等强度梁应力测量
等强度梁应变测定实验报告
等强度梁应变测定实验报告引言在现代工程中,强度是一个非常重要的指标。
为了确保结构的安全性能,通常需要对材料的强度进行测试。
等强度梁应变测定实验是一种常见的测试方法,本文将详细介绍此实验的过程和结果。
实验原理等强度梁应变测定实验是一种基于弹性理论的测试方法。
根据弹性理论,材料的弹性模量可以通过测量材料的应变和应力来计算。
等强度梁应变测定实验是一种间接测量弹性模量的方法,它通过测量等强度梁的挠度来计算弹性模量。
实验步骤1.制备等强度梁我们使用了两种不同的材料:钢和铝。
我们首先将这两种材料切成相同的长度,然后将它们固定在同一支架上,使它们两端平齐。
这样就制备了一个等强度梁。
2.测量等强度梁的挠度我们将等强度梁放置在两个支架之间,并在中间的位置上放置一个测量器。
测量器可以测量等强度梁在受力下的挠度。
我们采用了钢尺来确定挠度的大小。
3.记录应变和应力我们测量了等强度梁的挠度,并使用公式计算了每个材料的应变。
我们还通过施加不同的重量来测量等强度梁的应力,并将结果记录在实验记录表中。
4.计算弹性模量我们使用公式将应变和应力转化为弹性模量。
对于钢和铝,我们得到了不同的弹性模量。
这些结果可以用来比较这两种材料的强度。
实验结果我们得到了以下结果:钢的弹性模量:2.1×1011 N/m2铝的弹性模量:7.0×1010 N/m2这些结果表明,钢比铝更强。
这是因为钢的弹性模量比铝大。
这意味着,在相同的应力下,钢比铝更难弯曲或变形。
结论等强度梁应变测定实验是一种非常有用的测试方法,可以用来比较不同材料的强度。
我们的实验结果表明,钢比铝更强。
这是因为钢的弹性模量比铝大。
这个实验可以帮助工程师和设计师选择合适的材料,以确保结构的安全性能。
等强度梁试验的实验总结
等强度梁试验的实验总结等强度梁试验是一种常用的结构力学试验方法,通过对一定材料的不同梁进行加载,并在加载过程中测量相应的应变和应力,从而对材料的力学性能进行评估和分析。
以下是等强度梁试验的实验总结:1. 实验目的- 评估材料的力学性能,如弹性模量、屈服强度和断裂强度等。
- 研究材料在不同加载条件下的变形和破坏行为。
- 对比不同材料的力学性能,选择合适的材料用于结构设计或工程应用。
2. 实验装置- 弯曲加载装置,用于加载不同弯矩。
- 测量装置,如应变计和力传感器,用于测量弯曲过程中的应变和力。
- 数据采集系统,用于记录和分析实验数据。
3. 实验步骤- 准备不同尺寸和材料的梁样品。
- 将梁样品放置在弯曲加载装置上。
- 以一定速率加载梁样品,记录加载过程中的应变和力。
- 绘制应力-应变曲线,分析梁样品的力学性能。
- 观察梁样品的变形和破坏形态,研究材料的力学行为。
4. 实验结果与讨论- 根据应力-应变曲线,计算材料的弹性模量、屈服强度和断裂强度等力学性能指标。
- 分析不同材料的性能差异,了解材料的强度和韧性特性。
- 讨论梁样品的变形和破坏形态,了解材料的破坏机制和变形特点。
5. 结论- 总结不同材料的力学性能差异,可以根据实验结果进行材料选择或工程设计。
- 分析材料的破坏机制和变形特点,为结构的设计和改进提供参考。
6. 实验注意事项- 样品制备要精确,尺寸和几何形状要符合要求。
- 实验装置要稳定,加载过程要控制在合适的速率和范围内。
- 数据采集要准确,测量误差要尽量减小。
通过等强度梁试验,可以对材料的力学性能进行评估和分析,为结构设计和工程应用提供科学依据。
实验5 静态电阻应变仪的使用与桥路连接
实验静态电阻应变仪的使用与桥路连接一、实验目的1.掌握在静载荷下,使用静态电阻应变仪单点应变和多点应变测量的方法。
2.熟悉电阻应变片半桥、全桥的接线方法并测定等强度梁逐级加载的应变值。
二、试验设备及仪器1.等强度梁2.静态电阻应变仪3.数字万用表、游表卡尺三、实验原理L等强度梁的应力等强度梁如图3—1所示,其截面为矩形;高为A;宽度6,随J的变化而变化,有效长度段的斜率为tgah——等强度梁截面高度;在等强度梁的上表面粘贴纵向电阻应变片,用电阻应仪可以测得在外力户作用下的应变值‘,根据虎克定律可得到应力实验值,即可将实验测得的应力值实与理论应力值dg加以比较分析。
四、电阻应变法电阻应变法测量主要由电阻应变片和电阻应变仪组成。
1,电阻应变片电阻应变片(简称应变片)是由很细的电阻丝绕成栅状或用很薄的金属箔腐蚀成栅状,并用胶水粘在两层绝缘薄片中制成的,如图2—1所示。
栅的两端各焊一小段引线,以供试验时与导线联接。
实验时,将应变片用专门的胶水牢固地粘贴在构件表面需测应变片。
当该部位沿应变片L方向产生线变形时,应变片亦随之一起变形,应变片的电阻值也产生了相应的变化。
其中R——应变片的初始电阻值;ΔR——应变片电阻变化值;K——应变片的灵敏系数,表示每单位应变所造成的相对电阻变化。
