初中数学绝对值化简数轴认识一元一次方程综合练习题(附答案)
含绝对值符号的一元一次方程习题附答案
含绝对值符号的一元一次方程习题附答案6.2.5含绝对值符号的一元一次方程完成时间:40min一.选择题(共30小题)1.已知|2﹣x|=4,则x 的值是( ) A . ﹣3 B .9 C .﹣3或9 D . 以上结论都不对2.已知关于x 的方程|5x ﹣4|+a=0无解,|4x ﹣3|+b=0有两个解,|3x ﹣2|+c=0只有一个解,则化简|a ﹣c|+|c ﹣b|﹣|a ﹣b|的结果是( ) A . 2a B .2b C .2c D .3.方程|3x|+|x ﹣2|=4的解的个数是( ) A .0 B .1 C .2 D .3 4.已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( ) A . B . 2 C .D .35.方程|2x ﹣6|=0的解是( ) A3 B ﹣3 C ±3 D. . . .6.若|x ﹣1|=3,则x=( ) A . 4 B .﹣2 C .±4 D .4或﹣27.方程|2x ﹣1|=4x+5的解是( ) A . x=﹣3或x=﹣ B . x=3或x= C . x=﹣ D .x=﹣38.若关于x 的方程|x|=2x+1的解为负数,则x 的值为( ) A . B . C . D .﹣19.方程|x ﹣3|+|x+3|=6的解的个数是( ) A . 2 B .3 C .4 D .无数个10.若|x ﹣2|=3,则x 的值是( ) A . 1 B .﹣1 C .﹣1或5 D . 以上都不对11.方程|3x|=18的解的情况是( ) A 有一个B 有两个C 无解D 有无数. 解是6 . 解,是±6.. 个解12.如果|x ﹣1|+x ﹣1=0,那么x 的取值范围是( ) A . x >1 B .x <1 C .x ≥1 D .x ≤113.若|2000x+2000|=20×2000,则x 等于( ) A . 20或﹣21 B . ﹣20或21 C . ﹣19或21 D .19或﹣2114.已知关于x 的方程|x|=ax ﹣a 有正根且没有负根,则a 的取值范围是( ) A . a >1 B .a ≤﹣1 C . a >2或a ≤﹣2 D . a >1或a ≤﹣115.适合|2a+7|+|2a ﹣1|=8的整数a 的值的个数有 ( ) A . 2 B .4 C .8 D .1616.若|x|=3x+1,则(4x+2)2005=( ) A . ﹣1 B .0 C .0或1 D .117.方程|2x ﹣1|﹣a=0恰有两个正数解,则a 的取值范围是( )A . ﹣1<a <0B . ﹣1<a <1C . 0<a <1D .<a <118.已知x ﹣y=4,|x|+|y|=7,那么x+y 的值是( ) A . ± B . ± C . ±7 D .±119.适合关系式|3x ﹣4|+|3x+2|=6的整数x 的值有( )个. A . 0 B .1 C .2 D . 大于2的自然数20.若单项式﹣2a |x|b |4x|和32ab 3﹣x 的相同字母的指数相同,则x的整数值等于( ) A . 1 B .﹣1 C .±1 D . ±1以外的数21.方程|2007x ﹣2007|=2007的解是( ) A . 0 B .2 C .1或2 D .2或022.满足||x ﹣1|﹣|x||﹣|x ﹣1|+|x|=1的x 的值是( )28.||||x ﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则( )A . 0,2,4全是根B . 0,2,4全不是根C . 0,2,4不全是根D .0,2,4之外没有根29.使方程3|x+2|+2=0成立的未知数x 的值是( ) A . ﹣2 B .0 C .D .不存在30.方程|x+5|﹣|3x ﹣7|=1的解有( ) A . 1个 B .2个 C .3个 D .无数个6.2.5含绝对值符号的一元一次方程参考答案与试题解析一.选择题(共30小题)1.已知|2﹣x|=4,则x 的值是( ) A . ﹣3 B .9 C .﹣3或9 D . 以上结论都不对考点:含绝对值符号的一元一次方程.专题:计算题. 分析: 绝对值为4的数是±4,从而可去掉绝对值符号,计算即可.解答: 解:∵|2﹣x|=4, ∴2﹣x=4或2﹣x=﹣4,解得:x=﹣3或9; 故选C .点评: 本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等.2.已知关于x 的方程|5x ﹣4|+a=0无解,|4x ﹣3|+b=0有两个解,|3x ﹣2|+c=0只有一个解,则化简|a ﹣c|+|c ﹣b|﹣|a ﹣b|的结果是( ) A . 2a B .2b C .2c D .考点: 含绝对值符号的一元一次方程.专题:计算题. 分析: 根据关于x 的方程|5x ﹣4|+a=0无解,|4x ﹣3|+b=0有两个解,|3x ﹣2|+c=0只有一个解,可判断出a ,b ,c 的取值范围,进而求解.解答: 解:根据关于x 的方程|5x ﹣4|+a=0无解,可得出:a >0, 由|4x ﹣3|+b=0有两个解,可得出:b <0,由|3x ﹣2|+c=0只有一个解,可得出;c=0,故|a ﹣c|+|c ﹣b|﹣|a ﹣b|可化简为:|a|+|b|﹣|a ﹣b|=a ﹣b ﹣a+b=0. 故选D .点评: 本题考查了含绝对值符号的一元一次方程,难度不大,关键是根据已知条件判断出a ,b ,c 的取值范围.然后化简.3.方程|3x|+|x ﹣2|=4的解的个数是( )A . 0B .1 C .2 D .3考点:含绝对值符号的一元一次方程.专题:分类讨论. 分析: 根据x 的取值范围取绝对值,所以需要分类讨论:①当x ≥2时;②当0<x <2时;③当x <0时;根据x 的三种取值范围来解原方程. 解答: 解:①当x ≥2时,由原方程,得 3x+x ﹣2=4,即4x ﹣2=4,解得x=(舍去);②当0<x <2时,由原方程,得 3x ﹣x+2=4,解得x=1; ③当x <0时,由原方程,得 ﹣3x ﹣x+2=4,解得x=﹣. 综上所述,原方程有2个解. 故选C .点评: 本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.4.已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A .B . 2C .D .3 考点:含绝对值符号的一元一次方程;一元一次方程的解. 专题:计算题.分析: 本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.解答: 解:∵|x ﹣|=0,∴x=, 把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣), 解之得:m=2;故选B .点评: 此类题型的特点是,有2个方程,一个含有字母系数,一个是不含字母系数的方程,2方程同解,求字母系数的值.一般方法是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.5.方程|2x ﹣6|=0的解是( )A .3 B . ﹣3 C . ±3 D .考点:含绝对值符号的一元一次方程.分析: 根据非负数的性质去掉绝对值符号,求出未知数的值即可.解答: 解:∵|2x ﹣6|=0,∴2x ﹣6=0,∴x=3.故选A .点评:本题考查的是非负数的性质,是中学阶段的基础题.6.若|x ﹣1|=3,则x=( )A . 4B . ﹣2C . ±4D .4或﹣2考点:含绝对值符号的一元一次方程.专题:分类讨论;方程思想.分析: 根据绝对值的意义,得出x ﹣1=±3,可解得x 的值.注意结果有两个.解答: 解:因为|3|=3,|﹣3|=3,所以x ﹣1=±3,解得x=4或﹣2.故选D .点评: 本题考查了含绝对值符号的一元一次方程,注意绝对值都是非负数,互为相反数的两数绝对值相等. 7.方程|2x ﹣1|=4x+5的解是( )A . x=﹣3或x=﹣B . x=3或x=C .x=﹣D . x=﹣ 3考点:含绝对值符号的一元一次方程. 专题:计算题.分析:根据绝对值的性质去掉绝对值符号,再根据解一元一次方程的步骤求解即可.解答: 解:①当2x ﹣1≥0,即x ≥时,原式可化为:2x ﹣1=4x+5,解得,x=﹣3,舍去;②当2x ﹣1<0,即x <时,原式可化为:1﹣2x=4x+5,解得,x=﹣,符合题意.故此方程的解为x=﹣.故选C .点此题比较简单,解答此题的关键是根据绝对值的性质去评:掉绝对值符号,不要漏解.8.若关于x 的方程|x|=2x+1的解为负数,则x 的值为( )A .B .C .D .﹣1考点:含绝对值符号的一元一次方程. 专题:分类讨论.分析:分两种情况去解方程即可①x ≥0;②x <0.解答: 解:①当x ≥0时,去绝对值得,x=2x+1,得x=﹣1,不符合预设的x ≥0,舍去.②当x <0时,去绝对值得,﹣x=2x+1,得x=﹣. 故选B .点评: 本题考查了一元一次方程的去绝对值的解法.要分类讨论.9.方程|x ﹣3|+|x+3|=6的解的个数是( )A .2B . 3C . 4D .无数个考点:含绝对值符号的一元一次方程.分析: 根据x 的取值范围取绝对值,所以需要分类讨论:①当x ≥3时;②当﹣3≤x <3时;③当x <﹣3时;根据x的三种取值范围来解原方程即可.解答: 解:当x ≥3时,原方程可变形为:x ﹣3+x+3=6,解得:x=3,当﹣3≤x <3时,原方程可变形为:﹣x+3+x+3=6,得出原方程有无数个解;当x <﹣3时,原方程可变形为:﹣x+3﹣x ﹣3=6,解得:x=﹣3,则方程|x ﹣3|+|x+3|=6的解的个数是无数个;故选D .点评: 本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.10.若|x ﹣2|=3,则x 的值是( )A .1B . ﹣1C . ﹣1或5D . 以上都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:|x ﹣2|=3去绝对值,可得x ﹣2=±3,然后计算求解.解答: 解:∵|x ﹣2|=3,∴x ﹣2=±3,∴x=﹣1或5.故选C .点评: 此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.方程|3x|=18的解的情况是( )A . 有一个解是6B . 有两个解,是±6C .无解D . 有无数个解考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析: 去绝对值符号时,要分两种情况进行讨论,即x ≥0和x <0两种情况.解答: 解:∵|3x|=18∴这个方程就变形为3x=±18两个方程. 当x ≥0时,3x=18,∴x=6当x <0时,﹣3=18,∴x=﹣6故选B .点评: 解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a 的形式.解决本题还要运用分类讨论思想.12.如果|x ﹣1|+x ﹣1=0,那么x 的取值范围是( )A .x >1B . x <1C . x ≥1D .x ≤1考点:绝对值;含绝对值符号的一元一次方程. 专题:计算题.分先根据绝对值的性质讨论x ﹣1的符号,确定出x 的取析:值范围,再解关于x 的一元一次方程,求出x 的值. 解答: 解:当x ﹣1≥0,即x ≥1时,原方程可化为x ﹣1+x ﹣1=0,解得,x=1; 当x ﹣1<0,即x <1时,原方程可化为1﹣x+x ﹣1=0,x 无解.综上所述原方程的解集是x ≤1,故选D .点评: 本题考查的是含绝对值符号的一元一次方程,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;13.若|2000x+2000|=20×2000,则x 等于( )A .20或﹣21 B . ﹣20或21 C . ﹣19或21 D .19或﹣21考点:含绝对值符号的一元一次方程. 专题:计算题.分析: 根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,然后去掉绝对值即可.解答: 解:根据|2000x+2000|=2000|x+1|=20×2000, 约分得:|x+1|=20,∴x+1=20或﹣(x+1)=20,移项解得:x=19或x=﹣21.故选D .点评: 本题考查了含绝对值符号的一元一次方程,难度不大,关键是正确去掉绝对值符号,不要漏解.14.已知关于x 的方程|x|=ax ﹣a 有正根且没有负根,则a 的取值范围是( )A .a >1B . a ≤﹣1C . a >2或a ≤﹣2D . a >1或a ≤﹣1考点:含绝对值符号的一元一次方程. 分析: 根据绝对值的性质和方程|x|=ax ﹣a 有正根且没有负根,确定a 的取值范围.解答: 解:①当ax ﹣a ≥0,a(x ﹣1)>0, 解得:x ≥1 且 a ≥0,或者 x ≤1且a ≤0,②正根条件:x >0,x=ax ﹣a ,即x=>0,解得:a >1 或a <0,由①,即得正根条件:a >1 且x ≥1,或者a <0,0<x ≤1, ③负根条件:x <0,得:﹣x=ax ﹣a ,解得:x=<0,即﹣1<a <0,由①,即得负根条件:﹣1<a <0,x <0,根据条件:只有正根,没有负根,因此只能取 a >1(此时x ≥1,没负根),或者a ≤﹣1( 此时0<x ≤1,没负根).综合可得,a >1或a ≤﹣1.故选:D .点评: 此题主要考查了含绝对值符号的一元一次方程,根据绝对值的性质,要分x ≥0和x <0,两种情况进行讨论,确定a 的取值范围.15.适合|2a+7|+|2a ﹣1|=8的整数a 的值的个数有 ( )A .2B . 4C . 8D .16考点:含绝对值符号的一元一次方程. 分析: 先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a 的值.解答: 解:(1)当2a+7≥0,2a ﹣1≥0时,可得,|2a+7|+|2a ﹣1|=82a+7+2a ﹣1=8,解得,a=解不等式2a+7≥0,2a ﹣1≥0得,a ≥﹣,a ≥,所以a ≥,而a 又是整式,故a=不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7﹣2a+1=8,解得,a=﹣解不等式2a+7≤0,2a﹣1≤0得,a≤﹣,a≤,所以a≤﹣,而a又是整数,故a=﹣不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=82a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣,a≤,所以﹣≤a≤,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选B.点本题主要考查去绝对值及解一元一次方程的方法:解含评: 绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.16.若|x|=3x+1,则(4x+2)2005=( ) A . ﹣1 B .0 C .0或1 D .1考点: 含绝对值符号的一元一次方程;绝对值;有理数的乘方;解一元一次方程.专题:计算题. 分析: 当x ≥0时去绝对值符号,求出方程的解;当x <0时,去绝对值符号,求出方程的解,代入求出即可. 解答: 解:当x ≥0时,原方程化为:x=3x+1,∴x=﹣<0(舍去), 当x <0时,原方程化为:﹣x=3x+1, ∴x=﹣, ∴(4x+2)2005==1,故选D .点评: 本题主要考查对绝对值,解一元一次方程,含绝对值符号的一元一次方程,有理数的乘方等知识点的理解和掌握,求出未知数x 的值是解此题的关键.17.方程|2x ﹣1|﹣a=0恰有两个正数解,则a 的取值范围是( )A . ﹣1<a <0B . ﹣1<a < 1C . 0<a <1D .<a <1考点:含绝对值符号的一元一次方程.分析:由方程|2x ﹣1|﹣a=0恰有两个正数解,即可得不等式组,解此不等式组即可求得答案.解答:解:∵方程|2x ﹣1|﹣a=0恰有两个正数解, ∴,解得:0<a <1. 故选C .点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题难度较大,解题的关键是根据题意得到不等式组:.18.已知x ﹣y=4,|x|+|y|=7,那么x+y 的值是( ) A .± B . ± C .±7 D .±1考点: 含绝对值符号的一元一次方程.专题:计算题. 分析: 根据x ﹣y=4,得:x=y+4,代入|x|+|y|=7,然后分类讨论y 的取值即可.解答: 解:由x ﹣y=4,得:x=y+4,代入|x|+|y|=7, ∴|y+4|+|y|=7,①当y ≥0时,原式可化为:2y+4=7,解得:y=,②当y ≤﹣4时,原式可化为:﹣y ﹣4﹣y=7,解得:y=,③当﹣4<y <0时,原式可化为:y+4﹣y=7,故此时无解;所以当y=时,x=,x+y=7, 当y=时,x=,x+y=﹣7,综上:x+y=±7. 故选C .点评: 本题考查了含绝对值符号的一元一次方程,难度适中,关键是把x 用y 表示出来后进行分类讨论y 的取值范围.19.适合关系式|3x ﹣4|+|3x+2|=6的整数x 的值有( )个. A .0 B .1 C .2 D .大于2的自然数考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析: 分别讨论①x ≥,②﹣<x <,③x ≤﹣,根据x 的范围去掉绝对值,解出x ,综合三种情况可得出x 的最终范围.解答:解:从三种情况考虑:第一种:当x ≥时,原方程就可化简为:3x ﹣4+3x+2=6,解得:x=;第二种:当﹣<x <时,原方程就可化简为:﹣3x+4+3x+2=6,恒成立;第三种:当x ≤﹣时,原方程就可化简为:﹣3x+4﹣3x ﹣2=6,解得:x=﹣;所以x 的取值范围是:﹣≤x ≤,故符合条件的整数位:0,1. 故选C .点评: 本题考查了含绝对值符号的一元一次方程,难度不大,关键掌握正确分类讨论x 的取值范围.20.若单项式﹣2a |x|b |4x|和32ab 3﹣x 的相同字母的指数相同,则x的整数值等于( )A . 1B .﹣1 C .±1 D . ±1以外的数考点:同类项;含绝对值符号的一元一次方程.专题:计算题. 分析: 根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程|x|=1,|4x|=3﹣x ,即可求出x 的值. 解答: 解:由同类项的定义得:|x|=1, 解得x=±1,又|4x|=3﹣x ,解得x=﹣1或x=, ∴x=﹣1. 故选B .点评: 本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.21.方程|2007x ﹣2007|=2007的解是( ) A . 0 B .2 C .1或2 D .2或0考含绝对值符号的一元一次方程.点:专题:数形结合. 分析:分别讨论x ≥1,x <1,可求得方程的解. 解答: 解:①当x ≥1时,原方程可化为:2007x ﹣2007=2007, 解得:x=2,②当x <1时,原方程可化为:2007﹣2007x=2007, 解得:x=0, 综上可得x=0或2. 故选D .点评: 本题考查含绝对值的一元一次方程,解决此题的关键是能够根据x 的取值范围进行分情况化简绝对值.22.满足||x ﹣1|﹣|x||﹣|x ﹣1|+|x|=1的x 的值是( ) A . 0 B . ± C . D .±考点:含绝对值符号的一元一次方程.专题:计算题. 分析: 看到比较繁琐的有绝对值得计算题,首先要考虑怎样去掉绝对值.明确x 的取值范围决定去掉绝对值之后的正负关系.解答: 解:(1)当x >1时,原式=x ﹣x+1﹣x+1+x=1, 2=1显然不成立,故舍去.(2)当0<x <1时,原式=|﹣(x ﹣1)﹣x|﹣(1﹣x )+x , =|﹣2x+1|﹣1+2x , =2x ﹣1﹣1+2x , =4x ﹣2, 又∵原式=1, ∴4x ﹣2=1,∴x=. 故选C .点评: 本题主要考查的是含有绝对值符号的一元一次方程的最基本的计算,难易适中.23.如果方程|3x|﹣ax ﹣1=0的根是负数,那么a 的取值范围是( ) A . a >3 B .a ≥3 C .a <3 D .a ≤3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析: 分三种情况讨论a 的取值范围:①a=3,②a >3,③a <3,再去绝对值符号进行求解. 解答: 解:原方程为|3x|=ax+1.①若a=3,则|3x|=3x+1.当x <0时,﹣3x=3x+1,∴x=﹣;当x ≥0时,3x=3x+1,不成立;∴当a=3时,原方程的根为:x=﹣; ②若a >3,当x <0时,﹣3x=ax+1,∴x=<0;当x ≥0时,3x=ax+1,∴x=<0,矛盾,∴当a >3时,原方程的解为:x=<0.③若a <3时,当x ≥0时,3x=ax+1,∴x=0, ∴原方程的根是正数,不符合题意. 综上所述:当a ≥3时,原方程的根是负根. 故选B .点评: 本题考查了含绝对值符号的一元一次方程,难度较大,关键是分类讨论a 的取值范围后再进行求解.24.关于x 的含有绝对值的方程|2x ﹣1|﹣|x|=2的不同实数解共有( )个. A . 1 B .2 C .3 D .4考含绝对值符号的一元一次方程.点: 专题:计算题.分析: 分别讨论①x ≥,②0<x <,③x ≤0,根据x 的范围去掉绝对值,解出x ,综合三种情况可得出x 的最终范围. 解答:解:从三种情况考虑:第一种:当x ≥时,原方程就可化简为:2x ﹣1﹣x=2,解得:x=3;第二种:当0<x <时,原方程就可化简为:﹣2x+1﹣x=2,解得:x=﹣,不符合题意;第三种:当x ≤0时,原方程就可化简为:﹣2x+1+x=2,解得:x=﹣1;所以x 的不同实数解为:x=3或x=﹣1,共有两个. 故选B .点评: 本题考查了含绝对值符号的一元一次方程,难度适中,关键是掌握正确分类讨论x 的取值范围.25.方程|x ﹣19|+|x ﹣93|=74的有理数解( ) A . 至少有3个 B . 恰好有2个C . 恰有1个D .不存在考点:含绝对值符号的一元一次方程.分析:首先根据x 的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.解答: 解:当x ≤19时,方程即:19﹣x+93﹣x=74,解得:x=19; 当19<x <93时,方程变形为:x ﹣19+93﹣x=74,恒成立;当x ≥93时,方程变形为:x ﹣19+x ﹣93=74,解得:x=93. 则x 为范围[19,93]中的有理数,即至少有3个. 故选A .点评:本题主要考查了绝对值方程的解法,关键是正确进行讨论.26.方程2|x|+3=5的解是( )A .1B . ﹣1C . 1和﹣1D .无解考点:含绝对值符号的一元一次方程. 分析: 首先利用一元一次方程的求解方法,求得|x|的值,继而求得答案.解答: 解:∵2|x|+3=5,∴2|x|=2, ∴|x|=1,∴x=±1.故选C .点评: 此题考查了含绝对值符号的一元一次方程的求解方法.此题比较简单,注意换元思想的应用.27.绝对值方程||x ﹣2|﹣|x ﹣6||=l 的不同实数解共有多少个( )A .2B . 4C . lD .考点:含绝对值符号的一元一次方程. 专题:计算题.分析: 分别讨论x ≥6、x <2、2≤x <6,根据x 的范围去掉绝对值,解出x ,综合六种情况可得出x 的最终范围. 解答: 解:根据题意,知(1)|x ﹣2|﹣|x ﹣6|=1,①当x ﹣2≥0,x ﹣6≥0,即x ≥6时,x ﹣2﹣2+6=1,解得x=﹣1,不合题意,舍去;②当x ﹣2<0,x ﹣6<0,即x <2时,﹣x+2+x ﹣6=1,即﹣4=1,显然不成立;③当x ﹣2≥0,x ﹣6<0,即2≤x <6时,x ﹣2+x ﹣6=1,解得x=4.5;(2)|x ﹣2|﹣|x ﹣6|=﹣1,④当x ﹣2≥0,x ﹣6≥0,即x ≥6时,x ﹣2﹣2+6=﹣1,解得x=﹣3,不合题意,舍去; ⑤当x ﹣2<0,x ﹣6<0,即x <2时,﹣x+2+x ﹣6=﹣1,即﹣4=﹣1,显然不成立;⑥当x ﹣2≥0,x ﹣6<0,即2≤x <6时,x ﹣2+x ﹣6=﹣1,解得x=3.5;综上所述,原方程的解是:x=4.5,3.5,共有2个. 故选A .点评: 本题考查了含有绝对值符号的一元一次方程.其实,本题不难,只要在解题过程中多一份细心,就不会丢解的.28.||||x ﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则( )A . 0,2,4全是根B . 0,2,4全不是根C . 0,2,4不全是根D . 0,2,4之外没有根考点:含绝对值符号的一元一次方程. 分析: 解含有绝对值符号的方程的关键是去绝对值符号,这可用“零点分段法”.即令x+2=0,x+1=0,x=0,x ﹣1=0,x ﹣2=0,x ﹣3=0,x ﹣4=0,分别得到x=﹣2,﹣1,0,1,2,3,4,这7个数将数轴分成8段,然后在每一段上去掉绝对值符号再求解.解答: 解:①当x ≥4时,原方程化为x ﹣4=0,解得x=4,在所给的范围x ≥4之内,x=4是原方程的解;②当3≤x <4时,原方程化为4﹣x=0,解得x=4,不在所给的范围3≤x <4之内,x=4不是原方程的解;③当2≤x <3时,原方程化为x ﹣2=0,解得x=2,在所给的范围2≤x <3之内,x=2是原方程的解;④当1≤x <2时,原方程化为2﹣x=0,解得x=2,不在所给的范围1≤x <2之内,x=2不是原方程的解;⑤当0≤x <1时,原方程化为x=0,在所给的范围0≤x <1之内,x=0是原方程的解;⑥当﹣1≤x <0时,原方程化为x=0,不在所给的范围﹣1≤x <0之内,x=0不是原方程的解;⑦当﹣2≤x <﹣1时,原方程化为x+2=0,解得x=﹣2,在所给的范围﹣2≤x <﹣1之内,x=﹣2是原方程的解; ⑧当x <﹣2时,原方程化为﹣2﹣x=0,解得x=﹣2,不在所给的范围x <﹣2之内,x=﹣2不是原方程的解. 综上,可知原方程的解为x=4,2,0,﹣2.故选A .点评: 本题考查了含绝对值符号的一元一次方程,属于竞赛题型,难度较大.29.使方程3|x+2|+2=0成立的未知数x 的值是( )A .﹣2 B . 0 C . D .不存在考点:含绝对值符号的一元一次方程.专题:计算题.分析: 要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的性质即可得出答案.解答:解:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的非负性, 即可得知使方程3|x+2|+2=0成立的x 不存在.故选D .点评: 本题考查了含绝对值符号的一元一次方程,比较容易,关键是根据绝对值的非负性即可判断.30.方程|x+5|﹣|3x ﹣7|=1的解有( )A .1个B . 2个C . 3个D .无数个考点:含绝对值符号的一元一次方程. 专题:计算题.分析: 分别讨论①x ≥,②﹣5<x <,③x ≤﹣5,根据x 的范围去掉绝对值,解出x ,综合三种情况可得出x 的最终范围.解答:解:从三种情况考虑:第一种:当x ≥时,原方程就可化简为:x+5﹣3x+7=1, 解得:x=符合题意; 第二种:当﹣5<x <时,原方程就可化简为:x+5+3x ﹣7=1,解得:x=符合题意; 第三种:当x ≤﹣5时,原方程就可化简为:﹣x ﹣5+3x ﹣7=1,解得:x=不符合题意;所以x 的值为:或.故选B .点评: 本题考查了含绝对值符号的一元一次方程,难度不大,关键是分类讨论x 的取值范围.。
