最新动态规划算法原理与的应用
动态规划算法及其在序列比对中应用分析
动态规划算法及其在序列比对中应用分析序列比对是生物信息学中一个重要的问题,用于比较两个或多个生物序列的相似性和差异性。
在序列比对过程中,动态规划算法是一种常用和有效的方法。
本文将介绍动态规划算法的基本原理和应用,并深入分析其在序列比对中的应用。
1. 动态规划算法基本原理动态规划算法是一种通过把问题分解为相互重叠的子问题,并通过将每个子问题的解存储起来来解决复杂问题的方法。
它通常用于处理具有重叠子问题和最优子结构特性的问题。
动态规划算法的核心思想是将原问题拆解成若干个子问题,通过计算每个子问题的最优解来得到原问题的最优解。
这个过程可以通过建立一个状态转移方程来实现,即找到子问题之间的关联关系。
2. 动态规划在序列比对中的应用序列比对是生物信息学研究中常见的任务之一,用于比较两个或多个生物序列的相似性和差异性。
动态规划算法在序列比对中被广泛应用,最为著名的例子是Smith-Waterman算法和Needleman-Wunsch算法。
2.1 Smith-Waterman算法Smith-Waterman算法是一种用于局部序列比对的动态规划算法。
它通过为每个可能的比对位置定义一个得分矩阵,并计算出从每个比对位置开始的最优比对路径来找到最优的局部比对。
Smith-Waterman算法的基本思路是从比对矩阵的右下角开始,根据得分矩阵中每个位置的得分值和其周围位置的得分值进行计算,并记录下最大得分值及其对应的路径。
最终,通过回溯从最大得分值开始的路径,得到最优的局部比对结果。
2.2 Needleman-Wunsch算法Needleman-Wunsch算法是一种用于全局序列比对的动态规划算法。
它通过为每个比对位置定义一个得分矩阵,并通过计算出从第一个比对位置到最后一个比对位置的最优比对路径来找到最优的全局比对。
Needleman-Wunsch算法的基本思路与Smith-Waterman算法类似,但不同之处在于需要考虑序列的开头和结尾对比对结果的影响。
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划解决最优化问题的高效算法
动态规划解决最优化问题的高效算法动态规划是一种高效解决最优化问题的算法。
它通过将问题划分为多个子问题,并利用子问题的最优解来求解整体问题的最优解。
本文将介绍动态规划算法的原理和应用。
一、动态规划的原理动态规划的基本思想是将原问题拆解为多个子问题,然后通过递推公式求解子问题的最优解,最后得到原问题的最优解。
其核心是利用子问题的最优解来求解整体问题的最优解。
动态规划的求解过程分为三个步骤:1. 定义子问题:将原问题分解为多个子问题,并定义子问题的状态。
2. 确定递推关系:确定子问题之间的递推关系,即子问题之间的重叠性质。
3. 求解最优解:使用递推公式从子问题的最优解中求解原问题的最优解。
二、动态规划的应用动态规划广泛应用于最优化问题的求解,包括线性规划、背包问题、最长公共子序列等。
下面以背包问题为例,介绍动态规划的应用过程。
背包问题是指在给定容量的背包和一组具有重量和价值的物品中,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划可以通过以下步骤求解背包问题:1. 定义子问题:定义子问题的状态为背包容量和可选择的物品数量。
2. 确定递推关系:通过递推公式将子问题和原问题联系起来,递推公式为dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]]+v[i]),其中dp[i][j]表示前i个物品在容量为j的背包中的最大价值,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
3. 求解最优解:通过递推公式,计算dp[i][j]的值,最后得到背包问题的最大价值。
三、动态规划算法的优势动态规划算法在解决最优化问题时具有以下优势:1. 高效性:动态规划算法通过将问题分解为多个子问题,避免了重复计算,从而提高了求解效率。
2. 最优性:动态规划算法可以保证求解出的最优解是全局最优解。
3. 可行性:动态规划算法使用递推公式进行求解,因此可以确保求解过程是可行的。
综上所述,动态规划是一种高效解决最优化问题的算法。
动态规划算法在应急管理中的应用
动态规划算法在应急管理中的应用一、引言应急管理是指在面临突发事件或紧急情况时,组织和协调各方资源,迅速有效地进行应对和处置,以最大限度地降低损失和风险。
在应急管理过程中,如何做出合理决策以及优化资源配置成为关键问题。
动态规划算法作为一种优秀的数学分析方法,具有很强的求解优化问题的能力,因此在应急管理中的应用也越来越广泛。
二、动态规划算法的基本概念与原理动态规划算法(Dynamic Programming)是一种通过拆解问题,将问题分解为更小的子问题,同时记录和利用子问题的解来求解原问题的方法。
动态规划算法的基本原理是最优子结构原理,即一个问题的最优解包含其子问题的最优解。
三、3.1 资源调度与分配在面对灾害或突发事件时,资源调度与分配是应急管理的核心任务之一。
动态规划算法可以根据资源的实时需求情况和供给能力,通过构建合理的模型,优化资源的调度和分配方案。
例如,在救灾过程中,可以通过动态规划算法确定最佳的运输路径和运力配比,以达到最优的救援效果。
