特殊平行四边形:动态问题
动点问题(四边形动点专题)
![动点问题(四边形动点专题)](https://img.taocdn.com/s3/m/62ab1ca164ce0508763231126edb6f1aff0071b9.png)
动态几何问题--------动点问题(四边形动点专题)【动态几何问题的特点】动态几何是以几何知识和几何图形为背景,渗透运动变化观点的一类试题;用运动的观点研究几何图形中图形的位置、角与角、线段与线段之间的位置及大小关系。
几何图形按一定的条件进行运动,有的几何量是随之而有规律地变化的,形成了轨迹和极值;而有的量是始终保持不变,也就是我们常说的定值。
动态几何就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的 “变”与“不变”性;动态几何问题常常集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活、多变,动中有静,动静结合,能够在运动变化中发展空间想象能力,综合分析能力,是近几年中命题的热点。
【动态几何问题的解决方法】解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”。
动中求静,即在运动变化中探索问题中的不变性;动静互化,抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论。
解决这类问题,要善于探索图形的运动特点和规律,抓住变化中图形的性质与特征,化动为静,以静制动。
解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注一些不变量和不变关系或特殊关系.【动态几何问题的分类】动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题。
有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等。
根据其运动的特点,又可分为:(1)动点类(点在线段或弧线上运动)也包括一个动点或两个动点;(2)动直线类;(3)动图形问题。
【典型例题】例1.如图,在梯形中,ABCD 动点从点出发沿线段3545AD BC AD DC AB B ====︒∥,,,,∠.M B 以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段BC C N C 以每秒1个单位长度的速度向终点运动.设运动的时间为秒.CD D t (1)求的长;BC (2)当时,求的值;MN AB ∥t (3)试探究:为何值时,t MNC △CB例2. 已知:等边三角形的边长为4厘米,长为1厘米的线段在ABC MN 的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点ABC △AB AB B 与点重合,点到达点时运动终止),过点分别作边的垂线,M A N B M N 、AB 与的其它边交于两点,线段运动的时间为秒.ABC △P Q 、MN t (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出MN t MNQP 该矩形的面积;(2)线段在运动的过程中,四边形的面积为,运动的时间MN MNQP S 为.求四边形的面积随运动时间变化的函数关系式,并写出自变量t MNQP S t 的取值范围.t 例3.如图,在等腰梯形中,∥,,AB =12 ABCD AB DC cm BC AD 5==cm,CD =6cm , 点从开始沿边向以每秒3cm 的速度移动,点从开P A AB B Q C 始沿CD 边向D 以每秒1cm 的速度移动,如果点P 、Q 分别从A 、C 同时出发,当其中一点到达终点时运动停止。
2020年中考数学压轴题-专题08 动点产生的平行四边形(解析版)
![2020年中考数学压轴题-专题08 动点产生的平行四边形(解析版)](https://img.taocdn.com/s3/m/d4fa9278551810a6f4248682.png)
专题08 动点产生的平行四边形教学重难点1.理解平行四边形的性质和判定;2.能应用平行四边形的性质和判定进行相关计算和证明;3.培养学生能在点的运动过程中寻找平行四边形,继而解决相关问题;4.培养学生分类讨论的能力,能应用分类讨论思想解决相关问题;5.体验运动过程,培养学生动态数学思维能力。
【备注】:1.根据后面两个图让学生回顾平行四边形的性质和判定,为后面的例题讲解做好准备;2.部分地方引导学生填空,让学生自己回顾。
时间大概5分钟。
平行四边形的性质:平行四边形的判定:【备注】:1.以下每题教法建议,请老师根据学生实际情况参考;2.在讲解时:不宜采用灌输的方法,应采用启发、诱导的策略,并在读题时引导学生发现一些题目中的条件(相等的量、不变的量、隐藏的量等等),使学生在复杂的背景下自己发现、领悟题目的意思;3.可以根据各题的“教法指导”引导学生逐步解题,并采用讲练结合;注意边讲解边让学生计算,加强师生之间的互动性,让学生参与到例题的分析中来;4.例题讲解,可以根据“参考教法”中的问题引导学生分析题目,边讲边让学生书写,每个问题后面有答案提示;5.引导的技巧:直接提醒,问题式引导,类比引导等等;6.部分例题可以先让学生自己试一试,之后再结合学生做的情况讲评;7.每个题目的讲解时间根据实际情况处理,建议每题7分钟,选讲例题在时间足够的情况下讲解。
1.(2019·辽宁中考真题)如图1,在平面直角坐标系中,一次函数y =﹣34x +3的图象与x 轴交于点A ,与y 轴交于B 点,抛物线y =﹣x 2+bx +c 经过A ,B 两点,在第一象限的抛物线上取一点D ,过点D 作DC ⊥x 轴于点C ,交直线AB 于点E .(1)求抛物线的函数表达式(2)是否存在点D ,使得⊥BDE 和⊥ACE 相似?若存在,请求出点D 的坐标,若不存在,请说明理由; (3)如图2,F 是第一象限内抛物线上的动点(不与点D 重合),点G 是线段AB 上的动点.连接DF ,FG ,当四边形DEGF 是平行四边形且周长最大时,请直接写出点G 的坐标. 【整体分析】(1)根据334y x =-+,求出A ,B 的坐标,再代入抛物线解析式中即可求得抛物线解析式;(2)⊥BDE 和⊥ACE 相似,要分两种情况进行讨论: ⊥⊥BDE⊥⊥ACE ,求得13(4D ,3);⊥⊥DBE⊥⊥ACE ,求得23(12D ,50)9; (3)由DEGF 是平行四边形,可得DE⊥FG ,DE=FG ,设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,根据平行四边形周长公式可得:DEGF 周长=23892()48m --+,由此可求得点G 的坐标. 【满分解答】(1)在334y x =-+中,令0x =,得3y =,令0y =,得4x =,(4,0)A ∴,(0,3)B ,将(4,0)A ,(0,3)B 分别代入抛物线2y x bx c =-++中,得:24403b c c ⎧-++=⎨=⎩,解得:1343b c ⎧=⎪⎨⎪=⎩,∴抛物线的函数表达式为:21334y x x =-++. (2)存在.如图1,过点B 作BH CD ⊥于H ,设(,0)C t ,则213(,3)4D t t t -++,3(,3)4E t t -+,(,3)H t ;334EC t ∴=-+,4AC t =-,BH t =,2134DH t t =-+,24DE t t =-+BDE ∆∵和ACE ∆相似,BED AEC ∠=∠BDE ACE ∴∆∆∽或DBE ACE ∆∆∽⊥当BDE ACE ∆∆∽时,90BDE ACE ∠=∠=︒,∴BD AC DE CE=,即:BD CE AC DE =g g 23(3)(4)(4)4t t t t t ∴-+=-⨯-+,解得:10t =(舍去),24t =(舍去),3134t =,13(4D ∴,3)⊥当DBE ACE ∆∆∽时,BDE CAE ∠=∠ BH CD ⊥Q90BHD ∴∠=︒,∴tan tan BH CEBDE CAE DH AC=∠=∠=,即:BH AC CE DH =g g 2313(4)(3)()44t t t t t ∴-=-+-+,解得:10t =(舍),24t =(舍),32312t =,23(12D ∴,50)9; 综上所述,点D 的坐标为13(4,3)或23(12,50)9;(3)如图3,Q 四边形DEGF 是平行四边形 //DE FG ∴,DE FG =设213(,3)4D m m m -++,3(,3)4E m m -+,213(,3)4F n n n -++,3(,3)4G n n -+,则:24DE m m =-+,24FG n n =-+,2244m m n n ∴-+=-+,即:()(4)0m n m n -+-=,0m n -≠Q 40m n ∴+-=,即:4m n +=过点G 作GK CD ⊥于K ,则//GK AC EGK BAO ∴∠=∠∴cos cos GK AOEGK BAO EG AB=∠=∠=,即:GK AB AO EG =g g 5()4n m EG ∴-=,即:5()4EG n m =-DEGF ∴周长2253892()2[(4)()]2()448DE EG m m n m m =+=-++-=--+20-<Q ,∴当34m =时,DEGF ∴Y 周长最大值898=, 13(4G ∴,9)16【点睛】此题考查二次函数综合题,综合难度较大,解答关键在于结合函数图形进行计算,再利用待定系数法求解析式,配合辅助线利用相似三角形的性质进行解答.2.如图,在平面直角坐标系中,直线b kx y +=分别与x 轴负半轴交于点A ,与y 轴的正半轴交于点B ,⊙P 经过点A 、点B (圆心P 在x 轴负半轴上),已知AB=10,425=AP 。
平行四边形中的动态问题
![平行四边形中的动态问题](https://img.taocdn.com/s3/m/38711fe0d05abe23482fb4daa58da0116d171f7b.png)
平行四边形中的动态问题专题训练(六):平行四边形中的动态问题本题是教材P68题第13题的变式与应用。
题目给出四边形ABCD,其中AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm。
点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动。
从运动开始,使PQ=CD,分别需经过多少时间?为什么?解答:①设经过t1时,四边形PQCD是平行四边形,因为AP=t1,CQ=3t1,DP=24-t1,所以DP=CQ,得到24-t1=3t1,解得t1=6.即经过6s时,四边形PQCD是平行四边形,此时PQ∥CD,且PQ=CD。
②设经过t2时,PQ=CD,即四边形PQCD是等腰梯形,因为AP=t2,BQ=26-3t2,所以t2=26-3t2+2,解得t2=7.综上所述当t=6s或7s时,PQ=CD。
方法归纳:根据动点运动过程中构造的特殊四边形的性质列方程求解。
例题2:如图,A,B,C,D为矩形ABCD的四个顶点,AB=25cm,AD=8cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,运动到点B为止,点Q以2cm/s的速度向点D移动。
(1)P,Q两点从出发开始到第几秒时,PQ∥AD?解答:设经过t秒时,PQ∥AD,且PQ=AD。
因为AP=3t,PB=AB-AP=25-3t,CQ=2t,QD=AD-CQ=8-2t,所以PQ=QD,得到25-3t=8-2t,解得t =3.所以当t=3s时,PQ∥AD。
2)问题:P,Q两点从出发开始到第几秒时,四边形PBCQ的面积为84平方厘米。
解答:设P,Q两点从出发开始到第x秒时,PQ∥AD。
由于四边形ABCD是平行四边形,所以AB∥CD,即AP∥DQ。
又因为PQ∥AD,所以四边形APQD是平行四边形,因此AP=DQ。
根据题目可得3x=25-2x,解得x=5.因此,P,Q两点从出发开始到第5秒时,PQ∥AD。
中考动点问题题型方法归纳
![中考动点问题题型方法归纳](https://img.taocdn.com/s3/m/44e5675f102de2bd97058886.png)
动点问题题型方法归纳问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别----动态几何特点)动点问题一直是中考热点,近几年考查探究运动中要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点3??6yx?QP、Q OBA、A、直线沿点,运动停止.点同时从1两点,动点点出发,同时到达与坐标轴分别交于4OOAABP→→运动,速度为每秒1个单位长度,点运动.线段沿路线B、A)直接写出两点的坐标;(1OPQ△Qtt SS 2)设点的面积为的运动时间为之间的函数关系式;秒,,求出与(48?SQP、O、MP的坐标,并直接写出以点的坐标.为顶点的平行四边形的第四个顶点时,求出点(3)当5y所有时间分段分类;)问按点P到拐点B提示:第(2B探究第四点构成平行四边形时按已知线段身,、Q第(3)问是分类讨论:已知三定点O、P为边。
OQ为对角线,③OP为对角线、为边、OQ为边,②OP为边、OQ①份不同分类-----OP 然后画出各类的图形,根据图形性质求顶点坐标。
Px Q O AABC=60o.AB是⊙O的直径,弦BC=2cm,∠2、如图,O的直径;(1)求⊙相切;BD长为多少时,CD与⊙OCD(2)若D是AB延长线上一点,连结,当方向运动,BC1cm/s的速度从B点出发沿的速度从以2cm/sA点出发沿着AB方向运动,同时动点F以(3)若动点E)?t?2(ts)(0t为何值时,△BEF设运动时间为为直角三角形.,连结EF,当提示:第(3)问按直角位置分类讨论CC CF FE ABABADOEOB O3)2)图(图(1)图(23?3?1)?ya(x)02,A(?ADOM∥?a0OD过作射线如图,3、已知抛物线抛物线的顶点为经过点,.,(过)xx BCCOMBD轴正半轴上,连结.顶点平行于轴的直线交射线于点,在10/ 101 / 1(1)求该抛物线的解析式;t(s)t OMOPP为何值运动的时间为个长度单位的速度沿射线(2)若动点运动,设点从点.问当出发,以每秒1DAOP分别为平行四边形?直角梯形?等腰梯形?时,四边形Q OOBOC?BP同时出发,分别以每秒1个长度单位和(3)若分别从点2和点,动点个长度单位的速度沿和动点(s)PQtt BOOC为当,和,连接运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为BCPQPQ的长.的面积最小?并求出最小值及此时何值时,四边形M yD C的面积最小。
问题引领课堂促进深度思维——“特殊平行四边形”单元复习课教学思考
![问题引领课堂促进深度思维——“特殊平行四边形”单元复习课教学思考](https://img.taocdn.com/s3/m/e01dd4dabb0d4a7302768e9951e79b896902684e.png)
2021 年第 4 期 (下)中学数学研究21问题引领课堂促进深度思维**福建省“十三五”中小学名师名校长培养工程专项课题“初中数学关键教学点教学策略研究”(课题编号:DTRSX2019016)和福建省三明市初中“壮 腰”工程研究专项课题“利用思维导图优化数学课堂教学的研究”(课题编号:ZXKTC-1919)的阶段研究成果“特殊平行四边形”单元复习课教学思考福建省三明市列东中学(365000)詹高晟 陈冠文摘要 通过对教学案例‘特殊平行四边形'单元复习课”的分析,探索实施数学单元复习课的有效教学策略.高效的数学单元复习课可通过恰当的问题引领驱动知识建构,在问 题探究中力求深度思维,要以生为本,用好课堂生成,增强教 学的有效性.问,而是请这位同学在黑板画 出图形(图2),先让学生自已 去感悟.图形画出后,同学们很快流露出明白的眼神,这时, 笔者追问:大家会解释这种画图2关键词 单元复习课;问题引领;问题探究;课堂生成法的依据吗?数学单元复习课除了帮 助学生巩固必要的基础知识、基本技能外,更重要的是促进学生学会融会贯通,让解题能 力得到提升,应用意识得到增强,数学思维得以发展,数学素养得以落实⑴.然而单元复习 课没有明确的课标定位,也不像新课教学那样有现成的教材支撑,如何做到复而不重,让学生既见树木又见森林,促进深 度思维,值得每一位教师认真思考.2019年9月笔者开设了 “特殊平行四边形”单元复习课,课后就这节课的教学展开了深入的讨论,也引发笔者的进一步思考,现整理成文,与同行交流.1教学过程简述及评注片断一问题1:如图1,是一张平行四边形纸片,你能否用剪刀沿着一条直线剪一次,将这张纸片分成面积相等的两部分?并说明你这样做的理由.问题给出后,学生很快回答可以沿对角线AC 或BD 裁剪,也可以沿过对边中点的直线进行裁剪,并且会进行正确的说理.在学生说理过程中,笔者顺势引导学生梳理平行四 边形的主要性质:平行四边形的对边平行且相等,对角相等,对角线互相平分.教师:除此之外,还有其它裁剪方法吗?学生1:经过对角线交点的任意一条直线都可以,有无数 种的裁剪方法.学生1的回答在班上引起一阵骚动,笔者没有马上追学生2: 可以证明 A AOH = A COE ,那么S 四边形ABEF = S ^ABC = 1 ^7ABCD ,这就说明EF 分出的两部分面积相等.教师:说得好!通过全等,利用割补的方法把四边形ABEF 的面积转化为A ABC 的面积•还有不同的说理方法吗?学生3:不用这么复杂,因为平行四边形是中心对称图形,如果把它绕点O 旋转180°,四边形ABEF 就到了四边 形CDFE 的位置,他们会完全重合,就说明面积相等.笔者借助几何画板演示学生3的说法,让学生有更加直观的认识,加深印象.然后笔者引导学生归纳这些方法的共 同点,并指出:经过对角线裁剪或是沿着过对边中点的直线 进行裁剪是这些方法的特殊情况.【评注】通过一个开放性的操作问题,以问题带动知识, 激发学生的学习兴趣,让学生在问题解决中自然唤醒平行四 边形的有关性质.由于这个问题解决方法的多样性,有利于培养学生思维的发散性,此题又能做到多解归一,通过归纳不同方法的共性来培养学生数学思维的深刻性•此外,对于 学生1的回答,教师没有马上表明自己的态度,而是留出时 间让学生去理解、去感悟,在问题理解中提升数学思维能力.片断二问题2:如图3, 在平行四边形纸片ABCD 中,AB 丄 AC , AB = 1,BC =長.对角线AC , BD相交于点O ,将直线AC 绕点图3O 点顺时针旋转,分别交BC , AD 边于点E , F ,连接AE,22中学数学研究2021年第4期(下)CF,求证:四边形AECF是平行四边形.到的”揭示思维过程,体现以培养学生数学思维为导向的教学生4:通过证明=A COE,可得AF=CE,利用判定定理“一组对边平行且相等的四边形是平行四边形”证明四边形AECF为平行四边形.学生5:也可以通过OA=OC,OE=OF来证明四边形AECF为平行四边形.笔者肯定他们的做法,然后提出以下问题.问题3:小亮认为,在旋转过程中,四边形AECF能成为矩形•请你帮助小亮完成证明,并求出此时AE的长.笔者引导学生先尝试画出符合条件的图形,再来完成证明.学生6:作AE丄BC,垂足为E,然后画直线EO,交AD于点F,就找到四边形AECF了(图4).教师:你认为画图的关键是什么?你如何想到这样画图?学生6:因为要成为矩形,就一定要有一个直角,所以就 先去做垂直,找到直角,又因为刚刚证过四边形AECF是平行四边形,就能说明这时四边形AECF是矩形.教师:很好!那又如何求出此时AE的长?通过师生交流,大家认为可以利用面积S^abc= 1AB-AC=j BC-AE,从而得到AE=乎•正当笔者完成该问题的小结,准备进入下一个教学环节时,有位学生举手发言.学生7:我画四边形AECF的方法跟学生6不同,我是以O为圆心,以OA为半径画弧,交BC于点E,这样找到 点E,然后画直线EO,找到四边形AECF.笔者马上意识到这种做法的可行性,并且是一种非常好的方法,为自己备课时没有做这样的预设,内心感到自责,马上追问:你是怎么想到的?学生7:是学生6的想法提醒了我,还可以用“对角线相等的平行四边形是矩形”来找到矩形,所以我就想去画与AC 相等的对角线.教师:非常好!现学现用,在别人的基础上提高自己!【评注】本环节延用问题1的图形,通过增加条件,引出新的问题,先借助题目复习平行四边形的判定,再自然过渡到矩形性质与判定方法的复习,思维层次不断提高.无论是在画图探究环节,还是在证明环节,教师不为预设所左右,而是充分利用课堂生成,从多个角度、利用多种方法解决问题,学生思维得到充分展示,真正体现生本课堂.在学生找到画图方法后,教师没有就此“滑过”,而是通过追问“你是怎么想学理念.片断三问题4:在旋转过程中,四边形AECF能成为菱形吗?若能,求出此时AE的长;若不能,请说明理由.图5与问题3的教学处理方式类似,笔者也由学生先尝试画图,再完成证明.学生8:取BC的中点E,画直线EO,交AD于点F,这时的四边形AECF就是菱形(图5).教师:你是如何想到的?学生&因为要得到菱形,就要有邻边相等,而A ABC 是直角三角形,根据“直角三角形斜边上的中线等于斜边的一半”,就有AE=EC.笔者让学生独立完成证明,并求出此时AE的长.接着追问:你们还有其它画图方法吗?学生9:只要过点O作AC的垂线,与BC交于点E,与AD交于点F,根据“对角线互相垂直的平行四边形是菱形”就能得证.笔者肯定学生的做法,并顺势归纳梳理菱形知识体系,然后提出问题5.问题5:在旋转过程中,四边形AECF能成为正方形吗?学生10:因为正方形是“菱形+矩形”,所以只要看图4中的菱形AECF是不是正方形就可以.教师:说得对,要成为正方形,就一定是菱形,那么,大家能判断图5中的菱形AECF是否是正方形吗?学生11:不是,因为如果菱形AECF是正方形话,就有AE丄BC,根据前面画图知道E为BC的中点,这就要求AB=AC,而由题目可知AC=2=AB,产生矛盾,所以四边形AECF不可能成为正方形.教师:说得好,你采用了反证法的说理思路去说明这个菱形不可能成为正方形•有不同看法的吗?学生12:利用图4也能说明,只要说明此时的矩形AECF不是菱形就可以了.教师:如何说明?学生12:可以通过勾股定理计算出EC的长,EC= /AC2-AE2=22-彰=竿,发现EC=5AE,因而矩形AECF不可能是正方形.笔者肯定学生12的做法,并由此归纳正方形的判别方法及性质.在问题1至问题5的分析解决过程中,用问题带2021年第4期(下)中学数学研究动知识的归纳,渐次形成如下板书,完善本章知识结构.矩形菱形正方形性边対边平行且相尊对边平行,四边木睹対边平行,四边祁等角四个角都罡直角对角相等四个毎都是直角対角线互相册且龄互相垂直平分,且毎条对角线平沪组对角互相垂直平分且相等,每条对角线平分一组对角判定★有三个角是直角,★是平行四边形且有一个角是直角;★是平行四边形且两条对角线相等”★四边相等的四边形;★是平行四边形且有_组邻边蹄負是平行四边形且两条对角线互相垂直。
初三数学 二次函数与特殊平行四边形的综合问题教案
![初三数学 二次函数与特殊平行四边形的综合问题教案](https://img.taocdn.com/s3/m/6d9693ebaf1ffc4fff47ac2a.png)
教学过程一、课堂导入二次函数的综合问题是中考压轴题常考题型之一,考点分值12分,难度较大。
主要考查形式为二次函数与一些简单几何图形的点存在性问题,既考查了学生的数形结合能力,又考查学生的计算能力。
此类问题出现后,大多学生都无从下手,主要是学生的综合能力、解题技巧及实战经验不足所致。