(完整版)初一数学一元一次方程练习题(含答案)
初一数学一元一次方程练习题(含答案)一、选择题(每小题3分,共30分)1.下列方程中,属于一元一次方程的是( )A. B. C D.2.已知ax=ay,下列等式中成立的是()A.x=yB.ax+1=ay-1C.ax=-ayD.3-ax=3-ay3.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价()A.40%B.20?5%D.15%4.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是()A.a米B.(a+60)米C.60a米D.(60+2a)米5.解方程时,把分母化为整数,得()。
A、B、C、D、6.把一捆书分给一个课外小组的每位同学,如果每人5本,那么剩4本书,如果每人6本,那么刚好最后一人无书可领,这捆书的本数是()A.10B.52C.54D.56千米1小时还有3一条山路,某人从山下往山顶走7.才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为()A.x-1=5(1.5x)B.3x+1=50(1.5x)C.3x-1=(1.5x)D.180x+1=150(1.5x)8.某商品的进货价为每件x元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x为( )A.约700元B.约773元C.约736元D.约865元9.下午2点x分,钟面上的时针与分针成110度的角,则有()A. B. C. D.10.某商场经销一种商品由于进货时价格比原进价降低了6.4%,使得利润增加了8个百分点,则经销这种商品原来的利润率为()A.15%B.17%C.22%D.80%二、填空题(每小题3分,共计30分)11.若x=-9是方程的解,则m= 。
12.若与是同类项,则m= ,n= 。
的代数y用含,y=得y的代数式表示x用含方程13.式表示x得x=。
绝对值与一元一次方程(含答案)
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,?能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,?非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法例题求解思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解 解:x=11提示:原方程5x+6=± (6x-5)或从5x+6> 0、5x+6<0讨论. 【例21适合|2a+7 I + I 2a-1 | =8的整数a 的值的个数有().思路点拨 用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.提示:由已知即在数轴上表示 2a 的点到-7与+1的距离和等于8,?所以2a 表示-7到1 之间的偶数.【例31解方程:x- I 3x+1 I I =4;( 天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程5 3 解:x=- 5或X=- 提示:原方程化为x- I 3x+1=4或x- I 3x+1 I =-4 42【例41解下列方程:,简称绝对值方程.解绝对值方程的基本方法有是设法去掉绝对值符号,将绝对值方程转化为常见的【例11方程|5x+6 I =6x-5的解是.(2000年重庆市竞赛题)A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)(1) I x+3 I - I x-1 I =x+1; ( 北京市“迎春杯”竞赛题)⑵ I x-1 I + I x-5 I =4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:⑴ 提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3 < x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x > 1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.⑵ 提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为K x< 5,此即为原方程的解.【例5】已知关于x的方程|x-2 I + I x-3 I =a,研究a存在的条件,对这个方程的解进思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,?运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1) 当a>1时,原方程解为x= —2⑵当a=1时,原方程解为2< x< 3;⑶当a<1时,原方程无解、基础夯实1. 方程3( I x I -1)= 凶+1的解是_52. 已知 I 3990X+1995 I =1995,那么 x=3.已知Ix I =x+2,那么19X 99+3X +27的值为4. 关于x 的方程|a I x= I a+1 | -x 的解是x=0,则a 的值是a+1 I -x 的解是x=1,则有理数a 的取值范围是 5. 使方程3 I x+2 I +2=0成立的未知数x 的值是(). 2 f—- D.不存在36. 方程I x-5 I +x-5=0的解的个数为(). A.不确定 B.无数个 C.2 个 D.3 个(“祖冲之杯”邀请赛试题1 7.已知关于x 的方程mx+2=2(m-x )的解满足I x--|-1=0,则m 的值是().22A.10 或三B.10或-255 2C.-10 或上D.-102 或--(2000年山东省竞赛题)55 8.若 I 2000X+2000 I =20 X 2000,则 x 等于().A.20 或-21B.-20 或21C.-19 或 21D.19或-21(2001年重庆市竞赛题)9.解下列方程:(1)I I 3x-5 I +4 I =8;(2) I 4x-3 I -2=3x+4;(3) I x- I 2x+1 I I =3;(4)I2x-1 I + I x-2 I = I x+1 I .)学力训练;方程|3x-1 I = I 2x+1 I 的解是;关于x 的方程I a I x=A.-2B.OC.10.讨论方程I |x+3 I -2 I =k的解的情况.二、能力拓展11.方程I |x-2 I -1 I =2的解是1-x I =1+ I x I ,则化简Ix-1 I的结果是12.若有理数x满足方程I13. 若a>0,b<0, 则使x-a + x-b =a-b 成立的x 的取值范围是武汉市选拨赛试题)14. 若0<x<10, 则满足条件x-3 I =a?的整数a?的值共有?个,? 它们的和是15.若m是方程I 2000-x I =2000+ I x I 的解,则I m-2001 I 等于().A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程|2x-3 I +m=0无解,I 3x-4 | +n=0只有一个解,| 4x-5 | +?k=0有两个解, 则m、n、k 的大小关系是().A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式|3x-4 I + I 3x+2 I =6的整数x的值有()个.A.0B.1C.2D. 大于 2 的自然数18.方程x+5 - 3x-7 =1 的解有( ).A.1 个B.2 个C.3 个D. 无数个19.设a、b 为有理数,且 a >0,方程x-a -b =3 有三个不相等的解,? 求 b 的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程I x-2 I - I x-5 | =a有一解?有无数多个解?无解?三、综合创新21.已知|x+2 I + I 1-x I =9-1 y-5 | - | 1+y | ,求x+y的最大值与最小值.第15 届江苏省竞赛题)22.(1) 数轴上两点表示的有理数是a、b, 求这两点之间的距离;(2) 是否存在有理数X,使|x+1 I + I x-3 I =x?(3) 是否存在整数x, 使x-4 + x-3 + x+3 + x+4 =14?如果存在,? 求出所有的整数x; 如果不存在, 说明理由.【学力训练】(答案)101. ± —> 2 或 02.0 或-13.57提示:由 |a+1 I = I a I +1 得 a x 1 > 0,即 a > 05.D6.B7.A8.D9.(1)x=3(2)x=9 (3)x=- 1 x=-; 3 或 x=- 3; 74或 x=2;3 1 1⑷ 提示:分x<-1、-1 w x<-、? 1 w xw 2、x 》2四种情况分别去掉绝对值符号解方程 2 2 10.当 1 当考虑到1 < x < 2时,?原方程化为(2x-1)-(x-2)=x+1, 2 凡是满足-< x < 2的x 值都是方程的解. 2 k<0时,原方程无解;即1=1,这是一个恒等式,说明 k=0时,原方程有两解:x=-1或x=-5; 0<k<2时,原方程化为|x+3 I =2 ± k,此时原方程有四解 :x=-3 ± (2 ± k); k=2时,原方程化为|x+?3 I =2± 2,此时原方程有三解 :x=1 或 x=-7 或 x=-3; k>2时,原方程有两解:x+3= ± 2(?2+k). 11. ± 5 12.1-x 13.b w x < a 提示:利用绝对值的几何意义解 14.7、21 提示:当0<x<3时,则有Ix-3 I =3-x=a,a 的解是1,2;当 3< x<10 时,则有 I x-3 I =x-3=a,a 的解为 0,1,2,3,4,5,6 15.D 提示:m < 0 16.A 17.C 提示:-2 < 3x < 4 18.B 19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解; 如果都不是零,则得4个解,故b=3. 20.提示:由绝对值几何意义知: 当-3<a<3时,方程有一解;4.-1,a > 0当a=± 3时,? 方程有无穷多个解;当a>3 或a<-3 时, 方程无解.21.提示:已知等式可化为:I X+2 I + I x-1 I + I y+1 I + I y-5 | =9,?由绝对值的几何意义知,当-2 < X < 1且-1 < y < 5时,上式成立, 故当x=-2,y=-1 时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1) a-b ;(2) 不存在;(3)x= ±3, ±2, ±1,0.。
华东师大版数学七年级下册 解含绝对值的一元一次方程同步练习(Word版含答案)
6.2.2.2.1解含绝对值的一元一次方程一.选择题(共5小题)1.对于等式:|x﹣1|+2=3,下列说法正确的是()A.不是方程B.是方程,其解只有2C.是方程,其解只有0D.是方程,其解有0和22.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③x﹣3=0;④x=x﹣2.A.1个B.2个C.3个D.4个3.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.4.如果|2x+3|=|1﹣x|,那么x的值为()A.﹣B.﹣或1C.﹣或﹣2D.﹣或﹣4 5.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或二.填空题(共3小题)6.已知关于x的方程mx+3=2的解满足|x﹣2|=0,则m的值是.7.若关于x的方程|x+1|=2,则此方程的解为.8.已知方程2x﹣3=+x的解满足|x|﹣2=0,则m=.三.解答题(共8小题)9.阅读下列问题:例.解方程|2x|=5.解:当2x≥0,即x≥0时,2x=5,∴x=;当2x<0,即x<0时,﹣2x=5,∴x=﹣.∴方程|2x|=5的解为x=或x=﹣.请你参照例题的解法,求方程||=1的解.10.|2x+1|=5.11.|x﹣2|=1.12.解方程:(1)3+|2x﹣1|=x(2)3|x﹣1|﹣7=2(3)|2x+1|=|x﹣3|(4)10﹣5x=7(1﹣x)(5)﹣(x﹣2)=2+x(6)2(x﹣5)=3x+1.13.解方程:2|x﹣1|=4.14.解方程:|x﹣1|=5.15.解方程:|x﹣|3x+1||=4.16.|x﹣1|+|x﹣3|=36.2.2.2.1解含绝对值的一元一次方程参考答案与试题解析一.选择题(共5小题)1.对于等式:|x﹣1|+2=3,下列说法正确的是()A.不是方程B.是方程,其解只有2C.是方程,其解只有0D.是方程,其解有0和2【解答】解:|x﹣1|+2=3,∴|x﹣1|=1,∴x=0或x=2,故选:D.2.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③x﹣3=0;④x=x﹣2.A.1个B.2个C.3个D.4个【解答】解:①∵﹣2x﹣6=0,∴﹣2x=6,∴x=﹣3;②∵|x+2|=5,∴x+2=±5,∴x=3或﹣7;③∵x﹣3=0,∴x=3;④∵,∴,∴x=3,∴x=3是所给方程的解的有3个:②、③、④,故选:C.3.方程|2x﹣6|=0的解是()A.x=3B.x=﹣3C.x=±3D.【解答】解:∵|2x﹣6|=0,∴2x﹣6=0,解得:x=3.故选:A.4.如果|2x+3|=|1﹣x|,那么x的值为()A.﹣B.﹣或1C.﹣或﹣2D.﹣或﹣4【解答】解:∵|2x+3|=|1﹣x|,∴2x+3=1﹣x或2x+3=﹣(1﹣x),∴x=﹣或x=﹣4.故选:D.5.若关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,则m的值是()A.或B.C.D.﹣或【解答】解:因为方程|x﹣|=1,所以x﹣=±1,解得x=或x=﹣,因为关于x的方程x+2=2(m﹣x)的解满足方程|x﹣|=1,所以解方程x+2=2(m﹣x)得,m=,当x=时,m=,当x=﹣时,m=.所以m的值为:或.故选:A.二.填空题(共3小题)6.已知关于x的方程mx+3=2的解满足|x﹣2|=0,则m的值是.【解答】解:∵|x﹣2|=0,∴x﹣2=0,∴x=2,把x=2代入mx+3=2得2m+3=2,∴m=﹣.故答案为:﹣.7.若关于x的方程|x+1|=2,则此方程的解为1或﹣3.【解答】解:由题意可知:|x+1|=2,∴x+1=±2,∴x=1或﹣3,故答案为:1或﹣3.8.已知方程2x﹣3=+x的解满足|x|﹣2=0,则m=﹣3或﹣15.【解答】解:∵|x|﹣2=0,∴x=±2,当x=2时,方程为4﹣3=+2,解得m=﹣3;当x=﹣2时,方程为﹣4﹣3=﹣2,解得m=﹣15;故答案为:﹣3或﹣15.三.解答题(共8小题)9.阅读下列问题:例.解方程|2x|=5.解:当2x≥0,即x≥0时,2x=5,∴x=;当2x<0,即x<0时,﹣2x=5,∴x=﹣.∴方程|2x|=5的解为x=或x=﹣.请你参照例题的解法,求方程||=1的解.【解答】解:当2x﹣1≥0时,即x≥,=1,∴x=2;当2x﹣1<0时,即x<,=﹣1,∴x=﹣1;∴方程||=1的解为x=﹣1或x=2.10.|2x+1|=5.【解答】解:根据题意,原方程可化为:①2x+1=5;②2x+1=﹣5,解得x=2;x=﹣3.11.|x﹣2|=1.【解答】解:当x﹣2≥0,即x≥2时,方程可化为:x﹣2=1,解得x=3;当x﹣2<0,即x<2时,方程可化为:x﹣2=﹣1,解得x=1,∴|x﹣2|=1的解是x=3或x=1.12.解方程:(1)3+|2x﹣1|=x(2)3|x﹣1|﹣7=2(3)|2x+1|=|x﹣3|(4)10﹣5x=7(1﹣x)(5)﹣(x﹣2)=2+x(6)2(x﹣5)=3x+1.【解答】解:(1)当x<时,原方程等价于3+1﹣2x=x,解得x=(不符合题意要舍去),当x≥时,原方程等价于3+2x﹣1=x,解得x=﹣2(不符合题意要舍去)综上所述,原方程无解.(2)当x<1时,原方程等价于﹣3x+3﹣7=2,解得x=﹣2,当x>1时,原方程等价于,3x﹣3﹣7=2,解得x=4,综上所述:x=﹣2或x=4.(3)当x<﹣时,原方程等价于﹣1﹣2x=3﹣x,解得x=﹣4;当﹣≤x<3时,原方程等价于1+2x=3﹣x,解得x=;当x≥3时,原方程等价于1+2x=x﹣3,解得x=﹣4(不符合题意要舍去),综上所述:x=﹣4或x=;(4)去括号,得10﹣5x=7﹣7x,移项,得﹣5x+7x=7﹣10,合并同类项,得2x=﹣3系数化为1,得x=﹣;(5)去括号,得﹣x+2=2+x,移项,得﹣x﹣x=2﹣2,合并同类项,得﹣2x=0系数化为1,得x=0;(6)去括号,得2x﹣10=3x+1,移项,得2x﹣3x=1+10合并同类项,得﹣x=11系数化为1,得x=﹣11.13.解方程:2|x﹣1|=4.【解答】解:由原方程,得|x﹣1|=2;①当x≥1时,x﹣1=2,解得,x=3;②当x<1时,1﹣x=2,解得,x=﹣1.14.解方程:|x﹣1|=5.【解答】解:∵分为两种情况:①x﹣1=5,解得:x=6;②x﹣1=﹣5,解得:x=﹣4,∴原方程的解为x=6或x=﹣4.15.解方程:|x﹣|3x+1||=4.【解答】解:原方程式化为x﹣|3x+1|=4或x﹣|3x+1|=﹣4(1)当3x+1>0时,即x>﹣,由x﹣|3x+1|=4得x﹣3x﹣1=4∴x=﹣与x>﹣不相符,故舍去由x﹣|3x+1|=﹣4得x﹣3x﹣1=﹣4∴x=(2)当3x+1<0时,即x<﹣,由x﹣|3x+1|=4得x+3x+1=4∴x=与x<﹣不相符,故舍去由x﹣|3x+1|=﹣4得x+3x+1=﹣4∴x=﹣故原方程的解是x=﹣或x=16.|x﹣1|+|x﹣3|=3【解答】解:当x<1时,原方程就可化简为:1﹣x+3﹣x=3,解得:x=0.5;第二种:当1<x<3时,原方程就可化简为:x﹣1﹣x+3=3,不成立;第三种:当x>3时,原方程就可化简为:x﹣1+x﹣3=3,解得:x=3.5;故x的解为0.5或3.5.。
(好题)初中数学七年级数学上册第三单元《一元一次方程》测试卷(包含答案解析)(2)
一、选择题1.在代数式a 2+1,﹣3,x 2﹣2x ,π,1x 中,是整式的有( ) A .2个B .3个C .4个D .5个 2.若2312a b x y +与653a b x y -的和是单项式,则+a b =( ) A .3- B .0 C .3 D .63.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( ) A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- 4.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个 B .3个 C .4个 D .5个5.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a6.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷ 7.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 3 8.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( ) A .m B .n C .m n + D .m ,n 中较大者 9.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .410.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a 11.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + 12.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数二、填空题13.合并同类项(1)21123x x x --=____________________;(按字母x 升幂排列) (2)3222232223x y x y y x x y --+=_____________________;(按字母x 降幂排列) (3)222234256a b ab a b =_____________________;(按字母b 降幂排列) 14.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.15.计算7a 2b ﹣5ba 2=_____. 16.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.17.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.18.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子.…第1个 第2个 第3个19.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.20.一个三位数,个位数字为n ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数是____________.(填化简后的结果)三、解答题21.已知22134,2313P x mx y Q x y nx =+-+=-+-, (1)关于,x y 的式子2P Q -的取值与字母x 的取值无关,求式子(3)(3)m n m n +--的值;(2)当0x ≠且0y ≠时,若135333P Q -=恒成立,求,m n 的值。
初一七年级一元一次方程30题(含答案解析)
初一七年级一元一次方程30题(含答案解析)一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13 (2)解方程:x ﹣﹣3 18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7 (2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).30.解方程:.6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1 合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考解一元一次方程.点:专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;答:移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.点评:17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2] (3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7 合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7 (2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)完美WORD格式=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.专业知识分享。
人教版初中数学七年级数学上册第三单元《一元一次方程》测试题(含答案解析)(1)