3.2 灾害损失评估灾害损失评估是应急管理的重要环节,其目的是通过评估灾情,及时掌握灾害的影响范围和程度,以便安排救援和灾后恢复工作。
动态规划算法可以通过建立灾情模型,结合历史数据及相关指标,预测灾害的发展趋势,并对不同方案下的损失进行评估,以提供决策支持。
3.3 应急响应决策在应急管理中,响应决策的速度和准确性对于事态的发展和处置结果至关重要。
动态规划算法可以根据不同的应急情境和参数设置,通过构建决策模型,在各种可能情况下进行决策分析,以选择最佳的响应措施。
例如,在风险评估模型中,可以利用动态规划算法评估不同应对策略的风险和效益,从而指导决策者作出正确的决策。
3.4 协同作战组织在大规模紧急事件中,需要多个部门和组织的协同作战,才能实现快速高效的灾害应对。
动态规划算法可以根据不同组织的功能、资源及协同要求,建立协同作战模型,优化资源的调度和分配,提高应急响应的效率。
动态规划算法原理和实现
动态规划算法原理和实现动态规划是解决某些优化问题的一种算法思想,它主要针对的是那些可以分解成子问题的大问题,因此也被称作分治法。
动态规划算法的核心思想是将大问题分解成一个个小问题,然后逐步求解这些小问题并将它们组合成原问题的解。
本文将简单介绍动态规划算法的原理和实现。
一、动态规划算法的原理为了更好地理解动态规划算法的原理,我们可以以一个实例为例:假设有一个背包,它最多能装W重量的物品,现在有n种不同的物品,每种物品都有自己的重量w和价值v。
我们需要选择哪些物品放入背包中,以使得背包中物品的总价值最大。
这是一个典型的动态规划问题。
首先,我们可以把问题分解成子问题:设f(i,j)表示前i种物品放入一个容量为j的背包可以获得的最大价值。
因此,我们可以得到以下状态方程式:f(i,j) = max{f(i-1,j), f(i-1,j-w[i])+v[i]} (1≤i≤n,1≤j≤W)其中,f(i-1,j)表示不放第i种物品的最大价值,f(i-1,j-w[i])+v[i]表示放入第i种物品的最大价值。
因此,当我们计算出f(i,j)时,我们就得到了「前i种物品放入容量为j的背包的最大价值」,这也就是原问题的解。
这样,我们就可以使用动态规划算法来计算出最优解。
具体来说,我们从0开始,逐个计算出f(i,j)的值,直到计算出f(n,W)为止。
此外,我们还需要注意以下几点:1. 在计算f(i,j)的时候,我们需要使用到f(i-1,j)和f(i-1,j-w[i])这两个状态,因此我们需要先计算出f(1,j),在此基础上计算f(2,j),以此类推。
2. 对于一些特殊的情况,我们需要单独处理。
比如当背包容量小于某种物品重量时,我们就无法放入该物品。
3. 我们在计算f(i,j)时,有许多状态是可以复用的。
比如,当我们计算出f(i-1,j)后,我们就可以直接使用这个值来计算f(i,j),而无需重新计算。
二、动态规划算法的实现上面我们已经介绍了动态规划算法的核心思想和实现原理,下面我们来看看具体的实现过程。
动态规划算法的详细原理及使用案例
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法在路径规划中的应用
动态规划算法在路径规划中的应用路径规划在日常生活中随处可见,比如搜索最短路线、规划旅游路线、寻找交通路线等等。
其中,动态规划算法被广泛应用于路径规划领域,可解决诸如最短路径、最小花费路径等问题。
这篇文章将介绍动态规划算法在路径规划中的应用。
一、动态规划算法的基本原理动态规划算法是一种求解多阶段决策问题的优化方法。
它将问题分成多个子问题,并分别求解这些子问题的最优解。
最后通过不断合并子问题的最优解得到原问题的最优解。
其基本思想可以用以下三个步骤来概括:1.确定状态:将原问题分解成若干个子问题,每个子问题对应一个状态。
2.确定状态转移方程:确定每个状态之间的转移关系。
3.确定边界条件:确定初始状态和结束状态。
动态规划算法通常包括两种方法:自顶向下的记忆化搜索和自底向上的迭代法。
其中,自顶向下的记忆化搜索依赖于递归调用子问题的解,而自底向上的迭代法则通过维护状态表来解决问题。
二、动态规划算法在路径规划中的应用路径规划是动态规划算法的一个重要应用场景。
动态规划算法可以用来求解最短路径、最小花费路径、最大价值路径等问题。
这里以求解最短路径为例,介绍动态规划算法在路径规划中的应用。
1.问题定义假设我们需要从城市A走到城市B,中途经过若干个城市。
每个城市之间的距离已知,现在需要求出从城市A到城市B的最短路径。
这个问题可以用动态规划算法来求解。
2.状态定义在这个问题中,我们可以用一个二元组(u, v)表示从城市u到城市v的一条路径。
因此,在求解最短路径问题时,我们需要进行状态定义。
通常情况下,状态定义成一个包含一个或多个变量的元组,这些变量描述了在路径中的某个位置、某种状态和其他有关的信息。
在这个问题中,状态定义为S(i,j),它表示从城市A到城市j的一条路径,该路径经过了城市集合{1, 2, …, i}。
3.状态转移方程状态转移方程描述了相邻状态之间的关系,即从一个状态到另一个状态的计算方法。
在求解最短路径问题时,状态转移方程可以定义为:d(i, j) = min{d(i-1, j), d(i, k) + w(k, j)}其中,d(i,j)表示从城市A到城市j经过城市集合{1, 2, …, i}的最短路径长度。
动态规划的原理及应用
动态规划的原理及应用1. 什么是动态规划动态规划(Dynamic Programming)是解决多阶段决策问题的一种优化方法。
