ∴∠=∠.在AMN 和AQN △中,AQ AM QAN MAN AN AN =⎧⎪∠=∠⎨⎪=⎩,AMN ∴∠()AQN SAS ,MN QN ∴=,DN BM MN ∴-=.【点睛】本题是四边形综合题,考查正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,学会利用旋转法添加辅助线,构造全等三角形是解题的关键.6.(2022·江西景德镇·九年级期中)(1)【特例探究】如图1,在四边形ABCD 中,AB AD =,90ABC ADC ∠=∠=︒,100BAD ∠=︒,50EAF ∠=︒,猜想并写出线段BE ,DF ,EF 之间的数量关系,证明你的猜想;(2)【迁移推广】如图2,在四边形ABCD 中,AB AD =,180ABC ADC ∠+∠=︒,2BAD EAF ∠∠=.请写出线段BE ,DF ,EF 之间的数量关系,并证明;(3)【拓展应用】如图3,在海上军事演习时,舰艇在指挥中心(O 处)北偏东20°的A 处.舰艇乙在指挥中心南偏西50°的B 处,并且两舰艇在指挥中心的距离相等,接到行动指令后,舰艇甲向正西方向以80海里/时的速度前进,同时舰艇乙沿北偏西60°的方向以90海里/时的速度前进,半小时后,指挥中心观测到甲、乙两舰艇分别到达C ,D 处,且指挥中心观测两舰艇视线之间的夹角为75°.请直接写出此时两舰艇之间的距离.【答案】(1)EF =BE +DF ,理由见解析;(2)EF =BE +DF ,理由见解析;(3)85海里【分析】(1)延长CD 至点G ,使DG =BE ,连接AG ,可证得∠ABE ∠∠ADG ,可得到AE =AG ,∠BAE =∠DAG ,再由100BAD ∠=︒,50EAF ∠=︒,可证得∠AEF ∠∠AGF ,从而得到EF =FG ,即可求解;(2)延长CD 至点H ,使DH =BE ,连接AH ,可证得∠ABE ∠∠ADH ,可得到AE =AH ,∠BAE =∠DAH ,再由2BAD EAF ∠∠=,可证得∠AEF ∠∠AHF ,从而得到EF =FH ,即可求解;(3)连接CD ,延长AC 、BD 交于点M ,根据题意可得∠AOB =2∠COD ,∠OAM +∠OBM =70°+110°=180°,再由(2)【迁移推广】得:CD =AC +BD ,即可求解.【详解】解:(1)EF =BE +DF ,理由如下:如图,延长CD 至点G ,使DG =BE ,连接AG ,∠90ABC ADC∠=∠=︒,∠∠ADG=∠ABC=90°,∠AB=AD,∠∠ABE∠∠ADG,∠AE=AG,∠BAE=∠DAG,∠100BAD∠=︒,50EAF∠=︒,∠∠BAE+∠DAF=50°,∠∠F AG=∠EAF=50°,∠AF=AF,∠∠AEF∠∠AGF,∠EF=FG,∠FG=DG+DF,∠EF=DG+DF=BE+DF;(2)EF=BE+DF,理由如下:如图,延长CD至点H,使DH=BE,连接AH,∠180ABC ADC∠+∠=︒,∠ADC+∠ADH=180°,∠∠ADH=∠ABC,∠AB=AD,∠∠ABE∠∠ADH,∠AE=AH,∠BAE=∠DAH,∠2BAD EAF∠∠=∠∠EAF=∠BAE+∠DAF=∠DAF+∠DAH,∠∠EAF=∠HAF,∠AF=AF,∠∠AEF∠∠AHF,∠EF=FH,∠FH=DH+DF,∠EF=DH+DF=BE+DF;(3)如图,连接CD,延长AC、BD交于点M,根据题意得:∠AOB=20°+90°+40°=150°,∠OBD=60°+50°=110°,∠COD=75°,∠OAM=90°-20°=70°,OA=OB,∠∠AOB=2∠COD,∠OAM+∠OBM=70°+110°=180°,∠OA=OB,∠由(2)【迁移推广】得:CD=AC+BD,∠AC=80×0.5=40,BD=90×0.5=45,∠CD=40+45=85海里.即此时两舰艇之间的距离85海里.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质、勾股定理的运用、等腰直角三角形的性质,题目的综合性较强,难度较大,解题的关键是正确的作出辅助线构造全等三角形,解答时,注意类比思想的应用.7.(2022·上海·九年级专题练习)小明遇到这样一个问题:如图1,在Rt∠ABC中,∠BAC=90°,AB=AC,点D,E在边BC上,∠DAE=45°.若BD=3,CE=1,求DE的长.小明发现,将∠ABD 绕点A 按逆时针方向旋转90º,得到∠ACF ,联结EF (如图2),由图形旋转的性质和等腰直角三角形的性质以及∠DAE =45°,可证△F AE ∠△DAE ,得FE =DE .解△FCE ,可求得FE (即DE )的长.(1)请回答:在图2中,∠FCE 的度数是 ,DE 的长为 .参考小明思考问题的方法,解决问题:(2)如图3,在四边形ABCD 中,AB =AD ,∠B +∠D =180°.E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD .猜想线段BE ,EF ,FD 之间的数量关系并说明理由. )根据旋转的性质,可得ADB AFC ≌,勾股定理解按逆时针方向旋转,使AB 与AD 重合,FG =DG +FD =BE +按逆时针方向旋转90º,得到∠ACF ∠ADB AFC ≌ACF ∴∠,90AB AC BAC ∠==45ACF ABD ∴∠=∠=在Rt FCE 中,BD 2EF CF ∴=+(2)猜想:EF =BE 如图,将∠ABE8.(2022·黑龙江·哈尔滨市九年级阶段练习)已知四边形ABCD 是正方形,一个等腰直角三角板的一个锐角顶点与A 点重合,将此三角板绕A 点旋转时,两边分别交直线BC ,CD 于M ,N .(1)如图1,当M ,N 分别在边BC ,CD 上时,求证:BM +DN =MN(2)如图2,当M ,N 分别在边BC ,CD 的延长线上时,请直接写出线段BM ,DN ,MN 之间的数量关系(3)如图3,直线AN 与BC 交于P 点,MN =10,CN =6,MC =8,求CP 的长.【答案】(1)见解析;(2)BM DN MN -=;(3)3【分析】(1)延长CB 到G 使BG DN=,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,再根据45MAN ∠=︒,90BAD ∠=︒,可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN +=;(2)在BM 上取一点G ,使得BG DN =,连接AG ,先证明AGB AND ≅△△,由此得到AG AN =,GAB DAN ∠=∠,由此可得90GAN BAD ∠=∠=︒,再根据45MAN ∠=︒可以得到45GAM NAM ∠=∠=︒,从而证明AMN AMG △≌△,然后根据全等三角形的性质即可证明BM DN MN -=;(3)在DN 上取一点G ,使得DG BM =,连接AG ,先证明ABM ADG ≌,再证明AMN AGN △≌△,设DG BM x ==,根据DC BC =可求得2x =,由此可得6AB BC CD CN ====,最后再证明ABP NCP △≌△,由此即可求得答案.【详解】(1)证明:如图,延长CB 到G 使BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN BG DN =⎧⎪∠=∠⎨⎪=⎩, ()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,45MAN ∠=︒,90BAD ∠=︒,∠45DAN BAM BAD MAN ∠+∠=∠-∠=︒,45GAM GAB BAM DAN BAM ∴∠=∠+∠=∠+∠=︒,GAM NAM ∴∠=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩, ()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM GB GM +=,BG DN =,BM DN MN ∴+=;(2)BM DN MN -=,理由如下:如图,在BM 上取一点G ,使得BG DN =,连接AG ,∠四边形ABCD 是正方形,∠AB AD =,90ABG ADN BAD ∠=∠=∠=︒,在ABG 与ADN △中,AB AD ABG ADN GB DN =⎧⎪∠=∠⎨⎪=⎩,()AGB AND SAS ∴△≌△,AG AN ∴=,GAB DAN ∠=∠,∠GAB GAD DAN GAD ∠+∠=∠+∠,∠90GAN BAD ∠=∠=︒,又45MAN ∠=︒,45GAM GAN MAN MAN∴∠=∠-∠=︒=∠,在AMN 与AMG 中,AM AM GAM NAM AN AG =⎧⎪∠=∠⎨⎪=⎩,()AMN AMG SAS ∴△≌△,MN GM ∴=,又∠BM BG GM -=,BG DN =,∠BM DN MN -=,故答案为:BM DN MN -=;(3)如图,在DN 上取一点G ,使得DG BM =,连接AG ,∠四边形ABCD 是正方形,∠AB AD BC CD ===,90ABM ADG BAD ∠=∠=∠=︒,//AB CD ,在ABM 与ADG 中,AB AD ABM ADG BM DG =⎧⎪∠=∠⎨⎪=⎩, ()ABM ADG SAS ∴△≌△,AM AG ∴=,MAB GAD ∠=∠,∠MAB BAG GAD BAG ∠+∠=∠+∠,∠90MAG BAD ∠=∠=︒,又45MAN ∠=︒,45GAN MAG MAN MAN ∴∠=∠-∠=︒=∠,在AMN 与AGN 中,AM AG MAN GAN AN AN =⎧⎪∠=∠⎨⎪=⎩, ()AMN AGN SAS ∴△≌△,10MN GN ∴==,设DG BM x ==,∠6CN =,8MC =,∠1064DC DG GN CN x x =+-=+-=+,8BC MC BM x =-=-, ∠DC BC =,∠48x x +=-,解得:2x =,∠6AB BC CD CN ====,∠//AB CD ,∠BAP CNP ∠=∠,在ABP △与NCP 中,APB NPC BAP CNP AB CN ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP NCP AAS ∴△≌△,9.