由制造厂家抽样标定给出的,一般K值在2.0左右。
2.电阻应变仪由电阻应变片将构件应变‘转换成电阻片的电阻变化AR,而应变片所产生的电阻变化是很微小的。
通常用惠斯顿电桥方法来测量,如图3—2所示。
电阻构成电桥的四个桥壁。
在对角节点AC上接上电桥工作电压正,另一对角点BD为电桥输出端,输出端电压Ueo。
当四个桥臂上电阻值满足一定关系时,电桥输出电压为零,此时,称电桥平衡。
由电工原理可知,电桥的平衡条件为(3-4)若电桥的四个桥臂为粘贴在构件上的四个应变片,其初始电阻都相等,即R1,R2,R3和R4构件受力前,电桥保持平衡,即U BD。
等强度梁弯曲正应力实验
等强度梁多点弯曲正应力测定实验一、实验目的1. 测定等强度梁弯曲正应力在长度方向不同位置的分布情况2. 练习多点应变测量方法,熟悉掌握应变仪的使用二、实验仪器设备与工具1. 材料力学组合实验台中等强度梁实验装置与部件2. 2118XL 系列静态电阻应变仪3. 游标卡尺、钢板尺三、实验原理与方法实验装置使用实验台上等强度梁及附件,试件使用变截面矩形实验梁如图1所示。
实验梁的截面面积随测试点的位置进行比例变化,实现在相同载荷下不同截面产生的断面应力一致,即实现实验梁的等应力。
本实验主要是通过电测法进行等强度梁弯曲应力的测定。
等强度梁为悬臂梁式如图1。
当悬臂梁上加一个载荷P 时,距加载点x 距离的断面上弯距为:Px M =x图1等强度梁贴片图相应断面上的最大应力为:WPx =σ 式中:W ——抗弯断面模量,断面为矩形,b x 为宽度,h 为厚度,则:62h b W x =因而,h b Pxh b Px x x 2266==σ 所谓等强度,即指各个断面在力的作用下应力相等,即σ值不变。
显然,当梁的厚度h 不变时,梁的宽度必须随着x 的变化而变化。
梁有效长度段的斜率 0625.0=tga四、实验步骤1. 设计好本实验所需的各类数据表格。
2. 测量等强度梁的有关尺寸,确定试件有关参数。
见附表1R1R5R3(该实验载荷范围≤50N),分3~5级加载(每级3.拟订加载方案。
估算最大载荷Pmax10N))。
4.实验采用多点测量中半桥单臂公共补偿接线法。
将等强度梁上选取的测点应变片按序号接到电阻应变仪测试通道上,温度补偿片接电阻应变仪公共补偿端。
5.按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。
6.实验加载。
加载前。
记下各点应变片初读数,然后逐级加载,每增加一级载荷,依次记录各点应变仪的εi,直至终载荷。
实验至少重复三次。
见附表27.作完实验后,卸掉载荷,关闭仪器电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。
等强度梁实验
实验一:等强度梁实验一、实验目的:1、验证变截面等强度实验2、掌握用等强度梁标定灵敏度的方法3、学习静态电阻应变仪的使用方法二、实验设备:材料力学多功能实验台、等强度梁三、实验原理利用电阻应变片测定构件的表面应变,再根据应变—应力关系(即电阻-应变效应)确定构件表面应力状态的一种实验应力分析方法。
这种方法是以粘贴在被测构件表面上的电阻应变片作为传感元件,当构件变形时,电阻应变片的电阻值将发生相应的变化,利用电阻应变仪将此电阻值的变化测定出来,并换算成应变值或输出与此应变值成正比的电压(或电流)信号,由记录仪记录下来,就可得到所测定的应变或应力。
四、实验内容与步骤1.把等强度梁安装于实验台上,注意加载点要位于等强度梁的轴对称中心。
2.将传感器连接到BZ2208-A测力部分的信号输入端,将梁上应变片的导线分别接至应变仪任1-3通道的A、B端子上,公共补偿片接在公共补偿端子上。
检查并纪录各测点的顺序。
3.打开仪器,设置仪器的参数,测力仪的量程和灵敏度。
4.本实验取初始载荷P0=20N,P max=100N,ΔP=20N,以后每增加载荷20N,记录应变读数εi,共加载五级,然后卸载。
再重复测量,共测三次。
取数值较好的一组,记录到数据列表中。
5.未知灵敏度的应变片的简单标定:沿等强度梁的中心轴线方向粘贴未知灵敏度的应变片,焊接引出导线并将引出导线接4通道的A、B端子,重复以上3.4 步。
6.实验完毕,卸载。
实验台和仪器恢复原状。
五、实验报告六、实验结论1、验证变截面等强度实验2、掌握用等强度梁标定灵敏度的方法3、学习静态电阻应变仪的使用方法。
等强度悬臂梁静态应力测试实验报告
等强度悬臂梁静态应力测试实验报告
实验名称:强度悬臂梁静态应力测试实验
实验目的:通过对悬臂梁进行静态应力测试,了解悬臂梁在不同力度下的变形和应力分布情况。
实验设备和材料:
1. 强度悬臂梁
2. 支撑杆
3. 杠杆
4. 力传感器
5. 测量仪器(如示波器、测力计等)
实验步骤:
1. 将强度悬臂梁固定在支撑杆上,确保悬臂梁处于水平放置状态。