一、选择题1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ). A .4B .8C .±4D .±82.下列对代数式1a b-的描述,正确的是( ) A .a 与b 的相反数的差 B .a 与b 的差的倒数 C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数3.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣74.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a5.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 6.下列去括号运算正确的是( ) A .()x y z x y z --+=--- B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ 7.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣48.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上9.下列同类项合并正确的是( )A .x 3+x 2=x 5B .2x ﹣3x =﹣1C .﹣a 2﹣2a 2=﹣a 2D .﹣y 3x 2+2x 2y 3=x 2y 310.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差 B .2倍的x 与1的差除以3的商 C .x 与1的差的2倍除以3的商 D .x 与1的差除以3的2倍11.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元 A .(115%)(120%)a ++ B .(115%)20%a + C .(115%)(120%)a +- D .(120%)15%a + 12.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b二、填空题13.如图,将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,……如此继续下去,结果如下表:则a n =__________(用含n 的代数式表示).所剪次数 1 2 3 4 … n 正三角形个数471013…a n14.如图,阴影部分的面积用整式表示为_________.15.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.16.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____. 19.已知5a b -=,3c d +=,则()()b c a d +--的值等于______. 20.“a 的3倍与b 的34的和”用代数式表示为______. 三、解答题21.观察下列各式:(1)-a +b =-(a -b);(2)2-3x =-(3x -2);(3)5x +30=5(x +6);(4)-x -6=-(x +6).探索以上四个式子中括号的变化情况,思考它和去括号法则有什么不同?利用你探索出来的规律,解答下面的题目: 已知a 2+b 2=5,1-b =-2,求-1+a 2+b +b 2的值. 22.已知多项式22622452x mxyy xy x中不含xy 项,求代数式32322125m m m m mm 的值.23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完. ①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 24.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c . (1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗? 25.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)26.国庆期间,广场上设置了一个庆祝国庆70周年的造型(如图所示).造型平面呈轴对称,其正中间为一个半径为b 的半圆,摆放花草,其余部分为展板.求: (1)展板的面积是 .(用含a ,b 的代数式表示) (2)若a =0.5米,b =2米,求展板的面积.(3)在(2)的条件下,已知摆放花草部分造价为450元/平方米,展板部分造价为80元/平方米,求制作整个造型的造价(π取3).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据单项式的定义可得8mx y 和36nx y 是同类项,因此可得参数m 、n ,代入计算即可.【详解】解:由8mx y 与36nx y 的和是单项式,得3,1m n ==.()()333164m n +=+=,64的平方根为8±.故选D . 【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.C解析:C 【分析】根据代数式的意义逐项判断即可. 【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误; B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b--,该选项错误. 故选:C . 【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.A解析:A 【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可. 【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4. 故选:A 【点睛】利用乘法分配律,将代数式变形.4.A解析:A 【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果. 【详解】解:根据题意得:b <a <0,且|a |<|b |, ∴a -b >0,a +b <0, ∴原式=a -b -a -b =-2b . 故选:A . 【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.5.D解析:D 【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意. 故选:D . 【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.6.D解析:D 【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则. 【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确. 故选:D 【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.7.A解析:A 【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案. 【详解】由题意,得3m =6,n =2. 解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1, 故选:A . 【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.8.C解析:C 【分析】由图可观察出负数在OC 或OD 射线上,在OC 射线上的数为-4的奇数倍,在OD 射线上的数为-4的偶数倍,即可得出答案. 【详解】解:∵由图可观察出负数在OC 或OD 射线上,排除选项A,B , ∵在射线OC 上的数符合:44112432045-=-⨯-=-⨯-=-⨯,,┈ 在射线OD 上的数符合:84216442446-=-⨯-=-⨯-=-⨯,,┈ ∵20204505-=-⨯,505为奇数,因此标记为“-2020”的点在射线OC 上. 故答案为:C. 【点睛】本题是一道探索数字规律的题目,具有一定的挑战性,可以根据已给数字多列举几个,更容易得出每条射线上数字的规律.9.D解析:D 【分析】根据合并同类项系数相加字母及指数不变,可得答案. 【详解】解:A 、x 3与x 2不是同类项,不能合并,故A 错误; B 、合并同类项错误,正确的是2x ﹣3x =﹣x ,故B 错误; C 、合并同类项错误,正确的是﹣a 2﹣2a 2=﹣3a 2,故C 错误; D 、系数相加字母及指数不变,故D 正确; 故选:D . 【点睛】本题考查了合并同类项,熟记合并同类项的法则,并根据合并同类项的法则计算是解题关键.10.B解析:B 【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断. 【详解】代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B . 【点睛】本题考查了代数式,正确理解代数式表示的意义是关键.11.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a元.故选A.【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.12.C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a+b,另一边为a-b,∴长方形周长为:2(2a+b+a-b)=6a.故选C.【点睛】本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.二、填空题13.3n+1【解析】试题分析:从表格中的数据不难发现:多剪一次多3个三角形即剪n次时共有4+3(n-1)=3n+1试题解析:3n+1.【解析】试题分析:从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n-1)=3n+1.试题故剪n次时,共有4+3(n-1)=3n+1.考点:规律型:图形的变化类.14.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.15.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2+-234m m【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.16.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.17.【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解n-解析:83【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.19.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子,然后代入求值即可.【详解】()()()()532+--=+-+=-++=-+=-.b c a d b c a d b a c d故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键.20.【分析】a 的3倍表示为3ab 的表示为b 然后把它们相加即可【详解】根据题意得3a +b ;故答案为:3a +b 【点睛】本题考查了列代数式:把问题中与数量有关的词语用含有数字字母和运算符号的式子表示出来就是列 解析:334a b 【分析】a 的3倍表示为3a ,b 的34表示为34b ,然后把它们相加即可. 【详解】根据题意,得3a +34b ; 故答案为:3a +34b . 【点睛】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式. 列代数式时,要先认真审题,抓住关键词语,仔细辩析词义;再分清数量关系;规范地书写. 三、解答题21.见解析,7.【解析】试题分析:注意观察等号两边的变化,等号右边添加了括号,然后观察符号的变化即可;根据已知条件将要求的式子通过添括号进行变形,然后再代入求值即可.试题添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.∵a 2+b 2=5,1-b =-2,∴-1+a 2+b +b 2=(a 2+b 2)-(1-b)=5-(-2)=7.【点睛】本题是阅读理解题,主要是通过阅读发现添括号时符号的变化规律,解题的关键是要注意符号的变化问题.22.-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m=3226m m .当m =2时,原式= 322226 =14-.【点睛】 本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.23.(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.25.乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.26.(1)12ab 平方米;(2)12 (平方米);(3)3660元.【分析】(1)利用分割法求解即可.(2)把a ,b 的值代入(1)中代数式求值即可.(3)分别求出摆放花草部分造价,展板部分造价即可解决问题.【详解】(1)由题意:展板的面积=12a •b (平方米).故答案为:12ab (平方米).(2)当a =0.5米,b =2米时,展板的面积=12×0.5×2=12(平方米).(3)制作整个造型的造价=12×8012+π×4×450=3660(元). 【点睛】本题考查轴对称图形,矩形的性质,圆的面积等知识,解题的关键是熟练掌握基本知识.。
七年级数学一元一次方程练习题(含答案)
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
绝对值与一元一次方程(含问题详解)-
绝对值与一元一次方程知识纵横绝对值是初中数学最活跃的概念之一,•能与数学中许多知识关联而生成新的问题,我们把绝对值符号中含有未知数的方程叫含绝对值符号的方程,简称绝对值方程.解绝对值方程的基本方法有:一是设法去掉绝对值符号,将绝对值方程转化为常见的方程求解;一是数形结合,借助于图形的直观性求解.前者是通法,后者是技巧.解绝对值方程时,常常要用到绝对值的几何意义,去绝对值的符号法则,•非负数的性质、绝对值常用的基本性质等与绝对值相关的知识、技能与方法.例题求解【例1】方程│5x+6│=6x-5的解是_______.(2000年重庆市竞赛题)思路点拨设法去掉绝对值符号,将原方程化为一般的一元一次方程来求解.解:x=11提示:原方程5x+6=±(6x-5)或从5x+6≥0、5x+6<0讨论.【例2】适合│2a+7│+│2a-1│=8的整数a的值的个数有( ).A.5B.4C.3D.2 (第11届“希望杯”邀请赛试题)思路点拨用分类讨论法解过程繁琐,仔细观察数据特征,借助数轴也许能找到简捷的解题途径.解:选B提示:由已知即在数轴上表示2a的点到-7与+1的距离和等于8,•所以2a表示-7到1之间的偶数.【例3】解方程:│x-│3x+1││=4; (天津市竞赛题)思路点拨从内向外,根据绝对值定义性质简化方程.解:x=-54或x=32提示:原方程化为x-│3x+1=4或x-│3x+1│=-4【例4】解下列方程:(1)│x+3│-│x-1│=x+1; (北京市“迎春杯”竞赛题)(2)│x-1│+│x-5│=4. (“祖冲之杯”邀请赛试题)思路点拨解含多个绝对值符号的方程最常用也是最一般的方法是将数轴分段进行讨论,采用前面介绍的“零点分段法”分类讨论;有些特殊的绝对值方程可利用绝对值的几何意义迅速求解.解:(1)提示:当x<-3时,原方程化为x+3+(x-1)=x+1,得x=-5;当-3≤x<1时,原方程化为x+3+x-1=x+1,得x=-1;当x≥1时,原方程化为x+3-(x-1)=x+1,得x=3.综上知原方程的解为x=-5,-1,3.(2)提示:方程的几何意义是,数轴上表示数x的点到表示数1及5的距离和等于4,画出数轴易得满足条件的数为1≤x≤5,此即为原方程的解.【例5】已知关于x的方程│x-2│+│x-3│=a,研究a存在的条件,对这个方程的解进行讨论.思路点拨方程解的情况取决于a的情况,a与方程中常数2、3有依存关系,这种关系决定了方程解的情况,因此,探求这种关系是解本例的关键,•运用分类讨论法或借助数轴是探求这种关系的重要方法与工具,读者可从两个思路去解.解:提示:数轴上表示数x的点到数轴上表示数2,3的点的距离和的最小值为1,由此可得方程解的情况是:(1)当a>1时,原方程解为x=52a;(2)当a=1时,原方程解为2≤x≤3;(3)当a<1时,原方程无解.学力训练一、基础夯实1.方程3(│x│-1)= ||5x+1的解是_______;方程│3x-1│=│2x+1│的解是____.2.已知│3990x+1995│=1995,那么x=______.3.已知│x│=x+2,那么19x99+3x+27的值为________.4.关于x的方程│a│x=│a+1│-x的解是x=0,则a的值是______;关于x的方程│a│x=│a+1│-x的解是x=1,则有理数a的取值范围是________.5.使方程3│x+2│+2=0成立的未知数x的值是( ).A.-2B.0C. 23D.不存在6.方程│x-5│+x-5=0的解的个数为( ).A.不确定B.无数个C.2个D.3个 (“祖冲之杯”邀请赛试题)7.已知关于x的方程mx+2=2(m-x)的解满足│x-12|-1=0,则m的值是( ).A.10或25B.10或-25C.-10或25D.-10或-25(2000年山东省竞赛题)8.若│2000x+2000│=20×2000,则x等于( ).A.20或-21B.-20或21C.-19或21D.19或-21 (2001年重庆市竞赛题)9.解下列方程:(1)││3x-5│+4│=8; (2)│4x-3│-2=3x+4;(3)│x-│2x+1││=3; (4)│2x-1│+│x-2│=│x+1│.10.讨论方程││x+3│-2│=k的解的情况.二、能力拓展11.方程││x-2│-1│=2的解是________.12.若有理数x满足方程│1-x│=1+│x│,则化简│x-1│的结果是_______.13.若a>0,b<0,则使│x-a│+│x-b│=a-b成立的x的取值范围是______.(武汉市选拨赛试题)14.若0<x<10,则满足条件│x-3│=a•的整数a•的值共有_____•个,•它们的和是____.15.若m是方程│2000-x│=2000+│x│的解,则│m-2001│等于( ).A.m-2001B.-m-2001C.m+2001D.-m+200116.若关于x的方程│2x-3│+m=0无解,│3x-4│+n=0只有一个解,│4x-5│+•k=0有两个解,则m、n、k的大小关系是( ).A.m>n>kB.n>k>mC.k>m>nD.m>k>n17.适合关系式│3x-4│+│3x+2│=6的整数x的值有( )个.A.0B.1C.2D.大于2的自然数18.方程│x+5│-│3x-7│=1的解有( ).A.1个B.2个C.3个D.无数个19.设a、b为有理数,且│a│>0,方程││x-a│-b│=3有三个不相等的解,•求b的值.(“华杯赛”邀请赛试题)20.当a满足什么条件时,关于x的方程│x-2│-│x-5│=a有一解?有无数多个解?无解?三、综合创新21.已知│x+2│+│1-x│=9-│y-5│-│1+y│,求x+y的最大值与最小值.(第15届江苏省竞赛题)22.(1)数轴上两点表示的有理数是a、b,求这两点之间的距离;(2)是否存在有理数x,使│x+1│+│x-3│=x?(3)是否存在整数x,使│x-4│+│x-3│+│x+3│+│x+4│=14?如果存在,•求出所有的整数x;如果不存在,说明理由.【学力训练】(答案)1.±107、2或0 2.0或-1 3.54.-1,a≥0 提示:由│a+1│=│a│+1得a×1≥0,即a≥05.D6.B7.A8.D9.(1)x=3或x=13;(2)x=9或x=-37;(3)x=-43或x=2;(4)提示:分x<-1、-1≤x<12、•12≤x≤2、x≥2四种情况分别去掉绝对值符号解方程,当考虑到12≤x≤2时,•原方程化为(2x-1)-(x-2)=x+1,即1=1,这是一个恒等式,说明凡是满足12≤x≤2的x值都是方程的解.10.当k<0时,原方程无解;当k=0时,原方程有两解:x=-1或x=-5;当0<k<2时,原方程化为│x+3│=2±k,此时原方程有四解:x=-3±(2±k);当k=2时,原方程化为│x+•3│=2±2,此时原方程有三解:x=1或x=-7或x=-3;当k>2时,原方程有两解:x+3=±2(•2+k).11.±5 12.1-x 13.b≤x≤a 提示:利用绝对值的几何意义解.14.7、21提示:当0<x<3时,则有│x-3│=3-x=a,a的解是1,2;当3≤x<10时,则有│x-3│=x-3=a,a的解为0,1,2,3,4,5,615.D 提示:m≤0 16.A 17.C 提示:-2≤3x≤4 18.B19.提示:若b+3、b-3都是非负的,而且如果其中一个为零,则得3个解;如果都不是零,则得4个解,故b=3.20.提示:由绝对值几何意义知:当-3<a<3时,方程有一解;当a=±3时,•方程有无穷多个解;当a>3或a<-3时,方程无解.21.提示:已知等式可化为:│x+2│+│x-1│+│y+1│+│y-5│=9,•由绝对值的几何意义知,当-2≤x≤1且-1≤y≤5时,上式成立, 故当x=-2,y=-1时,x+y有最小值为-3;当x=1,y=5时,x+y的最大值为6.22.(1)│a-b│;(2)不存在;(3)x=±3,±2,±1,0.。
七年级数学整式化简与计算一元一次方程综合练习题(附答案)