它通过把原问题分解为相互重叠的子问题,并保存子问题的解,以避免重复计算,从而实现对问题的高效求解。
2. 动态规划的基本思想动态规划的基本思想可以归纳为以下几步:•确定问题的状态:将原问题分解为若干子问题,确定子问题的状态。
•定义状态转移方程:根据子问题的状态,确定子问题之间的关联关系,建立状态转移方程。
•确定初始条件和边界条件:确定子问题的初始状态和界限条件。
•计算最优解:采用递推或迭代的方式计算子问题的最优解。
•构造最优解:根据最优解的状态转移路径,构造原问题的最优解。
3. 动态规划的应用场景动态规划广泛应用于以下领域:3.1 图论在图论中,动态规划可以用来解决最短路径问题、最小生成树问题等。
通过保存子问题的最优解,可以避免重复计算,提高求解效率。
3.2 数值计算在数值计算中,动态规划可以用来解决线性规划、整数规划等问题。
通过将原问题分解为子问题,并利用子问题的最优解求解原问题,可以快速求解复杂的数值计算问题。
3.3 操作研究在操作研究中,动态规划可以用来解决最优调度问题、最优分配问题等。
通过将原问题拆分为若干子问题,并保存子问题的最优解,可以找到全局最优解。
3.4 自然语言处理在自然语言处理中,动态规划可以用来解决句法分析、语义理解等问题。
通过构建动态规划表,可以有效地解析复杂的自然语言结构。
3.5 人工智能在人工智能领域,动态规划可以用来解决机器学习、强化学习等问题。
通过利用动态规划的状态转移特性,可以训练出更加高效和智能的机器学习模型。
4. 动态规划的优势和限制动态规划的优势在于可以高效地解决复杂的多阶段决策问题,通过保存子问题的最优解,避免了重复计算,提高了求解效率。
同时,动态规划提供了一种清晰的问题分解和解决思路,可以帮助人们理解和解决复杂的问题。
然而,动态规划也有其应用的限制。
动态规划算法原理与的应用
动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。
它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。
动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。
下面将介绍动态规划算法的原理以及一些常见的应用。
1.动态规划算法的原理1)将原问题划分为多个子问题。
2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。
3)解决子问题,并将每个子问题的解保存起来。
4)根据子问题的解,构建整个问题的解。
2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。
2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。
2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。
该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。
2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。
动态规划算法原理及应用
动态规划算法原理及应用动态规划算法(Dynamic Programming,DP)是一种通过将问题分解为子问题来解决复杂问题的方法。
其核心思想就是将原问题分解为若干个子问题,先求解子问题,然后再根据子问题的解得出原问题的解。
1.定义子问题:将原问题分解为若干个子问题,每个子问题都是原问题的一个子集。
2.构建状态转移方程:根据子问题的关系,建立状态转移方程来描述问题的解。
3.确定边界条件:确定问题的边界条件,即当问题规模很小的时候可以直接求解的情况。
4.自底向上求解:根据状态转移方程,自底向上地求解子问题,最终得到原问题的解。
1.背包问题:给定一个背包的容量和一系列物品的重量和价值,选择若干个物品放入背包中,使得背包的总重量不超过容量,同时总价值最大化。
2.最长公共子序列(LCS)问题:给定两个字符串,求它们的最长公共子序列,即两个字符串中都出现的最长的子序列。
3.最短路径问题:给定一个有向带权图和两个顶点,求两个顶点之间的最短路径。
4.最大连续子序列和问题:给定一个整数数组,找到一个具有最大和的连续子序列。
5.斐波那契数列:求解斐波那契数列中第n个数的值。
其中,斐波那契数列的定义为:F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2),n>11.避免了重复计算:动态规划算法使用备忘录或者数组来存储中间计算结果,避免了重复计算,提高了效率。
2.自底向上求解:动态规划算法从最小的子问题开始求解,逐步拓展到原问题,保证了每个子问题都是已经求解过的。
3.可通过状态压缩进行优化:动态规划算法中,可以根据具体问题的特点,通过状态压缩来减少空间复杂度。
然而,动态规划算法也有一些限制:1.无法应用于所有问题:动态规划算法要求问题满足最优子结构的性质,因此不是所有问题都可以使用动态规划算法来解决。
2.有时需要额外的空间和时间:动态规划算法可能需要使用额外的空间来存储中间结果,同时也需要额外的时间来计算和存储中间结果。
基于Matlab的动态规划算法的实现及应用
基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策问题的优化方法,它可以在每个阶段选择最优决策,并且在各个阶段间保持最优子结构,从而达到整体最优的目的。