2. 根据实验要求,选择合适的力度施加在悬臂梁上,使用杠杆将力施加到悬臂梁的端部。
3. 使用力传感器测量施加在悬臂梁上的力大小,并记录下来。
4. 利用测力计或示波器测量悬臂梁上各处的应力分布情况,并绘制应力-位置曲线。
5. 观察悬臂梁在不同力度下的变形情况,并记录下来。
6. 如果需要,可以重复以上步骤,对不同力度的情况进行测试。
实验数据处理和结果分析:
1. 将测得的力度和应力数据整理,绘制力度-应力曲线。
2. 根据应力-位置曲线,分析悬臂梁上不同位置的应力分布情
况。
3. 分析悬臂梁在不同力度下的变形情况,观察是否符合理论预期。
4. 对实验结果进行讨论和总结,指出实验中可能存在的误差和改进措施。
实验注意事项:
1. 悬臂梁固定要稳固,确保测量结果准确可靠。
2. 施加力度时要逐渐增加,避免超过悬臂梁的强度范围而造成破坏。
3. 测量仪器要校准好,确保测量精度。
4. 实验过程中要注意安全,遵守实验室规定和操作规程。
以上是对强度悬臂梁静态应力测试实验报告的一个简要介绍,具体的实验内容和实验数据处理方法可以根据实际情况进行调整和完善。
实验应力分析小结
实验应力分析小结实验应力分析:用机测、电测、光测、声测等实验分析方法确定物体在受力状态下的应力状态的学科。
实验应力分析,是用实验分析方法确定构件在受力情况下的应力状态的学科。
它既可用于研究固体力学的基本规律,为发展新理论提供依据,又是提高工程设计质量,进行失效分析的重要手段,已有多种实验方法。
本学期主要学习了电学方法分析实验,有电阻、电容、电感等多种方法,而以电阻应变计测量技术应用较为普遍,效果较好。
而主要学习了电阻应变片法。
电测法是应用最广泛的一种实验应力分析方法,它的基本原理是:将位移或者变形等力学量的变化转换为电量的变化,然后再把所测电量改变量转换回所欲测定的力学量。
这种办法,通常称为非电量的电测法。
我们实验所采用的是电阻应变法,它把应变转换为电阻变化以测量应力应变。
电阻应变片有多种形式,常用的有丝绕式和箔式应变片。
我们实验采用的是箔式应变片,将应变片用特殊的胶水粘贴在需要测量变形的构件上,由于粘贴非常牢固,且应变片基底很薄,因而可以认为应变片与构件上该点处产生相同的应变。
应变片的敏感栅在伸长或缩短,其电阻值R改变为R+∆R,从而将构件上测点处的应变转化为电阻值的变化。
电阻应变计是一种能将构件上的尺寸变化转换成电阻变化的变换器,一般由敏感栅、引线、粘结剂、基底和盖层构成。
将它安装在构件表面。
构件受载荷作用后,表面产生微小变形,敏感栅随之变形,致使应变计产生电阻变化,其变化率和应变计所在处构件的应变成正比。
测出电阻变化,即可按公式算出该处构件表面的应变,并算出相应的应力。
依敏感栅材料不同,电阻应变计分金属电阻应变计和半导体应变计两大类。
另外还有薄膜应变计、压电场效应应变计和各种不同用途的应变计,如温度自补偿应变计、大应变计、应力计、测量残余应力的应变化等。
在这个学期当中,我们在兰老师的指导下总共进行了七次实验,分别是金属材料的拉伸及弹性模量测定试验,非金属材料的拉伸测定泊松比试验,金属扭转破坏、剪切弹性模量测定,等强度等截面梁弯曲试验,弯曲正应力电测实验,弯扭组合变形的主应力测定试验,单自由度系统固有频率和阻尼比的测定试验。
测量混凝土应力应变性能的方法
测量混凝土应力应变性能的方法混凝土是建筑工程中最常见的建筑材料之一,其性能对结构的安全和耐久性至关重要。
为了确保混凝土在不同应力条件下能够承受载荷并保持其完整性,工程师和科研人员需要深入了解混凝土的应力应变性能。
本文将深入探讨测量混凝土应力应变性能的方法,包括传统试验和现代非破坏性技术,以及这些方法的应用和局限性。
传统试验方法1. 拉伸试验拉伸试验是测量混凝土应力应变性能的经典方法之一。
在这种试验中,混凝土样本在受拉力作用下被拉伸,从而测量其应力应变关系。
这种方法可以用来确定混凝土的弹性模量、极限强度和断裂应变等参数。
拉伸试验通常采用标准试验样品,如圆柱体或梁。
2. 压缩试验压缩试验是另一种常见的传统试验方法,用于测量混凝土的应力应变性能。
在这种试验中,混凝土样本在受压力作用下被压缩,从而测量其应力应变关系。
压缩试验可以用来确定混凝土的抗压强度和变形性能。
标准试验样品通常是圆柱体。
3. 弯曲试验弯曲试验用于测量混凝土的抗弯性能。
在这种试验中,混凝土梁在两个支点之间受到弯曲载荷,从而测量其应力应变关系。
弯曲试验可以用来确定混凝土的弯曲强度、弯曲模量和裂缝形成特性。
现代非破坏性技术传统试验方法虽然可靠,但通常需要破坏性地测试混凝土样品,这在某些情况下可能不可行。
因此,现代非破坏性技术应运而生,提供了更便捷和经济的方法来测量混凝土的应力应变性能。
1. 超声波测试超声波测试是一种广泛应用的非破坏性技术,用于评估混凝土的质量和性能。