就本节二次函数与特殊平行四边形的点存在性问题,主要考查了学生能否将特殊平行四边形的性质与判定融入到二次函数,在函数图像中构造题意所需图形的能力。
二、复习预习相似三角形的概念及其性质1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
2.性质定理:(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形的周长比等于相似比;(5)相似三角形的面积比等于相似比的平方.三、知识讲解考点1 二次函数的基础知识1.一般地,如果y=ax 2+bx+c (a ,b ,c 是常数且a ≠0),那么y 叫做x 的二次函数,它是关于自变量的二次式,二次项系数必须是非零实数时才是二次函数,这也是判断函数是不是二次函数的重要依据.当b=c=0时,二次函数y=ax 2是最简单的二次函数.2.二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)的三种表达形式分别为:一般式:y=ax 2+bx+c ,通常要知道图像上的三个点的坐标才能得出此解析式;顶点式:y=a (x -h )2+k ,通常要知道顶点坐标或对称轴才能求出此解析式;交点式:y=a (x -x 1)(x -x 2),通常要知道图像与x 轴的两个交点坐标x 1,x 2才能求出此解析式;对于y=ax 2+bx+c 而言,其顶点坐标为(-2b a ,244ac b a ).对于y=a (x -h )2+k 而言其顶点坐标为(h ,k ),•由于二次函数的图像为抛物线,因此关键要抓住抛物线的三要素:开口方向,对称轴,顶点.1. 矩形定义:有一角是直角的平行四边形叫做矩形.注意:矩形(1)是平行四边形;(2)四个角是直角.2. 矩形的性质性质1 矩形的四个角都是直角;性质2 矩形的对角线相等,具有平行四边形的所以性质。
初二数学《平行四边形中的动点问题》(附练习及答案)
![初二数学《平行四边形中的动点问题》(附练习及答案)](https://img.taocdn.com/s3/m/103e152ea98271fe910ef97e.png)
四边形中的动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或直线上运动的一类开放性题目。
解决这类问题关键是动中求静,灵活运用有关数学知识。
数学思想:分类思想、函数思想、方程思想、数形结合思想、转化思想,其注重对几何图形运动变化能力的考查。
这类类问题从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查自主探究能力,促进培养学生解决问题的能力。
解决这类问题首先要在动点的运动过程中观察图形的变化情况,需要画出图形在不同位置的情况,才能做好计算推理的过程;其次在变化中找到不变量的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
动点问题题型方法归纳:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
下面就四边形中的动点问题的常见题型作简单介绍,解题方法、关键给以点拨。
1、如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB =60°,则矩形ABCD的面积是_____________2、如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH 的面积为________(第1题)(第2题)(第3题)3、如图,正方形ABCD的边长为4,点P在DC边上,且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为____________4、如图,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t ≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由5、如图,在等边三角形ABC中,BC=6cm.射线AG∥BC,点E从点A出发沿射线AG以1cm/s 的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s);(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)求当t为何值时,四边形ACFE是菱形;(3)是否存在某一时刻t,使以A、F、C、E为顶点的四边形内角出现直角?若存在,求出t的值;若不存在,请说明理由.6、在菱形ABCD中,∠B=60°,点E在射线BC上运动,∠EAF=60°,点F在射线CD上(1)当点E在线段BC上时(如图1),(1)求证:EC+CF=AB;(2)当点E在BC的延长线上时(如图2),线段EC、CF、AB有怎样的相等关系?写出你的猜想,不需证明7、如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为______时,四边形AMDN是矩形;②当AM的值为______时,四边形AMDN是菱形.8、如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由.9、如图,已知菱形ABCD中,∠ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.(1)BD的长是______;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是______(第9题)(第10题)10、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为______.11、如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD 的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求AP的长;若不可能,请说明理由.12、如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F 是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cm/s。
高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)
![高考满分数学压轴题14 立体几何的动态问题(可编辑可打印)](https://img.taocdn.com/s3/m/ccfb5ec54bfe04a1b0717fd5360cba1aa8118cb0.png)
一.方法综述立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性.一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等.动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口.求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围.对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题.具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证.二.解题策略类型一 立体几何中动态问题中的角度问题例1. 已知平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将ABD △折起到PBD △的位置,使得平面PBD ⊥平面BCD ,如图,若M ,N 均是线段PD 的三等分点,点Q 是线段MN 上(包含端点)的动点,则二面角Q BC D --的正弦值的取值范围为( )A .12,23⎡⎤⎢⎥⎣⎦B .14192⎡⎢⎣⎦C .24193⎡⎢⎣⎦D .11,32⎡⎤⎢⎥⎣⎦【来源】2021年浙江省新高考测评卷数学(第五模拟) 【答案】B【解析】在ABD △中,1AB =,2AD =,60BAD ∠=︒,所以由余弦定理得3BD =,所以222AB BD AD +=,所以AB BD ⊥,由翻折的性质可知,PB BD ⊥.又平面PBD ⊥平面BCD ,平面PBD 平面BCD BD =,所以PB ⊥平面BCD ,过点Q 作//QQ PB ',交BD 于点Q ',则QQ '⊥平面BCD ,所以QQ BC '⊥,过Q '作Q T BC '⊥,垂足为T ,连接QT ,则BC ⊥平面QQ T ',立体几何的动态问题所以QTQ '∠为二面角Q BC D --的平面角. 设2QD a =(1233a ≤≤),则QQ a '=,3DQ a '=,33BQ a '=-,()113322Q T BQ a ''==-,所以2222211(33)76322QT QQ Q T a a a a ⎡⎤''=+=+-=-+⎢⎥⎣⎦, 所以22222sin 136176373142QQ aQTQ QT a a a aa ''∠====⎛⎫-+-+-+ ⎪⎝⎭. 由二次函数的单调性知,21314y a ⎛⎫=-+ ⎪⎝⎭在12,33⎡⎤⎢⎥⎣⎦上的值域为19,164⎡⎤⎢⎥⎣⎦,所以221419sin ,2191314QTQ a ⎡⎤'∠=∈⎢⎥⎣⎦⎛⎫-+ ⎪⎝⎭,即二面角Q BC D --的正弦的取值范围为1419,219⎡⎤⎢⎥⎣⎦. 故选:B.【举一反三】1.(2020·黑龙江牡丹江一中高三(理))如图,在正方体1111ABCD A B C D -中,O 是AC 中点,点P 在线段11A C 上,若直线OP 与平面11A BC 所成的角为θ,则sin θ的取值范围是( ).A .23⎣⎦B .11,32⎡⎤⎢⎥⎣⎦C .33⎣⎦D .11,43⎡⎤⎢⎥⎣⎦【答案】A【解析】如图,设正方体棱长为1,()11101A PAC λλ=≤≤.以D 为原点,分别以DA ,DC ,1DD 所在直线为x ,y ,z 轴建立空间直角坐标系. 则11,,022O ⎛⎫ ⎪⎝⎭,()1,,1P λλ-,所以11,,122OP λλ⎛⎫=--⎪⎝⎭.在正方体1111ABCD A B C D -中,可证1B D ⊥平面11A BC , 所以()11,1,1B D =---是平面11A BC 的一个法向量.所以122211()()122sin cos ,1113163222OP B D λλθλλλ-----===⎛⎫⎛⎫⎛⎫⨯-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以当12λ=时,sin θ30λ=或1时,sin θ取得最小值23. 所以23sin 3θ∈⎣⎦.故选A . 2.(2020·广东高考模拟)在正方体1111ABCD A B C D -中,E 是侧面11ADD A 内的动点,且1B E //平面1BDC ,则直线1B E 与直线AB 所成角的正弦值的最小值是( )A .13 B .33 C .12 D .22【答案】B【解析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,设正方体1111ABCD A B C D -中棱长为1, 设E(a,0,c),0a 1≤≤,0c 1≤≤,1B (1,1,1),B(1,1,0), D(0,0,0),1C (0,1,1),()1B E a 1,1,c 1=---,DB (1,=1,0),1DC (0,=1,1),设平面1DBC 的法向量n (x,=y ,z),则1n DB 0n DC 0x y y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x 1=,得()n 1,1,1=-,1B E //平面1BDC ,1B E n a 11c 10∴⋅=-++-=,解得a c 1+=,()222a c a c 2ac 12ac ∴+=+-=-,2a c 1ac 24+⎛⎫≤=⎪⎝⎭,设直线1B E 与直线AB 所成角为θ,AB (0,=1,0),()()1221AB B E 1cos θAB B Ea 11c 1⋅∴==⋅-++-2a c 1ac 24+⎛⎫≤= ⎪⎝⎭,322ac 2∴-≥,1222ac 3∴≤-,()()()222211sin θ11a c 2a c 3a 11c 1∴=-=-+-++-++-221123111a c 122ac 33=-=-≥-=++-. ∴直线1B E 与直线AB 所成角的正弦值的最小值是33.3.(2020·浙江台州中学高三)如图,已知正方体ABCD EFGR -的上底面中心为H ,点O 为AH 上的动点,P 为FG 的三等分点(靠近点F ),Q 为EF 的中点,分别记二面角P OQ R --,Q OR P --,R OP Q --的平面角为,,αβγ,则( )A .γαβ<<B .αγβ<<C .αβγ<<D .βαγ<<【答案】D【解析】分析:建立空间直角坐标系,对动点O 选取一个特殊位置,然后求出三个侧面的法向量,根据向量夹角的余弦值求得三个二面角的余弦值,比较后可得二面角的大小.详解:建立如图所示的空间直角坐标系E xyz -.考虑点O 与点A 重合时的情况.设正方体的棱长为1,则()()111,,0,Q ,0,0,R 01,0,O 0,0,132P ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭. 设平面OPQ 的一个法向量为1(,,)n x y z =,由111(,,)(,0,1)02211(,,)(,,0)02323x n OQ x y z z x y n PQ x y z ⎧⋅=⋅-=-=⎪⎪⎨⎪⋅=⋅--=--=⎪⎩,得322x y x z ⎧=-⎪⎪⎨⎪=⎪⎩,令2x =,得1(2,3,1)n =-.同理可得平面OPR 和平面OQR 的法向量分别为23(2,3,3),(6,3,7)n n ==. 结合图形可得:1323521cos cos ,,cos cos ,7471147n n n n αβ====⨯⨯12cos cos ,711n n γ==⨯∴cos cos cos γαβ<<,又0,,γαβπ<<,∴γαβ>>.故选D . 类型二 立体几何中动态问题中的距离问题【例2】(2020·山西高三)设点M 是棱长为2的正方体ABCD -A 1B 1C 1D 1的棱AD 的中点,点P 在面BCC 1B 1所在的平面内,若平面D 1PM 分别与平面ABCD 和平面BCC 1B 1所成的锐二面角相等,则点P 到点C 1的最短距离是( ) A 25B .22C .1D .63【答案】A【解析】如图,过点P 作1D M 的平行线交BC 于点Q 、交11B C 于点E ,连接MQ ,则PQ 是平面1D PM 与平面11BCC B 的交线,MQ 是平面1D PM 与平面ABCD 的交线.EF 与1BB 平行,交BC 于点F ,过点F 作FG 垂直MQ 于点G ,则有,MQ 与平面EFG 垂直,所以,EG 与MQ 垂直,即角EGF 是平面1D PM 与平面ABCD 的夹角的平面角,且sin EFEGF EG∠=, MN 与CD 平行交BC 于点N ,过点N 作NH 垂直EQ 于点H ,同上有:sin MNMHN MH∠=,且有EGF MHN ∠=∠,又因为EF MN AB ==,故EG MH =, 而2EMQ S EG MQ MH EQ ∆=⨯=⨯,故MQ EQ =,而四边形1EQMD 一定是平行四边形,故它还是菱形,即点E 一定是11B C 的中点, 点P 到点1C 的最短距离是点1C 到直线BE 的距离,以A 为原点,AB 为x 轴,AD 为y 轴,1AA 为z 轴,建立空间直角坐标系,()2,1,2E ,()2,0,0B , ()12,2,2C ,()0,1,2BE =, ()10,2,2BC =,∴点P 到点1C 的最短距离:22111||625||1()221()5||||58BE BC d BC BE BC =-=⨯-=⨯.故选:A .【指点迷津】求两点间的距离或其最值.一种方法,可建立坐标系,设点的坐标,用两点间距离公式写出距离,转化为求函数的最值问题;另一种方法,几何法,根据几何图形的特点,寻找那两点间的距离最大(小),求其值. 【举一反三】1.(2020·四川高三(理))已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是( )A .33B .3C .233D .433【答案】C 【解析】【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果. 【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得()1,1,1n =-,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球,P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为1102333BN n d n⋅++===.故选C. 2.已知四边形ABCD 是边长为5的菱形,对角线8BD =(如图1),现以AC 为折痕将菱形折起,使点B 达到点P 的位置.棱AC ,PD 的中点分别为E ,F ,且四面体PACD 的外接球球心落在四面体内部(不含边界,如图2),则线段EF 长度的取值范围为( )A .14,42⎛⎫ ⎪ ⎪⎝⎭B .141,2⎛⎫⎪ ⎪⎝⎭C .14,62⎛⎫⎪ ⎪⎝⎭D .()3,4【来源】江西省鹰潭市2021届高三高考二模数学(文)试题 【答案】A 【解析】由题意可知△APC 的外心1O 在中线PE 上, 设过点1O 的直线1l ⊥平面APC ,可知1l ⊂平面PED , 同理△ADC 的外心2O 在中线DE 上,设过点2O 的直线2l ⊥平面ADC ,则2l ⊂平面PED , 由对称性知直线12,l l 的交点O 在直线EF 上.根据外接球的性质,点O 为四面体PACD 的外接球的球心. 由题意得3,4EA PE ==,而2221111,4O A O E EA O A O E PE =++==所以178O E =. 令PEF θ∠=,显然02πθ<<,所以cos 4cos 4EF PE θθ==<. 因为1cos EF O EPE OEθ==, 所以172OE EF O E PE ⋅=⋅=, 又OE EF <,所以272EF >,即142EF >. 综上可知1442EF <<. 故选:A.3(2020广西柳州市模考)如图,在正方体中,棱长为1,点为线段上的动点(包含线段端点),则下列结论错误的是( )A .当时,平面B .当为中点时,四棱锥的外接球表面为C .的最小值为D .当时,平面【答案】C【解析】对于,连结,,,则,,,设到平面的距离为,则,解得,∴.∴当时,为与平面的交点.∵平面∥平面, ∵平面,∴∥平面,故A 正确. 又由以上分析可得,当时,即为三棱锥的高,∴平面,所以D 正确. 对于B ,当为中点时,四棱锥为正四棱锥, 设平面的中心为,四棱锥的外接球为,所以,解得,故四棱锥的外接球表面积为,所以B 正确.对于C ,连结,,则, ∴,由等面积法得的最小值为,∴的最小值为.所以C 不正确.故选:C.类型三 立体几何中动态问题中的面积、体积问题【例3】(2020·河南高三(理))在棱长为3的正方体1111ABCD A B C D -中,E 是1AA 的中点,P 是底面ABCD 所在平面内一动点,设1PD ,PE 与底面ABCD 所成的角分别为12θθ,(12θθ,均不为0),若12θθ=,则三棱锥11P BB C -体积的最小值是( ) A .92B .52C .32D .54【答案】C【解析】建系如图,正方体的边长为3,则(3E ,0,3)2,1(0D ,0,3),设(P x ,y ,0)(0x ,0)y ,则(3PE x =-,y -,3)2,1(PD x =-,y -,3),12θθ=,(0z =,0,1),12cos cos θθ∴=,即11||||||||||||PD z PE z PE z PD z =,代入数据,得:222233299(3)4x y x y =++-++,整理得:228120x y x +-+=,变形,得:22(4)4(02)x y y -+=, 即动点P 的轨迹为圆的一部分,过点P 作PF BC ⊥,交BC 于点F ,则PF 为三棱锥11P BB C -的高∴点P 到直线AD 的距离的最大值是2.则min 321PF =-=.1111119332212BB C BB B C S ∆=⋅⋅=⨯⨯=,1111193132213P BB C BB C V PF S -∆=⨯⨯⋅⋅=∴=故选:C .【指点迷津】求几何体体积的最值,先观察几何图形三棱锥,其底面的面积为不变的几何量,求点P到平面BCD 的距离的最大值,选择公式,可求最值. 【举一反三】1.(2020·四川高三期末)长方体1111ABCD A B C D -中,2AB =,1BC =,12AA =,P 为该正方体侧面11CC D D 内(含边界)的动点,且满足tan tan 22PAD PBC ∠+∠=.则四棱锥P ABCD -体积的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .22,33⎡⎤⎢⎥⎣⎦ C .40,3⎛⎤ ⎥⎝⎦D .24,33⎡⎤⎢⎥⎣⎦ 【答案】B【解析】如图所示:在RT PAD 中,tan PD PAD PD AD ∠==,在RT PBC 中,tan PCPBC PC BC∠==, 因为tan tan 22PAD PBC ∠+∠=,所以22PD PC +=.因为222PD PC CD +=>=,所以点P 的轨迹是以,C D 为焦点 222a =的椭圆. 如下图所示:2a =1c =,211b =-=,椭圆的标准方程为:2212x y +=.1(0,1)P联立22112x x y =⎧⎪⎨+=⎪⎩,解得:2y =.所以22()P -,32P . 当点P 运动到1P 位置时,此时四棱锥P ABCD -的高最长, 所以max 1112()21333P ABCD ABCD V S PO -=⨯⨯=⨯⨯=. 当点P 运动到2P 或3P 位置时,此时四棱锥P ABCD -的高最短,所以min 21122()23323P ABCD ABCD V S P D -=⨯⨯=⨯⨯=. 综上所述:2233P ABCD V -≤≤. 2.如图,长方形ABCD 中,152AB =,1AD =,点E 在线段AB (端点除外)上,现将ADE 沿DE 折起为A DE '.设ADE α∠=,二面角A DE C '--的大小为β,若π2αβ+=,则四棱锥A BCDE '-体积的最大值为( )A .14 B .23 C 151-D 51- 【答案】A【解析】设过A 与DE 垂直的线段长为a ,则tan AE α=,150tan 2α<<,1cos DE α=,sin a α=,则四棱锥A BCDE '-的高πsin sin sin sin cos 2h a βαααα⎛⎫=⋅=⋅-=⎪⎝⎭, 则111515tan 1sin cos 3222A BCDE V ααα'-⎛=⨯⨯-+⨯⨯ ⎝⎭)115tan sin cos 6ααα=⨯ )2115cos sin 6ααα=- )11152cos 21212αα=+- 115112cos 234412αα⎛⎫=+- ⎪ ⎪⎝⎭()11sin 2312αϕ=+-,15tan 15ϕ⎛⎫= ⎪ ⎪⎝⎭, ∴四棱锥A BCDE '-体积的最大值为1113124-=. 故选:A.3.