(2022·浙江·九年级阶段练习)如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM∠EF于点M,请直接写出AM和AB的数量关系;∠BAD,(3)如图2,将Rt∠ABC沿斜边AC翻折得到Rt∠ADC,E,F分别是BC,CD边上的点,∠EAF=12连接EF,过点A作AM∠EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.10.(2022·北京四中九年级期中)如图,在∠ABC中,∠ACB=90°,CA=CB,点P在线段AB上,作射线CP (0°<∠ACP<45°),射线CP绕点C逆时针旋转45°,得到射线CQ,过点A作AD∠CP于点D,交CQ于点E,连接BE.(1)依题意补全图形;(2)用等式表示线段AD,DE,BE之间的数量关系,并证明.【答案】(1)作图见解析.(2)结论:AD+BE=DE.证明见解析.【分析】(1)根据要求作出图形即可.(2)结论:AD+BE=DE.延长DA至F,使DF=DE,连接CF.利用全等三角形的性质解决问题即可.(1)解:如图所示:(2)结论:AD+BE=DE.理由:延长DA至F,使DF=DE,连接CF.∠AD∠CP,DF=DE,∠CE=CF,∠∠DCF=∠DCE=45°,∠∠ACB=90°,∠∠ACD+∠ECB=45°,∠∠DCA+∠ACF=∠DCF=45°,∠∠FCA=∠ECB,在∠ACF和∠BCE中,CA CB ACF BCE CF CE =⎧⎪∠=∠⎨⎪=⎩,∠∠ACF ∠∠BCE (SAS ),∠AF =BE ,∠AD +BE =DE .【点睛】本题考查作图-旋转变换,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.。
六年级下册数学试题-奥数专练:一半模型(含答案)全国通用
一、一半模型二、等积变形直线AB平行于CD,可知S△ACD=S△BCD如图所示,正方形ABCD的边长为8厘米,长方形EBGF的长BG为10厘米,那么长方形的宽为几厘米?如图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO的面积为_____。
例2例1一半模型如图,正方形的边长为10,四边形EFGH的面积为5,那么阴影部分的面积是______。
如图,p为长方形ABCD内的一点,三角形PAB的面积为5,三角形PBC的面积为13,求△PBD 的面积是多少?如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点。
四边形EFGC的面积是多少平方厘米?如图,在平行四边形ABCD中,BE=EC,CF=2FD。
求阴影面积与空白面积的比。
例6例5例4例3测试题1.如图,1,5,4,,ABC S BC BD AC EC DG GS SE AF FG ======V ,求FGS S V 。
SGF E DC BA2.如图所示,正方形ABCD 边长为8厘米,E 是AD 的中点,F 是CE 的中点,G 是BF 的中点,三角形ABG 的面积是多少平方厘米?GF ED CBA3.如右图,正方形ABCD 的边长为l ,E 、F 分别是BC 、DC 的中点,求四边形MECN 的面积为多少?4.如图,长方形ABCD 中,E 为AD 中点,AF 与BE 、BD 分别交于G 、H ,已知AH =5cm ,HF =3cm ,求AG 。
HGF E DCBA5.如图,ABCD 是长方形,ED 与宽平行,GH 与长平行,AB 的长是8厘米,BC 的长是6厘米,那么图中阴影的面积是__________平方厘米。
HGFDCBA6.(2005全国华罗庚金杯数学邀请赛)如图1,长方形的长为8,宽为4,将长方形沿一条对角线折起压平,如图2所示,求重叠部分(阴影部分)的面积。
答案1.答案:本题是我喜欢的一道题目,题目本身很简单,但它把本节课的两个重要知识点融合到一起,既可以看作是“当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的3种情况,好题!最后求得FGS S V 的面积为4321115432210⨯⨯⨯⨯=。
一半模型【答案解析】
面积为
.
考点
几何 四边形 一半模型 常见四边形中的一半模型
5 如图所示,四边形
是梯形,面积是 , 是 的中点.阴影部分的面积是
答案 495
解析 设梯形的上底为 ,下底为 ,高为 ,由于空白部分的面积等于 ,恰好是梯形面积的一半,因此阴影部分面积是
平方厘米.
答案 6
解析 图中阴影部分的面积是 平方厘米.
考点
几何 四边形 一半模型 常见四边形中的一半模型
3 如图,除长方形四个顶点外,其余各点均为各边中点,阴影部分的面积是 平方米,长方
形长 米,则宽是
米.
答案
解析
(米).
考点
几何 四边形 一半模型 常见四边形中的一半模型
4 如下图,已知长方形中两块的面积,则长方形的面积为
大练兵-一半模型
1 如图,大长方形的面积为 ,则阴影部分的面积是
.
答案
解析 通过如下图分割,发现左右三角形是各自所在长方形面积的一半,所以阴影面积是整个
长方形面积的一半,阴影面积是:
.