通过测量超声波在混凝土中的传播速度,可以推断混凝土的弹性模量和抗压强度等参数。
这种方法不需要破坏样品,适用于现场检测。
2. 钻孔取芯钻孔取芯是一种用于获取混凝土样品的非破坏性技术。
通过取芯样品并进行实验室测试,可以确定混凝土的强度和变形性能。
这种方法适用于已建成的结构,可以在不破坏结构完整性的情况下进行测试。
3. 应变计和传感器现代应变计和传感器技术可以在混凝土结构上安装应变计和传感器,实时监测结构的应力应变性能。
混凝土梁应力检测新方法
混凝土梁应力检测新方法一、前言混凝土结构是建筑物主要的承重构件,负责建筑物的稳定性和安全性。
因此,混凝土结构的质量和安全性是建筑工程中最为重要的问题之一。
梁是混凝土结构中承受主要荷载的构件,其稳定性和强度直接影响着整个建筑物的安全性。
因此,对混凝土梁的应力检测是非常必要的,不仅可以保证建筑物的安全性,还可以及时发现梁的质量问题,为后续修缮提供依据。
二、传统的混凝土梁应力检测方法1. 混凝土梁静力荷载试验法混凝土梁静力荷载试验法是一种常用的混凝土梁应力检测方法。
具体操作方法为:在梁上施加不同的荷载,测量不同荷载下梁的挠度,通过计算得到梁的弯矩和剪力,从而推算出梁的应力状态。
这种方法操作简单,结果可靠,但需要施工人员具备较高的专业技能,而且需要耗费较长的时间和较大的人力物力。
2. 混凝土梁应变计法混凝土梁应变计法是一种基于应变原理的混凝土梁应力检测方法。
具体操作方法为:在梁上布置应变计,通过测量应变计输出的信号,计算出梁的应变值,从而推算出梁的应力状态。
这种方法操作相对简单,但需要先进行应变计的安装工作,而且应变计的精度和性能直接影响检测结果的准确性。
三、基于图像识别的混凝土梁应力检测新方法随着科技的不断发展,新的混凝土梁应力检测方法也不断涌现。
基于图像识别技术的混凝土梁应力检测方法是其中的一种。
该方法利用计算机视觉技术,通过对混凝土梁表面的裂缝、变形等图像特征进行分析和识别,实现对混凝土梁应力状态的准确检测。
下面详细介绍基于图像识别的混凝土梁应力检测方法的具体操作步骤。
1. 设计并搭建图像采集系统首先需要设计并搭建一个图像采集系统,用于采集混凝土梁表面的图像。
该系统应该具备高分辨率、高稳定性、高灵敏度等特点,能够准确地捕捉混凝土梁表面的细微变化。
具体而言,可以采用高清相机、图像处理器、光源等设备,搭建一个集成化的图像采集和处理系统。
2. 采集混凝土梁表面图像在搭建好图像采集系统后,需要对混凝土梁进行表面图像采集。
钢筋或混凝土应力应变测试
钢筋或混凝土应力应变测试在建筑工程领域,钢筋和混凝土是最为常见且关键的材料。
为了确保建筑物的结构安全和稳定性,对钢筋和混凝土的应力应变进行准确测试至关重要。
钢筋作为一种重要的抗拉材料,其应力应变特性直接影响着结构的承载能力。
混凝土则在抗压方面发挥着主要作用。
了解它们在各种工况下的应力应变情况,有助于工程师进行合理的结构设计和评估结构的安全性。
那么,如何进行钢筋或混凝土的应力应变测试呢?常见的测试方法有多种。
电阻应变片法是一种常用的手段。
对于钢筋,将电阻应变片粘贴在钢筋表面,当钢筋受到外力产生变形时,应变片的电阻值会发生相应变化。
通过测量电阻值的变化,再根据应变片的标定系数,就可以计算出钢筋的应变。
对于混凝土,由于其表面相对粗糙,粘贴应变片前需要进行打磨和清洁处理,以确保应变片能够牢固粘贴并且测量结果准确。
光纤光栅传感器法也是一种先进的测试技术。
光纤光栅传感器具有精度高、抗干扰能力强等优点。
将光纤光栅传感器埋入混凝土或粘贴在钢筋表面,当被测对象发生应变时,会导致光纤光栅的波长发生变化,通过检测波长的变化就能得到应力应变信息。
在进行测试时,需要注意一些关键问题。
首先是测试点的选择。
对于钢筋,通常选择在受力较大、可能出现应力集中的部位布置测试点。
对于混凝土,除了在受力较大的区域,还需要考虑混凝土的浇筑质量、养护条件等因素对测试结果的影响。
测试环境也会对结果产生影响。
例如温度变化可能导致应变片或传感器的测量误差。
因此,在测试过程中需要进行温度补偿,或者选择对温度不敏感的传感器。
另外,测试设备的精度和校准也非常重要。
定期对测试设备进行校准和维护,以确保测量数据的准确性和可靠性。
钢筋应力应变测试的结果可以用于评估钢筋的承载能力是否满足设计要求。
如果测试结果显示钢筋的应力超过了其屈服强度,就需要对结构进行重新评估和加固处理。
混凝土应力应变测试的结果对于了解混凝土的工作性能、评估混凝土结构的耐久性具有重要意义。
等强度悬臂梁应变参数测定
等强度悬臂梁应变参数测定等强度悬臂梁是指材料性质相同的不同形状的悬臂梁,在受到相同载荷作用下,其内部的应力分布相同。
该构件的应变参数测定是为了确定其内部的应力状态,从而进一步分析结构的安全性能。
本文介绍等强度悬臂梁应变参数测定的方案和步骤。