(2020·重庆市松树桥中学校高三)如图,在单位正方体1111ABCD A B C D -中,点P 在线段1AD 上运动,给出以下四个命题:①异面直线1A P 与1BC 间的距离为定值;②三棱锥1D BPC -的体积为定值;③异面直线1C P 与直线1CB 所成的角为定值; ④二面角1P BC D --的大小为定值.其中真命题有( ) A .1个 B .2个 C .3个 D .4个【答案】D【解析】对于①,异面直线1A P 与1BC 间的距离即为两平行平面11ADD A 和平面11BCC B 间的距离,即为正方体的棱长,为定值.故①正确.对于②,由于11D BPC P DBC V V --=,而1DBC S ∆为定值,又P ∈AD 1,AD 1∥平面BDC 1,所以点P 到该平面的距离即为正方体的棱长,所以三棱锥1D BPC -的体积为定值.故②正确.对于③,由题意得在正方体1111ABCD A B C D -中,B 1C ⊥平面ABC 1D 1,而C 1P ⊂平面ABC 1D 1,所以B 1C ⊥C 1P ,故这两条异面直线所成的角为90︒.故③正确;对于④,因为二面角P −BC 1−D 的大小,即为平面ABC 1D 1与平面BDC 1所成的二面角的大小,而这两个平面位置固定不变,故二面角1P BC D --的大小为定值.故④正确.综上①②③④正确.选D .类型四 立体几何中动态问题中的轨迹问题【例4】(2020南充高考一模)如图,直二面角AB αβ--,P α∈,C β∈,D β∈,且AD AB ⊥,BC AB ⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.一条直线D.两条直线【答案】A【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立平面直角坐标系,设点(),P x y ,()30A -,,()3,0B ,AD AB ⊥,BC AB ⊥,则AD α⊥,BC α⊥,5AD =,10BC =,6AB =,APD CPB ∠=∠,Rt APDRt CPB∴∆∆,()()22223511023x y APAD BPBC x y ++∴====-+ ,即()()2222343x y x y ⎡⎤-+=++⎣⎦,整理得:()22516x y ++=,故点P 的轨迹是圆的一部分,故选A .【指点迷津】空间轨迹问题的求解策略:1.利用侧面展开或展到一个平面上寻求轨迹;2.利用圆锥曲线定义求轨迹;3.这辗转过程中动点的轨迹;4.利用函数观点探求轨迹 【举一反三】1.已知正方体1111ABCD A B C D -的棱长为23M ,N 为体对角线1BD 的三等分点,动点P 在三角形1ACB 内,且三角形PMN 的面积63PMN S =△P 的轨迹长度为( )A .269π B .263π C .469π D .463π 【答案】B【解析】如图所示:连接11BC B C O =,因为四边形11BCC B 是正方形,所以11BC B C ⊥,因为11D C ⊥平面11BCC B ,1B C ⊂平面11BCC B ,所以11D C ⊥1B C , 又11111,BC D C C BC =⊂平面11BC D ,11D C ⊂平面11BC D ,所以1B C ⊥平面11BC D ,所以11B C D B ⊥, 同理可知:11B A D B ⊥,又因为1B C ⊂平面1ACB ,1B A ⊂平面1ACB ,111B C B A B =,所以1D B ⊥平面1ACB ,根据题意可知:11136,26D B AB AB BC AC =====所以1ACB 为正三角形,所以160∠=︒B AC ,所以11326266322ACB S=⨯⨯⨯=,设B 到平面1ACB 的距离为h , 因为11B ACB B ABC V V --=,所以111133ACB ACBSh S BB ⋅⋅=⋅⋅,所以11ACB ACBSh SBB ⋅=⋅,所以()232323262342h ⨯⨯⨯=⨯,所以1123h D B ==,所以h BN =, 所以N 即为1D B 与平面1ACB 的交点,由题意可知:1D B ⊥平面1ACB ,所以MN PN ⊥,所以11262223PMNSMN PN PN PN =⋅=⋅⋅==,再如下图所示:在正三角形1ACB 中,高3sin 6026322AO AC =︒== 所以内切圆的半径16233r AO ==<,且623AN <=,取1B C 的两个三等分点,E F ,连接,EN FN ,所以1//,//NE AB NF AC ,所以NEF 是以PN 长度为边长的正三角形,所以P 的轨迹是以N 为圆心,半径等于263的圆,圆的周46π,在1ACB 内部的轨迹是三段圆弧,每一段圆弧的圆心角为60︒,所以对应的轨迹长度是圆周长的一半为63π,故选:B. 2、(2020贵阳高考模拟)在正方体1111ABCD A B C D -中,已知点P 为平面11AA D D 中的一个动点,且点P 满足:直线1PC 与平面11AA D D 所成的角的大小等于平面PBC 与平面11AA D D 所成锐二面角的大小,则点P 的轨迹为( )A .直线B .椭圆C .圆D .抛物线 【答案】DF E P C 1B 1D 1A 1DCBA z yx3.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】安徽省合肥市2021届高三下学期第三次教学质量检测理科数学试题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.三.强化训练1.(2020·内蒙古高三期末)如图,棱长为1的正方体1111ABCD A B C D -中,M 是线段1A B 上的动点,则下列结论正确的是( ).①异面直线AD 与1CB 所成的角为45︒②11DC D M ⊥③三棱锥1M DCC -的体积为定值 ④1AM MD +的最小值为2. A .①②③ B .①②④C .③④D .②③④【答案】A【解析】①∵AD ∥BC ,∴异面直线AD 与1CB 所成的角即为BC 与1CB 所成的角, 可得夹角为45︒,故①正确;②连接1CD ,∵1DC ⊥平面A 1BCD 1,1D M ⊂平面A 1BCD 1, ∴11DC D M ⊥,故②正确;③∵1A B ∥平面DCC 1D 1,∴线段A 1B 上的点M 到平面DCC 1D 1的距离都为1, 又△DCC 1的面积为定值12, 因此三棱锥M −DCC 1的体积1111326V =⨯⨯=为定值,故③正确; ④将面AA 1B 与面A 1BCD 1沿A 1B 展成平面图形,线段AD 1即为AP +PD 1的最小值, 在△D 1A 1A 中,∠D 1A 1A =135°, 利用余弦定理解三角形得111211135222AD cos =+-⨯⨯⨯︒=+<,故④不正确.因此只有①②③正确.故选:A .2.(2020河南省焦作市高三)在棱长为4的正方体ABCD ﹣A 1B 1C 1D 1中,点E 、F 分别在棱AA 1和AB 上,且C 1E ⊥EF ,则|AF|的最大值为( )A .B .1C .D .2【答案】B【解析】以AB ,AD ,AA 1所在直线为x ,y ,z 轴,建立空间直角坐标系如图所示,则C 1(4,4,4),设E (0,0,z ),z ∈[0,4],F (x ,0,0),x ∈[0,4],则|AF|=x .=(4,4,4﹣z ),=(x ,0,﹣z ).因为C 1E ⊥EF ,所以,即:z 2+4x ﹣4z =0,x =z ﹣.当z =2时,x 取得最大值为1.|AF|的最大值为1.故选:B .3.(2020·重庆巴蜀中学高三(理))棱长为2的正方体1111ABCD A B C D -中,N 为1CC 的中点,P 在底面ABCD 内运动,1D P 与平面ABCD 所成角为1θ,NP 与平面ABCD 所成角为2θ,若12θθ=,则AP 的最小值为( ) A .2 B .83C .4D .1【答案】A【解析】分析:先证明PD=2PC ,再在底面ABCD 内建立如图所示的直角坐标系,求出211680sin()99PA αϕ=-+,再利用三角函数的图象和性质求出|AP|的最小值. 【详解】设12θθθ==,所以12tan tan DD PD θθ==,1PC tan tan CN θθ==,所以PD=2PC. 在底面ABCD 内建立如图所示的直角坐标系,设点P(x,y),则2222(1)2(+1)x y x y -+=+整理得22516454(),cos ,sin 39333x y x y αα++=∴=-=, 所以2224841168011680(cos )(sin 2)sin()43339999PA αααϕ=-+-=-+≥-=, 即||2AP ≥,所以|AP|的最小值为2.故选:A4.已知三棱锥A BCD -的所有棱长均为2,E 为BD 的中点,空间中的动点P 满足PA PE ⊥,PC AB ⊥,则动点P 的轨迹长度为( ) A .1116πB 3πC 11πD 3π【来源】浙江省五校2021届高三下学期5月联考数学试题 【答案】C【解析】正四面体A BCD -2,建立空间直角坐标系如图所示,()()22,,2,2,2,0,0,2,222E C B ⎛⎫ ⎪ ⎪⎝⎭,设(),,P x y z ,()22,,2,,,22PE x y z AP x y z ⎛⎫=---= ⎪ ⎪⎝⎭,()2,2,PC x y z =---.由于PA PE ⊥,PC AB ⊥,所以00AP PE PC AB ⎧⋅=⎨⋅=⎩,即()()2220222220x x y y z z y z ⎧⎛⎫⎛⎫-+-+-=⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎨⎪--=⎪⎩,即22222202220x x y y z z y z ⎧-+-+-=⎪⎨⎪+-=⎩, 即2222223442420x y z y z ⎧⎛⎫⎛⎫⎛⎫⎪-+-+-= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎨⎝⎭⎝⎭⎝⎭⎪+-=⎪⎩, 22222234424x y z ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭表示球心为222,,442⎛⎫ ⎪ ⎪⎝⎭,半径为32R =的球. 20y z +-=表示垂直于yAz 平面的一个平面.所以P 的轨迹是上述平面截球面所得圆.球心222,,442⎛⎫ ⎪ ⎪⎝⎭到平面20y z +-=的距离为22222142411d +-==+, 所以截得的圆的半径2231114164r R d =-=-=, 所以截得的圆,也即P 点的轨迹的长度为11112242r πππ=⨯=. 故选:C5.(2020郑州一中高三期末)在三棱锥中,平面,M是线段上一动点,线段长度最小值为,则三棱锥的外接球的表面积是()A.B.C.D.【答案】C【解析】如图所示:三棱锥中,平面,M是线段上一动点,线段长度最小值为,则:当时,线段达到最小值,由于:平面,所以:,解得:,所以:,则:,由于:,所以:则:为等腰三角形.所以:,在中,设外接圆的直径为,则:,所以:外接球的半径,则:,故选:C.(2020九江高三一模)在长方体中,,,分别是棱6.的中点,是底面内一动点,若直线与平面没有公共点,则三角形面积的最小值为()A.B.C.D.【答案】C【解析】补全截面EFG为截面EFGHQR如图,其中H 、Q 、R 分别为、的中点,易证平面ACD 1∥平面EFGHQR ,∵直线D 1P 与平面EFG 不存在公共点, ∴D 1P∥面ACD 1,∴D 1P 面ACD 1,∴P ∈AC ,∴过P 作AC 的垂线,垂足为K ,则BK=,此时BP 最短,△PBB 1的面积最小, ∴三角形面积的最小值为,故选:C .7.(2020·浙江高三期末)在三棱锥P ABC -中,2,3PA PB PC AB AC BC ======,点Q 为ABC ∆ 所在平面内的动点,若PQ 与PA 所成角为定值θ,π(0,)4θ∈,则动点Q 的轨迹是 A .圆 B .椭圆C .双曲线D .抛物线【答案】B【解析】建立空间直角坐标系,根据题意,求出Q 轨迹方程,可得其轨迹.由题,三棱锥P ABC -为正三棱锥,顶点P 在底面ABC 的射影O 是底面三角形ABC 的中心,则以O 为坐标原点,以OA 为x 轴,以OP 为z 轴,建立如图所示的空间直角坐标系,根据题意可得1OA OP ==,设Q 为平面ABC 内任 一点,则()()()()()1,0,0,0,0,1,,,0,1,0,1,,,1A P Q x y PA PQ x y =-=- ,由题PQ 与PA 所成角为定值θ,π0,4θ⎛⎫∈ ⎪⎝⎭,则,221cos 21PA PQ x PA PQ x y θ⋅+==⋅++则()()22222cos11x y x θ++=+ ,化简得222cos22cos 2cos20x y x θθθ⋅+⋅-+= ,ππ0,,20,,cos 20,42θθθ⎛⎫⎛⎫∈∴∈> ⎪ ⎪⎝⎭⎝⎭故动点Q 的轨迹是椭圆.选B8.(2020·上海格致中学高三月考)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与AC '所成的角为45︒的点P 的个数为( )A .0B .3C .4D .6【答案】B 【解析】【分析】建立空间直角坐标系,通过分类讨论利用异面直线的方向向量所成的夹角即可找出所有满足条件的点P 的个数.【详解】建立如图所示的空间直角坐标系,不妨设棱长1AB =,(1B ,0,1),(1C ,1,1). ①在Rt △AA C ''中,||tan 2||A C A AC AA '''∠'=='45A AC '∠'≠︒.同理AB ,AD 与AC '所成的角都为arctan 245≠︒.故当点P 位于(分别与上述棱平行或重合)棱BB ',BA ,BC 上时,与AC '所成的角都为arctan 245≠︒,不满足条件;②当点P 位于棱AD 上时,设(0P ,y ,1),(01)y ,则(1BP =-,y ,0),(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '-+=<'>=='+, 化为2410y y ++=,无正数解,舍去; 同理,当点P 位于棱A D ''上时,也不符合条件; ③当点P 位于棱B C ''上时,设(1P ,y ,0),(01)y , 则(0BP =,y ,1)-,(1AC '=,1,1)-.若满足BP 与AC '所成的角为45︒,则22|||1||cos ,|2||||13BP AC y BP AC BP AC y '+=<'>=='+, 化为2410y y -+=,01y ,解得23y =-,满足条件,此时点(1,23,0)P -.④同理可求得棱C D ''上一点(532,1,0)P -,棱C C '上一点(1,1,324)P -. 而其它棱上没有满足条件的点P .综上可知:满足条件的点P 有且只有3个.故选:B 9.(2020上海交通大学附属中学高三)如图,已知三棱锥,平面,是棱上的动点,记与平面所成的角为,与直线所成的角为,则与的大小关系为( )A .B .C .D .不能确定【答案】C【解析】如图所示:∵PA ⊥平面ABC ,∴PD 与平面ABC 所成的角=∠PDA, 过点A 作AE ⊥BC ,垂足为E ,连接PE ,∵PA ⊥平面ABC ,∴PA ⊥BC ,∴BC⊥平面PAE ,∴BC⊥PE,在Rt△AED ,Rt△PAD ,Rt△PED 中:cos ,cos ,cos,∴coscoscos < cos ,又均为锐角, ∴,故选C.10.(2020·湖南长郡中学高三(理))在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( ) A .45π B .57πC .63πD .84π【答案】B【解析】分析:根据题意画出图形,结合图形找出ABC △的外接圆圆心与三棱锥P ABC - 外接球的球心,求出外接球的半径,再计算它的表面积.详解:三棱锥P ABC PA ABC 中,平面,-⊥ 设直线PQ 与平面ABC 所成角为θ ,如图所示;则3PAsinPQ PQ ,θ== 由题意且θ的最大值是3π3PQ=,,解得PQ =即PQ 的最小值为∴AQ ,即点A 到BC ,AQ BC ∴⊥,AB BC ∴== 6BC ;∴= 取ABC △的外接圆圆心为O ',作OO PA ' ,62120r sin ∴=︒,解得r =;O A ∴'=M 为PA 的中点,32OM O A PM ∴='==,由勾股定理得CP R === ∴三棱锥P ABC -的外接球的表面积是224457S R πππ==⨯⨯=.故选B.11.在直三棱柱111ABC A B C -中,底面ABC 是以B 为直角的等腰三角形,且3AB =,1AA =若点D 为棱1AA 的中点,点M 为面BCD 的一动点,则11 B M C M +的最小值为( )A .B .6C . D【来源】江西省赣州市2021届高三二模数学(理)试题 【答案】C【解析】由题意知,BC AB ⊥,111ABC A B C -为直三棱柱,即面ABC ⊥面11ABB A ,面ABC面11ABB A AB =,BC ⊂面ABC ,∴BC ⊥面11ABB A ,又BC ⊂面BCD , ∴面BCD ⊥面11ABB A .∴易得1B 关于平面BCD 对称点E 落在1A A 的延长线上,且AE =1A E =11 B M C M +的最小时,1C 、M 、E 三点共线.∴221111111||992735B M C M EM C M EC AC A E +=+≥=+=++=. 故选:C12.在棱长为2的正四面体ABCD 中,点P 为ABC 所在平面内一动点,且满足433PA PB +=,则PD 的最大值为( ) A .3B .2103C .393D .2【来源】河南省鹤壁市2021届高三一模数学(文)试题 【答案】B【解析】如图所示,在平面ABC 内,4323PA PB +=>, 所以点P 在平面ABC 内的轨迹为椭圆,取AB 的中点为点O ,连接CO ,以直线AB 为x 轴,直线OC 为y 建立如下图所示的空间直角坐标系O xyz -,则椭圆的半焦距1c =,长半轴a =b ==所以,椭圆方程为()2233104x y z +==.点D 在底面的投影设为点E ,则点E 为ABC 的中心,11333OE OC ===, 故点E 正好为椭圆短轴的一个端点,23CE OC ==,则DE ==, 因为222PD DE EP =+,故只需计算EP 的最大值.设(),,0P x y ,则E ⎛⎫⎪ ⎪⎝⎭,则22222241543333EP x y y y y y y ⎛=+=-++=--+ ⎝⎭,当y ⎡=⎢⎣⎦时,2EP 取最大值,即22max516393939EP ⎛⎛=-⨯---+= ⎝⎭⎝⎭,因此可得2241640999PD ≤+=,故PD . 故选:B.13.在棱长为1的正方体1111ABCD A B C D -中,P 是线段1BC 上的点,过1A 的平面α与直线PD 垂直,当P 在线段1BC 上运动时,平面α截正方体1111ABCD A B C D -所得的截面面积的最小值是( )A .1B .54C D【来源】北京市朝阳区2021届高三一模数学试题 【答案】C【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()10,0,1A 、()1,0,0B 、()11,0,1B 、()1,1,0C 、()11,1,1C 、()0,1,0D 、()10,1,1D , 设点()1,,P t t ,其中01t ≤≤.①当0t =时,点P 与点B 重合,()1,1,0BD =-,()1,1,0AC =,()10,0,1AA =, 所以,0BD AC ⋅=,10BD AA ⋅=,则BD AC ⊥,1BD AA ⊥, 1AC AA A ⋂=,BD ∴⊥平面11AAC C ,此时平面α即为平面11AAC C ,截面面积为12S AA AC =⋅= ②当1t =时,同①可知截面面积为2S =③当01t <<时,()1,1,DP t t =-,()11,1,1AC =-, 1110DP AC t t ⋅=+--=,1A C PD ∴⊥,则1A C α⊂, 设平面α交棱1DD 于点()0,1,E z ,()1,0,CE z =-,10DP CE tz ⋅=-+=,可得11z t=>,不合乎题意. 设平面α交棱AB 于点(),0,0M x ,()1,1,0CM x =--,()110DP CM x t ⋅=---=,可得x t =,合乎题意,即(),0,0M t ,同理可知,平面α交棱11C D 于点()1,1,1N t -,()11,1,0A N t MC =-=,且1A N 与MC 不重合,故四边形1A MCN 为平行四边形,()11,1,1AC =-,()11,1,0A N t =-,1112112cos 322AC A N t CA N AC A N t t ⋅-∠==⋅⋅-+,则()()2211221sin 1cos 322t t CA N CA N t t -+∠=-∠=-+,所以,截面面积为()1221111362sin 2122242CA NS S AC A N CA N t t t ⎡⎤⎛⎫==⋅∠=-+=-+=<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦△. 综上所述,截面面积的最小值为62. 故选:C.14.如图,斜线段AB 与平面α所成的角为π4,B 为斜足.平面α上的动点P 满足π6PAB ∠=,则点P 的轨迹为( )A .圆B .椭圆C .双曲线的一部分D .抛物线的一部分【答案】B【解析】建立如图所示的空间直角坐标系,设(0,1,0),(0,0,1),(,,0)(0,1,1),(,,1)B A P x y AB AP x y ⇒=-=-22223cos ,62(2)1121AB AP x y x y ⇒<>=⇒+-=⋅++ 所以点P 的轨迹是椭圆. 故选:B.15.已知正方体ABCD A B C D ''''-的棱长为1,点M ,N 分别为线段AB ',AC 上的动点,点T 在平面BCC B ''内,则MT NT +的最小值是( )A .2B .233C .62D .1【答案】B【解析】A 点关于BC 的对称点为E ,M 关于BB '的对称点为M ', 记d 为直线EB '与AC 之间的距离,则MT NT M T NT M N d ''+=+≥≥, 由//B E D C '',d 为E 到平面ACD '的距离, 因为111111333D ACE ACEV S '-=⨯⨯==⨯⨯=,而()21332346D ACE E ACD V V d d ''--==⨯⨯⨯=,故233d =, 故选:B.16.如图,ABC 是等腰直角三角形,AB AC =,点D 是AB 上靠近A 的三等分点,点E 是AC 上靠近C 的三等分点,沿直线DE 将ADE 翻折成A DE ',所成二面角A DE B '--的平面角为α,则( )A .A DB A EC α∠≥∠'≥' B .A EC A DB α∠≥∠'≥' C .A DB A EC α≥∠'∠≥'D .A EC A DB α≥∠'∠≥'【答案】B【详解】如图,在等腰直角三角形中,过B 作直线//l DE ,作BM ED ⊥交直线DE 于点M ,过C 作直线DE 的垂线,垂足为R ,交直线l 与T ,过A 作DE 的垂线,垂足为O ,且交l 于N ,不妨设3AB =,则1,2AD CE BD AE ====, 在直角三角形ADE 中,255AO ==, 因为BMD AOD ,故12AO AD BM BD ==,故455BM =,同理52522155DM DO ==⨯⨯= 所以45ON =,35BN OM ==,同理5RC OS ==65NT =.