在实际应用中,动态规划算法被广泛用于求解优化问题、路径规划、资源分配等方面。
本文将介绍基于Matlab 的动态规划算法的实现及应用,并深入探讨其在实际问题中的应用。
一、动态规划算法的基本原理动态规划算法的基本原理是通过将问题分解为子问题,并计算每个子问题的最优解,然后存储下来以供后续使用。
最终得到整体最优解。
动态规划算法通常包括以下几个步骤:1. 确定状态和状态转移方程:首先需要确定问题的状态,然后建立状态之间的转移关系,也就是状态转移方程。
状态转移方程描述了问题的子问题之间的关系,是动态规划算法的核心。
2. 初始化:初始化动态规划数组,将初始状态下的值填入数组中。
3. 状态转移:利用状态转移方程计算出各个阶段的最优解,并将其存储在动态规划数组中。
4. 求解最优解:根据动态规划数组中存储的各个阶段的最优解,可以得到整体最优解。
Matlab是一种强大的计算软件,具有丰富的数值计算函数和可视化工具,非常适合实现动态规划算法。
下面以一个简单的背包问题为例,介绍如何在Matlab中实现动态规划算法。
假设有n件物品,每件物品的重量为w[i],价值为v[i]。
现在有一个容量为C的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。
我们需要确定问题的状态和状态转移方程。
在这个问题中,我们可以定义状态dp[i][j]表示在前i件物品中选择若干个放入容量为j的背包中所能获得的最大价值。
状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])然后,我们可以利用Matlab实现这个动态规划算法,代码如下:```matlabfunction max_value = knapsack(w, v, C)n = length(w);dp = zeros(n+1, C+1);for i = 1:nfor j = 1:Cif j >= w(i)dp(i+1,j+1) = max(dp(i,j+1), dp(i,j-w(i)+1)+v(i));elsedp(i+1,j+1) = dp(i,j+1);endendendmax_value = dp(n+1,C+1);end```三、动态规划算法在实际问题中的应用动态规划算法在实际问题中有着广泛的应用,下面以路径规划问题为例,介绍动态规划算法的应用。
动态规划算法及其应用
动态规划算法及其应用动态规划算法是一种常用的解决最优化问题的方法,它将问题划分为若干子问题,并通过求解子问题的最优解,逐步推导出原问题的最优解。
本文将介绍动态规划算法的基本原理、应用场景以及一些经典的动态规划问题。
一、动态规划算法的基本原理动态规划算法的基本思想是将问题划分为若干子问题,并记录子问题的最优解,再通过递推关系式计算出原问题的最优解。
它通常包括以下几个步骤:1. 定义状态:确定问题的状态,即需要求解的子问题。
2. 设置初始状态:找到最简单的子问题,并确定其最优解。
3. 确定状态转移方程:根据子问题之间的关系,构建递推公式,以确定问题的最优解与子问题最优解之间的关系。
4. 计算最优解:利用递推公式,按照一定的顺序计算各个子问题的最优解,并记录下来。
5. 利用最优解构造原问题的解:根据记录的最优解,逐步构造出原问题的最优解。
动态规划算法的核心是状态转移方程的构建,它描述了子问题之间的关系,并且决定了问题的最优解与子问题最优解的联系。
二、动态规划算法的应用场景动态规划算法在许多领域都有广泛的应用,特别是那些具有重叠子问题性质和最优子结构性质的问题。
1. 最短路径问题:例如在图的最短路径算法中,可以利用动态规划算法求解顶点i到顶点j之间的最短路径。
2. 背包问题:背包问题是指在给定背包容量和一组物品的重量和价值的情况下,如何选择物品放入背包,使得背包中物品的总价值最大。
动态规划算法可以求解该问题。
3. 编辑距离问题:编辑距离是指将一个字符串转换成另一个字符串所需的最少操作次数,包括插入、删除和替换操作。
动态规划算法可以求解编辑距离。
4. 股票买卖问题:给定一组股票的价格序列,可以进行多次交易,但每次只能进行一次买入和一次卖出,求解如何获取最大利润。
动态规划算法可以求解该问题。
5. 最长上升子序列问题:给定一个序列,求解其中最长的上升子序列的长度。
动态规划算法可以求解该问题。
三、经典的动态规划问题1. 斐波那契数列:斐波那契数列是一个经典的动态规划问题,其递推关系式为:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
计算机科学中的动态规划算法
计算机科学中的动态规划算法在计算机科学领域中,动态规划算法是一种高效的计算方法。
该算法可以用于解决多种复杂问题,包括最短路径问题、背包问题、最长公共子序列问题等。
本文将详细介绍动态规划算法的基本原理、特点和实现方法,以及应用于实际问题的案例分析。
一、动态规划算法的基本原理动态规划算法是一种基于分治思想的高效求解问题的算法。
它通过将问题分解成一系列子问题,并在求解子问题的过程中记录下每个子问题的解,最终得到问题的最优解。
在这个过程中,算法会根据每个子问题的解来进行新的判断和计算,以得出最终的全局最优解。
动态规划算法的基本原理可以概括为以下几个步骤:1. 将问题分解成一系列子问题,每个子问题都可以通过一组参数来定义。