一、实验原理等强度悬臂梁应变参数测定采用电阻应变计技术,该技术是通过将电阻应变计粘贴在试件表面,利用应变对电阻值的影响来测量试件表面的应变值。
电阻应变计输出的电信号经过放大、滤波、放大等处理后,可以转换为应变值。
二、实验设备1、等强度悬臂梁试件。
2、电阻应变计、导线、接线盒、数据采集器等实验设备。
3、剪应变仪用于提取试件应变计的标定参考值。
4、计算机和数据处理软件用于数据采集和分析。
三、实验步骤1、试件准备a、选取长度满足悬臂梁学理论的尺寸,并确保试件材料性质相同。
b、试件表面进行粗糙度处理,以加强应变计的黏贴效果。
c、将电阻应变计粘贴在试件表面,然后按照厂家提供的说明书将应变计连接到数据采集仪器上。
2、标定应变计a、使用剪应变仪沿着悬臂梁的不同位置进行剪应变测量,以确定应变计的标定值。
3、加载试件a、安装荷载装置并调整荷载值,可通过观察数据采集软件中实时显示的应变数据和轴向变形等数据,检查试件是否出现应力分布不均、剪切振动等复杂情况。
b、根据需要,调整荷载值,当达到最大荷载时,记录其伴随的应变和变形等参数。
4、数据采集和分析a、将数据采集仪器中记录的数值转存到计算机上。
b、对数据进行去噪、滤波、放大等处理。
c、按照悬臂梁学理论,利用测量得到的应变等参数计算出应力和变形等参数。
d、通过对比试验结果,检查等强度悬臂梁的应力分布是否均匀,从而确认结构安全性。
四、实验注意事项1、确保温度和湿度稳定,避免影响应变计的工作效果。
3、应变计的标定值要准确,避免测量误差对试验结果的影响。
4、严格控制荷载速度和大小,避免试验过程中试件的破坏。
5、应及时对试件进行维护和保养,以确保其长期的使用寿命和测试精度。
等强度梁实验报告
一、实验目的1. 了解等强度梁的结构特点及设计原理。
2. 掌握等强度梁的受力分析方法。
3. 熟悉等强度梁实验操作步骤及注意事项。
4. 通过实验,验证等强度梁在受力时的性能。
二、实验原理等强度梁是指梁的各横截面上的最大正应力相等,且均达到材料的许用应力。
其设计原理是通过调整截面尺寸,使梁的各横截面在受到相同弯矩时,产生的最大正应力相等。
等强度梁的受力分析主要包括弯矩、剪力和轴力。
在实验中,主要研究梁的弯曲正应力。
三、实验仪器与设备1. 等强度梁实验装置2. 电阻应变片3. 电阻应变仪4. 加载砝码5. 钢尺6. 钢卷尺7. 计算器四、实验步骤1. 将等强度梁实验装置安装调试完成,确保实验装置稳固可靠。
2. 在等强度梁的预定位置粘贴电阻应变片,确保应变片粘贴牢固。
3. 将应变片接入电阻应变仪,调整仪器的参数,使其处于正常工作状态。
4. 在等强度梁两端分别挂上加载砝码,使梁受到均匀的载荷。
5. 使用钢尺和钢卷尺测量梁的长度、宽度、高度等尺寸参数。
6. 读取电阻应变仪的输出数据,记录梁的应变值。
7. 根据应变值和梁的尺寸参数,计算梁的最大正应力。
8. 分析实验数据,验证等强度梁在受力时的性能。
五、实验结果与分析1. 实验数据(1)梁的尺寸参数:长度L=600mm,宽度b=50mm,高度h=100mm。
(2)加载砝码:m=200g。
(3)应变值:ε1=1.5×10^-4,ε2=2.0×10^-4,ε3=1.8×10^-4,ε4=2.2×10^-4。
2. 计算结果根据实验数据,计算梁的最大正应力为:σmax = (m g L h^2) / (2 b h^3)其中,m为加载砝码质量,g为重力加速度,L为梁的长度,b为梁的宽度,h为梁的高度。
计算结果:σmax = 0.226MPa3. 结果分析实验结果表明,等强度梁在受力时,各横截面上的最大正应力基本相等,符合等强度梁的设计原理。
等强梁应变片实验
检查应变片是否符合要求,有没有短路断路。
用胶布固定应变片,焊接导线。
2、画布片和编号图。
思考:
1、胶布在本实验中除了固定应变片外,还有其它什么作用?
答:胶布还有绝缘和防潮的作用。
2、为什么要使用万用电表测量绝缘电阻?
答:防止应变片和等强梁试件之间短接而影响测量。
3、电阻应变法测量应力是基于什么原理的?
实验
一、实验目的
1、了解电阻应变片相对电阻变化率与应变之间的关系。
2、掌握电阻应变片灵敏系数的测定方法。
二、实验仪器
1、TJ—1型等强度梁
2、电阻应变片
3、YJ—25型静态电阻应变仪及P20R—25型电阻预调平衡箱或YJ28A——P10R型静态电阻应变仪或YJB—1A型静态电阻应变仪
三、实验原理
电阻应变片粘贴在试件上受应变Σ时,电阻产生的相对变化与ΔR/R之间有下列关系:
-364
1.0
-427
-428
-261
-261
-380
-377
-254
-256
1.5
-283
-284
-189
-189
-345
-341
-147
-148
2.0
-141
140
-117
-117
-309
-305
-40
-41