考点
几何 四边形 一半模型 常见四边形中的一半模型
2 如图, 的面积是
和
都是长方形, 的长是 厘米, 的长是 厘米,那么图中阴影部分
几何四边形一半模型常见四边形中的一半模型答案解析考点如图除长方形四个顶点外其余各点均为各边中点阴影部分的面积是平方米长方几何四边形一半模型常见四边形中的一半模型如下图已知长方形中两块的面积则长方形的面积为答案解析考点根据一半模型图中上下两个三角形的面积和是整个长方形面积的一半所以长方形的面积为几何四边形一半模型常见四边形中的一半模型答案解析考点如图所示四边形是梯形面积是由于空白部分的面积等于恰好是梯形面积的一半因此阴影部分面积是几何四边形一半模型梯形中的一半模型
最全“一半”模型结论,掌握这些面积计算不再难
最全“⼀半”模型结论,掌握这些⾯积计算不再难
⼀半模型是等积变换模型的延伸,但是学⽣往往遇到此类题⽬之后很难想到⽤等积变换的⽅
法,所以专门提炼出⼀半模型,帮助学⽣加深此部分知识点的理解,提⾼⾯积计算的应⽤能
⼒。
长⽅形“⼀半”模型
下图当中阴影均占长⽅形ABCD的⼀半,如果把长⽅形换作平⾏四边形,下⾯结论仍然成⽴,只
是在考察当中多以长⽅形形式出现,如果换作平⾏四边形也要理解。
进⼀步可得如下阴影占长⽅形ABCD⾯积的四分之⼀:
如果把P点移动到下图位置,也就是P点在长⽅形两条长所在直线的外部,那可得阴影⾯积差
(⼤减⼩)占长⽅形ABCD⾯积的⼀半。
三⾓形“⼀半”模型
解释⼀下第⼆⾏第⼀个图形,三⾓形的三条中线在三⾓形内部交于⼀点,该点称作重⼼,三条
中线把三⾓形分成6个⼩三⾓形,这6个⼩三⾓形的⾯积是相等的,因此任取3个三⾓形的⾯积和
占三⾓形ABC⾯积的⼀半。
四边形“⼀半”模型
这三个结论⽐较简单,不⽤过多解释,其中中间的四边形对边中点连线把四边形分成四块,这
四块刚好可以拼成⼀个平⾏四边形。
感兴趣的可以拼⼀下试试。
梯形“⼀半”模型
梯形是四边形,所以四边形具备的⾯积性质梯形也具备,不过梯形的⼀组底边平⾏,还具备以
下性质,其中最后⼀个图形表⽰在两腰中点连线上任意取⼀点,所得图中阴影三⾓形占梯形⾯
积的⼀半,该点只要在腰中点连线上,在梯形外部也成⽴。
特殊“⼀半”模型
下图当中的正⽅形和长⽅形的边是平⾏的。
如果不平⾏则不成⽴。
六年级下册数学试题-小升初专题培优:一半模型(含答案)全国通用
【精品】一半模型一、知识要点:例1下列是四个完全一样的长方形,其中阴影部分的面积( )A.只有两个相等B.只有三个相等C.四个都相等D.都不相等例2(第三届“华杯赛”初赛试题)一个长方形分成4个不同的三角形,绿色三角形的面积占长方形面积的0.15倍,黄色三角形的面积是21平方厘米,长方形的面积是多少平方厘米?例3如图四边形ABCD是长方形,EF与宽平行,GH与长平行,AB=8厘米,BC=6厘米,那么阴影部分的面积是多少平方厘米?例4(2008年春蕾杯五年级决赛)如图长方形ABCD的边上有两点E,F,线段CF,DF,CE,BE把长方形分成若干块,其中三个小块的面积均标在图上,阴影部分的面积是多少平方米。
例5如图所示,长方形ABCD内的阴影部分的面积之和为70,AB=8,AD=15,四边形EFGO的面积为多少?例6如图正方形ABCD的边长为10,四边形EFGH的面积为5,求阴影部分的面积。
测试题1.如图所示正方形ABCD的边长为8,长方形EFGB的长BG=10,求长方形的宽。
2.如图O是长方形ABCD中的任意点,红色三角形的面积=5,绿色三角形的面积=13,求三角形BOD的面积。
3.如图所示,长方形ABCD的面积为24平方厘米,三角形ADM与三角形BCN的面积之和为7.8平方厘米,则四边形PMON的面积为多少平方厘米。
答案1.答案:连接AG,三角形ABG的面积=正方形面积的一半=长方形面积的一半,所以正方形的面积=长方形的面积,长方形的宽=8×8÷10=6.42.答案:红色三角形+黄色三角形+三角形BOD的面积=黄色三角形+绿色三角形,所以红色三角形+三角形BOD=绿色三角形,三角形BOD的面积=13-5=8。
3.答案:三角形AOD的面积+三角形BOC的面积=三角形ABP的面积,所以三角形ADM 与三角形BCN的面积之和=四边形PMON的面积+三角形AOB的面积,三角形AOB的面积=6平方厘米,所以四边形PMON的面积=7.8-6=1.8平方厘米。
一半模型之答案详解版
A
B F
A H
G M
B F
D
E
C
D
E
C
答案:如图,过 F 作 FH ∥ AB ,过 E 作 EG ∥ AD , FH 、 EG 交于 M ,连接 AM . 则
S矩形ABCD S矩形AGMH S矩形GBFM S矩形MFCE S矩形HMED
A E P F G D
E A P F G D
B
H
C
B
H
C
答案: ( 法 1) 设 PGD 的 GD 边 上 的 高 为 h1 , PEB 的 PE 1 1 1 h1 h2 AG GD AG h1 GD h1 PE h2 SPBD 8 ,整理得 2 2 2 1 1 S PHCF S PGAE 8 ,所以 S PHCF S PGAE 16 (平方分米). 2 2 四边形 BCFE 的面积与平行四边形 ABHG 的面积差. 如右上图,连接 CP 、 AP . 由于 SBCP SADP SABP SBDP SADP 而 SBCP
SBCE 1 S 2
ABCD
1 S 2
ABCD
,
SDAF SFCB ,
所以 S阴影 15 36 46 97 (平方米) 。
例4
(2008 年” 华杯赛” 初赛)如图所示, 长方形 ABCD 的面积为 24 平方厘米. 三角形 ADM 与三角形 BCN 的面积之和为 7.8 平方厘米,则四边形 PMON 的面积是 平方厘米.