七年级数学整式化简与计算一元一次方程综合练习题一、单选题1.一个数的相反数是它本身,则该数为( )A .0B .1C .1-D .不存在 2.有下列四个算式:① ()()538-++=-② ()326--=③ 512663⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭ ④ 1393⎛⎫-÷-= ⎪⎝⎭其中,错误的有( )A .0个B .1个C .2个D .3个3.下列说法正确的是( )A .有理数a 的相反数是 a -B .有理数a 的倒数是1aC .2.0197 2.010≈(精确到千分位)D .a a -=4.a ,b 是有理数,它们在数轴上的对应点的位置如所示:把a ,a -,b ,b -按照由小到大的顺序排列是( )A .b a b a -<-<<B .a b b a -<<-<C .a b b a -<-<<D .b a b a -<-<<5.下列说法正确的是( )A .一点确定一条直线B .两条射线组成的图形叫角C .两点之间线段最短D .若AB BC =,则B 为AC 的中点6.下列计算正确的是( )A .527a b ab +=B .32532a a a -=C .22243a b ba a b =-D .242113244y --=- 7.下面四个图形中,经过折叠能围成如图所示的几何图形的是( )A .B .C .D .8.父亲与小强下棋(设没有平局),父亲胜一盘记2分,小强胜一盘记3分,下了10盘后,两人得分相等,则小强胜的盘数是( )A .2B .3C .4D .59.由5个小立方体搭成如图所示的几何体,从左面看到的平面图形是( )A .B .C .D .10.已知某商店有两个进价不同的计算器都卖了60元,其中一个盈利25%,另一个亏损20%,在这次买卖中,这家商店( )A .不赢不亏B .盈利3元C .亏损12元D .亏损3元二、解答题 11.如图,已知线段AB ,延长AB 到C ,使得12BC AB =,D 为AC 中点且30AC =,求线段BD 的长.12.整式的运算1.化简求值:22112122333x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中23x =,2y =-; 2.化简求值:2222332232a b ab ab a b ab ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦-,其中a ,b 满足()21402a b -++=. 13.如图,图① 所示是一个长为2m ,宽为2n 的长方形,用剪刀均分成四个小长方形,然后按图的方式拼成一个大正方形.1.图②中的大正方形的边长等于 ,图②中的小正方形的边长等于 ;2.图②中的大正方形的面积等于 ,图②中的小正方形的面积等于 ;图①中每个小长方形的面积是 ;3.观察图②,你能写出()2m n +,()2m n -,mn 这三个代数式间的等量关系吗? .14.苏宁电器商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3种不同型号的电视机,出厂价分别为A 种每台1500元,B 种每台2100元,C 种每台2500元.1.若苏宁电器商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.2.若商场销售一台A 种电视机可获利150元,销售一台B 种电视机可获利200元,销售一台C 种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?15.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使112BOC ∠=︒.将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.1.将图1中的三角板绕点O 逆时针旋转至图2,使一边OM 在BOC ∠的内部,且恰好平分BOC ∠,问:直线ON 是否平分AOC ∠?请说明理由;2.将图1中的三角板绕点O 按每秒4︒的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON 恰好平分锐角AOC ∠,则t 的值为多少?3.将图1中的三角板绕点O 顺时针旋转至图3,使ON 在AOC ∠的内部,请探究:AOM ∠与NOC ∠之间的数量关系,并说明理由.三、计算题16.有理数的运算或解方程1.()()24250.284+-⨯--÷2.2019152118263⎛⎫-⨯-+ ⎝-⎪⎭3.()()23544x x --+=4.541552342y y y +---=- 四、操作题17.作图题:如图,平面内有四个点A 、B 、C 、D ,请你利用直尺和圆规,根据下列语句画出符合要求的图,请保留作图痕迹.1.画直线AB ,射线AC ,线段BC ;2.在直线AB 上找一点M ,使线段MD 与线段MC 之和最小;3.在线段AD 的延长线上截3AE AD =,连线段CE 交直线AB 于点F .五、填空题18.若a ,b 互为倒数,则32ab += .19.若单项式若623m x y +和3n x y 是同类项,则()2019m n += .20.沧州市图书馆共藏书558000册,数558000用科学记数法表示为 册.21.设关于x 的方程220m x m ++-=是一元一次方程,则这个方程的解是 .22.知1a =,2b =,如果a b >,那么a b += .23.若方程()2212x a x +=-的解为3x =,则a 的值是 . 24.已知线段5cm AB =,点C 在直线AB 上,且3cm BC =,则线段AC = . 25.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠= .26.边长相同的小正方体如图摆放,最上面是第一层,第一层有一个小正方体,第二层有三个小正方体,第三层有六个小正方体,按此规律摆放下去,第六层有 个小正方体,第n 层有 个小正方体.六、判断题27.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东6252'38''︒的方向上,观测小岛B 在南偏东3812'36''︒的方向上,则AOB ∠的度数是 .参考答案1.答案:A 解析::解:0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A .2.答案:B解析:解:()()538-++=-,故①正确, ()()32688--=-==,故②错误, 51426663⎛⎫⎛⎫++-== ⎪ ⎪⎝⎭⎝⎭,故③正确, 133393⎛⎫-÷-=⨯= ⎪⎝⎭故④正确, 故选:B .3.答案:A解析:解:A 、有理数a 的相反数是a -,正确;B 、有理数a 的倒数是()10a a≠,故此选项错误; C 、2.0197 2.020≈(精确到千分位),故此选项错误;D 、()0a a a -=≥,故此选项错误;故选:A .4.答案:B解析:解:由图可知,0b a <<,b a <,0b a ∴<-<,0a b -<<,a b b a ∴>->>-.故选:B .5.答案:C解析:解:A 、两点确定一条直线,故本选项错误;B 、应为有公共端点的两条射线组成的图形叫做角,故本选项错误;C 、两点之间线段最短,故本选项正确;D 、若AB =BC ,则点B 为AC 的中点错误,因为A 、B 、C 三点不一定共线,故本选项错误. 故选:C .6.答案:C解析:解:A 、原式不能合并,错误;B 、原式不能合并,错误;C 、原式2a b =,正确;D 、原式234=-,错误, 故选:C .7.答案:B解析:解:根据立体图形可得,展开图中三角形图案的顶点应与圆形的图案相对,而选项A ,D 与此不符,所以错误;三角形图案所在的面应与圆形的图案所在的面相邻,而选项C 与此也不符,正确的是B . 故选:B .8.答案:C解析:解:设小强胜了x 盘,则父亲胜了()10x -盘,根据题意得:()3210x x =-,解得:4x =.答:小强胜了4盘.故选:C .9.答案:D解析:解:从左边看第一层两个小正方形,第二层右边一个小正方形,故选:D .10.答案:D解析:解:设盈利25%的进价为x 元,亏本20%的进价是y 元,由题意,得:()125%60x +=,()120%60y -=,解得:48x =,75y =,∴这次买卖的利润为:60248753⨯--=-元.故选:D .11.答案:解:12BC AB =, 3AC BC ∴=,30AC =,11301033BC AC ∴==⨯=, D 为AC 中点且30AC =,1152CD AC ∴==, 5BD CD BC ∴=-=.解析: 12.答案:解:1.原式2221221232333x x y x y x y -=-+++=-, 当23x =,2y =-时,原式()22322423⨯+-+==-=-; 2.原式2222332232a b ab ab b ab ab ⎛⎫=-+-+ ⎪⎝⎭- 222232233a b ab ab a b ab ab =-+--+2ab ab =+,()21402a b ++-=, 4a ∴=-,12b =, 则原式()214422⎛⎫⨯+-⨯ ⎪⎝⎭1=- 1244=--⨯ 21=--3=-.解析:13.答案:1. m n +,m n -;2. ()2m n +,()2m n -,mn ;3. ()()224m n m n mn ++-=解析:解:1.图②中的大正方形的边长等于m n +,图②中的小正方形的边长等于m n -; 故答案为:m n +,m n -;2.图②中的大正方形的面积等于()2m n +,图②中的小正方形的面积等于()2m n -;图①中每个小长方形的面积是mn ;故答案为:()2m n +,()2m n -,mn ;3.由图②可得,()2m n +,()2m n -,mn 这三个代数式间的等量关系为:()()224m n m n mn ++-=. 故答案为:()()224m n m n mn ++-=. 14.答案:1.解:按购A ,B 两种,B ,C 两种,A ,C 两种电视机这三种方案分别计算,设购A 种电视机x 台,则B 种电视机y 台.①当选购A ,B 两种电视机时,B 种电视机购()50x -台,可得方程:()150021005090000x x +-=,即()5750300x x +-=,解得:25x =,则B 种电视机购502525-=(台);②当选购A ,C 两种电视机时,C 种电视机购()50x -台,可得方程:()150025005090000x x =+-,解得:35x =,则C 种电视机购503515-=(台);③当购B ,C 两种电视机时,C 种电视机为()50y -台,可得方程:()210025005090000y y =+-, 解得:1752y =,(不合题意,舍去) 由此可选择两种方案:一是购A ,B 两种电视机25台;二是购A 种电视机35台,C 种电视机15台.2.若选择1.中的方案①,可获利15025200258750⨯+⨯=(元),若选择2.中的方案②,可获利15035250159000⨯+⨯=(元),因为90008750>,所以为了获利最多,选择第二种方案.解析:15.答案:解:1.平分,理由:延长NO 到D ,90MON ∠=︒90MOD ∴∠=90MOB NOB ∴∠+∠=︒,90MOC COD ∠+∠=︒,MOB MOC ∠=∠,NOB COD ∴∠=∠,NOB AOD ∠=∠,COD AOD ∴∠=∠,∴直线NO 平分AOC ∠;2.分两种情况:①如图2,112BOC ∠=︒68AOC ∴∠=︒,当直线ON 恰好平分锐角AOC ∠时,34AOD COD ∠=∠=︒,34BON ∴∠=︒,56BOM ∠=︒,即逆时针旋转的角度为56︒,由题意得,456t =︒解得()14s t =;②如图3,当NO 平分AOC ∠时,34NOA ∠=︒, 56AOM ∴∠=︒,即逆时针旋转的角度为:18056236︒+︒=︒,由题意得,4236t =︒,解得()59s t =,综上所述,14s t =或59s 时,直线ON 恰好平分锐角AOC ∠; 3.22AOM NOC ∠-∠=︒,理由:90AOM AON ∠=︒-∠68NOC AON ∠=︒-∠,AOM NOC ∴∠-∠()()9068AON AON ︒-∠-︒-∠=22=︒.解析:16.答案:解:1.()()24250.284+-⨯--÷ 4450.07=+⨯+4200.07=++24.07=; 2.2019152118263⎛⎫-⨯-+ ⎝-⎪⎭ 521182181863-⨯+⨯-⨯=- 191512-+-=-7=-;3.()()23544x x --+=,265204x x ---=,254620x x -=++,330x -=,10x =-; 4.541552342y y y +---=-, ()()()454312455y y y +-=---,2016332455y y y +-+=-+,2035245163y y y -+=+--,2210y =,511y =. 解析:17.答案:解:1.如图,直线AB ,射线AC ,线段BC 为所作;2.如图,点M 为所作;3.如图,点E 、F 为所作.解析:18.答案:5 解析:解: a ,b 互为倒数,1ab ∴=,32325ab ∴+=+=.故答案为:5.19.答案:1- 解析:解:单项式若623m x y +和3n x y 是同类项,63m ∴+=,2n =,解得:3m =-,故()20191m n +=-.故答案为:1-.20.答案:55.5810⨯解析: 科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数解:数558000用科学记数法表示为55.5810⨯册.故答案为:55.5810⨯.21.答案:3-解析:解:由题意可知:21m +=,1m ∴=-,∴该方程为:120x ++=,3x ∴=-,故答案为:3-22.答案:1-或3- 解析:解:1a =,2b =,1a ∴=±,2b =±, a b >,∴① 1a =,2b =-,则:121a b +=-=-;② 1a =-,2b =-,则123a b +=--=-,故答案是:1-或3-.23.答案:2解析:解:把3x =代入()2212x a x +=-),可得:6222a +=⨯, 解得:2a =,故答案为:224.答案:2cm 或8cm解析:解:当点C 在线段AB 上时,则AC BC AB +=,所以5cm 3cm 2cm AC =-=; 当点C 在线段AB 的延长线上时,则AC BC AB -=,所以5cm+3cm=8cm AC =. 故答案为2cm 或8cm .25.答案:70︒解析:解:设DOB ∠为2x ,DOA ∠为11x ; 9AOB DOA DOB x ∴∠=∠-∠=,90AOB ∠=︒,990x ∴=︒,10x ∴=︒,20DOB ∴∠=︒,902070BOC COD DOB ∴∠=∠-∠=︒-︒=︒; 故答案为:70︒26.答案:21,()12n n +. 解析:解:第1层有1个小正方体, 第2层有123+=个小正方体,第3层有1236++=个小正方体,……∴第6层有12345621+++++=小正方体, 第n 层有()11232n n n ++++⋯+=个小正方体, 故答案为:21,()12n n +.27.答案:7854'46''︒解析:解:1806252'38''3812'36''AOB ∠=︒-︒-︒ 7854'46''=︒,故答案为:7854'46''︒.。
人教版七年级数学上册 一元一次方程综合测试卷(word含答案)
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B两点的对应的数a、b;(2)点C在数轴上对应的数为x,且x是方程2x+1= x﹣8的解.①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.【答案】(1)解:∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2 。
(2)解:①2x+1= x﹣8解得x=﹣6,∴BC=2﹣(﹣6)=8即线段BC的长为8;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得 m=3.5,当﹣3<m<2时,无解当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5【解析】【分析】(1)根据绝对值及平方的非负性,几个非负数的和为零则这几个数都为零从而得出解方程组得出a,b的值,从而得出A,B两点表示的数;(2)①解方程2x+1= x﹣8 ,得出x的值,从而得到C点的坐标,根据两点间的距离得出BC的长度;②存在点P,使PA+PB=BC理由如下:设点P的表示的数为m,根据两点间的距离公式列出方程|m﹣(﹣3)|+|m﹣2|=8,然后分类讨论:当m>2时,解得m=3.5,当﹣3<m<2时,无解,当x<﹣3时,解得m=﹣4.5,即点P对应的数是3.5或﹣4.5 。
2.约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:如图1,即4+3=7,观察图2,求:(1)用含x的式子分别表示m和n;(2)当y=-7时,求n的值。
【答案】(1)解:根据约定的方法可得:m=x+2x=3x;n=2x+3;(2)解:x+2x+2x+3=m+n=y当y=-7时,5x+3=-7解得x=-2.∴n=2x+3=-4+3=-1【解析】【分析】(1)根据约定:上方相邻两数之和等于这两数下方箭头共同指向的数,分别列式即可;(2)根据约定可得m+n=y,代入上题的关系整理可得关于x的一元一次方程,解出x, 代入n的表达式求值即可.3.根据绝对值定义,若有,则或,若,则,我们可以根据这样的结论,解一些简单的绝对值方程,例如:解:方程可化为:或当时,则有:;所以 .当时,则有:;所以 .故,方程的解为或。
初中数学含绝对值符号的一元一次方程练习题含答案
初中数学含绝对值符号的一元一次方程练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 使方程3|x+2|+2=0成立的未知数x的值是()D.不存在A.−2B.0C.232. 方程|x−19|+|x−93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在3. 方程|x+1|+|x+9|+|x+2|=1992的解的个数是()A.4B.3C.2D.14. 方程|x+1|+|x−5|=6的整数解有()A.5个B.6个C.7个D.无穷多个5. 方程|2007x−2007|=2007的解是()A.0B.2C.1或2D.2或06. 方程|3x|=15的解的情况是()A.有一个解,是5B.无解C.有无数个解D.有两个解,是±57. 方程m|x|−x−m=0(m>0且m≠1)有两个解,则实数m的取值范围是()A.m>1B.0<m<1C.0<m<1或m<1D.这样的m不存在8. 方程|x+1|+|x−2|=3的整数解共有()个.A.1B.2C.3D.49. 适合|2a+7|+|2a−1|=8的整数a的值的个数有()A.5B.4C.3D.210. 若关于x的方程||x−2|−1|=a有三个整数解,则a的值是()A.0B.1C.2D.311. 解方程|7x−1|=3,则x=________.的根,则a的取值范围是12. 若关于x的方程|x−1|=(a−1)x有且只有一个不大于12________.|=3,则x=________.13. 解方程|1−x214. 方程|x+5|−|3x−7|=1的解有________个.15. 若关于x的方程ax+3=|x|有负根且无正根,则a的取值范围是________.x|=4,则x=________.16. 方程|2−2317. 方程|5x+6|=6x−5的解是________.18. 关于x的方程||x−2|−1|=a恰有三个整数解,则a的值为________.19. 方程|2x+3|=1的解是________.,那么方程3△|x|=4的解x=________.20. 若规定a△b=a+2b221. 阅读下题和解题过程:化简:|x−2|+1−2(x−2),使结果不含绝对值.解:当x−2≥0时,即x≥2时:原式=x−2+1−2x+4=−x+3;当x−2<0时,即x<2时:原式=−(x−2)+1−2x+4=−3x+7.这种解题的方法叫“分类讨论法”.请你用“分类讨论法”解一元一次方程:|2x−1|=3.22. 有些含绝对值的方程,可以通过讨论去掉绝对值,转化成一元一次方程求解.例如:解方程x+2|x|=3,解:当x≥0时,方程可化为:x+2x=3,解得x=1,符合题意.当x <0时,方程可化为:x −2x =3,解得x =−3,符合题意.所以,原方程的解为:x =1或x =−3.仿照上面解法,解方程:x +3|x −1|=7.23. 已知关于x 的方程kx +3=|x +1|−2|x −1|+|x +2|有三个解,求k 的取值范围.24. 阅读下列材料:由绝对值的定义,若有|x|=4,则x =4或−4,若|y|=a ,则y =±a .我们可以根据这样的结论,解一些简单的绝对值方程.例如: |2x +4|=5.解:方程|2x +4|=5可化为2x +4=5或2x +4=−5.当2x +4=5时,x =12. 当2x +4=−5时,x =−92. 故方程|2x +4|=5的解为x =12或−92.根据上面材料,解答下列问题:(1)解方程:|3x −2|=4;(2)已知|a +b +4|=6,求|a +b|的值.25. 解方程:|x −5|+√(42=1.26. 据绝对值的几何意义,方程|x −1|+|x +2|=5表示求在数轴上与1和−2的距离之和等于5的点对应的x 的值.在数轴上,1和−2的距离之和为3,所以满足方程的x 的对应点在1的右边或−2的左边;若x 对应点在1的右边,由图可看出x =2;同时,若x 对应点在−2的左边,可得x =−3,所以原方程的解是x =2或x =−3.请利用以上阅读材料,仿照上述过程解方程:|x −3|+|x +4|=9.27. 解方程:|x −|3x +1||=4.28. 求方程|x −|2x +1||=3的不同的解的个数.29. 解方程:|x −4|−|x +2|=x +3.|=2.30. 解方程:|2x−3−2x−4231. 解下列方程:|x+3|−|x−1|=x+1.32. 如果a、b均为有理数,且满足|a−2|=3,(b−1)2=4,求a−b的值.33. 解方程:3|x−1|−|x+1|=2|x−2|34. 2|x−1|+3=9.35. 满足方程|2|2x−4|−3|=2x−1的所有解的和为多少?36. 解方程:|x−2|+|x−3|=2.37. 解关于x的方程:|x+1|−|x−2|=1.5.38. 解方程:|x+1|+|x−3|=4.39. 解方程:(1)|4x−1|=7;(2)2|x−3|+5=13.40. 先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=−1;当x+3<0时,原方程可化为:x+3=−2,解得x=−5.所以原方程的解是x=−1,x=−5.(1)解方程:|3x−1|−5=0;(2)探究:当b为何值时,方程|x−2|=b+1①无解;②只有一个解;③有两个解.参考答案与试题解析初中数学含绝对值符号的一元一次方程练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】D【考点】含绝对值符号的一元一次方程【解析】,根据绝对值的性质即可得出答要使方程3|x+2|+2=0成立,则可得:|x+2|=−23案.【解答】解:要使方程3|x+2|+2=0成立,,根据绝对值的非负性,则可得:|x+2|=−23即可得知使方程3|x+2|+2=0成立的x不存在.故选D.2.【答案】A【考点】含绝对值符号的一元一次方程【解析】首先根据x的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.【解答】解:当x≤19时,方程即:19−x+93−x=74,解得:x=19;当19<x<93时,方程变形为:x−19+93−x=74,恒成立;当x≥93时,方程变形为:x−19+x−93=74,解得:x=93.则x为范围[19, 93]中的有理数,即至少有3个.故选A.3.【答案】C【考点】含绝对值符号的一元一次方程【解析】首先根据x的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.【解答】解:当x≤−9时,原方程即:−x−1−x−9−x−2=1992解得:x=−668;当−9<x≤−2时.原方程即:−x−1+x+9−x−2=1992解得:x=−1986不合题意舍去;当−2<x≤−1时,原方程即:−x−1+x+9+x+2=1992解得:x=1981,舍去;当x>−1时,原方程即:x+1+x+9+x+2=1992解得:x=660.故x=−668或660.故选C.4.【答案】C【考点】含绝对值符号的一元一次方程【解析】分三种情况:x≤−1;−1<x<5;x≥5去掉绝对值符号,化为常规的一元一次方程解答.【解答】当x≤−1时,原方程可化为−x−1+5−x=6,解得x=−1;当−1<x<5时,原方程可化为x+1+5−x=6,x为−1<x<5中任意整数,即x=0,1,2,3,4;当x≥5时,原方程可化为x+1+x−5=6,解得x=5,由上可知,原方程的整数解有7个,5.【答案】D【考点】含绝对值符号的一元一次方程【解析】分别讨论x≥1,x<1,可求得方程的解.【解答】解:①当x≥1时,原方程可化为:2007x−2007=2007,解得:x=2,②当x<1时,原方程可化为:2007−2007x=2007,解得:x=0,综上可得x=0或2.故选D.6.【答案】D【考点】含绝对值符号的一元一次方程【解析】本题的关键是弄清绝对值的规律.绝对值是15的数有±15,从而将|3x|=15转化为两个方程3x=15或3x=−15,可求得x的值.【解答】解:绝对值是15的数有±15,∴3x=15或3x=−15,得到x=5或x=−5.故选D.7.【答案】A【考点】含绝对值符号的一元一次方程【解析】根据方程m|x|−x−m=0(m>0且m≠1)有两个解,可得知有一个正根与一个负根,然后分类x的取值范围即可.【解答】解:由方程m|x|−x−m=0(m>0且m≠1)有两个解,可得知有一个正跟与一个负根,(m>0且m≠1),则m>1;当x>0时,解方程得:x=mm−1<0,则m>−1,综上所述,当x<0时,解方程得;x=−mm+1∴m>1.故选A.8.【答案】D【考点】含绝对值符号的一元一次方程【解析】讨论:当x<−1,−(x+1)−(x−2)=3;当x=−1,0+3=3成立;当−1<x<2,x+1−(x−2)=3,3=3恒成立;当x=2,3=3;当x>2,x+1+x−2=3,然后分别得到满足条件的x的值.【解答】解:当x<−1,−(x+1)−(x−2)=3,解得x=−1舍去;当x=−1,0+3=3成立,所以x=−1是原方程的整数解;当−1<x<2,x+1−(x−2)=3,3=3恒成立,所以原方程的整数解有0,1;当x=2,3=3,所以x=2是原方程的整数解;当x>2,x+1+x−2=3,解得x=2舍去.所以原方程的整数解为−1、0、1、2.故选D.9.【答案】B【考点】含绝对值符号的一元一次方程【解析】此方程可理解为2a到−7和1的距离的和,由此可得出2a的值,继而可得出答案.【解答】解:由此可得2a为−6,−4,−2,0的时候a取得整数,共四个值.故选B.10.【答案】B【考点】含绝对值符号的一元一次方程【解析】根据绝对值的性质可得|x −2|−1=±a ,然后讨论x ≥2及x <2的情况下解的情况,再根据方程有三个整数解可得出a 的值.【解答】解:①若|x −2|−1=a ,当x ≥2时,x −2−1=a ,解得:x =a +3,a ≥−1;当x <2时,2−x −1=a ,解得:x =1−a ;a >−1;②若|x −2|−1=−a ,当x ≥2时,x −2−1=−a ,解得:x =−a +3,a ≤1;当x <2时,2−x −1=−a ,解得:x =a +1,a <1;又∵ 方程有三个整数解,∴ 可得:a =−1或1,根据绝对值的非负性可得:a ≥0.即a 只能取1.故选B .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )11.【答案】47或−27 【考点】含绝对值符号的一元一次方程【解析】分为两种情况:①7x −1=3,②7x −1=−3,求出方程的解即可.【解答】解:分为两种情况:①7x −1=3,解得:x =47;②7x −1=−3,解得:x =−27, 故原方程的解为x =47或x =−27. 故答案是:47或−27. 12.【答案】a ≥2,或a <0【考点】含绝对值符号的一元一次方程【解析】根据绝对值是大数减小数,可化简成不含绝对值得方程,根据方程的解不大于12,可得不等式,根据解不等式,可得不等式的解集.【解答】解:关于x 的方程|x −1|=(a −1)x 有且只有一个不大于12的根, 1−x =(a −1)x ,解得x =1a , x =1a ≤12, 解得:a ≥2,或a <0,故答案为:a ≥2,或a <0.13.【答案】−5或7【考点】含绝对值符号的一元一次方程【解析】先去绝对值,然后解方程.依据绝对值的意义,±3的绝对值是3,从而将原方程可化为两个方程(1)1−x 2=3,(2)1−x 2=−3,然后解出x 的值. 