2. 对每个子问题进行求解,记录下每个子问题的最优解。
3. 利用已解决的子问题的最优解来求解新的子问题,最终得到全局最优解。
动态规划算法的基本思想是将一个问题划分成若干个子问题分别求解,得出每个子问题的最优解后,再根据每个子问题的最优解来求解父问题的最优解。
二、动态规划算法的特点1. 最优子结构性质动态规划算法具有最优子结构性质,即问题的最优解可以由子问题的最优解推导出来。
这也是动态规划算法能够高效地求解问题的关键特点之一。
2. 重复子问题动态规划算法会计算出许多重复的子问题。
但由于动态规划算法会将每个子问题的解保存下来,所以它能够高效地避免重复计算,提高算法的效率。
3. 状态转移方程动态规划算法的核心是状态转移方程。
在求解每个子问题时,算法都会根据一定的规则和状态转移方程来计算出其最优解。
状态转移方程是动态规划算法实现的关键,其确定方法也是解决动态规划问题的一个难点。
三、动态规划算法的实现方法动态规划算法的实现主要分为四个步骤:1. 定义状态定义状态是动态规划算法的第一步。
状态的定义通常是以问题的特征来进行定义的,不同的问题会有不同的状态定义方式。
状态通常是一个变量或者一个数组。
2. 状态转移方程状态转移方程是动态规划算法的核心。
动态规划算法详解及应用实例
动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。
它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。
本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。
一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。
其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。
由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。
状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。
通过不断迭代求解状态转移方程,我们可以得到最优解。
二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。
2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。
因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。
3、动态规划通常包含两个要素:最优子结构和重叠子问题。
最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。
4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。
三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。
对于此类问题,可以采用动态规划算法进行求解。
首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。
动态规划的基本原理与应用
动态规划的基本原理与应用动态规划是一种解决复杂问题的方法,它通过将问题分解为较小的子问题,并记录子问题的解来解决原问题。
动态规划的基本原理是通过递归和存储中间结果来优化问题求解的效率。
在本文中,我们将讨论动态规划的基本原理以及它在不同领域的应用。
一、基本原理动态规划的基本原理可以简单概括为以下几个步骤:1. 定义问题的状态:将原问题拆解为若干个子问题,每个子问题对应一个状态。
2. 确定问题的状态转移方程:确定每个状态之间的关系,通过状态转移方程将问题的解表示为子问题的解。
3. 初始化边界条件:确定初始状态的值。
4. 通过自底向上的方式计算问题的解:根据状态转移方程,从初始状态开始计算每个状态的值,直到达到目标状态。
5. 根据需要,进行结果的回溯:如果需要得到问题的具体解,可以根据已计算的值和状态转移方程,回溯得到解。
二、应用领域动态规划作为一种高效解决问题的方法,广泛应用于以下几个领域:1. 最优化问题:动态规划可以解决许多最优化问题,如最大子序列和、最长公共子序列、背包问题等。
通过将问题分解为子问题,并记录子问题的最优解,可以得到整个问题的最优解。
2. 计算机算法设计:在算法设计中,动态规划常常用于解决搜索问题、图问题和字符串问题。
通过将问题分解为子问题,并利用子问题的解来优化算法的运行时间。
3. 经济学和金融学:动态规划在经济学和金融学中有广泛的应用。
例如,它可以用于决策问题、风险分析和投资组合优化等。
4. 生物学:在生物学中,动态规划可以用于序列比对、DNA重组和蛋白质结构预测等问题。
5. 自然语言处理:动态规划在自然语言处理中也有一定的应用。
例如,它可以用于句法解析、机器翻译和词性标注等任务。
三、总结动态规划作为一种高效解决问题的方法,通过将问题分解为子问题,并记录子问题的解来优化问题求解的效率。
它的基本原理是通过递归和存储中间结果来计算问题的解。
动态规划在最优化问题、计算机算法设计、经济学和金融学、生物学以及自然语言处理等领域都有广泛的应用。
动态规划的基本原理和基本应用
动态规划的基本原理和基本应用
一、动态规划的基本原理