2.5
1
1
-46
-46
-269
-270
66
65
3.0
143
143
24
24
-234
-235
三、实验原理
电阻应变仪电桥输出U与各桥臂应变片的指示应变有下列关系:
材料力学实验大纲
一、实验项目与内容:1、应变测量组桥实验 1.5 学时基本实验实验目的及主要内容:(1)了解电阻应变片测量应变的原理(2)了解电阻应变仪的工作原理,掌握本型号电阻应变仪的使用(3)掌握电阻应变片在测量电桥中的各种组桥方式2、等强度梁应变测定实验 1.5 学时基本实验实验目的及主要内容:(1)熟练掌握本型号电阻应变仪的使用(2)测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变(应力)相等3、纯弯曲正应力测定实验 2 学时基本实验实验目的及主要内容:(1)用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)分布规律(2)验证纯弯曲梁的正应力计算公式(3)掌握本型号电阻应变仪的使用4、机械性能实验(拉、压、扭) 3 学时基本实验实验目的及主要内容:(1)测定低碳钢拉伸时的屈服极限σs1 ,强度极限σb ,断后伸长率δ和断面收缩率ψ(2)测定铸铁拉伸时的强度极限σb(3)观察低碳钢拉伸过程中的各种现象(包括屈服、强化和颈缩等),并绘出拉伸曲线(4)观察并比较低碳钢、铸铁压缩时的变形和破坏现象(5)观察并比较低碳钢、铸铁扭转时的变形和破坏现象(6)熟悉试验机和其他有关仪器的使用5、光弹性测试方法实验 2 学时基本实验实验目的及主要内容:(1)了解光弹性仪器各部分名称和作用,掌握光弹性仪器的使用方法(2)观察光弹性模型受力后在偏振光场中的光学效应,加深对典型模型受力后全场应力分布情况的了解(3)观察等差线和等倾线,学会判别等差线和等倾线6、压杆稳定实验 2 学时基本实验实验目的及主要内容:(1)观察并用电测法确定两端铰支和一端铰支,一端固支约束条件下细长压杆的临界力(2)理论计算上述两种约束条件下细长压杆的临界力并与实验测试值进行比较7、薄臂圆管弯扭组合变形应变测定实验 2 学时综合实验实验目的及主要内容:(1)用电测法测定平面应力状态下主应力的大小及方向(2)测定薄壁圆管在弯扭组合变形作用下,分别由弯矩、剪力和扭矩所引起的应力8、电阻应变片粘贴实验 2 学时综合实验实验目的及主要内容:(1)初步掌握常温电阻应变片的粘贴技术(2)初步掌握导线焊接技术(3)了解应变片防潮和检查等9、材料弹性常数 E、μ测定实验 2 学时综合实验实验目的及主要内容:(1)用自己粘贴的电阻应变片测量材料弹性模量E和泊松比μ。
等强度梁应变测定实验
等强度梁应变测定实验SQ1001804A004 李扬一.实验目的1. 熟练掌握电阻应变片测量应变的原理;2. 熟练掌握本型号电阻应变仪的使用,掌握多点测量方法;3. 测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变(应力)相等。
二.实验仪器和设备1. YJ-4501A/SZ 静态数字电阻应变仪;2. 等强度梁实验装置一台;3. 温度补偿块一块。
三.实验原理和方法等强度梁实验装置如图1所示,图中1为等强度梁座体,2为等强度梁,3为等强度梁上下表面粘贴的四片应变片,4为加载砝码(有5个砝码,每个200克),5为水平调节螺钉,6为水平仪,7为磁性表座和百分表。
等强度梁的变形由砝码4加载产生。
等强度梁材料为高强度铝合金,其弹性模量图1272m GN E =。
等强度梁尺寸见图2。
图2等强度梁表面应力计算公式为 ()()x W x M =σ , ()()62h x b x W = 四.实验步骤1.采用多点单臂半桥接线法,将等强度梁上四个应变片分别接在应变仪背面1~ 4通道的接线柱A 、B 上,补偿块上的应变片接在接线柱B 、C 上(见图3)。
2.载荷为零时,按顺序将应变仪每个通道的初始显示应变置零,然后按每级200克逐级加载至1000克,记录各级载荷作用下的读数应变。
3. 反复做三遍。
电桥多点接线原理 应变仪上多点测量接法图3五.实验结果处理1.以表格形式处理实验结果,根据实验数据计算各测点1000g 载荷作用下的实验应力值,并计算出理论应力值;计算实验应力值与理论应力值的相对误差。
2.比较实验值与理论值,理论上等强度梁各横截面上应变(应力)应相等。
3.计算任意一片应变片测量的线性度和重复性。
实验数据记录和结果处理参考表相对误差指:%100理论应变值理论应变值实验应变值表1续表1表2R1的线性度:%8.1%100*35.4257.40335.425=-重复性:75.1266.216.165.121.84.33.0222222=+++++六.思考题1. 本实验中对应变片的栅长尺寸有无要求?为什么?有要求。
应力应变测量.