1 S ABCD ,所以 SBCP SABP SBDP . 2
小学数学几何模型之一半模型 PPT带答案
面积+△CDE的面积 △AKF的面积+△ADG的面积=5cm² △CDE的面积:3×3÷2=4.5(cm²) △BEK的面积:5-4.5=0.5(cm²)
例题6
如图,ABCD是长方形,图中的数字是各部分的面积数,则图 中阴影部分面积是多少?
解析:连接AE 三角形AED的面积
12×12÷2=72(cm²) AF:72×2÷16=9(cm)
例题3
如图,四边形ABCD、ACEF都是平行四边形,已知AD=12厘 米,AD上的高为8厘米,求阴影部分面积。
阴影 阴影
解析:△ABC面积: 12×8÷2=48(cm²) 阴影部分面积=△ABC面积 =48(cm²)
阴影
解答: 10×10÷2=50(cm²)
阴影
例题2
如图所示,正方形ABCD的边长为10厘米,BO长8厘米,BO垂 直于AE,求AE的长。
连接BE 正方形面积:10×10=100(cm²) 三角形ABE面积:100÷2=50(cm²) AE:50×2÷8=12.5(cm)
练习2
如图所示,正方形ABCD的边长为12厘米,DE=16厘米,AF 垂直于DE,则AF的长度是多少?
练习3
如图,正方形ABCD的边长是6厘米,求长方形EDGF的面积是 多少平方厘米?
解析:连接AG 正方形面积:6×6=36(cm²)
△AGD面积=正方形面积 一半=长方形面积一半 长方形面积=36(cm²)
例题4
如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?
65 20
五年级奥数一半模型教师版-1
一半模型知识结构一、三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。
在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。
是打“√”,不是打“×”。
()()()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。
如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。
四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】例题精讲【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。
24÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。
46×4÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
【例2】如图所示,平行四边形的面积是50 平方厘米,阴影部分面积是()平方厘米.【例3】A BF ED C【巩固】如图,正方形ABCD的边长为4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例3】A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例4】如图所示,长方形ABCD内的阴影面积之和为65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。
五年级奥数一半模型教师版-
一、 三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。
在等高模型中,(图1)当BD=CD 时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED ,DF=FC ,阴影部分面积,S ΔAEF=S ΔABC ÷2在等底模型中(图3),当AE=DE 时,阴影部分,S ΔEBC=S ΔABC ÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2, 平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:知识结构一半模型【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。
是打“√”,不是打“×”。
()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。
如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。
四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】【例1】如图,已知长方形ABCD 的面积为24平方厘米,且线段EF,GH 把它分成四个小长方形,求阴影部分的面积。
24÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。
6×4÷2=12(平方厘米)答:阴影部分的面积是12平方厘米。
例题精讲4【例2】如图所示,平行四边形的面积是 50 平方厘米,阴影部分面积是()平方厘米.【例3】A BF ED C【巩固】如图,正方形ABCD的边长为 4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB C G【巩固】如图所示,正方形 A B C D的边长为8厘米,长方形 E B G F的长 B G为1 0厘米,那么长方形的宽为几厘米?EA BFD G C【例3】A D3549E13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是 11,32,57.那么图中阴影部分的面积是多少?A D325711B C【例4】如图所示,长方形ABCD内的阴影面积之和为 65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。