动态规划(Dynamic Programming)是一种运用在运筹学中的一种数
学规划方法。
它的基本思路是:将一个复杂的求解问题分解成若干个更简
单的子问题,再从这些子问题出发,求出各子问题的解,回溯到原问题求
出原问题的解,通常情况下,动态规划的核心是对于每一个子问题只求解
一次,存储子问题的解,避免了重复求解子问题。
1.最优子结构性质:具有最优子结构性质的问题可以用动态规划求解,即如果一些问题的求解最优解由其子问题的最优解组合而成,那么该问题
也是最优的;
2.重复子问题性质:具有重复子问题性质的问题可以用动态规划求解,即一些问题的解可以由重复的子问题的解组合而成;
3.边界条件:求解动态规划的问题要求有边界条件,即知道求解问题
的初始和终止条件;
4.最优化原理:即求解问题的全局最优解可以由求子问题的最优解组
合而成,求解问题从最优解的最终状态开始,逐渐迭代至初始状态;
5.无后效性:即状态仅取决于其之前的几个状态,不受其之后状态的
影响。
二、动态规划的基本应用
1.适用于短路径问题:在交通运输、通信网络中。
动态规划算法的理论与应用实践
动态规划算法的理论与应用实践动态规划是一种常用的解决优化问题的算法,它通常用于需要寻找最优解或最优决策的场景。
由于动态规划算法的思想和应用范围非常广泛,因此本文将详细介绍动态规划算法的理论和应用实践,希望读者能够全面理解并掌握动态规划算法,为日后的问题求解打下良好的基础。
一、动态规划算法的基本概念动态规划算法是一种通过将原问题分解为子问题并将子问题的解组合起来得到原问题的解的算法。
在动态规划算法中,我们通常使用表格来存储子问题的解,并使用递推公式来计算新的子问题的解。
通常情况下,我们会按照子问题的规模从小到大依次计算它们的解,直到计算出原问题的解。
动态规划算法的本质是一个优化问题,因此在使用动态规划算法解决问题时,我们需要明确问题的最优解是什么。
通常情况下,我们会定义一个状态表示问题的解,并根据不同的状态值计算问题的最优解。
在实际应用中,可以从几个方面考虑状态的定义:状态表示数组的长度或容量、状态中的元素、状态转移方程中参与计算的变量等。
二、动态规划算法的实际应用1. 求解最长公共子序列问题最长公共子序列问题是一个经典的计算机科学问题,它通常用于寻找给定两个字符串之间的最长公共子序列。
在动态规划算法中,我们通常需要定义一个二维数组来存储子问题的解,具体操作为:首先,将两个字符串转换为字符数组,然后,对所有可能的子问题的解进行计算,并将每个子问题的最优解存储在数组中。
最后,根据数组中的值,我们可以找到这两个字符串之间的最长公共子序列。
具体详解可参考相关教程。
2. 背包问题的求解背包问题通常被称为组合优化问题,其目标是确定一组物品,使得这组物品的总重量小于或等于背包的容量,同时使这组物品的总价值最高。
在使用动态规划算法求解背包问题时,我们需要用一个二维数组来存储每个子问题的最优解,具体操作为:首先,我们建立一个数组,用于记录子问题的最优解;然后,我们将问题分解为若干个子问题,并计算这些子问题的最优解;最后,我们将这些子问题的最优解组合起来,得到原问题的最优解。
动态规划算法的原理及应用
动态规划算法的原理及应用1. 动态规划算法的原理动态规划是一种将复杂问题分解为更小、更简单子问题的优化技术。
它通常应用于需要求解最优解的问题,并通过将问题分解为子问题,并且利用子问题的最优解来求解整个问题。
动态规划算法的基本思想是自底向上求解子问题,然后将子问题的解合并为原问题的解。
这种方法避免了重复计算子问题,减少了时间复杂度。
动态规划算法一般需要满足以下两个条件: * 子问题的最优解能够组成原问题的最优解; * 子问题之间不存在重叠。
2. 动态规划算法的应用2.1 背包问题背包问题是指给定一个背包的容量,一系列物品的重量和价值,如何选择将哪些物品放入背包中以使得背包内物品的总价值最大化的问题。
动态规划可用于解决背包问题。
具体方法是创建一个二维数组,横轴表示物品的可选数量,纵轴表示背包的容量。
通过填表格的方式,逐步计算出不同容量下放入不同物品的最大价值。
最后得出背包的最大价值。
2.2 最长公共子序列问题最长公共子序列问题是指给定两个序列,如何找到它们最长的公共子序列的问题。
动态规划可用于解决最长公共子序列问题。
具体方法是创建一个矩阵,矩阵的行表示第一个序列的元素,列表示第二个序列的元素。
通过填表格的方式,逐步计算出不同元素位置下的最长公共子序列的长度。
最后得出最长公共子序列的长度。
2.3 最短路径问题最短路径问题是指在一个带有权值的图中,如何找到两个顶点之间最短的路径的问题。
动态规划可用于解决最短路径问题。
一种常见的动态规划算法是Floyd-Warshall算法,它通过创建一个矩阵,矩阵的元素表示两个顶点之间的最短路径长度。
通过逐步更新矩阵的值,求解出所有顶点之间的最短路径。
2.4 斐波那契数列问题斐波那契数列问题是指给定一个整数n,如何求解斐波那契数列的第n个数的问题。
动态规划可用于解决斐波那契数列问题。
具体方法是创建一个数组,通过填表格的方式,逐步计算出斐波那契数列的每个数。
最后得出斐波那契数列的第n个数。
动态规划原理及应用
动态规划原理及应用动态规划是一种在数学、计算机科学和经济学等领域中广泛应用的算法思想。
它通过将原问题分解为相对简单的子问题来解决复杂的问题,从而大大提高了问题的求解效率。
动态规划算法的核心思想是将原问题拆解为若干个子问题,并且这些子问题之间存在重叠,通过存储子问题的解来避免重复计算,从而实现对原问题的高效求解。