【解答】解:根据绝对值的意义,将原方程可化为:(1)1−x 2=3;(2)1−x 2=−3.解(1)得x =−5,解(2)得x =7.故填−5或7.14.【答案】2【考点】含绝对值符号的一元一次方程【解析】分别讨论①x ≥73,②−5<x <73 ③x ≤−5,根据x 的范围去掉绝对值,解出x ,综合三种情况可得出x 的最终范围.【解答】解:从三种情况考虑:第一种:当x ≥73时,原方程就可化简为:x +5−3x +7=1, 解得:x =112符合题意;第二种:当−5<x <73时,原方程就可化简为:x +5+3x −7=1,解得:x =34符合题意;第三种:当x ≤−5时,原方程就可化简为:−x −5+3x −7=1,解得:x =132,不符合题意;所以x 的值为112或34. 故答案为:2.15.【答案】a ≥1【考点】含绝对值符号的一元一次方程【解析】首先考虑去掉绝对值以后,x 的正负问题,即x ≥0和x ≤0时的情况.【解答】解:(1)当x ≥0时,|x|=x ,∴ 原式=ax +3=x ,∴ x =31−a (无正根),∴ 1−a ≤0,∴ a ≥1;(2)当x ≤0时,|x|=−x ,∴ 原式=ax +3=−x ,∴ x =−31+a (有负根),∴ 1+a ≥0,∴ a ≥−1,故a 的取值范围是:a ≥1.16.【答案】−3或9【考点】含绝对值符号的一元一次方程【解析】根据|2−23x|=4,先去绝对值符号,然后移项化系数为1即可得出答案. 【解答】解:∵ |2−23x|=4,∴ 2−23x =4或−(2−23x)=4,由2−23x =4,移项化系数为1得:x =−3;由−(2−23x)=4,移项化系数为1得:x =9;故答案为:−3或9.17.【答案】x =11【考点】含绝对值符号的一元一次方程【解析】根据绝对值的代数定义,去掉绝对值符号,将原方程化为一般的一元一次方程来求解.【解答】解:∵|5x+6|=6x−5,∴5x+6=±(6x−5),解得,x=11或−111(舍去).故答案为:x=11.18.【答案】1【考点】含绝对值符号的一元一次方程【解析】根据绝对值的性质可得|x−2|−1=±a,然后讨论x≥2及x<2的情况下解的情况,再根据方程有三个整数解可得出a的值.【解答】解:①若|x−2|−1=a,当x≥2时,x−2−1=a,解得:x=a+3,a≥−1;当x<2时,2−x−1=a,解得:x=1−a;a>−1;②若|x−2|−1=−a,当x≥2时,x−2−1=−a,解得:x=−a+3,a≤1;当x<2时,2−x−1=−a,解得:x=a+1,a<1;又∵方程有三个整数解,∴可得:a=−1或1,根据绝对值的非负性可得:a≥0.即a只能取1.故答案为1.19.【答案】x=−1或x=−2,【考点】含绝对值符号的一元一次方程【解析】根据绝对值的性质,可化简方程,根据解方程,可得答案.【解答】解:当x<−32时,原方程化简为−2x−3=1,解得x=−2,当x≥−32时,原方程化简为2x+3=1,解得x=−1,综上所述:方程|2x+3|=1的解是x=−1或x=−2,故答案为:x=−1或x=−2.20.【答案】±5 2【考点】含绝对值符号的一元一次方程【解析】根据新规定a△b=a+2b,对方程3△|x|=4去绝对值后即可解答.2【解答】解:方程3△|x|=4可化为:3△x=4或3△(−x)=4,=4,当3△x=4时,根据新定义,3△x=3+2x2.解得:3+2x=8,x=52=4,当3△(−x)=4时,根据新定义,3△(−x)=3−2x2.解得:3−2x=8,x=−52故答案为:±5.2三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】时原方程可化为:2x−1=3,解:当2x−1≥0时,即x≥12解得:x=2,时,原方程化为−(2x−1)=3,当2x−1<0时,即x<12解得:x=−1,即原方程的解为x=2或x=−1.【考点】含绝对值符号的一元一次方程【解析】分为两种情况,当2x−1≥0或2x−1<0,先去掉绝对值符号,求出即可.【解答】时原方程可化为:2x−1=3,解:当2x−1≥0时,即x≥12解得:x=2,当2x−1<0时,即x<1时,原方程化为−(2x−1)=3,2解得:x=−1,即原方程的解为x=2或x=−1.22.【答案】解:当x<1时,方程可化为:x−3x+3=7解得x=−2,符合题意.当x≥1时,方程可化为:x+3x−3=7,解得x=5,符合题意.2所以,原方程的解为:x=−2或x=5.2【考点】含绝对值符号的一元一次方程【解析】分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.【解答】解:当x<1时,方程可化为:x−3x+3=7解得x=−2,符合题意.当x≥1时,方程可化为:x+3x−3=7,,符合题意.解得x=52所以,原方程的解为:x=−2或x=5.223.【答案】解:1)当x≤−2时,原式即kx+3=−x−1−2(1−x)−x−2,kx+3=−x−1−2+2x−x−2,kx=−8,则x=−8,k≤−2,−8k解得:k≥4;2)当−2<x≤−1,原式即kx+3=−x−1−2(1−x)+x+2,kx+3=−x−1−2+2x+x+2,kx+x−2x−x=−3−1−2+2,即(k−2)x=−4,,则x=42−k≤−1,则−2<42−k解得:4<k≤6;3)当−1<x≤1时,原式即kx+3=−x−1−2(1−x)+x+2,,解得:x=24−k≤1,根据题意得:−1<24−k解得:k>6或k<2;4)当x>1时,原式即kx+3=x+1−2(x−1)+x+2,,解得:x=2k>1,则2k解得:0<k<2.总之,当k>6时,方程有3个解.【考点】含绝对值符号的一元一次方程【解析】分x≤−2,−2<x≤−1,−1<x≤1,和x>1四种情况进行讨论,求得方程的解,然后根据方程有解的条件求得k的范围,然后进行总结求解.【解答】解:1)当x≤−2时,原式即kx+3=−x−1−2(1−x)−x−2,kx+3=−x−1−2+2x−x−2,kx=−8,则x=−8,k≤−2,−8k解得:k≥4;2)当−2<x≤−1,原式即kx+3=−x−1−2(1−x)+x+2,kx+3=−x−1−2+2x+x+2,kx+x−2x−x=−3−1−2+2,即(k−2)x=−4,,则x=42−k≤−1,则−2<42−k解得:4<k≤6;3)当−1<x≤1时,原式即kx+3=−x−1−2(1−x)+x+2,,解得:x=24−k≤1,根据题意得:−1<24−k解得:k>6或k<2;4)当x>1时,原式即kx+3=x+1−2(x−1)+x+2,,解得:x=2k>1,则2k解得:0<k<2.总之,当k>6时,方程有3个解.24.【答案】解:(1)方程|3x−2|=4可化为3x−2=4或3x−2=−4,当3x−2=4时,x=2..当3x−2=−4时,x=−23所以,原方程的解为:x=2或x=−2.3(2)方程|a+b+4|=6可化为a+b+4=6或a+b+4=−6,当a+b+4=6时,a+b=2.当a+b+4=−6时,a+b=−10.所以,|a+b|=2或|a+b|=10.【考点】含绝对值符号的一元一次方程【解析】分类讨论:x<1,x≥1,根据绝对值的意义,可化简绝对值,根据解方程,可得答案.【解答】解:(1)方程|3x−2|=4可化为3x−2=4或3x−2=−4,当3x−2=4时,x=2..当3x−2=−4时,x=−23.所以,原方程的解为:x=2或x=−23(2)方程|a+b+4|=6可化为a+b+4=6或a+b+4=−6,当a+b+4=6时,a+b=2.当a+b+4=−6时,a+b=−10.所以,|a+b|=2或|a+b|=10.25.【答案】解:当x≤4时,原方程为:5−x+4−x=1,解得:x=4;当4<x≤5时,原方程为:5−x+x−4=1,解得:x为任意实数;当x≥5时,原方程为:x−5+x−4=1,解得:x=5;【考点】二次根式的性质与化简含绝对值符号的一元一次方程【解析】根据二次根式的化简和绝对值的化简,可得答案.【解答】解:当x≤4时,原方程为:5−x+4−x=1,解得:x=4;当4<x≤5时,原方程为:5−x+x−4=1,解得:x为任意实数;当x≥5时,原方程为:x−5+x−4=1,解得:x=5;26.【答案】解:∵在数轴上3和−4的距离为7,7<9,∴满足方程|x−3|+|x+4|=9的x的对应点在3的右边或−4的左边.若x的对应点在3的右边,x=4;若x的对应点在−4的左边,x=−5,所以原方程的解是x=4或x=−5.【考点】含绝对值符号的一元一次方程数轴【解析】方程|x −3|+|x +4|=9表示数轴上与3和−4的距离之和为9的点对应的x 值,在数轴上3和−4的距离为7,满足方程的x 的对应点在3的右边或−4的左边,画图即可解答.【解答】解:∵ 在数轴上3和−4的距离为7,7<9,∴ 满足方程|x −3|+|x +4|=9的x 的对应点在3的右边或−4的左边.若x 的对应点在3的右边,x =4;若x 的对应点在−4的左边,x =−5,所以原方程的解是x =4或x =−5.27.【答案】解:原方程式化为x −|3x +1|=4或x −|3x +1|=−4(1)当3x +1>0时,即x >−13,由x −|3x +1|=4得x −3x −1=4∴ x =−52与x >−13不相符,故舍去 由x −|3x +1|=−4得x −3x −1=−4∴ x =32 (2)当3x +1<0时,即x <−13,由x −|3x +1|=4得x +3x +1=4∴ x =34与x <−13不相符,故舍去 由x −|3x +1|=−4得x +3x +1=−4∴ x =−54故原方程的解是x =−54或x =32【考点】含绝对值符号的一元一次方程【解析】从内向外,根据绝对值定义性质简化方程;有|x|=1,得x =±1联想此题.【解答】解:原方程式化为x −|3x +1|=4或x −|3x +1|=−4(1)当3x +1>0时,即x >−13,由x −|3x +1|=4得x −3x −1=4∴ x =−52与x >−13不相符,故舍去由x −|3x +1|=−4得x −3x −1=−4∴ x =32(2)当3x +1<0时,即x <−13,由x −|3x +1|=4得x +3x +1=4∴ x =34与x <−13不相符,故舍去由x −|3x +1|=−4得x +3x +1=−4∴ x =−54 故原方程的解是x =−54或x =3228.【答案】|x −|2x +1||=3,当x =−12时,原方程化为|x|=3,无解;当x >−12时,原方程化为:|1+x|=3, 解得:x =2或x =−4(舍去).当x <−12时,原方程可化为:|x +(2x +1)|=3,即|3x +1|=3,∴ 3x +1=±3,解得:x =23(舍去)或x =−43.综上可得方程的解只有x =2或x =−43两个解.【考点】含绝对值符号的一元一次方程【解析】此方程有两层绝对值,先由2x +1=0解得x =−12,然后分别对x =−12,x >−12,x <−12去掉绝对值符号,使方程转化为只含一个绝对值符号的方程,然后再去掉绝对值符号求解即可.【解答】|x −|2x +1||=3,当x =−12时,原方程化为|x|=3,无解;当x >−12时,原方程化为:|1+x|=3,解得:x =2或x =−4(舍去).当x <−12时,原方程可化为:|x +(2x +1)|=3,即|3x +1|=3,∴ 3x +1=±3,解得:x =23(舍去)或x =−43. 综上可得方程的解只有x =2或x =−43两个解.29.【答案】解:①当x =4时,|4−4|−|4+2|=4+3,此时方程无解;②当x =−2时,|−2−4|−|−2+2|=−2+3,此时方程无解;③当x <−2时,原方程化为:4−x +x +2=x +3,解得:x =3,此时x =3>−2,此种情况不合题意;④当−2<x <4时,原方程化为:4−x −(x +2)=x +3,解得:x =−13;⑤当x >4时,原方程化为:x −4−(x +2)=x +3,解得:x =−9,∵ −9<4,此种情况不合题意;综合上述,原方程的解是x =−13. 【考点】含绝对值符号的一元一次方程【解析】求出x −4=0和x +2=0的值,分为五种情况,求出每一种情况方程的解,即可得出答案.【解答】解:①当x =4时,|4−4|−|4+2|=4+3,此时方程无解;②当x =−2时,|−2−4|−|−2+2|=−2+3,此时方程无解;③当x<−2时,原方程化为:4−x+x+2=x+3,解得:x=3,此时x=3>−2,此种情况不合题意;④当−2<x<4时,原方程化为:4−x−(x+2)=x+3,解得:x=−13;⑤当x>4时,原方程化为:x−4−(x+2)=x+3,解得:x=−9,∵−9<4,此种情况不合题意;综合上述,原方程的解是x=−13.30.【答案】解:|2x−3−2x−42|=2,化简2x−3−2x−42=2①或2x−3−2x−42=−2②.解①得x=3;解②得x=−1.∴原方程的解为x=3或−1.【考点】含绝对值符号的一元一次方程【解析】先去掉绝对值,把原方程化成两个一元一次方程来解.【解答】解:|2x−3−2x−42|=2,化简2x−3−2x−42=2①或2x−3−2x−42=−2②.解①得x=3;解②得x=−1.∴原方程的解为x=3或−1.31.【答案】解:当x<−3时,原方程得:−x−3+x−1=x+1,解得:x=−5,满足x<−3,∴x=−5.当−3≤x≤1时,原方程得:x+3+x−1=x+1,解得:x=−1,满足−3≤x≤1,∴x=−1.当x>1时,原方程得:x+3−x+1=x+1,解得:x=3,满足x>1,∴x=3.∴方程的解为:x=−5、x=−1、x=3.【考点】含绝对值符号的一元一次方程【解析】根据绝对值性质,去掉绝对值符号,题目应该分为三个取值范围进行讨论,分别为:x<−3,−3≤x≤1,x>1,去掉绝对值后,解三个一元一次方程.【解答】解:当x<−3时,原方程得:−x−3+x−1=x+1,解得:x=−5,满足x<−3,∴x=−5.当−3≤x≤1时,原方程得:x+3+x−1=x+1,解得:x=−1,满足−3≤x≤1,∴x=−1.当x>1时,原方程得:x+3−x+1=x+1,解得:x=3,满足x>1,∴x=3.∴方程的解为:x=−5、x=−1、x=3.32.【答案】解:|a−2|=3a−2=3或a−2=−3a=5或a=−1(b−1)2=4b−1=2或b−1=−2b=3或b=−1.①a=5,b=3,a−b=5−3=2;②a=5,b=−1,a−b=5+1=6;③a=−1,b=3,a−b=−1−3=−4;④a=−1,b=−1,a−b=−1+1=0;∴a−b的值为2,6,−4,0.【考点】含绝对值符号的一元一次方程【解析】本题主要考查了绝对值及有理数的混合运算.【解答】解:|a−2|=3a−2=3或a−2=−3a=5或a=−1(b−1)2=4b−1=2或b−1=−2b=3或b=−1.①a=5,b=3,a−b=5−3=2;②a=5,b=−1,a−b=5+1=6;③a=−1,b=3,a−b=−1−3=−4;④a=−1,b=−1,a−b=−1+1=0;∴a−b的值为2,6,−4,0.33.【答案】解:当x<−1时,得:−3(x−1)+(x+1)=−2(x−2)解得:恒成立,∴x<−1当−1≤x≤1时得:−3(x−1)−(x+1)=−2(x−2)解得x=−1当1<x≤2时得:3(x−1)−(x+1)=−2(x−2)解得x=2当x>2时得:3(x−1)−(x+1)=2(x−2)解得:恒成立,则x>2.综上所述:x≤−1或x≥2.【考点】含绝对值符号的一元一次方程【解析】根据绝对值性质,因为本题含有三个绝对值,因此需要分类讨论,根据取值区间的不同,去掉绝对值符号,解一元一次方程.【解答】解:当x<−1时,得:−3(x−1)+(x+1)=−2(x−2)解得:恒成立,∴x<−1当−1≤x≤1时得:−3(x−1)−(x+1)=−2(x−2)解得x=−1当1<x≤2时得:3(x−1)−(x+1)=−2(x−2)解得x=2当x>2时得:3(x−1)−(x+1)=2(x−2)解得:恒成立,则x>2.综上所述:x≤−1或x≥2.34.【答案】解:当x−1≥0,即x≥1时,方程化为2(x−1)+3=9,去括号得:2x−2+3=9,移项合并得:2x=8,解得:x=4;当x−1<0,即x<1时,方程化为−2(x−1)+3=9,去括号得:−2x+2+3=9,移项合并得:−2x=4,解得:x=−2,综上,原方程的解为−2或4.【考点】含绝对值符号的一元一次方程【解析】分两种情况考虑:当x−1大于等于0与x−1小于0,利用绝对值的代数意义化简后,求出方程的解即可得到x的值.【解答】解:当x−1≥0,即x≥1时,方程化为2(x−1)+3=9,去括号得:2x−2+3=9,移项合并得:2x=8,解得:x=4;当x−1<0,即x<1时,方程化为−2(x−1)+3=9,去括号得:−2x+2+3=9,移项合并得:−2x=4,解得:x=−2,综上,原方程的解为−2或4.35.【答案】解:①当2x−4≥0时,方程化为|4x−11|=2x−1,即4x−11=2x−1或4x−11=1−2x,解得:x=5,或x=2,②当2x−4<0时,方程化为|5−4x|=2x−1,即5−4x=2x−1,或5−4x=1−2x,解得:x=1,或x=2(舍去),故方程|2|2x−4|−3|=2x−1的所有解的和为:5+2+1=8.【考点】含绝对值符号的一元一次方程【解析】因为题目中带有绝对值符号,所以必须分两种情况进行讨论,去掉绝对值符号,得到两个一元一次方程,求出方程的根,即可得到结果.【解答】解:①当2x−4≥0时,方程化为|4x−11|=2x−1,即4x−11=2x−1或4x−11=1−2x,解得:x=5,或x=2,②当2x−4<0时,方程化为|5−4x|=2x−1,即5−4x=2x−1,或5−4x=1−2x,解得:x=1,或x=2(舍去),故方程|2|2x−4|−3|=2x−1的所有解的和为:5+2+1=8.36.【答案】;解:①当x<2时,原方程等价于2−x+3−x=2,解得x=32②当2≤x≤3时,原方程等价于x−2+3−x=2无解;③当x ≥3时,原方程等价于x −2+x −3=2,解得x =72, 综上所述:方程的解是x =72,x =32.【考点】含绝对值符号的一元一次方程【解析】根据分类讨论:x <2,2≤x <3,x ≥3,可化简绝对值,根据解方程,可得答案.【解答】解:①当x <2时,原方程等价于2−x +3−x =2,解得x =32; ②当2≤x ≤3时,原方程等价于x −2+3−x =2无解;③当x ≥3时,原方程等价于x −2+x −3=2,解得x =72,综上所述:方程的解是x =72,x =32. 37.【答案】解:①当x ≥2时,x +1−(x −2)=1.5,方程不存在;②当−1≤x <2时,x +1+(x −2)=1.5,2x =2.5x =1.25;③当x <−1时,−x −1+(x −2)=1.5,方程不存在;∴ |x +1|−|x −2|=1.5的解是x =1.25.【考点】含绝对值符号的一元一次方程【解析】分别讨论①x ≥4;②3≤x <4;③x <3;根据x 的范围去掉绝对值,解出x ,综合三种情况可得出x 的最终范围.【解答】解:①当x ≥2时,x +1−(x −2)=1.5,方程不存在;②当−1≤x <2时,x +1+(x −2)=1.5,2x =2.5x =1.25;③当x <−1时,−x −1+(x −2)=1.5,方程不存在;∴ |x +1|−|x −2|=1.5的解是x =1.25.38.【答案】解:①当x =−1时,2+2=4;②当x =3时,4+0=4;③当x <−1时,−x +1+3−x =4,解得:x =0,此时不符合x <−1;④当−1<x <3时,−x −1+3−x =4,解得:x =−2,此时不符合−1<x <3;⑤当x >3时,x +1+x −3=4,解得:x=3,此时不符合x>3;所以原方程的解为x=−1或x=3.【考点】含绝对值符号的一元一次方程【解析】求出x+1=0和x−3=0的解,分为5种情况,再每种情况去掉绝对值符号后求出每个方程的解即可.【解答】解:①当x=−1时,2+2=4;②当x=3时,4+0=4;③当x<−1时,−x+1+3−x=4,解得:x=0,此时不符合x<−1;④当−1<x<3时,−x−1+3−x=4,解得:x=−2,此时不符合−1<x<3;⑤当x>3时,x+1+x−3=4,解得:x=3,此时不符合x>3;所以原方程的解为x=−1或x=3.39.【答案】解:(1)原方程可化为:4x−1=7①,4x−1=−7②解①得,x=2,解②得,x=−1.5;故方程的解为x=2或x=−1.5.(2)原方程可化为:x−3=4①,x−3=−4②解①得,x=7,解②得,x=−1.故方程的解为x=7或x=−1.【考点】含绝对值符号的一元一次方程【解析】两个方程都含有绝对值,在解答时需要先去掉绝对值符号,分两种情况解答.【解答】解:(1)原方程可化为:4x−1=7①,4x−1=−7②解①得,x=2,解②得,x=−1.5;故方程的解为x=2或x=−1.5.(2)原方程可化为:x−3=4①,x−3=−4②解①得,x=7,解②得,x=−1.故方程的解为x=7或x=−1.40.【答案】解:(1)|3x−1|=5,3x−1=5或3x−1=−5,;所以x=2或x=−43(2)∵|x−2|≥0,∴当b+1<0,即b<−1时,方程无解;当b+1=0,即b=−1时,方程只有一个解;当b+1>0,即b>−1时,方程有两个解.【考点】含绝对值符号的一元一次方程【解析】(1)先移项得到)|3x−1|=5,利用绝对值的意义得到3x−1=5或3x−1=−5,然后分别解两个一次方程;(2)利用绝对值的意义讨论:当b+1<0或b+1=0或b+1>0时确定方程的解的个数,【解答】解:(1)|3x−1|=5,3x−1=5或3x−1=−5,所以x=2或x=−4;3(2)∵|x−2|≥0,∴当b+1<0,即b<−1时,方程无解;当b+1=0,即b=−1时,方程只有一个解;当b+1>0,即b>−1时,方程有两个解.。
初中数学绝对值化简数轴认识一元一次方程综合练习题(附答案)
初中数学绝对值化简数轴认识一元一次方程综合练习题一、单选题1.已知,,a b c 在数轴上的位置如图所示.化简|||2||2|a c a b c b +----的结果是( )A. 0B.4bC.22a c --D. 22a c --2.已知,a b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )A.22a b +B.23b +C.23a -D.1-二、解答题3.已知多项式2122113675m x y xy x +-+-+是六次四项式,单项式223n x y 的次数与这个多项式的次数相同,求22m n +的值.4.列代数式,并求值.甲、乙两地相距100 km ,一辆汽车的行驶速度为x km/h.(1)用代数式表示这辆汽车从甲地到乙地需行驶的时间.(2)若速度增加5 km/h ,则需多长时间?速度增加后比原来可早到多长时间?分别用代数式表示.(3)当50x =时,分别计算上面各代数式的值.5.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.6.某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损 25%,该商店卖这两件衣服总体上是赚了,还是亏损了?赚或亏了多少元?7.甲乙两地相距40km ,摩托车的速度为45km/h ,货车的速度为35km/h (按题意设未知数列方程,不求解).(1)若两车分别从两地同时开出,相向而行,经过几小时后两车相遇?(2)若两车分别从两地同时开出,同向而行,经过几个小时后摩托车追上货车(摩托车的出发点在货车的出发点的后面)?(3)若两车都从甲地到乙地,要使两车同时到达,货车应先出发几小时?9.甲、乙两列火车从相距480km 的A 、B 两地同时出发, 相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?四、填空题10.多项式1(4)72m x m x --+是关于x 的四次三项式,则m 的值是_____. 11.多项式23πa b ++的常数项是_____. 12.有理数,,a b c 在数轴上的位置如图所示,化简a b a c b c +--+-的结果是_____.13.若()||125m m x --=是关于x 的一元一次方程,则m 的值为__________.14.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.15.若(1)36a a x a --=是关于x 的一元一次方程,则a =____,x =____.参考答案1.答案:B解析:由数轴上点的位置得0b a c <<<,且||||||b c a >>,所以0,20,20a c a b c b +>->->,所以原式224a c a b c b b =+-+-+=.2.答案:A解析:由图可得2112b a -<<-<<<,且a b >,则22a b a b +--++()22a b a b =++-++22a b a b =++-++22a b =+.故选A.3.答案:因为多项式2123113675m x y xy x +-+-+是六次四项式, 所以216m ++=,解得3m =.又因为单项式223n x y 的次数与这个多项式的次数相同,所以226n +=,解得2n =,所以22223213m n +=+=.解析:4.答案:解:(1)这辆汽车从甲地到乙地需行驶100xh. (2)若速度增加5 km/h ,则现在的速度为(5)x +km/h ,所以此时从甲地到乙地需行驶1005x +h, 速度增加后比原来早到100100()5x x -+h. (3)当50x =时,100100100202,,550511x x ===++100100100100255050511x x -=-=++ 解析: 5.答案:因为0,0,0,0a c b b a a b -<>->+<,所以原式c a b b a b a =---+--3a b c =--+解析:6.答案:解:设第一件衣服的成本价是x 元,则由题意得:()125%135x +=.解这个方程,得108x =.则第一件衣服盈利了13510827-= (元).设第二件衣服的成本价是y 元,由题意得,()125%135y -=.解这个方程,得180y =,则第二件衣服亏损18013545-= (元).总体上亏损了452718-= (元).答:该商店总体上亏损了18元.解析:7.答案:(1)解:设h x 后两车相遇,则h x 后摩托车行驶的路程为45km x ,货车行驶的路程为35km x .列方程为453540x x +=.(2)设h y 后摩托车追上货车,则h y 后摩托车行驶的路程为45km y ,货车行驶的路程为35km y .列方程为453540y y -=.(3)设货车先出发h z .摩托车行驶的时间为40h 45,则货车行驶的时间为40()h 45z +. 列方程为4035()4045z += 解析:8.所以5k =或1k =-.因为50k -≠,所以5k ≠,故1k =-.解析:9.答案:设x 小时后两车相距30km ,根据题意,得()807048030x +=-或()807048030x +=+,解得3x =或175x =.答: 3小时或175小时后两车相距30km . 解析:10.答案:4-解析:11.答案:3π解析:12.答案:2a-解析:13.答案:2-解析:14.答案:12 解析:15.答案:1-;3 2 -解析:。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》测试题(包含答案解析)(2)