在几何体中连接,,A B A S A C ''',如图,因为,,A O DE NO DE '⊥⊥故NOA '∠为二面角A DE B '--的平面角,故NOA α'∠=,而A O NO O '⋂=,故DE ⊥平面AON ',所以TB ⊥平面AON ',而A N '⊂平面AON ',故BN A N '⊥.24162545162cos 4cos 55555A N αα'=+-⨯=-, 故216929164cos cos 5555A B αα'=-+=-,故29165cos 4155cos cos 21255A DB αα-+'∠==-⨯⨯, 同理14cos cos 55A EC α'∠=-,11cos cos cos 055A DB αα'∠-=--<,故cos cos A DB α'∠<,同理cos cos A EC α'∠<,33cos cos cos 055A DB A EC α''∠-∠=+>,故cos cos A DB A EC ''∠>∠,因为(),,0,A DB A EC απ''∠∠∈,故A EC A DB α''∠>∠>, 故选B.17.如图,棱长为2的长方体1111ABCD A B C D -中,P 为线段11B D 上动点(包括端点).则以下结论正确的为( )A .三棱锥1P A BD -中,点P 到面1A BD 2B .过点P 平行于面1A BD 的平面被正方体1111ABCD A BCD -3C .直线1PA 与面1A BD 所成角的正弦值的范围为36⎣⎦D .当点P 和1B 重合时,三棱锥1P A BD -3【来源】广东省普宁市2020-2021学年高三上学期期末数学试题 【答案】C【解析】对于A 中,由111142222323P A BD A PBD V V --==⨯=,1A BD 为等边三角形,面积为11226232A BD =⨯=△S ,设点P 到面1A BD 的距离为h ,由142333h ⨯=,求得23h =所以A不正确;对于B 中,过点P 平行于平面1A BD 的平面被正方体截得的多边形平面11B D C , 此时三角形11B D C 为边长为221226=232⨯B 不正确; 对于C 中,由正方体的结构特征和性质,可得点P 到平面1A BD 23当点P 在线段11B D 上运动时,1max 2PA =(P 为端点时),in 1m 2PA =设直线1PA 与平面1A BD 所成角为θ,则36sin ,33θ∈⎣⎦,所以C 正确;对于D 中,当点P 与1B 重合时,此时三棱锥为11B A BD -,设1B D 的中点为O ,因为11190B BD B A D ∠=∠=︒,可得11OA OB OD OB === 所以三棱锥1P A BD -的外接球的球心为1B D 的中点,其半径为3,所以三棱锥1P A BD -的外接球的体积为34(3)433ππ⨯=,所以D 不正确.故选:C.18.如图,在棱长为33的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足15213DP PB +=+,则直线1B P 与直线1AD 所成角的取值范围为( )(参考数据:43sin 53,sin 3755==)A .37,143⎡⎤⎣⎦B .37,90⎡⎤⎣⎦C .53,143⎡⎤⎣⎦D .37,127⎡⎤⎣⎦【来源】江西省景德镇一中2020-2021学年高三上学期期末考试数学(理)试题 【答案】B【解析】如图,建立空间直接坐标系,连结1B D ,交平面11A BC 于点O ,()0,0,0D ,()133,33,33B ,()133,0,33A ,()33,33,0B ,()10,33,33C ,()133,33,33DB =,()10,33,33A B =-,()133,0,33BC =-,110DB A B ⋅=,110DB BC ⋅=,111111,DB A B DB BC A B BC B ∴⊥⊥⋂=,,1DB ∴⊥平面11A BC ,根据等体积转化可知111111B A BC B A B C V V --=, 即()()23111311363332232B O ⨯⨯⨯⨯=⨯⨯,解得:13B O =, 13339B D =⨯=,16D O ∴=,11//AD BC ,∴异面直线1AD 与1B P 所成的角,转化为1BC 与1B P 所成的角,如图,将部分几何体分类出来,再建立一个空间直角坐标系,取1BC 的中点E ,过点O 作1//OF BC ,则以点O 为原点,1,,OF OE OB 为,,x y z 轴的正方向,建立空间直角坐标系(),,0P x y ,()10,0,3B ,()0,0,6D -,3326,22B ⎫⎪⎪⎭,13326,22C ⎛⎫ ⎪ ⎪⎝⎭,()1,,3B P x y =-,()136,0,0BC =-, 15213PB PD +=+,22229365213x y x y ++++=+2222936x y x y ++<++,即15PB =22925x y ∴++=,即2216x y +=,[]4,4x ∈-1111113644cos ,,555365B P BC x x B P BC B P BC ⋅-⎡⎤<>===-∈-⎢⎥⨯⎣⎦,因为异面直线所成的角是锐角,并设为θ,则4cos 0,5θ⎛⎤∈ ⎥⎝⎦,4sin 535=,4cos375∴=,37,90θ⎡⎤∴∈⎣⎦ 故选:B19.如图,在三棱锥D ABC -中,,1,1AD BC BC AD ⊥==.且2AB BD AC CD +=+=,则四面体ABCD 的体积的最大值为( )A .14B .212C .36D .524【来源】浙江省衢州市五校联盟2020-2021学年高三上学期期末联考数学试题 【答案】B【解析】作BE ⊥AD 于E ,连接CE ,如图,因为,AD BC ⊥,BE BC 再平面BEC 内相交,所以AD ⊥平面BEC , 因为CE ⊂平面BEC ,所以CE ⊥AD , 因为2AB BD AC CD +=+=,所以B 与C 都是在以A 、D 为焦点的椭球上,且BE 、CE 都垂直于焦距AD , AB +BD = AC +CD =2,显然ABD ACD ≅,所以BE =CE . 取BC 中点F ,,,BC E AD E F F ⊥∴⊥ 要求四面体ABCD 的体积的最大值,因为AD 是定值,只需三角形EBC 的面积最大, 因为BC 是定值,所以只需EF 最大即可,当△ABD 是等腰直角三角形时几何体的体积最大, 因为AB +BD = AC +CD =2,1AB ∴=,22222131121,(1)22222EB EF ⎛⎫⎛⎫⎛⎫∴=-==--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以几何体的体积为11221132212⨯⨯⨯⨯=故选:B20.如图,三棱锥A BCD -的底面BCD 在平面α内,所有棱均相等,E 是棱AC 的中点,若三棱锥A BCD -绕棱CD 旋转,设直线BE 与平面α所成的角为θ,则cos θ的取值范围为( )A .36⎤⎥⎣⎦B .5,16⎡⎤⎢⎥⎣⎦C .110,6⎡⎢⎣⎦D .330,6⎡⎢⎣⎦【来源】浙江省宁波市慈溪市2020-2021学年高三上学期期末数学试题 【答案】A【解析】取AD 的中点F ,连接EF 、BF ,如下图所示:。
人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题
![人教版八年级数学下册-难点探究专题(选做):特殊四边形中的综合性问题](https://img.taocdn.com/s3/m/6b1aa53203020740be1e650e52ea551810a6c93d.png)
难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图②,点P是四边形ABCD内一点,且满足P A=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE=90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EF =3 3.在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP =90°.∵AC为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP=10,∴PM =12AP =5.由勾股定理得AM =P A 2-PM 2=5 3.在△ANP 和△AMP 中,⎩⎪⎨⎪⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3.∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF =10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°. 3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎪⎨⎪⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH 是菱形,∴四边形EFGH 是正方形.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.19.2.3 一次函数与方程、不等式一.选择题(共8小题)1.一次函数y=kx+b的图象如图所示,则方程kx+b=0的解为()A.x=2B.y=2C.x=﹣1D.y=﹣12.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为()A.x=﹣1B.x=2C.x=0D.x=33.一元一次方程ax﹣b=0的解x=3,函数y=ax﹣b的图象与x轴的交点坐标为()A.(3,0)B.(﹣3,0)C.(a,0)D.(﹣b,0)4.已知方程kx+b=0的解是x=3,则函数y=kx+b的图象可能是()A.B.C.D.5.若方程x﹣3=0的解也是直线y=(4k+1)x﹣15与x轴的交点的横坐标,则k的值为()A.﹣1B.0C.1D.±16.如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的是()A.B.C.D.7.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,则关于x的不等式﹣x+m >nx+4n>0的整数解为()A.﹣1B.﹣5 C.﹣4D.﹣38.如图,一次函数y=kx+b的图象经过A、B两点,则不等式kx+b<0的解集是()A.x<0B.0<x<1C.x<1 D.x>1二.填空题(共10小题)9.若直线y=2x+b与x轴交于点(﹣3,0),则方程2x+b=0的解是_________.10.如图是一次函数y=kx+b的图象,则方程kx+b=0的解为_________.11.一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为_________.12.如图,已知直线y=ax﹣b,则关于x的方程ax﹣1=b的解x=_________.13.如图,直线y=kx+b分别交x轴和y轴于点A、B,则关于x的方程kx+b=0的解为_________.14.如图,已知函数y=2x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),根据图象可得方程2x+b=ax﹣3的解是_________.15.如图,已知函数y=2x+b与函数y=kx﹣3的图象交于点P,则不等式kx﹣3>2x+b的解集是_________.16.如图,直线y=kx+b过A(﹣1,2)、B(﹣2,0)两点,则0≤kx+b≤﹣2x的解集为_________.17.一次函数y1=kx+b与y2=x+a的图象如图,则kx+b>x+a的解集是_________.18.如图,函数y=kx和的图象相交于A (a,2),则不等式的解集为_________.三.解答题(共4小题)19.如图,根据函数y=kx+b(k,b是常数,且k≠0)的图象,求:(1)方程kx+b=0的解;(2)式子k+b的值;(3)方程kx+b=﹣3的解.20.如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P.(1)写出不等式2x>kx+3的解集:_________;(2)设直线l2与x轴交于点A,求△OAP的面积.21.在平面直角坐标系x0y中,直线y=kx+b(k≠0)过(1,3)和(3,1)两点,且与x轴、y轴分别交于A、B两点,求不等式kx+b≤0的解.22.在直角坐标系xOy中,直线y=kx+b(k≠0)经过(﹣2,1)和(2,3)两点,且与x 轴、y轴分别交于A、B两点,求不等式kx+b≥0的解集.。
平行四边形动态问题
![平行四边形动态问题](https://img.taocdn.com/s3/m/7eef46294b35eefdc8d3334f.png)
四边形中的动态问题图形中的点、线的运动,构成了数学中的一个新问题——动态几何。
它通常分为三种类型:动点问题、动线问题、动形问题。
在解这类题时,要充分发挥空间想象的能力,往往不要被“动”所迷惑,而是要在“动”中求“静”,化“动”为“静”,抓住它运动中的某一瞬间,寻找确定的关系式,就能找到解决问题的途径。
例1、Rt△PMN中,∠P=90°,PM=PN,MN=8cm,矩形ABCD的长和宽分别为8cm 和2cm,C点和M点重合,BC和MN在一条直线上。
令Rt△PMN不动,矩形ABCD 沿MN所在直线向右以每秒1cm的速度移动,直到C点与N点重合为止。
设移动x 秒后,矩形ABCD与△PMN重叠部分的面积为y,求y与x之间的函数关系式?例练、菱形OABC的边长为4cm,∠AOC=600,动点P从O出发,以每秒1cm的速度沿O-A-B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1cm的速度运动,在AB上以每秒2cm的速度沿O-A--B运动,过P、Q两点分别作对角线AC的平行线,设P点运动的时间为x秒,这两条平行线在菱形上截出的图形的周长为ycm,问当x为多少时,周长y可能为一个定值,定值为多少?四边形动点问题(一)1.(1)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?证明你的结论.2.已知等腰△ABC中,AB=AC,AD平分∠BAC交BC于D点,在线段AD上任取一点P(A点除外),过P点作EF∥AB,分别交AC,BC于E,F点,作PM∥AC,交AB于M点,连接ME.(1)求证:四边形AEPM为菱形;(2)当P点在何处时,菱形AEPM的面积为四边形EFBM面积的一半?3. 如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.4. 如图,在等腰梯形ABCD中,AD∥BC,BC=4AD=,∠B=45°.直角三角板含45°角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t=时,四边形MNCD是平行四边形.(2)当t=时,四边形MNCD是等腰梯形6.如图,在ΔABC中,D是BC的中点,BC=10㎝,AD=7㎝,从点A沿着A→D的方向运动,速度是每秒2㎝,连结CE,BE,过点B作BF∥CE,交射线AD于点F,设运动时间为t秒(0<t<3.5)(1)求证:ΔBDF≌ΔCDE(2)当t为何值时,四边形BFCE是矩形,说明理由(3)若四边形BFCE是矩形,当AB和CA满足什么条件时,四边形BFCE是正方形。
特殊平行四边形 解答题(八大模块)(解析版)—2024-2025学年九年级数学上学期期中挑战满分冲刺
![特殊平行四边形 解答题(八大模块)(解析版)—2024-2025学年九年级数学上学期期中挑战满分冲刺](https://img.taocdn.com/s3/m/2194e3904793daef5ef7ba0d4a7302768e996ff0.png)
特殊平行四边形 解答题(八大模块)目录:模块一、基础—单特殊平行四边形模块二、与其他几何性质结合模块三、作图有关的解答证明题模块四、模块二强化模块五、动态几何基础模块六、综合探究特殊平行四边形的判定模块七、特殊平行四边形在平面直角坐标系的应用模块八、压轴过渡练模块一、基础—单特殊平行四边形1.如图,四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O .若12Ð=Ð,请判断四边形ABCD 的形状,并说明理由.【答案】四边形ABCD 是矩形,理由见解析【分析】本题考查了平行四边形的性质,等角对等边,矩形的判定.先根据平行四边形的性质得出2,2AC OC BD OB ==,再根据12Ð=Ð,推出AC BD =,即可得出结论.【解析】解:四边形ABCD 是矩形,理由如下:∵AC 、BD 是平行四边形ABCD 的对角线,∴2,2AC OC BD OB ==,∵12Ð=Ð,∴OC OB =,则AC BD =,∴平行四边形ABCD 是矩形.2.如图,在矩形ABCD 中,点E F 、在BC 上,连接AE DF 、,且AE DF =,求证:ABE DCF △≌△.【答案】证明见解析.【分析】本题考查了矩形的性质和全等三角形的判定,由四边形ABCD 是矩形,得90B C Ð=Ð=︒,AB DC =,然后根据“HL ”的判定方法即可求证,熟练掌握知识点的应用是解题的关键.【解析】证明:∵四边形ABCD 是矩形,∴90B C Ð=Ð=︒,AB DC =,在Rt ABE △与Rt DCF V 中,AB DC AE DF=ìí=î,∴()Rt Rt HL ABE DCF ≌△△.3.如图所示,在菱形ABCD 中,对角线AC 、BD 相交于点O ,BD =12cm ,AC =6cm ,求菱形的周长.4.如图,ABCD 是正方形,G 是BC 上任意一点,DE AG ^于E ,BF AG ^于F .求证:AE BF =.【答案】证明见解析.【分析】由正方形的性质结合DE AG ^,BF AG ^,证明,ABF DAE V V ≌即可得到答案.【解析】解:ABCD Q 是正方形,,90,AB AD BAD \=Ð=︒90,BAF DAE \Ð+Ð=︒DE AG ^Q ,BFAG ^,90,DEA AFB \Ð=Ð=︒90,DAE ADE \Ð+Ð=︒,BAF ADE \Ð=Ð在ABF △与DAE V 中,,BAF ADE AFB DEA AB DA Ð=ÐìïÐ=Ðíï=î,ABF DAE \V V ≌.BF AE \=【点睛】本题考查的正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.5.如图,在矩形ABCD 中,6AB =,8BC =,AC 与BD 交于点O .求BOC V 与DOC △的周长差.【答案】2【分析】本题主要考查矩形的性质,熟练掌握矩形的性质是解题关键.利用矩形的性质可得6CD AB ==,OB OD =,再根据三角形的周长公式计算即可.【解析】解:Q 四边形ABCD 为矩形,6AB =,8BC =,6CD AB \==,OB OD =,()862BOC DOC C C OB OC BC OD OC CD BC CD \-=++-++=-=-=V V ,BOC V \与DOC △的周长之差为2.6.如图,在菱形ABCD 中,点M 、N 分别在AB 、CB 上,且ADM CDN Ð=Ð,求证:BM BN =.7.如图,菱形ABCD 的对角线相交于点O ,∠BAD =60°,菱形ABCD 的周长为24.(1)求对角线BD 的长;(2)求菱形ABCD 的面积.【答案】(1)68.如图,在矩形ABCD 中,对角线AC 与BD 交于点O ,BE AC ^,CF BD ^,垂足分别为E 、F .求证:OE OF =.【答案】证明见解析.9.如图,在菱形ABCD 中,E 、F 分别为边AD 和CD 上的点,且AE CF =.连接AF 、CE 交于点G .求证:DGE DGF Ð=Ð.【答案】证明见解析.【分析】先证△DAF ≌△DCE ,再证△AEG ≌△CFG ,最后证△DGE ≌△DGF ,根据全等三角形的性质即可得到∠DGE =∠DGF .【解析】证明:∵四边形ABCD 是菱形,∴DA =DC =AB =BC ,∵AE =CF ,∴DE =DF在△DAF 和△DCE 中,DF DE ADF CDE AD CD =ìïÐ=Ðíï=î,∴△DAF ≌△DCE (SAS ),∴∠EAG =∠FCG ,在△AEG 和△CFG 中,EAG FCG AGE CGF AE CF Ð=ÐìïÐ=Ðíï=î,∴△AEG ≌△CFG (AAS ),∴EG =FG ,在△DGE 和△DGF 中,DE DF EG FG DG DG =ìï=íï=î,∴△DGE ≌△DGF (SSS ),∴∠DGE =∠DGF .【点睛】本题考查菱形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,在正方形ABCD 中,点E 在BC 边的延长线上,点F 在CD 边的延长线上,且CE DF =,连接AE 和BF 相交于点M .求证:AE BF = .【答案】证明见解析.【分析】利用正方形的性质证明:AB =BC =CD ,∠ABE =∠BCF =90°,再证明BE =CF ,可得三角形的全等,利用全等三角形的性质可得答案.【解析】证明:∵四边形ABCD 为正方形,∴AB =BC =CD ,∠ABE =∠BCF =90°,又∵CE =DF ,∴CE +BC =DF +CD 即BE =CF ,在△BCF 和△ABE 中,BE CF ABE BCF AB BC =ìïÐ=Ðíï=î∴ABE BCF △△≌(SAS ),∴AE =BF .【点睛】本题考查的是正方形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.模块二、与其他几何性质结合11.如图,正方形ABCD 的边长为4,点E在对角线BD 上,且∠BAE =22.5°,EF ⊥AB 于点F ,求EF 的长.12.如图,在矩形ABCD 中,E ,F 分别是BC ,AD 边上的点,且AE CF =.(1)求证:ABE CDF △≌△;(2)当AC EF ^时,四边形AECF 是菱形吗?请说明理由.【答案】(1)见解析(2)当AC EF ^时,四边形AECF 是菱形,理由见解析【分析】(1)由矩形的性质得出90B D Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,由HL 证明Rt Rt ABE CDF ≌△△即可;(2)由全等三角形的性质得出BE DF =,得出CE AF =,由CE AF ∥,证出四边形AECF 是平行四边形,再由AC EF ^,即可得出四边形AECF 是菱形.【解析】(1)证明:Q 四边形ABCD 是矩形,90B D \Ð=Ð=︒,AB CD =,AD BC =,AD BC ∥,在Rt ABE △和Rt CDF △中,AE CF AB CD =ìí=î,()Rt Rt HL ABE CDF \V V ≌;(2)解:当AC EF ^时,四边形AECF 是菱形,理由如下:ABE CDF QV V ≌,BE DF \=,BC AD =Q ,CE AF \=,Q CE AF ∥,\四边形AECF 是平行四边形,又AC EF ^Q ,\四边形AECF 是菱形.【点睛】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、平行四边形的判定;熟练掌握矩形的性质和菱形的判定,证明三角形全等是解题的关键.13.如图,已在ABCD Y 中,对角线AC 与BD 相交于点O ,E ,F 是BD 上两点,且BE DF =,2AC OE =,(1)求证: 四边形AECF 是矩形;(2)若90304BAC ACE AE Ð=︒Ð=︒=,,,求BC 的长.