四年级奥数一半模型
第7讲第一天1.如图,阴影部分面积是18平方厘米,则平行四边形的面积是()平方厘米。
A.20B.25C.36D.40【答案】C【解析】阴影部分的面积是平行四边形面积的一半,2×18=36(平方厘米)。
2.如图,平行四边形的面积是66平方厘米,那么阴影部分的面积是()平方厘米。
A.16B.28C.30D.33【答案】D【解析】阴影部分的面积是平行四边形面积的一半,66÷2=33(平方厘米)。
第二天1.如图,已知阴影部分的面积和是90平方分米,那么平行四边形的面积是()平方分米。
A.120B.140C.160D.180【答案】D【解析】根据一半模型,阴影部分的面积是平行四边形面积的一半,90×2=180(平方分米)。
2.如图,长方形ABEF和长方形EFDC拼成了一个正方形ABCD,正方形的边长为12厘米,则阴影部分的面积和是()平方厘米。
A.144B.72C.48D.96【答案】B【解析】图中阴影部分的面积和等于正方形ABCD 面积的一半,12×12÷2=72(平方厘米)。
第三天1.巴彦淖尔有一块长为800米,宽为500米的长方形荒漠,蚂蚁森林工作人员要在此荒漠种上梭梭树和红柳,设计方案如图,那么红柳的种植面积为( )平方米。
A.300000B.240000C.400000D.200000【答案】D【解析】根据一半模型,红柳面积和等于长方形荒漠面积的一半,800×500÷2=200000(平方米)。
2.公园里有一个边长为8米的正方形土地,这块土地种植的设计方案如图,梅花的种植面积是15平方米,那么桂花的种植面积是( )平方米。
A.15 B.32 C.17 D.64【答案】C【解析】根据一半模型,梅花与桂花的面积和是正方形面积的一半,那么桂花为8×8÷2-15=17(平方米)。
EF D CB 梭梭树梭梭树红柳红柳第四天1.如图,等腰梯形ABCD 中,AB 为10厘米,CD 为14厘米,高为7厘米,E 为AD 的中点。
五年级奥数一半模型学生版
一半模型知识结构一、三角形当中的一半模型由于三角形的面积公式S=底×高÷2,决定于底和高的长度,所以我们有了等高模型和等底模型。
在等高模型中,(图1)当BD=CD时,阴影部分,SΔABD=SΔABC÷2特别地如图2,当BE=ED,DF=FC,阴影部分面积,SΔAEF=SΔABC÷2?在等底模型中(图3),当AE=DE时,阴影部分,SΔEBC=SΔABC÷2二、平行四边形中的一半模型由于三角形的面积公式S=底×高÷2,平行四边行的面积公式S=底×高所以与平行四边形同底等高的三角形是它面积的一半!同时,长方形是特殊的平行四边行,再根据平行线间的等积变形,可以得到如下诸图,阴影部分面积是四边形面积的一半:【巩固练习】判断下面的图形中阴影部分的面积是不是整个图形面积的一半。
是打“√”,不是打“×”。
()()()()()()三、梯形中的一半模型在梯形中,当三角形的底边是梯形的一个腰,顶点在另一个腰的中点处,那么三角形是梯形面积的一半。
如图4,在梯形ABCD中,BE=CE,则SΔADE=SABCD÷2如图5,是它的变形,注意其中AF=DF,BE=CE。
四、任意四边形中的一半模型如图6,在四边形ABCD中,AE=EB,DF=CF,则SEBFD=SABCD÷2【能力提升】【巩固练习】例题精讲【例1】如图,已知长方形ABCD的面积为24平方厘米,且线段EF,GH把它分成四个小长方形,求阴影部分的面积。
【巩固】已知大长方形的长是6厘米,宽是4厘米,求阴影部分的面积。
米.【例3】如图,长方形AFEB和长方形FDCE拼成了长方形ABCD,长方形ABCD的长是 20,宽是12,则它内部阴影部分的面积是多少?A BF EDC【巩固】如图,正方形ABCD的边长为 4,矩形EDFG的边EF过A点,G点在BC上,若DG=5,则矩形EDGF的宽DE=_____;EA DFB CG【巩固】如图所示,正方形A B C D的边长为8 厘米,长方形E B G F的长B G为1 0 厘米,那么长方形的宽为几厘米?EA BFDCG【例4】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是1 3 ,3 5 ,4 9 .那么图中阴影部分的面积是多少AD3549E 13B C【巩固】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是 11,32,57.那么图中阴影部分的面积是多少?A D325711CB【例5】如图所示,长方形ABCD内的阴影面积之和为 65,AB=8,AD=15,四边形EFGD的面积是?【思考题】提示:构造一半模型(很多时候,需要我们构造一半模型来解决一些问题。
经典几何模型一半模型讲解
知识点:【例1】如图所示,长方形的面积为36平方厘米,四边形PMON的面积是3平方厘米,则阴影部分的面积是平方厘米.【例2】(2008年”华杯赛”初赛)如图所示,长方形屋8的面积为24平方厘米.三角形㈤阳与三角形BCN的面积之和为7.8平方厘米,则四边形PMON的面积是____________ 平方厘米.【例3】如图所示,长方形488内的阴影部分的面积之和为70, AB = 8, 40 = 15,四边形E尸GO的面积为,【巩固1】如图所示,正方形斜8的边长为8厘米,长方形EBG户的长5G为10厘米,那么长方形的宽为几厘米?【巩固2] (2011华杯赛决赛试题)已知长方形488,四边形4EFG是梯形,且GB = BF ,已知长方形的面积是2011,求梯形且EFG的面积。