动态规划的基本原理是最优子结构和重叠子问题。
最优子结构指的是原问题的最优解可以通过子问题的最优解来求解,而重叠子问题则是指在问题求解过程中存在重复计算的子问题。
动态规划算法正是利用这两个特点,通过存储子问题的解来避免重复计算,从而实现对原问题的高效求解。
动态规划算法的应用非常广泛,其中最典型的应用之一就是在路径规划问题中。
例如,在寻找两个城市之间的最短路径或者最优路径时,动态规划算法可以帮助我们高效地求解这一问题。
另外,在资源分配、生产调度、金融风险管理等领域,动态规划算法也有着重要的应用价值。
动态规划算法的实现通常有两种方式,一种是自顶向下的记忆化搜索,另一种是自底向上的递推求解。
自顶向下的记忆化搜索是通过递归的方式来求解问题,并且在求解过程中利用数组等数据结构来存储子问题的解,从而避免重复计算。
而自底向上的递推求解则是从子问题开始逐步求解原问题,通过迭代的方式逐步求解出原问题的解。
总的来说,动态规划算法是一种非常重要的算法思想,它可以帮助我们高效地解决各种复杂的问题。
通过将原问题拆解为相对简单的子问题,并且利用最优子结构和重叠子问题的特点,动态规划算法可以大大提高问题的求解效率。
在实际应用中,我们可以根据具体的问题特点选择合适的动态规划算法实现方式,从而更好地解决实际问题。
在实际应用中,动态规划算法需要根据具体问题特点选择合适的状态转移方程,通过状态转移方程来描述问题的最优解,然后利用递归或者迭代的方式求解出最优解。
同时,动态规划算法还需要考虑问题的边界条件,以及如何存储子问题的解,从而避免重复计算,提高算法的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划算法原理及其应用研究系别:x x x 姓名:x x x 指导教员:x x x2012年5月20日摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。
关键词:动态规划多阶段决策1.引言规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。
在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。
所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。
将各个阶段的决策综合起来构成一个决策序列,称为一个策略。
显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。
当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。
多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。
动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。
在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。
动态规划的主要创始人是美国数学家贝尔曼(Bellman)。
20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。
1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。
该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。
在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。
爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。
梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。
动态规划问世以来,在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
2.动态规划的基本思想一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解,则可以考虑用动态规划解决。
动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。
由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。
其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。
因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。
但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解;如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。
解决上述问题的办法是利用动态规划。
该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。
若存在若干个取最优值的解的话,它只取其中的一个。
在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。