一、选择题1.某公司今年2月份的利润为x 万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)( )A .(x ﹣8%)(x+10%)B .(x ﹣8%+10%)C .(1﹣8%+10%)xD .(1﹣8%)(1+10%)x 2.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100 B .﹣100x 100 C .101x 100 D .﹣101x 100 4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40 C .44 D .465.下列去括号正确的是( )A .112222x y x y ⎛⎫ =⎭-⎪⎝--- B .()12122x y x y ++=+- C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ 6.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a7.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .328.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . 9.下列判断中错误的个数有( )(1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差11.下列关于多项式21ab a b --的说法中,正确的是( )A .该多项式的次数是2B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1-12.如果m ,n 都是正整数,那么多项式的次数是( )A .B .mC .D .m ,n 中的较大数 二、填空题13.如图,阴影部分的面积用整式表示为_________.14.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________. 15.在括号内填上恰当的项:22222x xy y -+-=-(_____________________). 16.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.17.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.18.如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序).19.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.20.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.三、解答题21.设A =2x 2+x ,B =kx 2-(3x 2-x+1).(1)当x= -1时,求A 的值;(2)小明认为不论k 取何值,A-B 的值都无法确定.小红认为k 可以找到适当的数,使代数式A-B 的值是常数.你认为谁的说法正确?请说明理由.22.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.23.观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.24.如图,某市有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,中间是边长为(a+b )米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化,(1)绿化的面积是多少平方米?(用含字母a 、b 的式子表示)(2)求出当a =20,b =12时的绿化面积.25.为鼓励居民节约用电,某市采用价格调控手段达到省电目的,该市电费收费标准如下表(按月结算):每月用电量度电价/(元/度) 不超过150度的部分0.50元/度 超过150度且不超过250度的部分 0.65元/度(2)设某月的用电量为x 度(0300x <≤),试写出不同电量区间应缴交的电费. 26.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%. (1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x ,4月份的产值为(1﹣8%)(1+10%)x . 故选:D .【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.2.B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.3.C解析:C【分析】由单项式的系数,字母x 的指数与序数的关系求出第100个单项式为101x 100.【详解】由﹣2x ,3x 2,﹣4x 3,5x 4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n ,字母的指数为n ,∴第100个单项式为(﹣1)100(100+1)x 100=101x 100,故选C .【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.4.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.D解析:D【分析】根据整式混合运算法则和去括号的法则计算各项即可.【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 6.A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b<a<0,且|a|<|b|,∴a-b>0,a+b<0,∴原式=a-b-a-b=-2b.故选:A.【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.7.A解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a2020的值.【详解】∵a1=-2,∴2111(3)3a==--,3131213a==-,412312a==--∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.8.D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D.【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.9.B解析:B【分析】根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.10.D解析:D【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点. 11.B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.12.D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式中次数最高的多项式的次数,即m,n中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.二、填空题13.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x2+3x+6.故答案为x2+3x+6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.14.【分析】直接利用二次三项式的次数与项数的定义得出m的值【详解】∵多项式是关于x的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 15.【分析】根据添括号的法则解答【详解】解:故答案是:【点睛】本题考查了去括号与添括号添括号法则:添括号时如果括号前面是正号括到括号里的各项都不变号如果括号前面是负号括号括号里的各项都改变符号添括号与去 解析:222x xy y -+【分析】根据添括号的法则解答.【详解】解:222222(2)x xy y x xy y -+-=--+.故答案是:222x xy y -+.【点睛】本题考查了去括号与添括号,添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号括号里的各项都改变符号.添括号与去括号可互相检验. 16.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值 解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.18.2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.19.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的. 20.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.三、解答题21.(1)A =1;(2)小红的说法正确,理由见解析.【解析】试题分析:(1)把x=-1代入A 进行计算即可得;(2)先计算出A-B ,根据结题即可得.试题(1)当x=-1时,A=2x 2+x=2×(-1)2+(-1)=2-1=1;(2)小红的说法正确,理由如下:A-B=(2x 2+x )-[kx 2-(3x 2-x+1)]=(5-k )x 2+1,所以当k=5时,A-B=1,所以小红的说法是正确的.22.1020100【分析】由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.23.()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.24.(1)(5a 2+3ab )平方米;(2)2720平方米【分析】(1)根据割补法,用含有a,b 的式子表示出整个长方形的面积,然后用含有a,b 的式子表示出中间空白处正方形的面积,然后两者相减,即可求出绿化部分的面积.(2)将a =20,b =12分别代入(1)问中求出的关系式即可解决.解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,答:绿化的面积是(5a2+3ab)平方米;(2)当a=20,b=12时5a2+3ab=5×202+3×20×12=2000+720=2720,答:当a=20,b=12时的绿化面积是2720平方米.【点睛】(1)本题考查了割补法,多项式乘多项式和完全平方式的运算法则,解决本题的关键是正确理解题意,能够熟练掌握多项式乘多项式的运算法则.(2)本题考查了整式的化简求值,解决本题的关键是熟练掌握整式的运算法则和步骤.25.(1)该居民12月份应缴电费94.5元;(2)0.5,01500.6522.5,150250 0.860,250300x xx xx x<≤⎧⎪-<≤⎨⎪-<≤⎩【分析】(1)根据用电量类型分别进行计算即可;(2)分三种情况进行讨论,当x不超过150度时,x超过150度,但不超过时250度时和x超过250度时,再分别代入计算即可.【详解】解:(1)由题意,得150×0.50+(180-150)×0.65=94.5(元)答:该居民12月应缴交电费94.5元;(2)若某户的用电量为x度,则当x≤150时,应付电费:0.50x元;当150<x≤250时,应付电费:0.65(x-150)+75=0.65x22.5-(元);当250<x<300,应付电费:0.80(x-250)+140=0.8x60-(元).∴不同电量区间应缴交的电费为:0.5,01500.6522.5,150250 0.860,250300x xx xx x<≤⎧⎪-<≤⎨⎪-<≤⎩.【点睛】本题考查了列代数式,读懂题目信息,理解阶梯电价的收费方法和电费的计算方法是解题的关键.26.(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大.。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》测试题(包含答案解析)(1)
一、选择题1.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差 2.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣7 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1 C .8x 2﹣5x+1 D .8x 2+13x ﹣1 4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40 C .44 D .465.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .46.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 7.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--8.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1- 9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍10.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个 11.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +12.已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5 B .1 C .5D .﹣1 二、填空题 13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.14.单项式2335x yz -的系数是___________,次数是___________. 15.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.16.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.17.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.18.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.19.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.20.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.三、解答题21.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?22.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.23.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?24.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.25.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.26.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.3.A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=, 当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.8.B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.9.B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.10.C解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.11.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.12.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.二、填空题13.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 14.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次 解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 15.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.16.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ;(2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.17.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c|解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.19.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键. 20.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】 解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.三、解答题21.(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.22.(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.23.(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.24.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.25.12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+=⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.26.(1)16,19;(2)6061,31n+.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,第6个图形★的颗数是13619+⨯=.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=,第n个图形★的颗数是31n+.故答案为:6061,31n+.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.。
(易错题)初中数学七年级数学上册第三单元《一元一次方程》测试卷(含答案解析)
一、选择题1.如果,A B 两个整式进行加法运算的结果为3724x x -+-,则,A B 这两个整式不可能是( )A .3251x x +-和3933x x ---B .358x x ++和31212x x -+-C .335x x -++和341x x -+-D .3732x x -+-和2x --2.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1 3.有一组单项式如下:﹣2x ,3x 2,﹣4x 3,5x 4……,则第100个单项式是( ) A .100x 100B .﹣100x 100C .101x 100D .﹣101x 1004.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36B .40C .44D .465.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π-6.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数 7.已知132n x y +与4313x y 是同类项,则n 的值是( ) A .2B .3C .4D .58.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++9.下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯C .126p - D .2y z ÷10.下面去括号正确的是( ) A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ 11.若关于x 的多项式6x 2﹣7x +2mx 2+3不含x 的二次项,则m =( )A .2B .﹣2C .3D .﹣312.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数 C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差二、填空题13.将正偶数按照如下规律进行分组排列,依次为(2),(4,6),(8,10,12),(14,16,18,20)…,我们称“4”是第2组第1个数字,“16”是第4组第2个数字,若2020是第m 组第n 个数字,则m +n =_____.14.观察下列图形它们是按一定规律排列的,依照此规律,第 20 个图形共有________________ 个★.15.若212m ma b -是一个六次单项式,则m 的值是______. 16.将一列数1,2,3,4,5,6---,…,按如图所示的规律有序排列.根据图中排列规律可知,“峰1”中峰顶位置(C 的位置)是4,那么“峰206”中C 的位置的有理数是______.17.在如图所示的运算流程中,若输出的数3y =,则输入的数x =________________.18.多项式223324573x x y x y y --+-按x 的降幂排列是______。
含绝对值符号的一元一次方程习题附答案