10.国2中*工EUD最长方形,EE平行于6晶四边形,4E《F的面根是1工孔三角形.4m的面积是工弧三角形ECE的面积是15,三角形GDF的面积是1Z5,阿三角形就龙的面就是多少?>如图,K方形一IBS的反和宛分别为6和4,E, E分别为RU,匚口的中点,阴影部分面积为^7.如图,在梯形如⑦中.三角用W"的面积是6平方厘米,且B的性是■组的2倍.梯格/IBS的茴积是平方厘米.18.如下图,已知:梯形且君S 的面积为160G/,E为边上中点,DF, FC= 3:5,那么阴影部分的面积为cW .如图,是长方形,EF与宽平行,GH与长平行,的长是K厘米,的长是6厘米,那么图中阴影部分的面积是平方厘米.(200S年春蕾杯五年级决赛)如图,长方形以58的边上有两点E、F,线段CF、DF、CE、BE把长方形分成若干块,其中三个小木块的面积标注在图上,阴影部分面积是平方米.(2008年仁华考题)如图,正方形的边长为10,四边形正■诙的面积为5,那么阴影部分的面积是.1.(成都外国语学校2006年“德瑞杯”知识竞赛)如图,平行四边形源8的周长为75厘米以为底时高是14厘米,以8为底时高是16厘米.求平行四边形38的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E A P F G D
B
H
C
B
H
C
答案: ( 法 1) 设 PGD 的 GD 边 上 的 高 为 h1 , PEB 的 PE 1 1 1 h1 h2 AG GD AG h1 GD h1 PE h2 SPBD 8 ,整理得 2 2 2 1 1 S PHCF S PGAE 8 ,所以 S PHCF S PGAE 16 (平方分米). 2 2 四边形 BCFE 的面积与平行四边形 ABHG 的面积差. 如右上图,连接 CP 、 AP . 由于 SBCP SADP SABP SBDP SADP 而 SBCP
1 1 S长方形ABCD ,即 SADP +SAPE +SBEQ +SBCQ S长方形ABCD 2 2
答案:根据一半模型: SADE SBCE
1 S阴影 +SAPE +SBEQ = S长方形ABCD , S阴影 =SADP +SBCQ =20+35=55平方厘米 。 2
例2
如图, ABCD 是长方形, EF 与宽平行, GH 与长平行, AB 的长是 8 厘米, BC 的长是 6 厘米,那么 图中阴影部分的面积是 平方厘米.
A G
E
B H
D
F
C
答案:图中的阴影面积像一个风车,有四个三角形组成。每个三角形的面积是对应长方形的一半。 图中阴影部分的面积等于长方形 ABCD 面积的一半,即 8 6 2 24 (平方厘米).
A 16 F C D
14 B E
答 案 : BC CD 75 2 37.5 , 根 据 面 积 相 等 , 底 的 比 与 高 的 比 成 反 比 例 , 所 以
BC : CD 16 :14 8 : 7 , 因此 BC 37.5 (8 7) , 平行四边形 ABCD 的面积是 20 14 280 8 20
3 AOE 和 DOG 的面积之和为 120 70 20 ; 4 1 所以三角形 30 , 4
1 1 又三角形 AOE 、DOG 和四边形 EFGO 的面积之和为 120 30 , 所以四边形 EFGO 的 2 4
面积为 30 20 10 . 4. 如图,正方形的边长为 12,阴影部分的面积为 60,那么四边形 EFGH 的面积是
学而思成都小学教研组呼群老师
-6-
学习改变命运
咨询电话: 85513391,86133391
答案:连接正方形的对角线,运用等积变形,可以得到阴影部分就变为右图中的阴影面积。所以这两 个阴影面积分别为
a 2 b2 , 。 2 2
点睛:看见几个正方形放在一排一定要连接对角线,构造出平行线,进而利用等级变形解题。 2.(2005 年实外小升初测试题) 如图,长方形 ABCD 的边 AD=8cm,AB=6cm,E 为 AD 中点,对角线 ACˎBD 交于交于 O 点。BEˎCE 交两对角 线分别为 FˎG,∆ADF 的面积为 8cm2,求阴影部分 EFOG 的面积.
60 50 先求出三角形 AOE 、 DOG 和四边形 EFGO 的面积之和, 以及三角形 AOE 和 DOG 的面积之和,进而求出四边形 EFGO 的面积. 由于长方形 ABCD 的面积为 15 8 120 , 所以三角形 BOC 的面积为 120
学而思成都小学教研组呼群老师
-2-
学习改变命运
例3
咨询电话: 85513391,86133391
(2008 年春蕾杯五年级决赛)如图,长方形 ABCD 的边上有两点 E 、 F ,线段 CF、DF、CE、BE 把长方 形分成若干块,其中三个小木块的面积标注在图上,阴影部分面积是 平方米。
答案:根据题意: SDFA SFCB
又 CMF 与 BNF 的面积之和与阴影部分的面积相比较,多了 2 个四边形 EFGH 的面积,所以 阴影部分的面积为: 50 5 2 40 .
演练
1. (成都外国语学校 2006 年“德瑞杯”知识竞赛)如图,平行四边形 ABCD 的周长为 75 厘米。 以 BC 为底时高是 14 厘米,以 CD 为底时高是 16 厘米。求平行四边形 ABCD 的面积。
平方厘米 2. 如图所示,正方形 ABCD 的边长为 8 厘米,长方形 EBGF 的长 BG 为 10 厘米,那么长方形的 宽为几厘米?