∴903060AEG Ð=︒-︒=︒,∴1206060,BEG Ð=︒-︒=︒∴906030,GBE Ð=︒-︒=︒14.在四边形ABCD 中,AD BC ∥,AD BC =,对角线AC BD 、交于点O ,BD 平分ABC Ð,延长AD 至点E ,使DE BO =,连接OE .(1)求证:四边形ABCD 是菱形;(2)若460AD DAB =Ð=︒,,求OE 的长.【答案】(1)见解析15.如图,在矩形ABCD 中,对角线AC 的垂直平分线分别与边AB ,CD 的延长线交于点M ,N ,与边AD 交于点E ,垂足为O .(1)求证:AOM CON △△≌;(2)若8AD =,4CD =,求AE 的长.【答案】(1)见解析(2)5AE =【分析】(1)根据矩形的性质得出AB CD ∥,求出M N Ð=Ð,AO CO =,再根据全等三角形的判定定理AAS 推出即可;(2)根据矩形的性质得出4AB CD ==,根据线段垂直平分线的性质得出AE CE =,再根据勾股定理求出即可.【解析】(1)证明:∵四边形ABCD 是矩形,∴AB CD ∥,∴M N Ð=Ð,∵AC 的垂直平分线是MN ,∴AO CO =,在AOM V 和CON V 中,AOM CON M NAO CO Ð=ÐìïÐ=Ðíï=î,∵AC 的垂直平分线是∴AE CE x ==,∵四边形ABCD 是矩形,∴90ADC Ð=︒,DC =在Rt CDE △中,由勾股定理,得即()22284x x -+=,解得16.如图,在四边形ABCD 中,AB DC P ,AB AD =,AC 平分DAB Ð.对角线AC ,BD 相交于点O ,过点D 作DE AB ^于点E ,连接OE .(1)求证:四边形ABCD 是菱形.(2)若AD =4AC =,求OE 的长.【答案】(1)见解析(2)1,,,,17.如图,在正方形ABCD中,E是BC边上的一点,连接AE,点B关于直线AE的对称点为F,连接EF并延长交CD 于点G ,连接AG .求证:GF GD =.【答案】证明见解析.【分析】连接AF ,根据对称得:△ABE ≌△AFE ,再由HL 证明Rt △AFG ≌Rt △ADG ,可得结论.【解析】证明:连接AF ,Q 四边形ABCD 是正方形,AB AD \=,90B D Ð=Ð=︒,Q 点B 关于直线AE 的对称点为F ,∴△ABE ≌△AFE ,AB AF AD \==,90AFE B Ð=Ð=︒,90AFG \Ð=︒,在Rt AFG V 和Rt ADG V 中,AG AG =Q ,AF AD =,∴Rt △AFG ≌Rt △ADG (HL ),GF GD \=.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,对称的性质,解决本题的关键是利用正方形的性质得到相等的边和相等的角,证明三角形全等,作出辅助线也是解决本题的关键.18.如图,在矩形ABCD 中,AB BC <,E 为AD 上一点,且BE AD =.(1)请用无刻度的直尺和圆规作出CBE Ð的平分线.(保留作图痕迹,不写作法)(2)在(1)中所作的角平分线与AD 的延长线交于点F ,连接CF .猜想四边形BEFC 是什么四边形?并证明你的猜想.【答案】(1)见解析(2)四边形BEFC 是菱形.证明见解析【分析】本题考查作图—基本作图、矩形的性质、角平分线的定义、菱形的判定,熟练掌握矩形的性质、角平分线的定义、菱形的判定是解答本题的关键.(1)根据角平分线的作图方法作图即可.(2)结合矩形的性质、角平分线的定义、菱形的判定可得结论.【解析】(1)解:如图,BP 即为所求.(2)解:四边形BEFC 是菱形.证明:BF Q 平分CBE Ð,CBF EBF \Ð=Ð.Q 四边形ABCD 是矩形,AD BC \=,AF BC ∥,CBF EFB \Ð=Ð,EBF EFB \Ð=Ð,BE EF \=,BE AD =Q ,AD BC =,BC EF \=,\四边形BEFC 是平行四边形.BE EF =Q ,\四边形BEFC 是菱形.模块三、作图有关的解答证明题19.如图,四边形ABCD 是正方形,射线DP 交AB 于点,90,P PDQ DQ Ð=︒交BC 的延长线于点Q .(1)尺规作图:作PDQ Ð的平分线交BC 于E ;(保留作图痕迹,不写作法)(2)在(1)的基础上,连接PE ,求证:PE PA CE=+【答案】(1)见解析(2)见解析【分析】此题考查了正方形的性质、全等三角形的判定和性质角平分线的作图等知识.(1)按照角平分线的作图方法作图即可;(2)证明()ASA PDA QDC V V ≌,则AP CQ =,PD QD =,再证明()SAS PDE QDE V V ≌,则PE QE =,由QE CQ CE PA CE =+=+即可得到PE PA CE =+.【解析】(1)解:如图所示:(2)证明:∵四边形ABCD 是正方形,∴90PAD ADC BCD Ð=Ð=Ð=︒,AD CD =,∴90PDA CDP Ð+Ð=︒,90QCD Ð=︒∵90PDQ Ð=︒,∴90CDQ CDP Ð+Ð=︒∴PDA CDQ Ð=Ð,∵90QCD PAD Ð=Ð=︒,AD CD =,∴()ASA PDA QDC V V ≌∴AP CQ =,PD QD =,∵作PDQ Ð的平分线交BC 于E∴PDE QDE Ð=Ð,又∵,DE DE =∴()SAS PDE QDE V V ≌∴PE QE =,∵QE CQ CE PA CE=+=+∴PE PA CE=+20.如图,在由24个全等的正三角形组成的正六边形网格中,请画出符合要求的格点四边形(即顶点均在格点上的四边形).(1)在图中画出以AB 为对角线的矩形APBQ .(2)在图中画出一个邻边比为1)中的矩形不全等.(2)解:如图,矩形CDEF 即为所求作的矩形.设每个小正方形的边长为1,∵1AC CG DG AD ====,∴四边形ACGD 为菱形,∴1122AO GO AG ===,CD ^模块四、模块二强化21.如图,在正方形ABCD 中,E 是边CD 的中点,点P 是边AD 上一点(与点A ,D 不重合),射线PE 与BC 的延长线交于点Q .(1)求证:PDE QCE V V ≌;(2)过点E 作EF BC ∥交PB 于点F ,连接AF ,当PB PQ =时.求证:四边形AFEP 是平行四边形.由三角形内角和定理可得AFP FPEÐ=ÐPE AF \∥,EF AP Q ∥,\四边形AFEP 是平行四边形.【点睛】本题主要考查正方形的性质,平行四边形的判定,全等三角形的判定与性质,平行线分线段成比例,直角三角形性质,等腰三角形的判定与性质,三角形内角和定理,熟练掌握相关几何性质与判定是解题的关键.22.如图,在矩形ABCD 中,6AD =,8CD =,菱形EFGH 的三个顶点E 、G 、H 分别在矩形ABCD 的边AB 、CD 、DA 上,2AH =,连接CF .(1)当2DG =时,求证:四边形EFGH 是正方形;(2)当△FCG 的面积为2时,求CG 的值.则90FMG Ð=︒,90A FMG \Ð=Ð=︒,由矩形和菱形的性质,可得AEG MGE \Ð=Ð,HEG Ð23.如图,在ABC V 中,AB AC =,AD 平分BAC Ð,CE AD ∥且CE AD =.(1)求证:四边形ADCE 是矩形;(2)若ABC V 是边长为4的等边三角形,,AC DE 相交于点O ,在CE 上截取CF CO =,连接OF ,求线段FC 的长及四边形AOFE 的面积.则90OHC Ð=︒,∵30OCH Ð=︒,112OH OC \==,AEC COF AOFE S S S \=-=V V 四边形模块五、动态几何基础24.如图,在矩形纸片AEE D ¢中,5AD =,15AEE D S ¢=矩形,在EE ¢上取一点F ,使4EF =,剪下AEF △,将它平移至DE F ¢¢V 的位置,拼成四边形AFF D ¢.(1)求证∶四边形AFF D ¢是菱形;(2)求四边形AFF D ¢的两条对角线的长.∵4EF =,5FF AD ¢==,∴9EF EF FF ¢¢=+=,在Rt AEF ¢△中,22239AF AE EF ¢¢=+=+在Rt DFE ¢V 中,541FE FF E F ¢¢¢¢=-=-=,25.如图,把矩形ABCD 绕点A 按逆时针方向旋转得到矩形AEFG ,使点E 落在对角线BD 上,连接DG ,DF .(1)若50BAE Ð=︒,则DAG Ð= °;(2)求证:DF AB =.【答案】(1)50(2)见解析【分析】(1)根据矩形的性质,得到90BAD EAG Ð=Ð=︒,进而得到BAE DAG Ð=Ð,即可求出DAG Ð的度数;(2)根据旋转和矩形的性质,易证四边形ABDF 是平行四边形,即可证明结论.【解析】(1)解:Q 矩形ABCD 和矩形AEFG ,90BAD EAG \Ð=Ð=︒,BAD EAD EAG EAD -=-∴∠∠∠∠,BAE DAG \Ð=Ð,50BAE Ð=︒Q ,50DAG \Ð=︒,故答案为:50;(2)证明:连接AF ,由旋转的性质可知,AF BD =,FAE ABD Ð=Ð,AB AE =,ABE AEB \Ð=Ð,FAE AEB \Ð=Ð,AF BD \∥,\四边形ABDF 是平行四边形,DF AB \=;【点睛】本题考查了旋转的性质,矩形的性质,平行四边形的判定和性质,平行线的判定,等边对等角,熟练掌握旋转和矩形的性质是解题关键.26.如图,在矩形ABCD 中,2AB AD >,点E F ,分别在边AB CD ,上.将ADF △沿AF 折叠,点D 的对应点G 恰好落在对角线AC 上;将CBE △沿CE 折叠,点B 的对应点H 恰好也落在对角线AC 上.连接GE FH ,.求证:(1)AEH CFG △≌△;(2)四边形EGFH 为平行四边形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)由矩形的性质可得AD BC =,90B D Ð=Ð=︒,AB CD ∥,即得EAH FCG Ð=Ð,由折叠的性质可得AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,即得CH AG =,90AHE CGF Ð=Ð=︒,进而得AH CG =,即可由ASA 证明AEH CFG △≌△;(2)由(1)得90AHE CGF Ð=Ð=︒,AEH CFG △≌△,即可得到EH FG ∥,EH FG =,进而即可求证;本题考查了矩形的性质,折叠的性质,全等三角形的判定和性质,平行线的判定和性质,掌握矩形和折叠的性质是解题的关键.【解析】(1)证明:∵四边形ABCD 是矩形,∴AD BC =,90B D Ð=Ð=︒,AB CD ∥,∴EAH FCG Ð=Ð,由折叠可得,AG AD =,CH CB =,90CHE B Ð=Ð=︒,90AGF D Ð=Ð=︒,∴CH AG =,90AHE CGF Ð=Ð=︒,∴AH CG =,在AEH △和CFG △中,90EAH FCG AH CGAHE CGF Ð=Ðìï=íïÐ=Ð=︒î,∴()ASA AEH CFG V V ≌;(2)证明:由(1)知90AHE CGF Ð=Ð=︒,AEH CFG △≌△,∴EH FG ∥,EH FG =,∴四边形EGFH 为平行四边形.27.如图,正方形ABCD 和正方形GECF ,点E 、F 分别在边BC 、上,将正方形GECF 绕点C 顺时针方向旋转,旋转角为0180a a ︒<<︒().(1)如图2,连接BE 、DF ,求证:BE DF =;(2)如图3,若1BC =+,1EC =,当点E 旋转到边上时,连接BE 、连接DF ,并将延长BE 交DF 于点H ,求证:BH 垂直平分DF .【答案】(1)见解析(2)见解析【分析】(1)根据四边形ABCD 和GECF为正方形可得BC DC =,EC FC =,BCE DCF Ð=Ð,再证明()SAS BCE DCF V V ≌即可得到结论;(2)证明BD BF =,=DE EF 即可得出结论.本题主要考查了正方形的性质,旋转的性质,线段垂直平分线的判断,全等三角形的判定与性质等知识,正确作出辅助线构造全等三角形是解答本题的关键.【解析】(1)证明:∵四边形ABCD 和GECF 为正方形,BC DC \=,EC FC =,90BCD ECF Ð=Ð=︒,BCE DCE DCF DCE \Ð+Ð=Ð+Ð,)解:连接, Q ()2221BD BC \==+22EF CE ==,CD BC =211BF BC CF \=+=++22,BF BD DE EF \==+=模块六、综合探究特殊平行四边形的判定28.如图,点O 是ABC V 内一点,连接OB 、OC ,并将AB 、OB 、OC 、AC 的中点D 、E 、F 、G 依次连接,得到四边形DEFG .(1)求证:四边形DEFG 是平行四边形;(2)连接AO①直接写出当AO 和BC 有怎样的位置关系时,四边形DEFG 是矩形;②直接写出当AO和BC有怎样的关系时,四边形DEFG是正方形.Q\∥DE AO,Q点E、F分别是OB、\BC EF∥,Q,AO BC^由①得当AO BC ^时,四边形Q 点D 、E 分别是AB 、\12DE AO =,Q 点E 、F 分别是OB 、(1)求证:四边形EFGH 是矩形;(2)如图二,连接FH ,P 为边FH 上一动点,PN EF ^于点N ,PM EH ^于点M ,3EF =,4EH =,求MN 的最小值.30.如图(1),在ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至点G ,使EG AE =,连接CG ,延长CF 至点H ,使FH CF =,连接AH .(1)求证:四边形AGCH 是平行四边形;(2)如图(2),若2AC AB =,求证:四边形AGCH 是矩形;(3)如图(3),若AC AB ^,求证:四边形AGCH 是菱形.()SAS AEO CFO \△≌△,\Ð=Ð=,AEO CFO AE CF ,AE CF \∥,,==EG AE FH CF Q ,AG CH \=,\四边形AGCH 是平行四边形;(2)==Q ,EA EG OA OC ,EO \是AGC V 的中位线,∥\EO GC ,AE CF \∥,\四边形EGCF 是平行四边形,22==Q ,AC AB AC AO ,AB AO \=,E Q 是OB 的中点,AE OB \^,90OEG \Ð=︒,\四边形EGCF 是矩形;90AGC \Ð=︒,由(1)知,四边形AGCH 是平行四边形,\四边形AGCH 是矩形;(3)连接H G ,由(1)知,OA OC =,HG \过点O ,连接BG ,Q 点E 为OB 的中点,BE OE \=,AE EG =Q ,\四边形ABGO 是平行四边形,∥\AB OG ,AB AC ^Q ,\^HG AC ,\四边形AGCH 是菱形.【点睛】本题是四边形的综合题,考查了矩形的判定,菱形的判定,平行四边形的判定和性质,全等三角形的判定和性质,三角形的中位线定理,正确的识别图形是解题的关键.31.如图所示,在Rt ABC △中,90B =°,100cm AC =,60A Ð=︒,点D 从点C 出发沿CA 方向以4cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是t 秒()025t <£.过点D 作DF BC ^于点F ,连接DE ,EF .(1)求证:四边形AEFD 是平行四边形;(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值;如果不能,请说明理由;(3)当t 为何值时,DEF V 为直角三角形?请说明理由.【答案】(1)证明见解析Q 90CFD \Ð=︒,90B Ð=︒Q ,60A Ð=︒,30C \Ð=︒,114222DF CD t t \==´=,AE DF \=,若四边形AEFD 为菱形,则AE =100AC =Q ,4CD t =,1004AD AC CD t \=-=-,又2AE t =Q ,21004t t \=-,Q 90DFC DFB \Ð=Ð=︒,又90B Ð=︒Q ,\四边形DFBE 为矩形,DF BE \=,90B Ð=︒Q ,60A Ð=︒,由(1)可知:四边形AEFD 是平行四边形,\∥EF AD ,90ADE DEF \Ð=Ð=︒,在Rt ADE V 中,60A Ð=︒,2AE t =30AED \Ð=︒,11模块七、特殊平行四边形在平面直角坐标系的应用32.如图,已知OABC 是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点(10,0)A ,点(0,6)C ,在边AB 上任取一点D ,将AOD △沿OD 翻折,使点A 落在BC 边上,记为点E .(1)EC 的长度为 ;(2)求D 点坐标;(3)若在x 轴正半轴上存在点P ,使得OEP V 为等腰三角形,则点P 的坐标为 .则6EM AB ==,在Rt OEM △中,OM OE =设OP a =,则PE a =,PM 在Rt PEM △中,2PE PM =222(8)6a a \=-+,\同②得8OM =,8MP \=,\点P 的坐标为(16,0);综上,点P 的坐标为(10,0)或25,04æöç÷èø【点睛】本题属于几何变换综合题,考查了翻折变换,矩形的性质,等腰三角形的性质,勾股定理,分类讨论思想的运用是解题的关键.33.如图1,在平面直角坐标系中,一次函数48y x =+的图象分别交x 轴,y 轴于A ,B 两点,将AOB V 绕点O 顺时针旋转90︒得COD △(点A 与点C 对应,点B 与点D 对应).(1)直接写出直线CD 的解析式;(2)点E 为线段CD 上一点,过点E 作EF y ∥轴交直线AB 于点F ,作EG x ∥轴交直线AB 于点G ,当EF EG AD +=时,求点E 的坐标;(3)如图2,若点M 为线段AB 的中点,点N 为直线CD 上一点,点P 为坐标系内一点.且以O ,M ,N ,P 为顶点的四边形为矩形,请直接写出所有符合条件的点N 的坐标,并写出其中一种求解点N 坐标的过程.∵,∵,()0,8B ,点M 为线段∴()1,4M -,12OM AM BM AB ===∵将AOB V 绕点O 顺时针旋转90∴AOB COD ≌△△,∴2OA OC ==,OAB OCD Ð=Ð∵ON OM ^,由(1)得,直线CD 的解析式为设1,24N n n æö-+ç÷èø,∵()1,4M -,∴2221417OM =+=,22ON n =+模块八、压轴过渡练34.如图,在ABC V 中,点O 是边AC 上一个动点,过点O 作直线MN BC ∥.设MN 交ACB Ð的平分线于点E ,交ABC V 的外角ACD Ð的平分线于点F .(1)求证:OE OF =;(2)若12CE =,5CF =,求OC 的长;(3)连接AE ,AF ,当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?请说明理由.【答案】(1)见解析(2) 6.5OC =(3)点O 在边AC 上运动到AC 的中点时,四边形AECF 是矩形.理由见解析【分析】(1)由角平分线的定义结合平行线的性质可证得ACE OEC Ð=Ð,则OE OC =,同理OC OF =,即可得出结论;(2)利用勾股定理可求得EF 的长,再结合(1)的结论可求得OC 的长;(3)只要保证四边形AECF 是平行四边形即可,则可知O 为AC 的中点时,满足条件.本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及勾股定理等知识,熟练掌握矩形的判定和等腰三角形的判定是解题的关键.【解析】(1)证明:CE Q 平分ACB Ð,ACE ECB \Ð=Ð,MN BC Q P ,ECB OEC \Ð=Ð,ACE OEC \Ð=Ð,OE OC \=,同理可得OC OF =,OE OF \=;35.如图,四边形ABCD 和BGEF 均为正方形,点E 恰好在线段AD 上,连接AF 、BE 、CG .(1)当点E 与A 、D 两点都不重合时,求证:ABF CBG V V ≌;(2)当点E 与A 点重合时,等式AB AE CG -=成立;当点E 与A 、D 两点都不重合时,等式AB AE CG -=是否仍然成立?请证明你的结论.Q 90EFB \Ð=︒,45FEB FBE Ð=Ð=︒,90AFE EFH BFH EFH \Ð+Ð=Ð+Ð=︒,AFE HFB \Ð=Ð.36.问题解决:如图①,在矩形ABCD 中,点E ,F 分别在AB BC ,边上,DE AF DE AF =^,于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,连接AH ,判断AHF △的形状,并说明理由.类比迁移:如图②,在菱形ABCD 中,点E ,F 分别在AB BC ,边上,DE 与AF 相交于点G ,6072DE AF AED AE BF =Ð=︒==,,,,求DE 的长.【答案】(1)见解析;(2)等腰三角形,见解析;类比迁移:9【分析】本题主要考查了正方形的证明、菱形的性质、三角形全等的判断与性质等知识点,理解题意并灵活运用相关知识、正确做出辅助线构造三角形全等是解题的关键.(1)先说明90DE AF AGD ^Ð=︒,可得ADE BAF Ð=Ð,再证明()AAS ADE BAF V V ≌得到AD AB =,然后根据一组邻边相等的矩形是正方形即可证明结论;(2)由ADE BAF ≌△△可得AE BF =,再证明BH BF =可得AH AF =,从而得到等腰三角形;类比迁移:如图,延长CB 到点H ,使BH AE =,连接AH ,由菱形的性质可证明DAE ABH ≌V V ,再结合已知60AED Ð=︒可得AHF △是等边三角形,最后利用线段的和差即可解答.【解析】(1)解:证明:∵四边形ABCD 是矩形,∴90DAB ABC Ð=Ð=︒,∴90DE AF AGD ^Ð=︒,,∵9090BAF DAF ADE DAF Ð+Ð=︒Ð+Ð=︒,,∴ADE BAFÐ=Ð在ADE V 和BAF △中,90DAE ABF ADE BAFDE AF Ð=Ð=︒ìïÐ=Ðíï=î∴()AAS ADE BAF V V ≌,∴AD AB =,∴四边形ABCD 是正方形.(2)AHF △是等腰三角形,理由:由(1)得ADE BAF ≌△△,∴AE BF =,∵BH AE =,∴BH BF =,∵90ABH Ð=︒,∴AH AF =,。
第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册
![第十八章平行四边形四边形中的动点问题(教案)人教版八年级数学下册](https://img.taocdn.com/s3/m/4ed9767f580102020740be1e650e52ea5518ce29.png)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行四边形中动点问题的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对动点问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对平行四边形内动点问题的探究表现得非常积极。他们对于动点的运动规律和性质有了初步的认识,也尝试着将这些知识应用到实际问题中。我觉得这是一个很好的开始,但也发现了一些需要改进的地方。
首先,理论讲授部分,我发现有些同学对动点问题的基本概念掌握不够扎实。可能是我讲解得不够细致,也可能是同学们对这些概念还不够熟悉。在以后的教学中,我需要更加注意这一点,尽量用简单易懂的语言和丰富的例子来帮助他们理解。
3.重点难点解析:在讲授过程中,我会特别强调动点的运动规律和利用平行四边形性质解题这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与动点问题相关的实际问题。