6.2.5含绝对值符号的一元一次方程完成时间:40min一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9 C.﹣3或9 D.以上结论都不对2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a ﹣b|的结果是()A.2a B.2b C.2c D.03.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.34.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.35.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣27.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D.x=﹣38.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣19.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1 13.若|2000x+2000|=20×2000,则x等于()14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣115.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.1616.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.117.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1 18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±119.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或022.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤324.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.425.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.028.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是C.0,2,4不全是D.0,2,4之外没29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个6.2.5含绝对值符号的一元一次方程参考答案与试题解析一.选择题(共30小题)1.已知|2﹣x|=4,则x的值是()A.﹣3 B.9C.﹣3或9 D.以上结论都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:绝对值为4的数是±4,从而可去掉绝对值符号,计算即可.解答:解:∵|2﹣x|=4,∴2﹣x=4或2﹣x=﹣4,解得:x=﹣3或9;故选C.点评:本题考查解一元一次方程的解法;解一元一次方程常见的思路有通分,移项,左右同乘除等.2.已知关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,则化简|a﹣c|+|c﹣b|﹣|a﹣b|的结果是()A.2a B.2b C.2c D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据关于x的方程|5x﹣4|+a=0无解,|4x﹣3|+b=0有两个解,|3x﹣2|+c=0只有一个解,可判断出a,b,c的取值范围,进而求解.解答:解:根据关于x的方程|5x﹣4|+a=0无解,可得出:a>0,由|4x﹣3|+b=0有两个解,可得出:b<0,由|3x﹣2|+c=0只有一个解,可得出;c=0,故|a﹣c|+|c﹣b|﹣|a﹣b|可化简为:|a|+|b|﹣|a﹣b|=a﹣b﹣a+b=0.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是根据已知条件判断出a,b,c的取值范围.然后化简.3.方程|3x|+|x﹣2|=4的解的个数是()A.0B.1C.2D.3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥2时;②当0<x<2时;③当x<0时;根据x 的三种取值范围来解原方程.解答:解:①当x≥2时,由原方程,得3x+x﹣2=4,即4x﹣2=4,②当0<x<2时,由原方程,得3x﹣x+2=4,解得x=1;③当x<0时,由原方程,得﹣3x﹣x+2=4,解得x=﹣.综上所述,原方程有2个解.故选C.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.4.已知关于x的方程mx+2=2(m﹣x)的解满足方程|x﹣|=0,则m的值为()A.B.2C.D.3考点:含绝对值符号的一元一次方程;一元一次方程的解.专题:计算题.分析:本题中有2个方程,且是同解方程,一般思路是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.解答:解:∵|x﹣|=0,∴x=,把x代入方程mx+2=2(m﹣x)得:m+2=2(m﹣),解之得:m=2;故选B.点评:此类题型的特点是,有2个方程,一个含有字母系数,一个是不含字母系数的方程,2方程同解,求字母系数的值.一般方法是:先求出不含字母系数的方程的解,再把解代入到含有字母系数的方程中,求字母系数的值.5.方程|2x﹣6|=0的解是()A.3B.﹣3 C.±3 D.考点:含绝对值符号的一元一次方程.分析:根据非负数的性质去掉绝对值符号,求出未知数的值即可.解答:解:∵|2x﹣6|=0,∴2x﹣6=0,∴x=3.故选A.点评:本题考查的是非负数的性质,是中学阶段的基础题.6.若|x﹣1|=3,则x=()A.4B.﹣2 C.±4 D.4或﹣2考点:含绝对值符号的一元一次方程.专题:分类讨论;方程思想.分析:根据绝对值的意义,得出x﹣1=±3,可解得x的值.注意结果有两个.所以x﹣1=±3,解得x=4或﹣2.故选D.点评:本题考查了含绝对值符号的一元一次方程,注意绝对值都是非负数,互为相反数的两数绝对值相等.7.方程|2x﹣1|=4x+5的解是()A.x=﹣3或x=﹣B.x=3或x=C.x=﹣D. x=﹣3考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据绝对值的性质去掉绝对值符号,再根据解一元一次方程的步骤求解即可.解答:解:①当2x﹣1≥0,即x≥时,原式可化为:2x﹣1=4x+5,解得,x=﹣3,舍去;②当2x﹣1<0,即x<时,原式可化为:1﹣2x=4x+5,解得,x=﹣,符合题意.故此方程的解为x=﹣.故选C.点评:此题比较简单,解答此题的关键是根据绝对值的性质去掉绝对值符号,不要漏解.8.若关于x的方程|x|=2x+1的解为负数,则x的值为()A.B.C.D.﹣1考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分两种情况去解方程即可①x≥0;②x<0.解答:解:①当x≥0时,去绝对值得,x=2x+1,得x=﹣1,不符合预设的x≥0,舍去.②当x<0时,去绝对值得,﹣x=2x+1,得x=﹣.故选B.点评:本题考查了一元一次方程的去绝对值的解法.要分类讨论.9.方程|x﹣3|+|x+3|=6的解的个数是()A.2B.3C.4D.无数个考点:含绝对值符号的一元一次方程.分析:根据x的取值范围取绝对值,所以需要分类讨论:①当x≥3时;②当﹣3≤x<3时;③当x<﹣3时;根据x的三种取值范围来解原方程即可.解答:解:当x≥3时,原方程可变形为:x﹣3+x+3=6,解得:x=3,当﹣3≤x<3时,原方程可变形为:﹣x+3+x+3=6,得出原方程有无数个解;当x<﹣3时,原方程可变形为:﹣x+3﹣x﹣3=6,解得:x=﹣3,故选D.点评:本题考查了含绝对值符号的一元一次方程.解这类题目时,一定要分类讨论,以防漏解.10.若|x﹣2|=3,则x的值是()A.1B.﹣1 C.﹣1或5 D.以上都不对考点:含绝对值符号的一元一次方程.专题:计算题.分析:|x﹣2|=3去绝对值,可得x﹣2=±3,然后计算求解.解答:解:∵|x﹣2|=3,∴x﹣2=±3,∴x=﹣1或5.故选C.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.方程|3x|=18的解的情况是()A.有一个解是6 B.有两个解,是±6 C.无解D.有无数个解考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:去绝对值符号时,要分两种情况进行讨论,即x≥0和x<0两种情况.解答:解:∵|3x|=18∴这个方程就变形为3x=±18两个方程.当x≥0时,3x=18,∴x=6当x<0时,﹣3=18,∴x=﹣6故选B.点评:解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式.解决本题还要运用分类讨论思想.12.如果|x﹣1|+x﹣1=0,那么x的取值范围是()A.x>1 B.x<1 C.x≥1 D.x≤1考点:绝对值;含绝对值符号的一元一次方程.专题:计算题.分析:先根据绝对值的性质讨论x﹣1的符号,确定出x的取值范围,再解关于x的一元一次方程,求出x的值.解答:解:当x﹣1≥0,即x≥1时,原方程可化为x﹣1+x﹣1=0,解得,x=1;当x﹣1<0,即x<1时,原方程可化为1﹣x+x﹣1=0,x无解.综上所述原方程的解集是x≤1,故选D.点评:本题考查的是含绝对值符号的一元一次方程,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;13.若|2000x+2000|=20×2000,则x等于()A.20或﹣21 B.﹣20或21 C.﹣19或21 D.19或﹣21专题:计算题.分析:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,然后去掉绝对值即可.解答:解:根据|2000x+2000|=2000|x+1|=20×2000,约分得:|x+1|=20,∴x+1=20或﹣(x+1)=20,移项解得:x=19或x=﹣21.故选D.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是正确去掉绝对值符号,不要漏解.14.已知关于x的方程|x|=ax﹣a有正根且没有负根,则a的取值范围是()A.a>1 B.a≤﹣1 C.a>2或a≤﹣2 D.a>1或a≤﹣1考点:含绝对值符号的一元一次方程.分析:根据绝对值的性质和方程|x|=ax﹣a有正根且没有负根,确定a的取值范围.解答:解:①当ax﹣a≥0,a(x﹣1)>0,解得:x≥1 且a≥0,或者x≤1且a≤0,②正根条件:x>0,x=ax﹣a,即x=>0,解得:a>1 或a<0,由①,即得正根条件:a>1 且x≥1,或者a<0,0<x≤1,③负根条件:x<0,得:﹣x=ax﹣a,解得:x=<0,即﹣1<a<0,由①,即得负根条件:﹣1<a<0,x<0,根据条件:只有正根,没有负根,因此只能取a>1(此时x≥1,没负根),或者a≤﹣1(此时0<x≤1,没负根).综合可得,a>1或a≤﹣1.故选:D.点评:此题主要考查了含绝对值符号的一元一次方程,根据绝对值的性质,要分x≥0和x<0,两种情况进行讨论,确定a的取值范围.15.适合|2a+7|+|2a﹣1|=8的整数a的值的个数有()A.2B.4C.8D.16考点:含绝对值符号的一元一次方程.分析:先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.解答:解:(1)当2a+7≥0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=82a+7+2a﹣1=8,解得,a=解不等式2a+7≥0,2a﹣1≥0得,a≥﹣,a≥,所以a≥,而a又是整式,(2)当2a+7≤0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7﹣2a+1=8,解得,a=﹣解不等式2a+7≤0,2a﹣1≤0得,a≤﹣,a≤,所以a≤﹣,而a又是整数,故a=﹣不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,|2a+7|+|2a﹣1|=82a+7﹣2a+1=8,解得,a可为任何数.解不等式2a+7≥0,2a﹣1≤0得,a≥﹣,a≤,所以﹣≤a≤,而a又是整数,故a的值有:﹣3,﹣2,﹣1,0.(4)当2a+7≤0,2a﹣1≥0时,可得,|2a+7|+|2a﹣1|=8﹣2a﹣7+2a﹣1=8,可见此时方程不成立,a无解.综合以上4点可知a的值有四个:﹣3,﹣2,﹣1,0.故选B.点评:本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.16.若|x|=3x+1,则(4x+2)2005=()A.﹣1 B.0C.0或1 D.1考点:含绝对值符号的一元一次方程;绝对值;有理数的乘方;解一元一次方程.专题:计算题.分析:当x≥0时去绝对值符号,求出方程的解;当x<0时,去绝对值符号,求出方程的解,代入求出即可.解答:解:当x≥0时,原方程化为:x=3x+1,∴x=﹣<0(舍去),当x<0时,原方程化为:﹣x=3x+1,∴x=﹣,∴(4x+2)2005==1,故选D.点评:本题主要考查对绝对值,解一元一次方程,含绝对值符号的一元一次方程,有理数的乘方等知识点的理解和掌握,求出未知数x的值是解此题的关键.17.方程|2x﹣1|﹣a=0恰有两个正数解,则a的取值范围是()A.﹣1<a<0 B.﹣1<a<1 C.0<a<1 D.<a<1考点:含绝对值符号的一元一次方程.分析:由方程|2x﹣1|﹣a=0恰有两个正数解,即可得不等式组,解此不等式组即可求得答案.解答:解:∵方程|2x﹣1|﹣a=0恰有两个正数解,∴,解得:0<a<1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题难度较大,解题的关键是根据题意得到不等式组:.18.已知x﹣y=4,|x|+|y|=7,那么x+y的值是()A.±B.±C.±7 D.±1考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据x﹣y=4,得:x=y+4,代入|x|+|y|=7,然后分类讨论y的取值即可.解答:解:由x﹣y=4,得:x=y+4,代入|x|+|y|=7,∴|y+4|+|y|=7,①当y≥0时,原式可化为:2y+4=7,解得:y=,②当y≤﹣4时,原式可化为:﹣y﹣4﹣y=7,解得:y=,③当﹣4<y<0时,原式可化为:y+4﹣y=7,故此时无解;所以当y=时,x=,x+y=7,当y=时,x=,x+y=﹣7,综上:x+y=±7.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是把x用y表示出来后进行分类讨论y的取值范围.19.适合关系式|3x﹣4|+|3x+2|=6的整数x的值有()个.A.0B.1C.2D.大于2的自然数考点:含绝对值符号的一元一次方程.专题:计算题;分类讨论.分析:分别讨论①x≥,②﹣<x<,③x≤﹣,根据x的范围去掉绝对值,解出x,综合三种情况可得出x 的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:3x﹣4+3x+2=6,解得:x=;第二种:当﹣<x<时,原方程就可化简为:﹣3x+4+3x+2=6,恒成立;第三种:当x≤﹣时,原方程就可化简为:﹣3x+4﹣3x﹣2=6,解得:x=﹣;所以x的取值范围是:﹣≤x≤,故符合条件的整数位:0,1.故选C.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键掌握正确分类讨论x的取值范围.20.若单项式﹣2a|x|b|4x|和32ab3﹣x的相同字母的指数相同,则x的整数值等于()A.1B.﹣1 C.±1 D.±1以外的数考点:同类项;含绝对值符号的一元一次方程.专题:计算题.分析:根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程|x|=1,|4x|=3﹣x,即可求出x的值.解答:解:由同类项的定义得:|x|=1,解得x=±1,又|4x|=3﹣x,解得x=﹣1或x=,∴x=﹣1.故选B.点评:本题考查了同类项的知识,属于基础题,注意判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.21.方程|2007x﹣2007|=2007的解是()A.0B.2C.1或2 D.2或0考点:含绝对值符号的一元一次方程.专题:数形结合.分析:分别讨论x≥1,x<1,可求得方程的解.解答:解:①当x≥1时,原方程可化为:2007x﹣2007=2007,解得:x=2,②当x<1时,原方程可化为:2007﹣2007x=2007,解得:x=0,综上可得x=0或2.故选D.点评:本题考查含绝对值的一元一次方程,解决此题的关键是能够根据x的取值范围进行分情况化简绝对值.22.满足||x﹣1|﹣|x||﹣|x﹣1|+|x|=1的x的值是()A.0B.±C.D.±考点:含绝对值符号的一元一次方程.专题:计算题.分析:看到比较繁琐的有绝对值得计算题,首先要考虑怎样去掉绝对值.明确x的取值范围决定去掉绝对值之后的正负关系.解答:解:(1)当x>1时,原式=x﹣x+1﹣x+1+x=1,2=1显然不成立,故舍去.(2)当0<x<1时,原式=|﹣(x﹣1)﹣x|﹣(1﹣x)+x,=|﹣2x+1|﹣1+2x,=2x﹣1﹣1+2x,=4x﹣2,又∵原式=1,∴4x﹣2=1,∴x=.故选C.点评:本题主要考查的是含有绝对值符号的一元一次方程的最基本的计算,难易适中.23.如果方程|3x|﹣ax﹣1=0的根是负数,那么a的取值范围是()A.a>3 B.a≥3 C.a<3 D.a≤3考点:含绝对值符号的一元一次方程.专题:分类讨论.分析:分三种情况讨论a的取值范围:①a=3,②a>3,③a<3,再去绝对值符号进行求解.解答:解:原方程为|3x|=ax+1.①若a=3,则|3x|=3x+1.当x<0时,﹣3x=3x+1,∴x=﹣;当x≥0时,3x=3x+1,不成立;∴当a=3时,原方程的根为:x=﹣;②若a>3,当x<0时,﹣3x=ax+1,∴x=<0;当x≥0时,3x=ax+1,∴x=<0,矛盾,∴当a>3时,原方程的解为:x=<0.③若a<3时,当x≥0时,3x=ax+1,∴x=0,∴原方程的根是正数,不符合题意.综上所述:当a≥3时,原方程的根是负根.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度较大,关键是分类讨论a的取值范围后再进行求解.24.关于x的含有绝对值的方程|2x﹣1|﹣|x|=2的不同实数解共有()个.A.1B.2C.3D.4考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②0<x<,③x≤0,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:2x﹣1﹣x=2,解得:x=3;第二种:当0<x<时,原方程就可化简为:﹣2x+1﹣x=2,解得:x=﹣,不符合题意;第三种:当x≤0时,原方程就可化简为:﹣2x+1+x=2,解得:x=﹣1;所以x的不同实数解为:x=3或x=﹣1,共有两个.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度适中,关键是掌握正确分类讨论x的取值范围.25.方程|x﹣19|+|x﹣93|=74的有理数解()A.至少有3个B.恰好有2个C.恰有1个D.不存在考点:含绝对值符号的一元一次方程.分析:首先根据x的范围去掉绝对值符号,转换成一般的一元一次方程,从而求解.解答:解:当x≤19时,方程即:19﹣x+93﹣x=74,解得:x=19;当19<x<93时,方程变形为:x﹣19+93﹣x=74,恒成立;当x≥93时,方程变形为:x﹣19+x﹣93=74,解得:x=93.则x为范围[19,93]中的有理数,即至少有3个.故选A.点评:本题主要考查了绝对值方程的解法,关键是正确进行讨论.26.方程2|x|+3=5的解是()A.1B.﹣1 C.1和﹣1 D.无解考点:含绝对值符号的一元一次方程.分析:首先利用一元一次方程的求解方法,求得|x|的值,继而求得答案.解答:解:∵2|x|+3=5,∴2|x|=2,∴|x|=1,∴x=±1.故选C.点评:此题考查了含绝对值符号的一元一次方程的求解方法.此题比较简单,注意换元思想的应用.27.绝对值方程||x﹣2|﹣|x﹣6||=l的不同实数解共有多少个()A.2B.4C.l D.0考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论x≥6、x<2、2≤x<6,根据x的范围去掉绝对值,解出x,综合六种情况可得出x的最终范围.解答:解:根据题意,知(1)|x﹣2|﹣|x﹣6|=1,①当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=1,解得x=﹣1,不合题意,舍去;②当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=1,即﹣4=1,显然不成立;③当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=1,解得x=4.5;(2)|x﹣2|﹣|x﹣6|=﹣1,④当x﹣2≥0,x﹣6≥0,即x≥6时,x﹣2﹣2+6=﹣1,解得x=﹣3,不合题意,舍去;⑤当x﹣2<0,x﹣6<0,即x<2时,﹣x+2+x﹣6=﹣1,即﹣4=﹣1,显然不成立;⑥当x﹣2≥0,x﹣6<0,即2≤x<6时,x﹣2+x﹣6=﹣1,解得x=3.5;综上所述,原方程的解是:x=4.5,3.5,共有2个.故选A.点评:本题考查了含有绝对值符号的一元一次方程.其实,本题不难,只要在解题过程中多一份细心,就不会丢解的.28.||||x﹣1|﹣1|﹣1|﹣1|=0是一个含有4重绝对值符号的方程,则()A.0,2,4全是根B.0,2,4全不是根C.0,2,4不全是根D.0,2,4之外没有根考点:含绝对值符号的一元一次方程.分析:解含有绝对值符号的方程的关键是去绝对值符号,这可用“零点分段法”.即令x+2=0,x+1=0,x=0,x﹣1=0,x﹣2=0,x﹣3=0,x﹣4=0,分别得到x=﹣2,﹣1,0,1,2,3,4,这7个数将数轴分成8段,然后在每一段上去掉绝对值符号再求解.解答:解:①当x≥4时,原方程化为x﹣4=0,解得x=4,在所给的范围x≥4之内,x=4是原方程的解;②当3≤x<4时,原方程化为4﹣x=0,解得x=4,不在所给的范围3≤x<4之内,x=4不是原方程的解;③当2≤x<3时,原方程化为x﹣2=0,解得x=2,在所给的范围2≤x<3之内,x=2是原方程的解;④当1≤x<2时,原方程化为2﹣x=0,解得x=2,不在所给的范围1≤x<2之内,x=2不是原方程的解;⑤当0≤x<1时,原方程化为x=0,在所给的范围0≤x<1之内,x=0是原方程的解;⑥当﹣1≤x<0时,原方程化为x=0,不在所给的范围﹣1≤x<0之内,x=0不是原方程的解;⑦当﹣2≤x<﹣1时,原方程化为x+2=0,解得x=﹣2,在所给的范围﹣2≤x<﹣1之内,x=﹣2是原方程的解;⑧当x<﹣2时,原方程化为﹣2﹣x=0,解得x=﹣2,不在所给的范围x<﹣2之内,x=﹣2不是原方程的解.综上,可知原方程的解为x=4,2,0,﹣2.故选A.点评:本题考查了含绝对值符号的一元一次方程,属于竞赛题型,难度较大.29.使方程3|x+2|+2=0成立的未知数x的值是()A.﹣2 B.0C.D.不存在考点:含绝对值符号的一元一次方程.专题:计算题.分析:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的性质即可得出答案.解答:解:要使方程3|x+2|+2=0成立,则可得:|x+2|=,根据绝对值的非负性,即可得知使方程3|x+2|+2=0成立的x不存在.故选D.点评:本题考查了含绝对值符号的一元一次方程,比较容易,关键是根据绝对值的非负性即可判断.30.方程|x+5|﹣|3x﹣7|=1的解有()A.1个B.2个C.3个D.无数个考点:含绝对值符号的一元一次方程.专题:计算题.分析:分别讨论①x≥,②﹣5<x<,③x≤﹣5,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解答:解:从三种情况考虑:第一种:当x≥时,原方程就可化简为:x+5﹣3x+7=1,解得:x=符合题意;第二种:当﹣5<x<时,原方程就可化简为:x+5+3x﹣7=1,解得:x=符合题意;第三种:当x≤﹣5时,原方程就可化简为:﹣x﹣5+3x﹣7=1,解得:x=不符合题意;所以x的值为:或.故选B.点评:本题考查了含绝对值符号的一元一次方程,难度不大,关键是分类讨论x的取值范围.。
(新)人教版七年级数学上册第三章《一元一次方程》应用题分类:数轴类综合练习(附解析)