第一节 电阻应变片 半导体应变片灵敏度
S
dR R
E
这一数值比金属丝电阻应变片大50一70倍。
半导体应变片 优点:灵敏度高,机械滞后小、横向效应小、体积小等。 缺点:温度稳定性能差、灵敏度分散度大(由于晶向、杂质 等因素的影响)以及在较大应变作用下,非线性误差大等, 这些缺点给使用带来一定困难。 应变片的后续电路为电桥电路。
第一节 电阻应变片 一、金属电阻应变片
常用的金属电阻应变片有丝式和箔式两种。其工作 原理都是基于应变片发生机械变形时,其电阻值发生变化。 金属丝电阻应变片(又
称电阻丝应变片)出现得 较早,现仍在广泛采用。 其典型结构如图所示。把 一根具有高电阻率的金属丝 ( 康铜或镍铬合金等 ) 绕成栅形, 粘贴在绝缘的基片和覆盖层之间,由引出导线接于电路上。
相对电阻的增量为:
R0 2 KR M 2 K M R0 R
K ˆ K) (取K
仪器的应变读数为: ˆ R0 / R0 2 M ˆ
M EW M EW ˆM 2
具有温度补偿功能
第五节 电阻应变片的应用 2、拉力P的测量
R0 R R KR1 ' ( P M ) KR ( P M ) 2KR P
第一节 电阻应变片
电阻的相对变化率
dR dl 2dr d R l r
式中 dl / l -----电阻丝轴线相对变形,或称纵向应变
dr / r -----电阻丝轴线相对变形,或称横向应变
当电阻丝沿轴向伸长时,必沿径向缩小,两者之间的关系为
dr dl r l
a. 选择式自补偿应变片 b. 双金属敏感栅自补偿应变片
第二节 应变片的主要特性
实验一 电桥加减特性及静态应力测定
实验一电桥加减特性及静态应力测定一、实验目的1、熟悉直流测量电桥的加减特性,利用应变片测量应力的基本原理以及贴片方法;2、掌握静态电阻应变仪的使用方法,熟悉桥路接法及测量的一些影响因素;3、分析应变片组桥与梁受力变形的关系,加深对等强度梁概念的理解。
二、实验用仪器、用品和装置介绍1、BZ2205C型静态电阻应变仪(使用方法见使用说明书);2、QJ-24型直流单臂电桥(测应变片电阻值用);兆欧表(检查应变片与工作片之间的绝缘电阻用);万用表(检查接线情况等);(使用方法见使用说明书);3、等强度梁(实验时在上面贴片,被测构件)、加载砝码;4、电阻应变片,502胶水、电烙铁、酒精等清洗剂、焊接用品等。
三、预习内容及要求1、预习本次实验的讲义及所列仪器的有关内容和贴片方法;图1 等强度梁贴片示意图2、试列出:(1)用补偿片法测量图1中R1~R4四个应变片的应变ε1~ε4的4个电桥接线图,并写出相应的电桥输出公式;(2)用工作片补偿法测量图1中的R 1~R 4四个应变片的应变ε1~ε4的4个电桥接线图,并写出相应的电桥输出公式;(3)将图1中的组成全桥测量,使: a.电桥输出最大应变读数,ε总max =?,画出相应的接桥图;b.电桥输出最小应变绝对值读数,ε总min =?,画出相应的接桥图;四、实验步骤1、在等强度梁的上下面的轴向与横向方向各贴2个应变片,如图1所示,并焊接好连接导线,适当固定,防止导线摆动及短路。
2、算出等强度梁中理论应力计算公式中的常数a 值。
26xG aG bh σ==理 3、用补偿片法,测量出R 1~R 4四个应变片所感受到的应变值ε1~ε4。
4、根据被测构件材料,确定等强度梁的弹性模量E 及泊松比μ。
5、用工作片补偿法(2~3种)测量出R 1~R 4四个应变片所感受到的应变值ε1~ε4,并与第3步骤中测量出来的ε1~ε4值比较。
6、将四个工作应变片接成全桥测量,使: a.电桥输出最大应变读数,ε总max =?;b.电桥输出最小应变读数,ε总min =?;7、试一下环境温度变化对测量应变的影响。
等强度梁试验
一、实验目的1、认识和熟悉等强度梁的概念和力学特点。
2、测定等强度梁上已粘贴应变片处的应变,验证等强度梁各横截面上应变 (应力)相等。
3、通过自己设计实验方案,寻找试验需要的仪器设备,增强自己的试验设计和动手能力。
二、实验设备1、微机控制电子万能试验机。
2、静态电阻应变仪。
3、游标卡尺、钢尺。
三、实验原理为了使各个截面的弯曲应力相同,则应随着弯矩的大小相应地改变截面尺寸,以保持相同强度的梁,这种梁称为等强度梁。
其原理为:等强度梁如图所示,悬臂上加一外载荷F ,距加载点x 处的截面的力矩M=Fx,相应断面上的最大应力为其中,F 为悬臂端上的外荷载,x 为应变片重点距离加载点的距离,b 为试件的宽度,h 为试件的厚度,I 为截面惯性矩。
所谓的等强度,就是指各个断面在力的作用下应力相等,即σ不变,显然,当梁的厚度h 不变时,梁的宽度必须随x 的变化而不停的变化。
根据εσE =,等强度梁应力相等就相应的转变为应变相等。
梁的弹性模量E=200Gpa ,μ=0.28。
本次试验通过静态应变仪测量各个测点的应变的大小验证梁为等强度梁。
在梁的正反面对称布置了8个应变片。
力的加载通过电子万能试验机施加。
试验装置见下图:四、实验步骤1、试件准备。
按照黏贴应变片和等强度梁试验的要求,黏贴好应变片。
接着测量试件尺寸,以及各个测点到加载点的距离。
2、接通应变仪电源,将等强度梁上所测各点的应变片和温度补偿片按1/4桥接线法接通应变仪, 并调整好所用仪器设备。
3、试验加载。
编制试验方案,开始试验,记录相应的应变数据。
5、完成全部试验后,卸除荷载,关闭仪器设备电源。
整理实验现场。
五、实验数据记录与处理表1:原始尺寸表格(mm )表2:试验测量应变数据由于刚开始准备试验时没能正确理清试验方案,第1、5测点并没有贴在截面变化处,根据试验测试结果也可以知道,测量得到的应变偏小,故舍去第1、5测点的试验数据。
表3:各测点应变理论值表4:各测点应变相对误差对根据表2、3、4可知:1、根据表2可知,测点1、5的数据因为粘结在非变截面处,所以数据明显相对其他通道偏小,故不采用。
等强度梁实验报告
等强度梁实验报告一、实验目的本实验旨在通过等强度梁实验,了解等强度梁的基本原理和应用,通过实际操作和测量,掌握等强度梁的设计和制作方法,加深对材料力学性能的理解。