2.实行四边形中的运动规律和性质。
-难点二:在实际问题中,学生可能不知道如何选择合适的定理和性质来解决动点问题。教师应指导学生通过分析问题结构,识别关键信息,进而选择恰当的几何定理进行求解。
-难点三:针对不同动点问题,如路径最短、面积最大等,学生可能不知如何下手。教师应教授学生分类讨论和优化的方法,帮助学生理清思路,找到解题突破口。
4.培养合作意识和团队精神,在小组讨论和探究过程中,学会倾听、交流、表达和协作,共同解决问题。
2020年中考数学专题复习卷:几何图形的动态问题精编(含解析)
![2020年中考数学专题复习卷:几何图形的动态问题精编(含解析)](https://img.taocdn.com/s3/m/cce91f76866fb84ae45c8dfb.png)
几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。
2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
初中数学教学课例《特殊的平行四边形(矩形)》课程思政核心素养教学设计及总结反思
![初中数学教学课例《特殊的平行四边形(矩形)》课程思政核心素养教学设计及总结反思](https://img.taocdn.com/s3/m/6c6bbbb12b160b4e777fcf34.png)
课堂环节要求: 1.自发自动!! 2.点评者用双色笔点评,陈述自己观点。做到思路 清晰,有激情,有互动,有拓展提升。 3.参与小组自由学习的其他同学注意倾听,认真记 录,积极思考,不断质疑,对点评内容进行补充或拓展。 4.自由学习过程中产生的疑问写在黑板上,全体同 学自由解答。 5.表述反馈 (1)学生:谈谈本节课的收获 (2)教师:课件罗列本节知识要点与框架,利用 顺口溜带领学生记忆矩形性质. (3)知识的实践与生成 课件上展示内容,学生踊跃发言。 6.课堂总结与评价表彰 学科班长结合课堂表现进行总结与评价,评出优胜 小组与个人。表彰优秀个人,按课堂评价授予奖励。 7.教师寄语以方形人生的小短句作为结束。使数学 中死板的图性变得有灵动性
何判断一个四边形是否是矩形呢?猜想判定定理,并推 理验证
动手操作,合作迅速完成矩形度量。培养学生的动 手能力
4.活动二:探究、合作、引领 展示要求: (1)展示人及时到位,迅速展示,不浪费时间, 书写要规范认真。 重在思维逻辑思考分析的过程。 (2)展示必须脱稿;展示规范:分点、原理、材 料;展示内容不局 限于小组区域,展示内容最好多种颜色标注;不惧 怕出错。 超市点评:到黑板展示区自由讨论或记笔记,用彩 笔写下你的疑难或补充。从实际出发,各取所需。 组内及时搞好评价,形成竞争力。 讨论:小组长调控好讨论的节奏,讨论交流在探究 过程中的方法与思想。 展示点评安排: 【动手操作】总结矩形的性质、我的疑问在前黑板 矩形判定定理 1 后黑板左边,矩形判定定理 2 后黑 板右边。
理的逆命题,先猜想提出判定图形是否成立的命题,然
后运用演绎推理证明这些命题的真伪,得出图形的判定
定理,进一步明确矩形的性质定理与判定定理之间的关
系:从命题角度来说,判定定理与相应的性质定理之间
专题55:第12章压轴题之动态几何类-备战2021中考数学解题方法系统训练(全国通用)(解析版)
![专题55:第12章压轴题之动态几何类-备战2021中考数学解题方法系统训练(全国通用)(解析版)](https://img.taocdn.com/s3/m/03da9f0aba68a98271fe910ef12d2af90242a876.png)
55第12章压轴题之动态几何类一、单项选择题1.如图,在四边形ABCD 中,//AD BC ,6AD =,16BC =,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.假设以点,,,P Q E D 为顶点的四边形是平行四边形,那么点P 运动的时间为〔 〕A .1B .72C .2或72D .1或72【答案】D【分析】要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可,设点P 的运动时间为t (0≤t ≤6) 秒,分别表示出PD,EQ 的长度,根据PD=EQ 列方程求解即可.【解答】设点P 的运动时间为t (0≤t ≤6) 秒,那么AP=t ,CQ=3t ,由E 是BC 的中点可得:BE=EC=8,要使得以P 、Q 、E 、D 为顶点的四边形是平行四边形,//AD BC ,即要使PD=EQ 即可.〔1〕如图:点Q 位于点E 右侧时,PD=6-t ,CQ=3t ,EQ=8-3t ,6-t =8-3t ,t =1〔秒〕;〔2〕如图:点Q 位于点E 左侧时,PD=6-t ,CQ=3t ,EQ=3t -8,6-t =3t -8,t =72〔秒〕. 综上所述:P 的运动时间为1或72秒. 应选:D .【点评】此题主要考查平行四边形的判定方法以及一元一次方程的应用,熟记平行四边形的判定方法,根据对应边相等列方程是解题关键.2.如图,如图,在等腰ABC 中,4AB AC m ==,30B ∠=︒,点P 从点B 出发,以3/cm s 的速度沿BC 方向运动到点C 停止,同时点Q 从点B 出发以2cm 的速度沿B A C →→运动到点C 停止.假设BQP ∆的面积为y,运动时间为()x s ,那么以下图象中能大致反映y 与x 之间关系的是〔 〕A .B .C .D .【答案】D【分析】作AH ⊥BC 于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=12AB=2,BH=3AH=23,BC=2BH=43,利用速度公式可得点P 从B 点运动到C 需4s,Q 点运动到C 需4s,然后分0≤x ≤2和2<x ≤4两种情况进行计算,即可得到答案.【解答】解:如图,作AH ⊥BC 于H,∵AB=AC=4cm,∴BH=CH,∵∠B=30°, ∴AH=12AB=2,BH=3AH=23, ∴BC=2BH=43,∵点P 运动的速度为3cm/s,Q 点运动的速度为2cm/s,∴点P 从B 点运动到C 需4s,Q 点运动到C 需4s,当0≤x ≤2时,如图,作QD ⊥BC 于D, BQ=2x ,BP=3x ,在Rt △BDQ 中,DQ=12BQ=x , ∴213322y x x x =⋅⋅=,开口向上; 当2<x ≤4时,如图,作QE ⊥BC 于E, CQ=8-2x ,BP=3x ,在Rt △CEQ 中,∠C=∠B=30°,EQ=12CQ =()1822x -,∴()211338223222y x x x x =⋅⋅-=-+,开口向下, 综上所述,223,022323,242x x y x x x ⎧≤≤⎪⎪=⎨⎪-+<≤⎪⎩.应选:D .【点评】此题考查了动点问题的函数图象,通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数的图象与性质解决问题.3.如图,点A 〔a,1〕,B 〔b,3〕都在双曲线3y x=-上,点P,Q 分别是x 轴,y 轴上的动点,那么四边形ABQP 周长的最小值为〔 〕A .42B .62C .21022+D .82【答案】B【分析】先把A 点和B 点的坐标代入反比例函数解析式中,求出a 与b 的值,确定出A 与B 坐标,再作A 点关于x 轴的对称点D,B 点关于y 轴的对称点C,根据对称的性质得到C 点坐标为〔1,3〕,D 点坐标为〔-3,-1〕,CD 分别交x 轴、y 轴于P 点、Q 点,根据两点之间线段最短得此时四边形ABPQ 的周长最小,然后利用两点间的距离公式求解可得.【解答】解:∵点A 〔a,1〕,B 〔b,3〕都在双曲线y=-3x上,∴a×1=3b=-3,∴a=-3,b=-1,∴A〔-3,1〕,B〔-1,3〕,作A点关于x轴的对称点D〔-3,-1〕,B点关于y轴的对称点C〔1,3〕,连接CD,分别交x轴、y轴于P点、Q点,此时四边形ABPQ的周长最小,∵QB=QC,PA=PD,∴四边形ABPQ周长=AB+BQ+PQ+PA=AB+CD,∴AB=2222()()311322()(3)13142CD-++-==+++=,,∴四边形ABPQ周长最小值为22+42=62,应选:B.【点评】此题考查反比例函数的综合题,勾股定理,掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.4.如图,菱形ABCD中,AB=2,∠B=120°,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,那么△APM的面积y与点P经过的路程x之间的函数关系的图象大致是〔〕A.B.C.D.【答案】B【分析】分类讨论:当0≤x≤2,如图1,作PH⊥AD于H,AP=x,根据菱形的性质得∠A=60°,AM=1,那么∠APH=30°,根据含30度的直角三角形三边的关系得到在RtAH=12x,PH=32x,然后根据三角形面积公式得y=123;当2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,根据菱形的性质得∠A=60°,AM=1,AB=2,BC∥AD,那么∠ABE=30°,在Rt△ABE中,根据含30度的直角三角形三边的关系得AE=1,PH=3,然后根据三角形面积公式得y=12AM•BE=32;当4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x,根据菱形的性质得∠ADC=120°,那么∠DPF=30°,在Rt△DPF中,根据含30度的直角三角形三边的关系得DF=12〔6-x〕,PF=3DF=32〔6-x〕,那么利用三角形面积公式得y=12AM•PF=-34x+332,最后根据三个解析式和对应的取值范围对各选项进行判断.【解答】当点P在AB上运动时,即0≤x≤2,如图1,作PH⊥AD于H,AP=x,∵菱形ABCD中,AB=2,∠B=120°,点M是AD的中点, ∴∠A=60°,AM=1,∴∠APH=30°,在Rt△APH中,AH=12AP=12x,PH=3AH=32x,∴y=12AM•PH=12×1×32x=34x;当点P在BC上运动时,即2<x≤4,如图2,作BE⊥AD于E,AP+BP=x,∵四边形ABCD为菱形,∠B=120°, ∴∠A=60°,AM=1,AB=2,BC∥AD, ∴∠ABE=30°,在Rt△ABE中,AE=12AB=1,PH=3AE=3,∴y=12AM•BE=12×1×3=32;当点P在CD上运动时,即4<x≤6,如图3,作PF⊥AD于F,AB+BC+PC=x,那么PD=6-x, ∵菱形ABCD中,∠B=120°,∴∠ADC=120°,∴∠DPF=30°,在Rt△DPF中,DF=12DP=12〔6-x〕,3326-x〕,∴y=12AM•PF=12×1×36-x〕36-x〕333,∴△APM的面积y与点P经过的路程x之间的函数关系的图象为三段:当0≤x≤2,图象为线段,满足解析式y=34x;当2≤x≤4,图象为平行于x轴的线段,且到x轴的距离为32;当4≤x≤6,图象为线段,且满足解析式333.应选B .【点评】此题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.5.如图,在菱形ABCD 中,5AB cm =,120ADC =∠︒,点E 、F 同时由A 、C 两点出发,分别沿AB 、CB 方向向点B 匀速移动〔到点B 为止〕,点E 的速度为1/cm s ,点F 的速度为2/cm s ,经过t 秒DEF ∆为等边三角形,那么t 的值为〔 〕A .34B .43C .32D .53 【答案】D【分析】连接BD,证出△ADE ≌△BDF,得到AE=BF,再利用AE=t,CF=2t,那么BF=BC -CF=5-2t 求出时间t 的值.【解答】解:连接BD ,∵四边形ABCD 是菱形,∠ADC =120°, ∴AB =AD ,∠ADB =12∠ADC =60°, ∴△ABD 是等边三角形,∴AD =BD ,又∵△DEF 是等边三角形,∴∠EDF =∠DEF =60°, 又∵∠ADB =60°, ∴∠ADE =∠BDF ,在△ADE和△BDF中,AD BDA DBCADE BDF=⎧⎪∠=∠⎨⎪∠=∠⎩∴△ADE≌△BDF(ASA), ∴AE=BF,∵AE=t,CF=2t,∴BF=BC−CF=5−2t,∴t=5−2t∴t=5 3 ,应选:D.【点评】此题考查全等三角形,等边三角形,菱形等知识,熟练掌握全等三角形的判定与性质,等边三角形的判定与性质,菱形的性质为解题关键.6.:如图①,长方形ABCD中,E是边AD上一点,且AE=6cm,AB=8cm,点P从B出发,沿折线BE﹣ED﹣DC匀速运动,运动到点C停止.P的运动速度为2c m/s,运动时间为t〔s〕,△BPC的面积为y〔cm2〕,y与t的函数关系图象如图②,那么以下结论正确的有〔〕①a=7;②b=10;③当t=3s时△PCD为等腰三角形;④当t=10s时,y=12cm2A.1个B.2个C.3个D.4个【答案】B【分析】根据点P运动的速度,可以确定某时刻点P的具体位置,再结合△BPC的面积与时间t函数关系的图象,可以得到问题的解答.【解答】当P点运动到E点时,△BPC面积最大,结合函数图象可知当t=5时,△BPC面积最大为40,∴BE=5×2=10.∵12•BC•AB=40,∴BC=10.那么ED=10﹣6=4.当P点从E点到D点时,所用时间为4÷2=2s,∴a=5+2=7.故①正确;P点运动完整个过程需要时间t=〔10+4+8〕÷2=11s,即b=11,②错误;当t=3时,BP=AE=6,又BC=BE=10,∠AEB=∠EBC〔两直线平行,内错角相等〕,∴△BPC≌△EAB,∴CP=AB=8,∴CP=CD=8,∴△PCD是等腰三角形,故③正确;当t=10时,P点运动的路程为10×2=20cm,此时PC=22﹣20=2,△BPC面积为12⨯10×2=10cm2,④错误,∴正确的结论有①③.应选:B.【点评】此题考查矩形性质与函数图象的综合应用,正确理解函数图象各点意义、综合应用等腰三角形和平行线的性质是解题关键.7.如图,正方形ABCD中,点E、F、G分别为边AD、CD、BC中点,动点P从E点出发,沿E D F→→方向移动,连接PG,过G作GQ PG⊥交边AB于点Q;连接PQ,点O为PQ中点,连接AO;设BQ为x,AOQ△的面积为y;那么y与x之间函数图象大致为〔〕A.B.C.D.【答案】A【分析】分两种情况讨论,当点P 在线段ED 上移动时,证得Rt △QBG ~Rt △PEG,求得2131242y x x =-++(102x ≤≤),当点P 在线段FD 上移动时,易求得112y x =-+(112x <≤),根据图象的性质即可判断.【解答】不妨设正方形ABCD 的边长为2,那么BC=AD=AB=CD=2,AE=DF=BG=1,当点P 在线段ED 上移动时,连接EG ,如下图: ∵GQ PG ⊥, ∴∠PGQ=∠B=90︒,∴∠QGB+∠QGE =90︒,∠QGE +∠EGP =90︒,∴∠QGB=∠EGP,∴Rt △QBG ~Rt △PEG,∵BQ x =,BG=1,EG =2,∴PE=2BQ=2x ,∴AQ=AB-BQ=2x -,AP=AE+PE=12x +,∵点O 为PQ 中点,∴()()2AOQ APQ 11111312122224242y S S AQ AP x x x x ===⨯⋅=-+=-++, 取值范围是:当P 、E 重合时,由PE=2x =0,得0x =,当P 、D 重合时,由PE=2x =1,得12x =, ∴2131242y x x =-++(102x ≤≤), ∵102-<,∴图象是开口向下的在区间(102x ≤≤)r 的一段抛物线; 排除选项B 和C ; 当点P 在线段FD 上移动时,连接AP,如下图:∴AQ=AB-BQ=2x -,∵点O 为PQ 中点,∴()AOQ APQ 111112122222y S S AQ AD x x ===⨯⋅=-=-+, 取值范围是:当P 、F 重合时,1x =, ∴112y x =-+(112x <≤), ∵102-<, ∴图象是经过一、二、四象限在区间(112x <≤)的一条线段; 综上,只有A 符合题意,应选:A .【点评】此题考查了动点问题的函数图象,涉及的知识点有正方形的性质,相似三角形的判定和性质,有一定难度.8.如图ABO 的顶点分别是()3,1A ,()0,2B ,()0,0O ,点C ,D 分别为BO ,BA 的中点,连AC ,OD 交于点G ,过点A 作AP OD ⊥交OD 的延长线于点P .假设APO △绕原点O 顺时针旋转,每次旋转90︒,那么第2021次旋转结束时,点P 的坐标是〔 〕A .()2,1B .()2,2C .()1,2D .()1,1A【答案】B【分析】利用三角形的重心和等腰直角三角形的性质确定P 〔2,2〕,确定每4次一个循环,由于2021=4×55,所以第2021次旋转结束时,P 点返回原地,即可求出旋转后的点P 的坐标.【解答】∵点C,D 分别为BO,BA 的中点,∴点G 是三角形的重心,∴AG=2CG ,∵B 〔0,2〕,∴C 〔0,1〕,∵A 〔3,1〕,∴AC=3,AC ∥x 轴,∴CG=1,AG=2,∵OC=1,∴OC=CG ,∴△COG 是等腰直角三角形,∴∠CGO=45°, ∴∠AGP=45°, ∵AP ⊥OD,∴△AGP 是等腰直角三角形,∴AG 边上的高为1,∵等腰直角三角形△AGP 的斜边AG 边上的高也是中线,∴P 〔2,2〕,∵2021=4×55,∴每4次一个循环,第2021次旋转结束时,P 点返回原处,∴点P 的坐标为〔2,2〕.应选:B .【点评】此题考查了三角形重心的判定和性质,等腰直角三角形的判定和性质,坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.9.如图1,在矩形ABCD 中,动点M 从点A 出发,沿A B C -->-->方向运动,当点M 到达点C 时停止运动,过点M 作MN AM ⊥交CD 于点N ,设点M 的运动路程为,x CN y =,图2表示的是y 与x 的函数关系的大致图象,那么函数图象中a 的值为〔 〕A .12B .13C .14D .15【答案】C【分析】由图2知:AB=6,当点M 在BC 上时,画出图形根据MAB NMC ,得出比例式BM CN AB CM =,根据二次函数图象对称性可得E 在BC 中点时,CF 有最大值,列出方程式即可解题.【解答】解:由图2知:AB=6,那么CN=BM=6-x,即y=6-x ;如下图,当点M 在BC 上时,AB=6那么BM=x-6,NC=y,在矩形ABCD 中,∵MN ⊥AM,∴∠AMN=90°, ∴∠CMN+∠AMB=90°,∵∠MAB+∠AMB=90°,∴∠CMN=∠MAB,∵在△CMN和△BAM中,∠CMN=∠MAB,∠C=∠B=90°, ∴△CMN∽△BAM,∴BM CN AB CM=由二次函数图象对称性可得M在BC中点时,y=CN有最大值83,此时BM=CM=x-6∴863 66 xx-=-,∴x=10或2〔不合题意舍去〕∴BM=CM=4,∴BC=8∴a=6+8=14应选:C【点评】此题考查了二次函数动点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,此题中由图象得出E为BC中点是解题的关键.10.如图,在平面直角坐标系中,Q是直线y=﹣12x+2上的一个动点,将Q绕点P(1,0)顺时针旋转90°,得到点Q',连接OQ',那么OQ'的最小值为()A.455B5.523D.655【答案】B【分析】利用等腰直角三角形构造全等三角形,求出旋转后Q′的坐标,然后根据勾股定理并利用二次函数的性质即可解决问题.【解答】解:作QM ⊥x 轴于点M,Q′N ⊥x 轴于N,设Q(m ,122m -+),那么PM=1m ﹣,QM=122m -+, ∵∠PMQ=∠PNQ′=∠QPQ′=90°,∴∠QPM+∠NPQ′=∠PQ′N+∠NPQ′,∴∠QPM=∠PQ′N,在△PQM 和△Q′PN 中,'90''PMQ PNQ QPM PQ N PQ Q P ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△PQM ≌△Q′PN (AAS),∴PN=QM=122m -+,Q′N=PM=1m ﹣, ∴ON=1+PN=132m -, ∴Q′(132m -,1m ﹣), ∴OQ′2=(132m -)2+(1m ﹣)2=54m 2﹣5m+10=54(m ﹣2)2+5, 当m=2时,OQ′2有最小值为5,∴OQ′5应选:B .【点评】此题考查了一次函数图象上点的坐标特征,一次函数的性质,三角形全等的判定和性质,坐标与图形的变换-旋转,二次函数的性质,勾股定理,表示出点的坐标是解题的关键.二、填空题11.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 那么当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.【答案】512AF -≤≤【分析】首先根据题意可知,当点F 与点B 重合时AF 最长,AF 的最大值为2;再证实点F 的运动轨迹为以BC 为直径的'O ,通过添加辅助线连接'AO 交'O 于点M ,连接'O F ,由线段公理可知,当点F 与点M 重合时AF 最短,AF 的最小值为51-.即可得解.【解答】解:∵由题意可知,当点F 与点B 重合时AF 最长∴此时2AF AB ==,即AF 的最大值为2∵CF BE ⊥∴90CFB ∠=︒∴点F 的运动轨迹为以BC 为直径的'O ,连接'AO 交'O 于点M ,连接'O F ,如图:∵2AB =∴11'122BO BC AB === ∴在'Rt ABO 中,22''5AO AB BO =+∴''51AM AO O M =-=∴由两点之间,线段最短可知,当点F 与点M 重合时AF 最短∴AF 的最小值为51-∴512AF -≤≤.【点评】此题考查了正多边形和圆的动点问题、90︒的圆周角所对的弦为直径、勾股定理、线段公理等知识点,解题的关键是确定AF 取最大值和最小值时点F 的位置,属于中考常考题型,难度中等.12.如图,CA AB ⊥,垂足为点A ,24AB =,12AC =,射线BM AB ⊥,垂足为点B ,一动点E 从A 点出发以3厘米/秒沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 经过___秒时,DEB ∆与BCA ∆全等.【答案】0,4,12,16【分析】设点E 经过t 秒时,△DEB ≌△BCA ;由斜边ED=CB,分类讨论BE=AC 或BE=AB 或AE=0时的情况,求出t 的值即可.【解答】分情况讨论:〔1〕设点E 经过t 秒时,△DEB ≌△BCA,此时AE=3t,①当点E 在点B 的左侧时,BE=AC,∴AE=AB-BE=24-12=12,∴3t=12,∴t=4;②当点E 在点B 的右侧时,BE=AC,∴AE=AB+BE=24+12=36,∴3t=36,∴t=12;〔2〕设点E经过t秒时,△EDB≌△BCA,此时AE=3t,①当点E在点B的左侧时,BE=AB,即24-3t=24,∴t=0;②当点E在点B的右侧时,BE=AB,∴AE=AB+BE=24+24=48,∴3t=48,∴t=16.综上所述,当点E经过0秒或4秒或12秒或16秒时,△DEB与△BCA全等.故答案为:0,4,12,16.【点评】此题考查了全等三角形的性质;分类讨论各种情况下的三角形全等是解决问题的关键.13.如图,点C在线段BD上,AB⊥BD于B,ED⊥BD于D.∠ACE=90°,且AC=5cm,CE=6cm,点P以2cm/s 的速度沿A→C→E向终点E运动,同时点Q以3cm/s的速度从 E 开始,在线段EC上往返运动〔即沿E→C→E→C→…运动〕,当点P到达终点时,P,Q同时停止运动.