因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。
动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。
3.动态规划的基本概念动态规划的数学描述离不开它的一些基本概念与符号,因此有必要在介绍多阶段决策过程的数学描述的基础上,系统地介绍动态规划的一些基本概念。
3.1多阶段决策问题如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策,一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。
各个阶段的决策构成一个决策序列,称为一个策略。
每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。
策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.3.2动态规划问题中的术语阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。
在多数情况下,阶段变量是离散的,用k表示。
此外,也有阶段变量是连续的情形。
如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。
在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。
过程的状态通常可以用一个或一组数来描述,称为状态变量。
一般,状态是离散的,但有时为了方便也将状态取成连续的。
当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。
此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。
无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。
换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。
从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。
状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。
决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。
在最优控制中,也称为控制。
在许多间题中,决策可以自然而然地表示为一个数或一组数。
不同的决策对应着不同的数值。
描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。
决策变量的范围称为允许决策集合。
策略:由每个阶段的决策组成的序列称为策略。
对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。
允许策略集合中达到最优效果的策略称为最优策略。
给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。
这是从k阶段到k+1阶段的状态转移规律,称为状态转移方程。
最优性原理: 作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。
4.动态规划求解的基本步骤动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。
这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。
如图所示。
动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态动态规划决策过程示意图(1)划分阶段:,按照问题的时间或空间特征,把问题分为若干个阶段。
在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。
当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
所以如果确定了决策,状态转移方程也就可写出。
但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
(5)程序设计实现:动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。
根据上述动态规划设计的步骤,可得到大体解题框架如图所示。
动态规划设计的一般模式图上述提供了动态规划方法的一般模式,对于简单的动态规划问题,可以按部就班地进行动态规划的设计。
下面,给出一个利用动态规划方法求解的典型例子。
<数字三角形问题> 上图示出了一个数字三角形宝塔。
数字三角形中的数字为不超过100的整数。
现规定从最顶层走到最底层,每一步可沿左斜线向下或右斜线向下走。
任务一:假设三角形行数≤10,键盘输入一个确定的整数值M,编程确定是否存在一条路径,使得沿着该路径所经过的数字的总和恰为M,若存在则给出所有路径,若不存在,则输出“NO Answer!”字样。
任务二:假设三角形行数≤100,编程求解从最顶层走到最底层的一条路径,使得沿着该路径所经过的数字的总和最大,输出最大值。