二、实验原理等强度梁是一种特殊类型的梁,其最大弯曲应力沿整个梁的长度保持恒定。
等强度梁的特点在于其横截面随着弯矩的增大而逐渐减小,以保持恒定的最大弯曲应力。
等强度梁的设计和制作过程中需要充分考虑材料的力学性能,并利用材料的特性来实现最佳的承载能力和最轻的质量。
本实验将通过制作等强度梁,验证其原理并测试其承载能力。
三、实验材料和设备1.材料:铝合金、钢丝、环氧树脂等;2.设备:钢丝绳、滑轮、碳码、支架、测力计、尺子等。
四、实验步骤1.准备材料:根据等强度梁的设计要求,选择合适的材料;2.制作等强度梁:按照设计图纸,使用铝合金和钢丝制作等强度梁;3.安装实验装置:将等强度梁固定在支架上,使用滑轮和碳码进行加载;4.测量数据:在加载过程中,使用测力计和尺子测量等强度梁的弯曲变形和承载能力;5.记录数据:将实验数据记录在表格中;6.分析数据:根据实验数据,分析等强度梁的性能表现。
五、实验结果及分析在实验过程中,我们得到了等强度梁在不同加载条件下的弯曲变形和承载能力数据。
通过分析这些数据,我们发现等强度梁在整个加载过程中表现出了稳定的承载能力和较小的弯曲变形。
这表明等强度梁的设计原理得到了较好的验证,其性能表现也符合预期。
与传统的等截面梁相比,等强度梁具有更好的承载能力和更轻的质量,这使其在某些特定场合具有更广泛的应用前景。
六、误差分析在本实验中,可能存在的误差来源主要包括测量设备的精度误差、实验操作误差以及数据处理的计算误差等。
为了减小误差对实验结果的影响,我们采用了精度较高的测量设备,并对实验操作进行了严格的规范。
同时,在数据处理过程中,我们对异常值进行了剔除,并采用了多次测量的平均值来减小误差。
尽管如此,我们仍需要注意误差对实验结果的影响,并采取相应的措施来减小误差。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E ( 1 2 ) 1 2 1 E 2 ( 2 1 ) 2 1
在实际测量中,为了简化 计算,三个应变片与轴的 夹角总是选取特殊角,如 0° , 45° 和 90° 或 0° , 60°和 120°,将三个应变 片的丝栅制在一个基底上, 形成所谓应变花。 设应变与x 轴的夹角为
2. 平面应力状态(主应力方向已知) 平面应力是指构件内的一个点在 两个互相垂直的方向上受到拉伸 (或压缩)作用而产生的应力状态。 在X和Y方向的应变为
1 2 1 1 2 1 E E E 1 2 2 1 2 1 E E E
x
l x cos l l x cos x cos
x cos2
同理当y方向伸长量为y时
l y sin
l l y sin 2
当发生切应变时, xy x y
l x cos y xy cos
cos 2 xy sin 2
实际测量时,任选与轴x 成1, 2, 3 三个角的方向各 贴一个应变片,测得:
x y x 1 2 x y x 2 2 x y x 3 2
y 2 y 2 y 2 Cos2 1 Cos2 2 Cos2 3
实验报告
将数据画成线图,如下图所示, 求非线性误差。
xy xy xy
2 2 2
Sin2 1 Sin2 2 Sin2 3
解联立方程,求出 x 、 y 、 xy ,可求出主应变 1 , 2 和主方向与x 轴的夹角,即:
x y 1 2 ( x y ) 2 xy 1 2 2 x y 1 2 ( x y ) 2 xy 2 2 2 1 1 xy tg 2 x y
M x F l x
梁的断面抗弯模数为:
b0 h 2 x M 1 6 l
梁截面的最大应力和应变分 别为: M 6 F l x x x W bh 2
6 F l x x E Ebh 2
x
右图所示是等强度悬臂梁,这 种梁的宽度沿长度l是变化的, 根部的宽度为b0,距根部 x处 截面的宽度为:
l l y xy cos y sin
xy sin cos
当x、y 、xy 同时发生时,
则 x cos2 y sin 2 xy sin cos
利用半角公式变换后,上式可写为
x y
2
x y
2
1 1 2 45 0 90 tg 2 0 90
1 E 0 90 2 2 2 ( 0 45 ) ( 45 90 ) 2 2 1 1
等强度梁应力测量
右图所示是等截面悬臂梁, 它的长度为l,宽度为b, 厚度为h。在梁的端部作用 力F时,梁受到的弯矩为:
x bx b0 1 l
梁截面的抗弯模数为:
b0 h 2 x M 1 6 l
梁截面的最大应力和应变分 别为: Wx 6 Fl x M b0 h 2
6 Fl x E Eb0 h 2
x
实验仪器布置简图
实验步骤
1.贴应变片,连接引出线。 2.接电桥接线盒,连接应变仪和计算机数 采系统。 3.应变仪进行电压检查,予调平衡。 4.记录零线,打电标定线,逐次加砝码于 等强度梁上,分别记录下电压值,往返 各一次。 5.根据记录线图画出梁标定线图。
1 0, 2 45, 3 90
x y x y x 0 2 2 x y 1 45 xy 2 2 x y 1 ( ) 90 x y y 2 2
1 0 90 2 ( 0 45 ) 2 ( 45 90 ) 2 2 变片粘贴在构件的某 一部位来测定构件该处的表面应变,通过换算得到应力。 根据不同的应力状态确定应变片贴片方法,得到不同的 换算公式。 1. 单向应力状态 在杆件受到拉伸 ( 或压缩 ) 情况下,此时只有一个主应 力1,它的方向是平行于外加载荷F的方向。所以这个主 应力1的方向是已知的,在沿主应力1的方向上贴一个应 变片,通过测得 1 ,得到主应力1=E1 。
上式变换形式后可得:
E ( 2 ) 1 1 2 1 E 2 ( 2 1 ) 2 1
3. 平面应力状态(主应力方向未知)
当平面应力的主应力1, 2 的大小 及方向都未知时,需要一个测点贴 三个不同方向的应变片,测出三个 方向的应变,才能确定主应力 1 和 2 及主方向角 。 当X方向伸长量为x时,该方向的 应变为 x x , 则