过P,Q分别作BD的垂线,垂足为M,N.设运动时间为ts,当以P,C,M为顶点的三角形与△QCN全等时,t的值为_____.【答案】1或115或235【分析】根据全等三角形的性质可得PC=CQ,然后分三种情况根据PC=CQ分别得出关于t的方程,解方程即得答案.【解答】解:当点P在AC上,点Q在CE上时,如图,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=6﹣3t,解得:t=1;当点P在AC上,点Q第一次从点C返回时,∵以P,C,M为顶点的三角形与△QCN全等,∴PC=CQ,∴5﹣2t=3t﹣6,解得:t=11 5;当点P在CE上,点Q第一次从E点返回时, ∵以P,C,M为顶点的三角形与△QCN全等, ∴PC=CQ,∴2t﹣5=18﹣3t,解得:t=235;综上所述:t 的值为1或115或235. 故答案为:1或115或235. 【点评】此题考查了全等三角形的应用,正确分类、灵活应用方程思想、熟练掌握全等三角形的性质是解题的关键.14.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,OA=8,点D 为对角线OB 的中点,假设反比例函数1k y x=在第一象限内的图象与矩形的边BC 交于点F,与矩形边AB 交于点E,反比例函数图象经过点D,且tan ∠BOA=12,设直线EF 的表达式为y=k 2x+b .将矩形折叠,使点O 与点F 重合,折痕与x 轴正半轴交于点H,与y 轴正半轴交于点G,直接写出线段OG 的长_______.【答案】52【分析】利用正切的定义计算出AB 得到B 点坐标为〔8,4〕,那么可得到D 〔4,2〕,然后利用待定系数法确定反比例函数表达式;利用反比例函数图象上点的坐标特征确定F 〔2,4〕,连接GF,如图,设OG =t,那么CG =4−t,利用折叠的性质得到GF =OG =t,那么利用勾股定理得到22+〔4−t 〕2=t 2,然后解方程求出t 得到OG 的长.【解答】在Rt △AOB 中,∵tan ∠BOA =AB OA =12, ∴AB =12OA =12×8=4, ∴B 点坐标为〔8,4〕,∵点D 为对角线OB 的中点,∴D 〔4,2〕,把D 〔4,2〕代入y =1k y x=,得k 1=4×2=8, ∴反比例函数表达式为8y x =;当y=4时,8x=4,解得x=2,那么F〔2,4〕,∴CF=2,连接GF,如图,设OG=t,那么CG=4−t,∵将矩形折叠,使点O与点F重合, ∴GF=OG=t,在Rt△CGF中,22+〔4−t〕2=t2,解得t=5 2 ,即OG的长为52.故答案为:52.【点评】此题考查了反比例函数的综合题:熟练掌握反比例函数图象上点的坐标特征、折叠的性质和矩形的性质;会运用待定系数法求反比例函数解析式;会运用三角函数的定义和勾股定理进行几何计算.15.如图,在矩形ABCD中,AB=6,AD=23,E是AB边上一点,AE=2,F是直线CD上一动点,将AEF沿直线EF折叠,点A的对应点为点A',当点E,A',C三点在一条直线上时,DF的长为_____.【答案】6﹣7或7【分析】利用勾股定理求出CE,再证实CF=CE即可解决问题,〔注意有两种情形〕.【解答】解:如图,由翻折可知,∠FEA=∠FEA′,∵CD ∥AB,∴∠CFE =∠AEF,∴∠CFE =∠CEF,∴CE =CF,在Rt △BCE 中,EC =22BC EB +=22(23)427+=,∴CF =CE =27,∵AB =CD =6,∴DF =CD ﹣CF =6﹣27,当点F 在DC 的延长线上时,易知EF ⊥EF′,CF =CF′=27,∴DF =CD+CF′=6+27故答案为:6﹣27或6+27.【点评】此题考查翻折变换、矩形的性质、勾股定理等知识,此题的突破点是证实△CFE 的等腰三角形,属于中考常考题型.16.如图,有一张矩形纸条ABCD ,AB =5cm ,BC =2cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.当点B '恰好落在边CD 上时,线段BM 的长为_____cm ;在点M 从点A 运动到点B 的过程中,假设边MB '与边CD 交于点E ,那么点E 相应运动的路径长为_____cm .【答案】5 352- 【分析】第一个问题证实BM =MB ′=NB ′,求出NB 即可解决问题.第二个问题,探究点E 的运动轨迹,寻找特殊位置解决问题即可.【解答】如图1中,∵四边形ABCD 是矩形,∴AB ∥CD ,∴∠1=∠3,由翻折的性质可知:∠1=∠2,BM =MB ′,∴∠2=∠3,∴MB ′=NB ′,∵NB ′22B C NC '''+2221+5cm 〕,∴BM =NB ′5cm 〕. 如图2中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,那么有x 2=22+〔4﹣x 〕2,解得x =52, ∴DE =4﹣52=32〔cm 〕, 如图3中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=5﹣1﹣2=2〔cm 〕,如图4中,当点M 运动到点B ′落在CD 时,DB ′〔即DE ″〕=5﹣1545〔cm 〕,∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=2﹣32+2﹣〔45352〕〔cm 〕.故答案为5,〔352 〕.【点评】此题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.如图①,在菱形ABCD中,∠B=60°,M为AB的中点,动点P从点B出发,沿B→C→D的路径运动,到达点D时停止.连接MP,设点P运动的路程为x,MP2=y,假设y与x的函数图象大致如图②所示,那么菱形ABCD 的周长为____________.【答案】8【分析】先从图②分析p的运动过程中MP的变化,再从(4,7)这个点入手求解菱形的边长,再计算周长即可得到答案;【解答】解:如图1,过M 点作ME ⊥BC 与E,结合图像二得到,P 点从B 运动到E,MP 的长度一直在减小,P 点从E 运动到C,MP 的长度一直在增大,P 点从C 运动到D,MP 的长度也在增大,所以在D 点,MP 的长度最大,∴当P 运动到D 时,x=4,y=7,即:27MP = ,4BC CD +=,又∵ABCD 是菱形,∴BC=CD=2〔菱形四边相等〕,∴菱形的周长为:428⨯= ,故答案为:8.【点评】此题主要考查了菱形的性质以及从图像中获取信息得水平,掌握菱形四边相等是解题的关键; 18.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C ,以此方式,绕点O 旋转2021次得到正方形201820182018OA B C ,如果点A 的坐标为〔1,0〕,那么那么点2019B 的坐标为_____.【答案】〔2,0〕【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【解答】∵四边形OABC 是正方形,且OA =1,∴B 〔1,1〕,连接OB,由勾股定理得:OB =22112+=,由旋转得:OB =OB 1=OB 2=OB 3= (2)∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,依次得到∠AOB =∠BOB 1=∠B 1OB 2=…=45°, ∴B 1〔0,2〕,B 2〔−1,1〕,B 3〔−2,0〕,…,发现是8次一循环,所以2021÷8=252…余3, ∴点B 2021的坐标为〔−2,0〕故答案为:〔−2,0〕.【点评】此题考查了旋转的性质:对应点到旋转中央的距离相等;对应点与旋转中央所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.19.四边形ABCD 中,45ABC ∠=︒,90C D ∠=∠=︒,含30角〔30P ∠=︒〕的直角三角板PMN 〔如图〕在图中平移,直角边MN BC ⊥,顶点M 、N 分别在边AD 、BC 上,延长NM 到点Q ,使QM PB =,假设10BC =,3CD =,那么点M 从点A 平移到点D 的过程中,点Q 的运动路径长为__________.【答案】72【分析】当点P 与B 重合时,推出△AQK 为等腰直角三角形,得出QK 的长度,当点M′与D 重合时,推出△KQ′M′为等腰直角三角形,得出KQ′的长度,根据题意分析出点Q 的运动路径为QK+KQ′,从而得出结果.【解答】解:如图当点M与A重合时,∵∠ABC=45°,∠ANB=90°,PN=3MN=3CD=33,BN=MN=3,∴此时PB=33-3,∵运动过程中,QM=PB,当点P与B重合时,点M运动到点K, 此时点Q在点K的位置,AK即AM的长等于原先PB和AQ的长,即33-3,∴△AQK为等腰直角三角形,∴QK=2AQ=36-32,当点M′与D重合时,P′B=B C-P′C=10-33=Q′M′,∵AD=BC-BN=BC-AN=BC-DC=7,KD=AD-AK=7-〔33-3〕=10-33,Q′M′=BP′=BC-P′C= BC-PN =10-33,∴△KQ′M′为等腰直角三角形,-,∴KQ′=2Q′M′=2〔10-33〕=10236当点M从点A平移到点D的过程中,点Q的运动路径长为QK+KQ′,-〕=72,∴QK+KQ′=〔36-32〕+〔10236故答案为72.【点评】此题考查平移变换、运动轨迹、解直角三角形等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.20.如图,在Rt ABC ∆中,90B ∠=︒,60A ∠=︒,4AC =,M 是AC 的中点,E 是AB 边上的一个动点,连接ME ,过M 作ME 的垂线,与BC 边交于点F .在E 从A 运动到B 的过程中,EF 的中点N 运动的路程为_______.【答案】233【分析】连接,BN MN ,做射线AN ,根据直角三角形斜边上的中线等于斜边的一半,可得BN MN =,结合条件可证ABN AMN ≅,那么BAN MAN ∠=∠,故动点N 始终在BAC ∠的平分线上,找到点N 起点与终点,求长度即可.【解答】解:如图,连接,BN MN ,做射线AN ,BEF 与MEF 都是直角三角形,且N 为斜边EF 的中点,∴12BN EF MN ==, 在Rt ABC ∆中,90B ∠=︒,9030C BAC ∠=︒-∠=︒, ∴12AB AC AM ==, 在ABN 与AMN 中,BN MN AN AN AB AM =⎧⎪=⎨⎪=⎩∴()ABN AMN SSS ≅,∴BAN MAN ∠=∠,可见点N 始终在BAC ∠的平分线上,当E 从A 出发时,如以下图,点N 运动的起点在AF 的中点,终点即为此时的F , 那么12NF AF =. 在Rt ABF ∆中,AB=2,∠FAB=30°,利用勾股定理求得AF=433 23312NF AF == 故点N 运动的路程为233. 故答案为:233. 【点评】此题是结合了含30°的直角三角形,全等三角形的判定与应用,角平分线的性质等知识点的动点问题,根据题意作出适宜的辅助线,找到动点的起点与终点是解答关键.三、解做题21.如图,在数轴上有三个点A 、B 、C ,O 是原点,满足20OA cm =,60AB cm =,BC 10cm =,动点P 从点O 出发向右以每秒1cm 的速度匀速运动;同时,动点Q 从点C 出发,在数轴上向左运动.〔1〕假设点Q 的速度为每秒0.8cm ,求P ,Q 相遇时,运动的时间.〔2〕假设Q 的运动速度为每秒3cm 时,经过多长时间P ,Q 两点相距70cm ?〔3〕当2PA PB =时,点Q 运动的位置恰好是线段AB 的三等分点,求Q 的速度.【答案】〔1〕50s ;〔2〕经过5秒和40秒时P 、Q 两点相距7Ocm ;〔3〕当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ;当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【分析】〔1〕 设P 、Q 相遇时,运动的时间为t ,列出方程即可解决问题;〔2〕原本P 、Q 之间距离大于70cm,那么分两种情况讨论,第一相距70cm 跟相遇后两者相距70cm,根据路程=速度×时间,即可求得,不过第二次相距70cm 时,Q 点早已到达O 点停止运动;〔3〕 PA=2PB 分两种情况,一种P 在线段AB 内,一种P 在线段AB 的延长线上,根据速度=路程÷时间,即可求得点Q 的速度.【解答】〔1〕设P 、Q 相遇时,运动的时间为t ,由题知:20601090OC OA AB BC cm =++=++=,∴当P 、Q 相遇时,OP CQ OC +=,即0.890t t +=.∴解得:50t s =,故P 、Q 相遇时的运动时间为50s .〔2〕∵9070OA AB BC cm cm ++=>,∴分两种情况,①Q 在P 的右侧时,经过时间为9070513s -=+, ②Q 在P 的左侧时,设经过时间1t ,P 、Q 两点相距70cm ,此时1:P t ,1:903Q t -,∴()1190370t t --=,解得:140t s =,综合①②得知,经过5秒和40秒时P 、Q 两点相距70cm .〔3〕2PA PB =,分两种情况,①当点P 在A 、B 两点之间时,∵2PA PB =, ∴2403PA AB cm ==, 此时运动的时间为601OA PA s += ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==,点Q 的运动速度为0.5/60BC BQ cm s +=或5/6cm s ; ②当点P 在线段AB 的延长线上时,∵2PA PB =,∴2120PA AB cm ==, 此时运动的时间为1401OA PA s +=, ∵点Q 运动的位置恰好是线段AB 的三等分, ∴1203BQ AB cm ==或2403BQ AB cm ==, 点Q 的运动速度为3/14014BC BQ cm s +=或514/cm s ; 综合①②得知,当点P 在A 、B 两点之间时,点Q 的运动速度为0.5/cm s 或5/6cm s ; 当点P 在线段AB 的延长线上时,点Q 的运动速度为314/cm s 或514/cm s . 【点评】考查了两点间的距离和方程,解题关键是〔1〕根据关系列出方程;〔2〕PQ 相距70cm 分两种情况,第一次相距70cm 和相遇后再次相距70cm ;〔3〕当PA=2PB 时,分两种情况,一种点P 在线段AB 之间和点P 在线段AB 的延长线上.22.数轴上点A 表示的有理数为20,点B 表示的有理数为-10,点P 从点A 出发以每秒5个单位长度的速度在数轴上往左运动,到达点B 后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A 停止,设运动时间为t 〔单位:秒〕.〔1〕当t =5时,点P 表示的有理数为 .〔2〕在点P 往左运动的过程中,点P 表示的有理数为 〔用含t 的代数式表示〕.〔3〕当点P 与原点距离5个单位长度时,t 的值为 .【答案】〔1〕5-;〔2〕205t -;〔3〕3或5或8.5或13.5.【分析】〔1〕先根据运动速度和时间求出PA 的长,再根据数轴的定义即可得;〔2〕先求出在点P 往左运动的过程中,5PA t =,再根据数轴的定义即可得;〔3〕分点P 从点A 运动到点B 和点P 从点B 返回,运动到点A 两种情况,再分别求出点P 表示的有理数,然后根据数轴的定义建立绝对值方程,最后解方程即可得.【解答】〔1〕由题意得:()201030AB =--=,点P 从点A 运动到点B 所需时间为30655AB ==〔秒〕,点P 从点B 返回,运动到点A 所需时间为301522AB ==〔秒〕, 那么当56t =<时,5525PA =⨯=,因此,点P 表示的有理数为20255-=-,故答案为:5-; 〔2〕在点P 往左运动的过程中,5PA t =,那么点P 表示的有理数为205t -,故答案为:205t -;〔3〕由题意,分以下两种情况:①当点P 从点A 运动到点B,即06t ≤≤时,由〔2〕可知,点P 表示的有理数为205t -, 那么2055t -=,即2055t -=或2055t -=-,解得3t =或5t =,均符合题设;②当点P 从点B 返回,运动到点A,即615t <≤时,()26PB t =-,点P 表示的有理数为()2610222t t --=-, 那么2225t -=,即2225t -=或2225t -=-,解得13.5t =或8.5t =,均符合题设;综上,当点P 与原点距离5个单位长度时,t 的值为3或5或8.5或13.5时,故答案为:3或5或8.5或13.5.【点评】此题考查了数轴、绝对值方程、一元一次方程的应用等知识点,较难的是题〔3〕,正确分两种情况讨论,并建立方程是解题关键.23.如图,等边△ABC 的边长为8,动点M 从点B 出发,沿B →A →C →B 的方向以3的速度运动,动点N 从点C 出发,沿C →A →B →C 方向以2的速度运动.〔1〕假设动点M 、N 同时出发,经过几秒钟两点第一次相遇?〔2〕假设动点M、N同时出发,且其中一点到达终点时,另一点即停止运动.那么运动到第几秒钟时,点A、M、N以及△ABC的边上一点D恰能构成一个平行四边形?求出时间t并请指出此时点D的具体位置.【答案】〔1〕165秒;〔2〕运动了85秒或245秒时,A、M、N、D四点能够成平行四边形,此时点D在BC上,且BD=245或325.【分析】〔1〕设经过t秒钟两点第一次相遇,然后根据点M运动的路程+点N运动的路程=AB+CA列方程求解即可;〔2〕首先根据题意画出图形:如图②,当0≤t≤83时,DM+DN=AN+CN=8;当83<t≤4时,此时A、M、N三点在同一直线上,不能构成平行四边形;4<t≤163时,MB+NC=AN+CN=8;当163<t≤8时,△BNM为等边三角形,由BN=BM可求得t的值.【解答】解:〔1〕设经过t秒钟两点第一次相遇,由题意得:3t+2t=16,解得:t=16 5,所以,经过165秒钟两点第一次相遇;〔2〕①当0≤t≤83时,点M、N、D的位置如图2所示:∵四边形ANDM为平行四边形,∴DM=AN,DM//AN.DN//AB∴∠MDB=∠C=60°,∠NDC=∠B=60°∴∠NDC=∠C.∴ND=NC。
动点问题教学设计
![动点问题教学设计](https://img.taocdn.com/s3/m/cb14322128ea81c759f57881.png)
人教版八年级下册数学第十八章平行四边形教学设计课题:四边形中的动点问题董晨浩一、内容及其分析1、内容:四边形中的动点问题.2、分析:“动点问题”是指题设图形中存在一个或多个动点,他们在线段、射线、或弧线上运动一类的开放性题目。
解决这一类问题的关键是动中求静,灵活运用有关的数学知识解决问题。
注重对几何图形运动变化能力的考察,从变化的角度和运动变化来研究四边形、函数,图像等图形。
通过对称、动点的运动等研究手段和方法来探索与发现图形性质及图形变化。
本节课选择基本图形为四边形,让学生经历探索的过程的能力立意,考查自主探究的能力,促进培养学生解决问题的能力。
综上所述本节课的难点:如何在动态问题中提炼出静态几何图形和数量关系。
二、教学目标及其分析根据教材的地位及作用,结合课程标准,从学生的学情出发。
我们将本节课的教学目标确定为:①知识与技能目标复习平行四边形、特殊平行四边形的相关知识、性质与判定;能初步应用特殊四边形的性质、判定、勾股定理等知识点综合解决动点问题的能力.②过程与方法目标(1)使学生经历探究“化动为静”、“以静制动”的过程.(2)在解决四边形动点问题的过程中,体会数形结合、转化、方程、函数、分类讨论的思想方法.③情感、态度与价值观目标在解决由变式逐层推进的问题时,培养学生的思维能力,养成主动探究的习惯,同时培养学生的合作意识和交流能力,体会探索发现的乐趣,增强学习数学的自信心。
2.分析:图形在动点运动过程中,观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程,在变化中找到不变的性质是解决数学重点和探究题型的基本思路,这也是动态几何数学问题中最研究的核心的数学素养,解决本节课的问题和达成目标的关键。
三、教学问题诊断分析动态几何的特点是问题背景是特殊图形、考查的问题也是特殊图形,所以要把握好一般与特殊的关系,分析过程中要特别关注图形的特性,特殊角、特殊图形的性质、图形的特殊位置。
题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质
![题型专项研究:平行四边形、矩形、菱形、正方形的判定与性质](https://img.taocdn.com/s3/m/df48d812e2bd960590c677e1.png)