《一元一次方程》应用题分类:数轴类综合练习(一)1.如图,小亮把东、西大街表示成一条数轴,把公交站的位置用数轴上的点表示出来,其中鼓楼站的位置记为原点,正东方向为正方向,公交车的一站地为一个单位长度(假设每站距离相同).请你根据图形回答下列问题:(1)到广济街的距离等于2站地的是.(2)到这8个站距离之和最小的站地是否存在?若存在,是哪个站地?最小值是多少?若不存在,请说明理由.(3)如果用a表示数轴上的点表示的数,那么|a﹣1|=2表示这个点与1对应点的距离为2,请你根据以上信息回答下面问题:①若|a﹣2|+|a+1|=3,请你指出满足条件a的所有站地表示的数.②若|a﹣4|+|a+1|=10,请你求出满足条件的a的值.2.【新定义】:A、B、C为数轴上三点,若点C到A的距离是点C到B的距离的3倍,我们就称点C是【A,B】的幸运点.【特例感知】(1)如图1,点A表示的数为﹣1,点B表示的数为3.表示2的点C到点A的距离是3,到点B的距离是1,那么点C是【A,B】的幸运点.①【B,A】的幸运点表示的数是;A.﹣1;B.0;C.1;D.2②试说明A是【C,E】的幸运点.(2)如图2,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4,则【M,N】的幸运点表示的数为.【拓展应用】(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以3个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B三个点中恰好有一个点为其余两点的幸运点?3.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?4.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度/秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD?5.(直接填答案,不写推演过程)观察数轴,充分利用数形结合的思想.若点A,B在数轴上分别表示数a,b,则A,B两点的距离可表示为AB=|a﹣b|.根据以上信息回答下列问题:已知多项式2x4y2﹣3x2y﹣x﹣4的次数是b,3a与b互为相反数,在数轴上,点O是数轴原点,点A表示数a,点B 表示数b.设点M在数轴上对应的数为m.(1)A,B两点之间的距离是.(2)若满足AM=BM,则m=.(3)若A,M两点之间的距离为3,则B,M两点之间的距离是.(4)若满足AM+BM=12,则m=.(5)若动点M从点A出发第一次向左运动1个单位长度,在此新位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照此规律不断地左右运动,当运动了2019次时,则点M所对应的数m=.6.如图,已知数轴上点A表示的数为﹣1,点B表示的数为3,点P为数轴上一动点.(1)点A到原点O的距离为个单位长度;点B到原点O的距离为个单位长度;线段AB的长度为个单位长度;(2)若点P到点A、点B的距离相等,则点P表示的数为;(3)数轴上是否存在点P,使得PA+PB的和为6个单位长度?若存在,请求出PA的长;若不存在,请说明理由?(4)点P从点A出发,以每分钟1个单位长度的速度向左运动,同时点Q从点B出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P与点Q重合?7.如图,点A、B都在数轴上,O为原点.(1)线段AB中点表示的数是;(2)若点B以每秒3个单位长度的速度沿数轴向右运动了t秒,当点B在点O左边时,OB=,当点B至点O右边时,OB=;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O 不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.8.如图,A、B、C为数轴上三点,A,B在数轴上对应的数分别为﹣12,16,点P与点Q分别从A、B两点同时当发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒,设它们运动的时间为t秒.(1)若点P与点Q在A、B两点之间相向运动,当它们相遇时,点P对应的数是;(2)若点P与点Q都向左运动,当点Q追上点P时,求点P对应的数.9.已知数轴上有A ,B ,C 三点,分别代表﹣36,﹣10,10,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,甲的速度为4个单位/秒.(1)问多少秒后,甲到A ,B ,C 的距离和为60个单位?(2)若乙的速度为6个单位/秒,两只电子蚂蚁甲,乙分别从A ,C 两点同时相向而行,问甲,乙在数轴上的哪个点相遇?(3)在(1)(2)的条件下,当甲到A 、B 、C 的距离和为60个单位时,甲调头返回.问甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.10.已知数轴上两点A 、B 对应的数分别是6,﹣8,M 、N 、P 为数轴上三个动点,点M 从A点出发,速度为每秒2个单位,点N 从点B 出发,速度为M 点的3倍,点P 从原点出发,速度为每秒1个单位.(1)若点M 向右运动,同时点N 向左运动,求多长时间点M 与点N 相距54个单位?(2)若点M 、N 、P 同时都向右运动,求多长时间点P 到点M ,N 的距离相等?(3)当时间t 满足t 1<t ≤t 2时,M 、N 两点之间,N 、P 两点之间,M 、P 两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案1.解:(1)由图可知,到广济街的距离等于2站地的是西门和端履门.故答案为:西门和端履门.(2)这8个站间隔相等,距离之和最小的站地应该是位于中间的两个,即广济站和钟楼站,最小值是:1+2+3+1+2+3+4=16.∴到这8个站距离之和最小的站地存在,是广济站和钟楼站,最小值是16.(3)①∵|a﹣2|+|a+1|=3,∴当a≤﹣1时,2﹣a﹣a﹣1=3,∴a=﹣1;当﹣1<a<2时,2﹣a+a+1=3,∴当﹣1<a<2时,满足条件a的站地表示的数为0或1;当2≤a≤3时,a﹣2+a+1=3,∴a=2.综上,满足条件a的所有站地表示的数为﹣1、0、1或2.②∵|a﹣4|+|a+1|=10,∴当a≤﹣1时,4﹣a﹣a﹣1=10,∴a=﹣3.5;当﹣1<a≤4时,4﹣a+a+1=10,∴此时a无解;当a>4时,a﹣4+a+1=10,∴a=6.5.综上,满足条件的a的值为﹣3.5或6.5.2.解:(1)①由题意可知,点0到B是到A点距离的3倍,即EA=1,EB=3,故选B.②由数轴可知,AC=3,AE=1,∴AC=3AE,∴A是【C,E】的幸运点.(2)设【M,N】的幸运点为P,P表示的数为p,∴PM=3PN,∴|p+2|=3|p﹣4|,∴p+2=3(p﹣4)或p+2=﹣3(p﹣4),∴p=7或p=2.5;故答案为7或2.5;(3)由题意可得,AB=60,BP=3t,AP=60﹣3t,①当P是【A,B】的幸运点时,PA=3PB,∴60﹣3t=3×3t,∴t=5;②当P是【B,A】的幸运点时,PB=3PA,∴3t=3×(60﹣3t),∴t=15;③当A是【B,P】的幸运点时,AB=3PA,∴60=3(60﹣3t)∴t=;④当B是【A,P】的幸运点时,AB=3PB,∴60=3×3t,∴t=;∴t为5秒,15秒,秒,秒时,P、A、B中恰好有一个点为其余两点的幸运点.3.解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3;点P返回过程中,由题意可得:3x﹣18+8+x+2=18或3x﹣18+8+x=18+2,解得:x=或;综上所述:当点P运动5或3秒或或时,点P和点Q相距2个单位长度.4.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.5.解:(1)由多项式的次数是6可知b=6,又3a和b互为相反数,故a=﹣2.∴A,B两点之间的距离是6﹣(﹣2)=8,故答案为:8;(2)∵AB=8,∴AM=BM=4,∴6﹣m=4,∴m=2,故答案为:2.(3)∵A,M两点之间的距离为3,∴|m+2|=3∴m=1或﹣5,∴BM=5或11;故答案为:5或11;(4)①当M在A左侧时,∵AM+MB=12,∴﹣2﹣x+6﹣x=12,∴x=﹣4;②M在A和B之间时,∵AM+MB=AB=8≠12,∴点M不存在;③点M在B点右侧时,∵AM+MB=12,∴x+2+x﹣6=12,∴x=8;故答案为:﹣4或8.(5)依题意得:﹣2﹣1+2﹣3+4﹣5+6﹣7+……+2018﹣2019=﹣2+1009﹣2019=﹣1012.∴点M对应的有理数为﹣1012.故答案为:﹣1012.6.解:(1)∵点A表示的数为﹣1,点B表示的数为3,∴点A到原点O的距离为1个单位长度,点B到原点O的距离为3个单位长度,线段AB 的长度为4个单位长度;故答案为:1,3,4;(2)设点P表示的数为x,∵点P到点A、点B的距离相等,∴3﹣x=x﹣(﹣1)∴x=1,∴点P表示的数为1,故答案为1;(3)存在,设点P表示的数为y,当y<﹣1时,∵PA+PB=﹣1﹣y+3﹣y=6,∴y=﹣2,∴PA=﹣1﹣(﹣2)=1,当﹣1≤y≤3时,∵PA+PB=y﹣(﹣1)+3﹣y=6,∴无解,当y>3时,∵PA+PB=y﹣(﹣1)+y﹣3=6,∴y=4,∴PA=5;综上所述:PA=1或5.(4)设经过t分钟后点P与点Q重合,2t﹣t=4,∴t=4答:经过4分钟后点P与点Q重合.7.解:(1)线段AB中点表示的数是:=﹣1.故答案是:﹣1;(2)当点B在点O左边时,OB=4﹣3t,当点B至点O右边时,OB=3t﹣4;故答案是:4﹣3t,3t﹣4;(3)①当点O是线段AB的中点时,OB=OA4﹣3t=2+tt=0.5②当点B是线段OA的中点时,OA=2OB2+t=2(3t﹣4)t=2;③当点A是线段OB的中点时,OB=2OA3t﹣4=2(2+t)t=8.综上所述,符合条件的t的值是0.5,2或8.8.解:(1)根据题意,得2t+4t=28解得t=∴2t=﹣12=﹣∴P对应的数是﹣.(2)根据题意,得4t﹣2t=28解得t=14∴﹣12﹣2t=﹣12﹣28=﹣40答:点P对应的数是﹣40.9.解:(1)设x秒后,甲到A,B,C的距离和为60个单位.B点距A,C两点的距离为26+20=46<60,A点距B、C两点的距离为26+46=72>60,C点距A、B的距离为46+20=66>40,故甲应位于AB或BC之间.①AB之间时:4x+(26﹣4x)+(26﹣4x+20)=60,x=3;②BC之间时:4x+(4x﹣26)+(46﹣4x)=60,x=10,综上所述,经过3s或10s后,甲到A,B,C的距离和为60个单位;(2)设ts后甲与乙相遇4t+6t=46,解得:x=4.6,4×4.6=18.4,﹣36+18.4=﹣17.6答:甲,乙在数轴上的点﹣17.6相遇;(3)设y秒后甲到A,B,C三点的距离之和为60个单位,①甲从A向右运动3秒时返回,此时甲、乙表示在数轴上为同一点,所表示的数相同.甲表示的数为:﹣36+4×3﹣4y;乙表示的数为:10﹣6×3﹣6y,依据题意得:﹣36+4×3﹣4y=10﹣6×3﹣6y,解得:y=8,相遇点表示的数为:﹣36+4×3﹣4y=﹣56(或:10﹣6×3﹣6y=﹣56),②甲从A向右运动10秒时返回,设y秒后与乙相遇.甲表示的数为:﹣36+4×10﹣4y;乙表示的数为:10﹣6×10﹣6y,依据题意得:﹣36+4×10﹣4y=10﹣6×10﹣6y,解得:y=﹣27(不合题意舍去),即甲从A向右运动3秒时返回,能在数轴上与乙相遇,相遇点表示的数为﹣56.10.解:(1)设运动时间为t秒,由题意可得:6+8+2t+6t=54,∴t=5,∴运动5秒点M与点N相距54个单位;(2)设运动时间为t秒,由题意可知:M点运动到6+2t,N点运动到﹣8+6t,P点运动到t,当t<1.6时,点N在点P左侧,MP=NP,∴6+t=8﹣5t,∴t=s;当t>1.6时,点N在点P右侧,MP=NP,∴6+t=﹣8+5t,∴t=s,∴运动s或s时点P到点M,N的距离相等;(3)由题意可得:M、N、P三点之间整数点的多少可看作它们之间距离的大小,M、N两点距离最大,M、P两点距离最小,可得出M、P两点向右运动,N点向左运动=5s时,P在5,M在16,N在﹣38,①如上图,当t1再往前一点,MP之间的距离即包含11个整数点,NP之间有44个整数点;②当N继续以6个单位每秒的速度向左移动,P点向右运动,若N点移动到﹣39时,此时N、P之间仍为44个整数点,若N点过了﹣39时,此时N、P之间为45 个整数点故t2=+5=s∴t1=5s,t2=s.。
初中数学《含绝对值符号的一元一次方程》专题训练(含答案)
含绝对值符号的一元一次方程一 、填空题1.方程21302x --=的解为 .二 、解答题2.解方程1121123x x +--+-=3.解方程:2121x x -+=+4.解方程:23143x x x +--=-5.解方程154x x -+-=6.解方程124x x -+-=7.解方程4321x x +=-8.解方程525x x -+=-9.解方程134x x -+-=10.解方程2131x x -=+11.解方程4329x x +=+12.解方程:(1)1x = (2)235x +=13.解方程525x x -+=-14.解方程4329x x +=+含绝对值符号的一元一次方程答案解析一 、填空题1.方程可化简为216x -=,令210x -=,则12x =当12x <时,方程可化为126x -=,解得52x =-,检验符合12x <,∴52x =- 当12x ≥时,方程可化为216x -=,解得72x =,检验符合12x ≥,∴72x = 综上所述,72x =或52x =- 【解析】零点分段法二 、解答题2.85x =或185x =-原方程整理得:1315x +=,即1315x +=或者1315x +=-,所以原方程的解为85x = 或185x =-3.由题意得210x +≥,∴12x ≥-原方程变形为22x x -=或222x x -=--,∵221x --≤-,∴222x x -=--舍 由22x x -=知0x ≥,方程可变形为22x x -=或22x x -=- 解得2x =-或23x =,检验,2x =-舍 综上所述,原方程的解为23x =4.令230x +=与10x -=,则32x =-和1x =若32x <-,则原方程可化为[](23)(1)43x x x -+---=-,解得15x =-, 检验不符合32x <-,∴15x =-不是原方程的解若312x -≤≤,则原方程可化为[](23)(1)43x x x +---=-,解得5x =, 检验不符合312x -≤≤,∴5x =不是原方程的解若1x >,则原方程可化为(23)(1)43x x x +--=-,解得73x =, 检验符合1x >,∴73x =是原方程的解 综上所述73x =是原方程的解5.设“x ”“1”“5”在数轴上分别用“P ”“A ”“B ”来表示,由题意得,原方程可变形4PA PB +=如图,当点P 在点A 左侧时,设PA a =,4PB a =+,则原方程可变形为44a a ++=,解得0a =,与题意不符合如图,当点P 在线段AB 上时(包含端点),4PA PB AB +==,符合题意,∴15x ≤≤如图,当点P 在点B 右侧时,设PB b =,4PA b =+,则原方程可变形为44b b ++=,解得0b =,与题意不符合 综上所诉,原方程的解集为15x ≤≤ 【解析】绝对值的几何意义6.设“x ”“1”“2”在数轴上分别用P ,A ,B 来表示,则原方程可化为4AP PB +=①如图,当点P 在A 点左侧时,设PA a =,1PB a =+,则原方程可化为14a a ++=5B 1511A解得32a =,∴31122x =-=-②如图,当点P 在线段AB 上时,由24PA PB +=≠矛盾,③如图,当点P 在B 点右侧时,设PB b =,1PA b =+, 则原方程可变形为14b b ++=,解得32b =,∴37222x =+=综上所述,原方程的解为12x =-或72x = 【解析】绝对值的几何意义7.依据绝对值的非负性可知210x -≥,则12x ≥,那么容易得到430x +>∴原方程可变形为4321x x +=-,解得2x =-,检验不符合12x ≥,舍 ∴原方程无解8.令50x -=,则5x =当5x <,原方程化为525x x -+=-,解得10x =- 检验符合5x <,10x =-是原方程的解 当5x ≥,原方程化为525x x -+=-,解得0x = 检验不符合5x ≥,0x =不是原方程的解,舍去 综上所述,10x =-是原方程的解 【解析】零点分段法9.令10x -=,30x -=,则1x =,3x =P 2112P12当1x <时,原方程可化简为:(1)(3)4x x ----=,0x = 检验符合1x <,0x =是原方程的解;当13x ≤<时,原方程可化简为:1(3)4x x ---=,此方程无解; 当3x ≥时,原方程可化简为:134x x -+-=,4x = 检验符合3x ≥,则4x =是原方程的解; 综上所述,原方程的解为:0x =或4x =. 【解析】零点分段法10.令210x -=,310x +=,则12x =,13x =-当13x <-时,原方程化为1231x x -=--,2x =- 检验符合13x <-,∴2x =-是原方程的解 当1132x -≤<时,原方程化为1231x x -=+,0x = 检验符合1132x -≤<,∴0x =是原方程的解 当12x ≥时,原方程化为2131x x -=+,2x =- 检验不符合12x ≥,∴2x =-不是原方程的解 综上所述,2x =-或0x =是原方程的解 【解析】零点分段法11.令430x +=,则34x =-当34x ≤-时,原方程可化简为:4329x x --=+,2x =- 检验符合34x ≤-,2x =-是方程的解.当34x >-时,原方程可化简为:4329x x +=+,3x = 检验符合34x >-,3x =是方程的解. 综上所述2x =-和3x =是方程的解.【解析】零点分段法12.1x=±;1x=或4x=-【解析】(1)我们知道x代表的含义是数轴上代表“x”的点到原点的距离,而到原点距离等于1的点有两个,分别位于原点两侧,“1+”“1-”,∴1x=±(2)若将23x+做为整体,根据绝对值的意义,原方程可化为235x+=或者235x+=-,解得1x=或4x=-(若将2x作为整体,则可理解为“2x”到“3-”的距离等于5的点是多少)推荐第一种理解方式13.易知250x--≥,则52 x≤-由552x x-=--,得552x x-=--或5(52)x x-=---,所以0x=或10x=-.经检验知0x=方程左右两边不等,故舍去.从而原方程的解为10x=-.14.依据绝对值的非负性可知290x+≥,即92x≥-.原绝对值方程可以转化为①4329x x+=+,解得3x=,经检验符合题意.②43(29)x x+=-+,解得2x=-,经检验符合题意.综上所述,2x=-和3x=是方程的解.。
含绝对值符号的一元一次方程习题附答案
含绝对值符号的一元一次方程习题附答案1.已知|2-x|=4,则x的值是?解:|2-x|=4,分两种情况讨论:当2-x≥0时,有2-x=4,解得x=-2;当2-x<0时,有-(2-x)=4,解得x=-6.综上所述,x的值为-2或-6,选项C。
2.已知关于x的方程|5x-4|+a=0无解,|4x-3|+b=0有两个解,|3x-2|+c=0只有一个解,则化简|a-c|+|c-b|-|a-b|的结果是?解:首先,|5x-4|+a=0无解,说明|5x-4|≠0,即5x-4≠0,解得x≠4/5;其次,|4x-3|+b=0有两个解,说明|4x-3|=0,即4x-3=0,解得x=3/4;最后,|3x-2|+c=0只有一个解,说明|3x-2|=0,即3x-2=0,解得x=2/3.将x≠4/5,x=3/4,x=2/3代入|a-c|+|c-b|-|a-b|中,得到|a-c|+|c-b|-|a-b|=|a-0|+|0-b|-|a-b|=|a-b|-|a-b|=0,选项D。
3.方程|3x|+|x-2|=4的解的个数是?解:分两种情况讨论:当x≥0时,有3x+x-2=4,解得x=1;当x<0时,有-3x+x-2=4,解得x=-2/4=-1/2.综上所述,方程|3x|+|x-2|=4的解有两个,即x=1或x=-1/2,选项C。
4.已知关于x的方程mx+2=2(m-x)的解满足方程|x-|=0,则m的值为?解:由于|x-|=0,说明x=0,代入方程mx+2=2(m-x)中,得到2m+2=0,解得m=-1,选项A。
5.方程|2x-6|=0的解是?解:|2x-6|=0,说明2x-6=0,解得x=3,选项A。
6.若|x-1|=3,则x=?解:分两种情况讨论:当x-1≥0时,有x-1=3,解得x=4;当x-1<0时,有-(x-1)=3,解得x=-2.综上所述,x的值为4或-2,选项C。
7.方程|2x-1|=4x+5的解是?解:分两种情况讨论:当2x-1≥0时,有2x-1=4x+5,解得x=-3;当2x-1<0时,有-(2x-1)=4x+5,解得x=3/2.综上所述,方程|2x-1|=4x+5的解为x=-3或x=3/2,选项A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学绝对值化简数轴认识一元一次方程综合练习题
一、单选题
1.已知,,a b c 在数轴上的位置如图所示.化简|||2||2|a c a b c b +----的结果是( )
A. 0
B.4b
C.22a c --
D. 22a c --
2.已知,a b 两数在数轴上对应的点的位置如图,则化简式子22a b a b +--++的结果是( )
A.22a b +
B.23b +
C.23a -
D.1-
二、解答题
3.已知多项式2122113675
m x y xy x +-+-+是六次四项式,单项式223n x y 的次数与这个多项式的次数相同,求22m n +的值.
4.列代数式,并求值.
甲、乙两地相距100 km ,一辆汽车的行驶速度为x km/h.
(1)用代数式表示这辆汽车从甲地到乙地需行驶的时间.
(2)若速度增加5 km/h ,则需多长时间?速度增加后比原来可早到多长时间?分别用代数式表示.
(3)当50x =时,分别计算上面各代数式的值.
5.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.
6.某服装商店以135元的价格售出两件衣服,按成本计算,第一件盈利25%,第二件亏损 25%,该商店卖这两件衣服总体上是赚了,还是亏损了?赚或亏了多少元?
7.甲乙两地相距40km ,摩托车的速度为45km/h ,货车的速度为35km/h (按题意设未知数列方程,不求解).
(1)若两车分别从两地同时开出,相向而行,经过几小时后两车相遇?
(2)若两车分别从两地同时开出,同向而行,经过几个小时后摩托车追上货车(摩托车的出发点在货车的出发点的后面)?
(3)若两车都从甲地到乙地,要使两车同时到达,货车应先出发几小时?
9.甲、乙两列火车从相距480km 的A 、B 两地同时出发, 相向而行,甲车每小时行80km,乙车每小时行70km,问多少小时后两车相距30km?
四、填空题
10.多项式1(4)72
m x m x --+是关于x 的四次三项式,则m 的值是_____. 11.多项式23π
a b ++的常数项是_____. 12.有理数,,a b c 在数轴上的位置如图所示,化简a b a c b c +--+-的结果是_____.
13.若()||125m m x --=是关于x 的一元一次方程,则m 的值为__________.
14.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.
15.若(1)36a a x a --=是关于x 的一元一次方程,则a =____,x =____.
参考答案
1.答案:B
解析:由数轴上点的位置得0b a c <<<,且||||||b c a >>,所以0,20,20a c a b c b +>->->,所以原式224a c a b c b b =+-+-+=.
2.答案:A
解析:由图可得2112b a -<<-<<<,且a b >,则
22a b a b +--++()22a b a b =++-++22a b a b =++-++22a b =+.故选A.
3.答案:因为多项式2123113675
m x y xy x +-+-+是六次四项式, 所以216m ++=,解得3m =.
又因为单项式223n x y 的次数与这个多项式的次数相同,
所以226n +=,解得2n =,
所以22223213m n +=+=.
解析:
4.答案:解:(1)这辆汽车从甲地到乙地需行驶100x
h. (2)若速度增加5 km/h ,则现在的速度为(5)x +km/h ,所以此时从甲地到乙地需行驶
1005x +h, 速度增加后比原来早到100100()5
x x -+h. (3)当50x =时,
100100100202,,550511x x ===++100100100100255050511
x x -=-=++ 解析: 5.答案:因为0,0,0,0a c b b a a b -<>->+<,
所以原式c a b b a b a =---+--3a b c =--+
解析:
6.答案:解:设第一件衣服的成本价是x 元,则由题意得:
()125%135x +=.
解这个方程,得108x =.
则第一件衣服盈利了13510827-= (元).
设第二件衣服的成本价是y 元,
由题意得,()125%135y -=.
解这个方程,得180y =,
则第二件衣服亏损18013545-= (元).
总体上亏损了452718-= (元).
答:该商店总体上亏损了18元.
解析:
7.答案:(1)解:设h x 后两车相遇,则h x 后摩托车行驶的路程为45km x ,货车行驶的路程为35km x .
列方程为453540x x +=.
(2)设h y 后摩托车追上货车,则h y 后摩托车行驶的路程为45km y ,货车行驶的路程为35km y .
列方程为453540y y -=.
(3)设货车先出发h z .摩托车行驶的时间为
40h 45,则货车行驶的时间为40()h 45z +. 列方程为4035()4045
z +
= 解析:
8.所以5k =或1k =-.
因为50k -≠,所以5k ≠,故1k =-.
解析:
9.答案:设x 小时后两车相距30km ,根据题意,得()807048030x +=-或()807048030x +=+,解得3x =或175x =
.答: 3小时或175
小时后两车相距30km . 解析:
10.答案:4-
解析:
11.答案:3π
解析:
12.答案:2a
-解析:
13.答案:2-解析:
14.答案:12 解析:
15.答案:1-;
3 2 -
解析:。