学而思成都小学教研组呼群老师
-4-
学习改变命运
E A F D G C B
咨询电话: 85513391,86133391
答案: 连接 AG .(我们通过 △ABG 把这两个长方形和正方形联系在一起). 1 因为在正方形 ABCD 中, S△ ABG AB AB 边上的高, 2 1 所以 S△ ABG S ABCD (三角形面积等于与它等底等高的平行四边形面积的一半) 2 1 同理, S△ ABG S EFGB . 2 所以正方形 ABCD 与长方形 EFGB 面积相等. 长方形的宽 8 8 10 6.4 (厘米). 3. (2008 年走美六年级初赛)如图所示,长方形 ABCD 内的阴影部分的面积之和为 70, AB 8 , . AD 15 ,四边形 EFGO 的面积为
3. (成都外国语学校 2006 年“德瑞杯”知识竞赛) 如下图所示, 在长方形 ABCD 中, 三角形 ADP 的面积为 20 平方厘米, 三角形 CBQ 的面积为 35 平方厘米。 求阴影四边形的面积。
学而思成都小学教研组呼群老师
-7-
学习改变命运
咨询电话: 85513391,86133391
AG AH 2SAMF 2SEMF 2S AME
DE BF 2SAEF
11 3 2 17 67
5. 如右图,过平行四边形 ABCD 内的一点 P 作边的平行线 EF 、GH ,若 PBD 的面积为 8 平方分米, 求平行四边形 PHCF 的面积比平行四边形 PGAE 的面积大多少平方分米?
A
D
O E B F
G C
答案:方法一:从整体上来看,四边形 EFGO 的面积 三角形 AFC 面积 三角形 BFD 面积 白色部分的面积,而三角形 AFC 面积 三角形 BFD 面积为长方形面积的一半,即 60,白色 部分的面积等于长方形面积减去阴影部分的面积,即 120 70 50 ,所以四边形的面积为
SBCE 1 S 2
ABCD
1 S 2
ABCD
,
SDAF SFCB ,
所以 S阴影 15 36 46 97 (平方米) 。
例4
(2008 年” 华杯赛” 初赛)如图所示, 长方形 ABCD 的面积为 24 平方厘米. 三角形 ADM 与三角形 BCN 的面积之和为 7.8 平方厘米,则四边形 PMON 的面积是 平方厘米.
1 S ABCD ,所以 SBCP SABP SBDP . 2
边 上 的 高 为 h2 . 则 1 1 GD h2 AG h1 8 ,即 2 2
(法 2)根据差不变原理,要求平行四边形 PHCF 的面积与平行四边形 PGAE 的面积差,相当于求平行
学习改变命运
咨询电话: 85513391,86133391
一半模型
经典精讲
一、一半模型
A
B
A S4 S1 S2 S3
B
C
D
S阴影 1 S长方形 2
C
S1 S3 S2 S4
D
1 S长方形 2
S 空白 =
S1 S2 S3 S4
二、等积变形 直线 AB 平行于 CD ,可知 S ACD S BCD ;
D M O A
P N
C
B
答案:因为三角形 ADO 与三角形 BCO 的面积之和是长方形 ABCD 的面积的一半,即 12 平方厘米, 又三角形 ADM 与三角形 BCN 的面积之和为 7.8 平方厘米,则三角形 AMO 与三角形 BNO 的面积之和 是 4.2 平方厘米, 则四边形 PMON 的面积 三角形 ABP 面积 三角形 AMO 与三角形 BNO 的面积之和
4.如图,三角形 AEF 的面积是 17 , DE 、 BF 的长度分别为 11、3.求长方形 ABCD 的面积.
A
B F
A H
G M
B F
D
E
C
D
E
C
答案:如图,过 F 作 FH ∥ AB ,过 E 作 EG ∥ AD , FH 、 EG 交于 M ,连接 AM . 则
S矩形ABCD S矩形AGMH S矩形GBFM S矩形MFCE S矩形HMED
学而思成都小学教研组呼群老师
.
-5-
学习改变命运
A H E G D
咨询电话: 85513391,86133391
A M H E G N D
B
F
C
B
F
C
答案:如图所示,设 AD 上的两个点分别为 M 、 N .连接 CN . 根据面积比例模型,CMF 与 CNF 的面积是相等的, 那么 CMF 与 BNF 的面积之和, 等于 CNF 与 BNF 的面积之和,即等于 BCN 的面积.而 BCN 的面积为正方形 ABCD 面积的一半,为 1 122 72 . 2 又 CMF 与 BNF 的面积之和与阴影部分的面积相比较,多了 2 个四边形 EFGH 的面积,所以四边 形 EFGH 的面积为: 72 60 2 6 . 5. 如图, P 为长方形 ABCD 内的一点。三角形 PAB 的面积为 5,三角形 PBC 的面积为 13.请问: PBD 的面积是多少?
三角形 ABO 面积 12 4.2 6 1.8 (平方厘米).