题型6平行四边形、矩形、菱形、正方形的判定与性质,备考攻略)1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题.3.平行四边形的存在性问题.4.四边形与二次函数的综合题.1.折叠、轴对称及特殊平行四边形的性质应用出错.2.平行四边形的存在性问题中解有遗漏.3.很难解答四边形与二次函数的综合题,无从下手.1.四边形是几何知识中非常重要的一块内容,因其“变化多端”更是成为中考数学考试的一个热门考点.近几年随着新课改的不断深入,中考题更加考查学生思维能力,如出现一些图形折叠、翻转等问题.这类问题的实践性强,要利用图形变化前后线段、角的对应相等关系,构造一些特殊三角形等知识来求解.2.中考还常把四边形与平面直角坐标系结合起来考查,这类题目不仅仅把“数”与“形”联系起来思考,更提高同学们综合运用知识的能力.数形结合题目可以考查学生对“新事物”“新知识”的接受和理解能力,也考查学生运用所学知识来解决“新事物”“新知识”的能力.3.四边形作为特殊的四边形,一直是中考试题中的主角.尤其是在综合了函数知识后动态研究它的存在性问题,对学生分析问题和解决问题的要求较高.此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.1.简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题:平行四边形具有对边平行且相等、对角相等、对角线互相平分等性质,它们在计算、证明中都有广泛的应用:(1)求角的度数;(2)求线段的长;(3)求周长;(4)求第三边的取值范围.2.四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题:有关矩形纸片折叠的问题,通过动手操作去发现解决问题的方法.其规律为利用折叠前后线段、角的对应相等关系,构造直角三角形,利用勾股定理来求解.折叠问题数学思想:(1)思考问题的逆向(反方向),(2)转化与化归思想;(3)归纳与分类的思想;(4)从变寻不变性的思想.3.综合了函数知识后动态研究平行四边形的存在性问题:此类题目主要考查平行四边形的判定与性质、函数解析式的确定与性质,考查识图作图、运算求解、数学表达等能力,数形结合、分类讨论、函数与方程等数学思想.学生在处理问题的时候,往往不能正确分类,导致漏解.此外,在解题时一般需要添设辅助线,利用平行四边形的性质,转化为全等进行计算,学生顺利完成的难度就更大.如何才能让他们有目的的进行分类、简单明了的给出解答,从而减轻学习负担呢?借助平行四边形的对角线性质,来探究平行四边形的存在性问题就是一个很好的途径.4.四边形与二次函数的综合题是压轴题:综合考查了二次函数,一次函数,尺规作图,勾股定理,平面直角坐标系,一元二次方程,轴对称——翻折,最值问题.读懂题目、准确作图、熟悉二次函数及其图象是解题的关键.解决压轴题关键是找准切入点,如添辅助线,构造定理所需的图形或基本图形;紧扣不变量,并善于使用前题所采用的方法或结论;深度挖掘题干,反复认真的审题,在题目中寻找多解的信息,等等.压轴题牵涉到的知识点较多,知识转化的难度较高,除了要熟知各类知识外,平时要多练,提高知识运用和转化的能力.,典题精讲)◆简单的应用平行四边形、矩形、菱形、正方形的性质或判定解答证明题【例1】(成都中考)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为________.【解析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB =6,由勾股定理求出AD即可.【答案】3 31.(巴中中考)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=30°,则∠E=__15__°.2.(2017甘肃中考)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF 是平行四边形; (2)当四边形BEDF 是菱形时,求EF 的长.解:(1)∵四边形ABCD 是矩形,O 是BD 的中点, ∴∠A =90°,AD =BC =4,AB ∥DC ,OB =OD, ∴∠OBE =∠ODF.在△BOE 和△DOF 中,⎩⎨⎧∠OBE =∠ODF ,OB =OD ,∠BOE =∠DOF ,∴△BOE ≌△DOF(ASA ), ∴EO =FO,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF, 设BE =x ,则DE =x ,AE =6-x. 在Rt △ADE 中,DE 2=AD 2+AE 2, ∴x 2=42+(6-x)2, 解得:x =133.∵BD =AD 2+AB 2=213, ∴OB =12BD =13.∵BD ⊥EF,∴EO =BE 2-OB 2=2133,∴EF =2EO =4133.◆四边形动态问题——旋转变换类、平移变换类、折叠变换类,运动问题类,利用折叠(翻折)、轴对称解答最值问题【例2】(宿迁中考)如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折痕为BE.若AB 的长为2,则FM 的长为( )A .2B . 3C . 2D .1【解析】根据翻折不变性,AB =FB =2,BM =1,在Rt △BFM 中,可利用勾股定理求出FM 的值.【答案】B3.(咸宁中考)已知菱形OABC 在平面直角坐标系的位置如图所示,顶点A(5,0),OB =45,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( D )A .(0,0)B .⎝⎛⎭⎫1,12C .⎝⎛⎭⎫65,35D .⎝⎛⎭⎫107,57(第3题图)(第4题图)4.(苏州中考)矩形OABC 在平面直角坐标系中的位置如图所示,点B 的坐标为(3,4),D 是OA 的中点,点E 在AB 上,当△CDE 的周长最小时,点E 的坐标为( B )A .(3,1)B .⎝⎛⎭⎫3,43C .⎝⎛⎭⎫3,53 D .(3,2)5.(黄冈中考)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP =.6.(2017甘肃中考)如图,E ,F 分别是▱ABCD 的边AD ,BC 上的点,EF =6,∠DEF =60°,将四边形EFCD 沿EF 翻折,得到EFC′D′,ED ′交BC 于点G ,则△GEF 的周长为( C )A .6B .12C .18D .247.(2017广东中考)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F.(1)求证:△BDF 是等腰三角形;(2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.解:(1)如图①,根据折叠,∠DBC =∠DBE, 又AD ∥BC,∴∠DBC =∠ADB, ∴∠DBE =∠ADB, ∴DF =BF,∴△BDF 是等腰三角形;(2)①∵四边形ABCD 是矩形, ∴AD ∥BC, ∴FD ∥BG.∴四边形BFDG 是平行四边形. ∵DF =BF,∴四边形BFDG 是菱形; ②∵AB =6,AD =8, ∴BD =10, ∴OB =12BD =5.假设DF =BF =x ,∴AF =AD -DF =8-x.∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254, ∴FO =BF 2-OB 2=⎝⎛⎭⎫2542-52=154, ∴FG =2FO =152. ◆解决平面直角坐标系中平行四边形存在性问题【例3】(2017大理中考模拟)如图,A ,B ,C 是平面上不在同一直线上的三个点. (1) 画出以 A ,B ,C 为顶点的平行四边形;(2)若 A ,B ,C 三点的坐标分别为(-1,5),(-5,1),(2,2),请写出这个平行四边形第四个顶点 D 的坐标.【解析】利用坐标系的知识点解题.【答案】(1)如图所示;(2)第四个顶点D 的坐标为(-2,-2)或(6,6)或(-8,4).1.(兰州中考)如图所示,菱形ABCD 的周长为20 cm ,DE ⊥AB ,垂足为E ,sin A =35,则下列结论正确的个数有( C )①DE =3 cm ;②BE =1 cm ;③菱形的面积为15 cm 2;④BD =210 cm . A .1个 B .2个 C .3个 D .4个2.(济南中考)如图,矩形ABCD 中,AB =3,BC =5,过对角线交点O 作OE ⊥AC 交AD 于E ,则AE 的长是( D )A .1.6B .2.5C .3D .3.4(第2题图)3.(珠海中考)如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4 cm,则点P到BC的距离是__4__cm.4.(新疆中考)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A 的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E.(1)求证:四边形BCED′是菱形;(2)若点P是直线l上的一个动点,请计算PD′+PB的最小值.解:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E.∵DE∥AD′,∴∠DEA=∠EAD′,∴∠DAE=∠EAD′=∠DEA=∠D′EA,∴∠DAD′=∠DED′,∴四边形DAD′E是平行四边形,∴DE=AD′.∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,∴CE=D′B,CE∥D′B,∴四边形BCED′是平行四边形;(2)∵AD=AD′,∴▱DAD′E是菱形.∴D与D′关于AE对称.连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G.∵CD ∥AB ,∴∠DAG =∠CDA =60°. ∵AD =1,∴AG =12,DG =32,BG =52,∴BD =DG 2+BG 2=7, ∴PD ′+PB 的最小值为7.5.(资阳中考)如图,在平行四边形ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3),双曲线y =kx(k ≠0,x >0)过点D.(1)求双曲线的解析式;(2)作直线AC 交y 轴于点E ,连接DE ,求△CDE 的面积.解:(1)∵▱ABCD 中,点A ,B ,C 的坐标分别是(1,0),(3,1),(3,3), ∴点D 的坐标为(1,2). ∵点D 在双曲线y =kx 上,∴k =1×2=2,∴双曲线的解析式为y =2x ;(2)∵直线AC 交y 轴于点E , ∴点E 的横坐标为0. ∵AD =2,∵S △ADC =12·(3-1)·AD =2,∴S △CDE =S △EDA +S △ADC =1+2=3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特殊四边形:动点问题题型一:1.已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174C 、 17178D 、32.如图4,在梯形ABCD 中,AD ∥BC ,AD =6,BC =16,E 是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒2个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动.当运动时间t = 秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.3.如图,在梯形ABCD 中,AD ∥BC,E 是BC 的中点,AD=5,BC=12,CD=42,∠C=045,点P 是BC 边上一动点,设PB 长为x.(1)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为直角梯形.(2)当x 的值为 时,以点P 、A 、D 、E 为顶点的四边形为平行四边形.(3)点P 在BC 边上运动的过程中,以点P 、A 、D 、E 为顶点的四边形能否构成菱形?试说明理由.4.在一个等腰梯形ABCD 中,AD//BC ,AB=CD ,AD=10cm ,BC=30cm ,动点P 从点A 开始沿AD 边向点D 以每秒1cm 的速度运动,同时动点Q 从点C 开始沿CB 边向点B 以每秒3cm 的速度运动,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t s.(1).t 为何值时,四边形ABQP 为平行四边形?(2).四边形ABQP 能为等腰梯形吗?如果能,求出t 的值,如果不能,请说明理由。
6.梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。
已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。
假设运动时间为t秒,问:(1)t为何值时,四边形PQCD是平行四边形?(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?(3)t为何值时,四边形PQCD是直角梯形?(4)t为何值时,四边形PQCD是等腰梯形?(5) t为何值时, APQ是等腰三角形?7.如图,在直角梯形ABCD中,∠B=90°,AD‖BC,且AD=4cm,AB=8cm,DC=10cm。
若动点P从点A出发,以每秒4cm的速度沿线段AD、DC向C点运动;动点Q从C点以每秒5cm的速度沿CB向B点运动。
当Q点到达B点时,动点P、Q同时停止运动。
设P、Q同时出发,并运动了t秒。
(1)直角梯形ABCD的面积为__________cm的平方.(2)当t=________秒时,四边形PQCD为平行四边形。
(3)当t=________秒时,PQ=DC(4)是否存在t,使得P点在线段DC上,且PQ⊥DC(如图2所示)?若存在,列出方程求出此时的t;若不存在,请说明理由。
8.如图,在直角梯形ABCD中,∠B=90°,AB‖CD,且AB=4cm,BC=8cm,DC=10cm。
若动点P从点A出发,以每秒1cm的速度沿线段AB、BC向C点运动;动点Q从C点以每秒1cm的速度沿CB向B点运动。
当Q点到达B点时,动点P、Q同时停止运动。
设P、Q同时出发,并运动了t秒。
(1)直角梯形ABCD的面积为__________cm的平方.(2)当t=________秒时,四边形PBCQ为平行四边形。
(3)当t=________秒时,PQ=BC.10. 如图,在等腰梯形ABCD中,AB∥CD,其中AB=12 cm,CD=6cm ,梯形的高为4,点P从开始沿AB边向点B以每秒3cm的速度移动,点Q从开始沿CD边向点D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。
设运动时间为t秒。
(1)求证:当t为何值时,四边形APQD是平行四边形;(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
11.如图,在直角梯形ABCD中,AB//CD,∠C=RT∠,AB=AD=10cm,BC=8cm,点P从点A出发,以每秒3cm的速度沿线段AB方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动。
已知动点P、Q同时出发,当点Q运动到点C时,P、Q运动停止,设运动时间为t(s).(1)求CD的长。
(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P,点Q的运动过程中,是否存在某一时刻,使得ΔBPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由。
13. 已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.14.已知:如图,在梯形ABCD 中,AB ∥DC ,∠B=90°,BC=8cm ,CD=24cm ,AB=26Cm,点P 从C 出发,以1cm/s 的速度向D 运动,点Q 从A 出发,以3cm/s 的速度向B 运 动,其中一动点达到端点时,另一动点随之停止运动.从运动开始.(1)经过多少时间,四边形AQPD 是平行四边形?(2)经过多少时间,四边形AQPD 成为等腰梯形?(3)在运动过程中,P 、Q 、B 、C 四点有可能构成正方形吗?为什么?如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=16cm ,AB=12cm,BC=21cm ,动点P 从点B 出发,沿射线BC 的方向以每秒2cm 的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1cm 的速度向点D 运动,点P ,Q 分别从点B ,A 同时出发,当点Q 运动到点D 时,点P 随之停止运动,设运动的时间为t (秒).①当t 为何值时,四边形PQDC 是平行四边形;②当t 为何值时,以C ,D ,Q ,P 为顶点的梯形面积等于60cm 2?③是否存在点P ,使△PQD 是等腰三角形?若存在,请求出所有满足要求的t 的值,若不存在,请说明理由.A BC D E F 图10-1 O 图10-2 AB C D E F PQ 备用图A B C D E F PQ15.如图,在梯形ABCD 中,AD ∥BC ,AD=6,DC=10,AB=65,∠B=45°.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN ∥AB 时,求t 的值.(3)△MNC 可能为等腰三角形吗?若能,请求出t 的值;若不能,请说明理由.(4)△MNC 可能为直角三角形吗?若能,请求出t 的值;若不能,请说明理由.(5)△MNC 为20时,请求出t 的值.如图,直角梯形ABCD 中,AB ∥CD ,∠A=90°,AB=34,AD=4,DC=234 ,点P 从点A 出发沿折线段AD-DC-CB 以每秒3个单位长的速度向点B 匀速运动,同时,点Q 从点A 出发沿射线AB 方向以每秒2个单位长的速度匀速运动,当点P 与点B 重合时停止运动,点Q 也随之停止,设点P ,Q 的运动时间是t 秒(t >0).(1)当点P 到达终点B 时,求t 的值;(2)设△APQ 的面积为S ,分别求出点P 运动到AD 、CD 上时,S 与t 的函数关系式;(3)当t 为何值时,能使PQ ∥DB ;(4)当t 为何值时,能使P 、Q 、D 、B 四点构成的四边形是平行四边形。
16.如图,在等腰梯形ABCD中,AD∥BC,AB=DC=60,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当点P到达终点C时,求t的值,并指出此时BQ的长;(2)当点P运动到AD上时,t为何值能使PQ∥DC;(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必写出t的取值范围)(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.17.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=33,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形?(3)当t为何值时,射线QN恰好将△ABC的面积平分?并判断此时△ABC的周长是否也被射线QN平分.19.如图,已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,AB=8,CD=10.(1)求梯形ABCD 的面积S ;(2)动点P 从点B 出发,以2cm/s 的速度、沿B →A →D →C 方向,向点C 运动;动点Q 从点C 出发,以2cm/s 的速度、沿C →D →A 方向,向点A 运动.若P 、Q 两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t 秒.问:①当点P 在B →A 上运动时,是否存在这样的t ,使得直线PQ 将梯形ABCD 的周长平分?若存在,请求出t 的值,并判断此时PQ 是否平分梯形ABCD 的面积;若不存在,请说明理由;②在运动过程中,是否存在这样的t ,使得以P 、D 、Q 为顶点的三角形恰好是以DQ 为一腰的等腰三角形?若存在,请求出所有符合条件的t 的值;若不存在,请说明理由.20.在直角梯形ABCD 中,∠C=90°,高CD=6cm ,底BC=10cm (如图1).动点Q 从点B 出发,沿BC 运动到点C 停止,运动的速度都是1cm/s .同时,动点P 也从B 点出发,沿BA →AD 运动到点D 停止,且PQ 始终垂直BC .设P ,Q 同时从点B 出发,运动的时间为t (s ),点P 运动的路程为y (cm ).分别以t ,y 为横、纵坐标建立直角坐标系(如图2),已知如图中线段为y 与t 的函数的部分图象.经测量点M 与N 的坐标分别为(4,5)和(2, 25).(1)求M ,N 所在直线的解析式;(2)求梯形ABCD 中边AB 与AD 的长;(3)写出点P 在AD 边上运动时,y 与t 的函数关系式(注明自变量的取值范围),并在图2中补全整运动中y 关于t 的函数关系的大致图象.22.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3 3,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t 秒(t>0).(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围);(2)当BP=1时,求△EPQ与梯形ABCD重叠部分的面积;已知:如图,在直角梯形COAB中,OC∥AB,∠AOC=90°,AB=4,AO=8,OC=10,以O为原点建立平面直角坐标系,点D为线段BC的中点,动点P从点A出发,以每秒4个单位的速度,沿折线AOCD向终点C运动,运动时间是t秒.(1)D点的坐标为;(2)当t为何值时,△APD是直角三角形;(3)如果另有一动点Q,从C点出发,沿折线CBA向终点A以每秒5个单位的速度与P点同时运动,当一点到达终点时,两点均停止运动,问:P、C、Q、A四点围成的四边形的面积能否为28?如果可能,求出对应的t;如果不可能,请说明理由.在梯形ABCO 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A 、B 、C 三点的坐标分别是A (8,0),B (8,10),C (0,4).点D (4,7)为线段BC 的中点,动点P 从O 点出发,以每秒1个单位的速度,沿折线OAB 的路线运动,运动时间为t 秒.(1)求直线BC 的解析式;(2)设△OPD 的面积为s ,求出s 与t 的函数关系式,并指出自变量t 的取值范围;(3)当t 为何值时,△OPD 的面积是梯形OABC的面积的83?如图,在直角梯形COAB 中,CB ∥OA ,以O 为原点建立直角坐标系,A 、C 的坐标分别为A (10,0)、C (0,8),CB=4,D 为OA 中点,动点P 自A 点出发沿A →B →C →O 的线路移动,速度为1个单位/秒,移动时间为t 秒.(1)求AB 的长,并求当PD 将梯形COAB 的周长平分时t 的值,并指出此时点P 在哪条边上;(2)动点P 在从A 到B 的移动过程中,设△APD 的面积为S ,试写出S 与t 的函数关系式,并指出t 的取值范围;(3)几秒后线段PD 将梯形COAB 的面积分成1:3的两部分?求出此时点P 的坐标?已知直角梯形OABC在如图所示的平面直角坐标系中,AB∥OC,AB=10,OC=22,BC=15,动点M从A点出发,以每秒一个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动.当其中一个动点运动到终点时,两个动点都停止运动.(1)求B点坐标;(2)设运动时间为t秒;①当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;②当t为何值时,四边形OAMN的面积最小,并求出最小面积;③若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动.在②的条件下,PM+PN 的长度也刚好最小,求动点P的速度.如图(1),以梯形OABC的顶点O为原点,底边OA所在的直线为轴建立直角坐标系.梯形其它三个顶点坐标分别为:A(14,0),B(11,4),C(3,4),点E以每秒2个单位的速度从O点出发沿射线OA向A点运动,同时点F以每秒3个单位的速度,从O点出发沿折线OCB 向B运动,设运动时间为t.(1)当t=4秒时,判断四边形COEB是什么样的四边形?(2)当t为何值时,四边形COEF是直角梯形?(3)在运动过程中,四边形COEF能否成为一个菱形?若能,请求出t的值;若不能,请简要说明理由,并改变E、F两点中任一个点的运动速度,使E、F运动到某时刻时,四边形COEF是菱形,并写出改变后的速度及t的值如图,在平面直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14,A(16,0),C(0,2).(1)如图①,若点P、Q分别从点C、A同时出发,点P以每秒2个单位的速度由C向B 运动,点Q以每秒4个单位的速度由A向O运动,当点Q停止运动时,点P也停止运动.设运动时间为t秒(0≤t≤4).①求当t为多少时,四边形PQAB为平行四边形?②求当t为多少时,直线PQ将梯形OABC分成左右两部分的比为1:2,并求出此时直线PQ的解析式.(2)如图②,若点P、Q分别是线段BC、AO上的任意两点(不与线段BC、AO的端点重合),且四边形OQPC面积为10,试说明直线PQ一定经过一定点,并求出该定点的坐标.如图,在平面直角坐标系中,直角梯形ABCO的变OC落在x轴的正半轴上,且AB//OC,BC⊥OC,AB=4,BC=7,OC=10.正方形ODEF的两边分别坐落在坐标轴上,且它的面积等于直角梯形ABCO面积,将正方形ODEF沿x轴的正半轴平行移动,设它与直角梯形ABCO 的重叠部分面积为S。