金刚石薄膜的性能研究
金刚石薄膜的特性及应用
7.声传播速度快, 是优良的传声材料。日 本的索尼公司已成批出售用金刚石薄膜 制造的频率达40000Hz的高保真度扬声 器。
8. 化学性能稳定, 耐腐蚀性能好。利用 该特性, 可制做核反应堆的内壁和航天器 的涂层, 还可以用作太阳能电池的减反射 膜和耐腐蚀涂层。
9.有良好的生物学性能。成都科技大学 在钦合金基体上镀金刚石薄膜制做人工 心脏瓣膜, 经测定: (1)抗凝血能力优于钦合金基体; (2)表面张力为5.4×10-2N/m, 与低温各 向同性碳接近; (3)溶血率为 3.7%, 符合标堆要求(标准 <5%)。
五、目前需要解决的问题
1.提高膜的质量和成核密度 由于制膜条件控制不当, 膜的结构成分往 往会包括金刚石相, 石墨相和碳的聚合物相, 此外还有空洞, 人们把这种膜称之为类金刚 石膜(DLC膜)。DLC膜虽然类似金刚石 膜,但毕竟比金刚石膜差, 在DLC膜中, C的 四重配位 SP3和三重配位SP2的比例对膜 的结构和性质的影响很大。一般来说, 四重 配位越多, 膜的性质越接近于金刚石。
目录
• 一、引言 • 二、金刚石薄膜的性能及其应 用 • 三、金刚石薄膜的合成方法 • 四、金刚石薄膜的分析和表征 • 五、目前需要解决的问题
三、金刚石薄膜的合成方法
1.低压化学气相沉积法(CVD法) 2.物理气相沉积法(PVD法) 3.化学气相翰运法(CVT法)
1.低压化学气相沉积法(CVD法)
该法生长金刚石薄膜所用的原料除氢气外, 碳源多用CH4及其它碳氢化合物, 如C2H2、 C2H6、C2H8等, 用甲醇、乙醇和三甲胺等有 机化合物为原料也能生长出金刚石型薄膜 ①热丝CVD法 ②等离子体增强化学气相沉积法(PCVD )
热丝CVD法
基本原理是含碳气相组分在高温下分解 离化后沉积在基体上形成金刚石膜。 热丝CVD装置如图所示, 主要由真空反 应室, 抽真空系统, 进气控制系统和 基板加热系统组成。真空反应室是 由石英管制做的, 反应室内有热灯丝, 样品支架和测温热电偶等, 样品支架 可以转动, 抽真空系统由机械泵和 真空计组成。碳源气体和氢气按一定比 例混合后进人反应室, 其流量用质量 流量计控制, 碳源气体浓度一般<= 5%(体积比)。 。
PECVD法沉积类金刚石薄膜的耐腐蚀性能研究
P C E VD法 沉积 类金 刚石 薄膜 的耐腐 蚀性 能研 究
雷 雯 雯 陈 强
( 京 印刷 学 院等离子体 物理及 材料研 究 室,北京 120 北 060) 摘要 金属材料在 实际生活 中应用广泛 ,但 其易被摩擦磨损及 易被腐蚀 的特点成为其广 泛应用
c a a t rz to ,s c sh g r n s , o fito o f ce t hih c e c lsa i t ,h n t sp pe, h r ce ia in u h a ih had e s lw rci n c e in , g h mia tb l y tusi a r i i hi DLC fl a t e o r so r ssa c lye wee e o ie o mea b c p ctv l c u ld i ms s h c ro in e it n e a r r d p st d n tl y a a i ey o p e i
a ab n s u c n st edi t n g sw ee u iie o i p o e c ro i n r ssa c . e c ro in sc r o o r ea d Ara h l i a r tl d t m r v o r so e itn e Th o r so uo z r ssa t e to o t gsa d s bsr tsw eet e x mi e e a aey b h o e t d n mi o ai ain e itn s nc ai n u ta e r h n e a n d s p r t l y t ep tn i y a cp lrz to t n o m e s r me ta d s l.p a o o i n ts.Th h m ia tu t r n o p sto fDLC l r a u e n n ats ry c r so e t e c e c 1sr cu e a d c m o i n o i i f ms we e a ay e y FTI a d t er lto s i oa t— o r so r pet a ic s e n lz d b R n h eai n hp t n i ro i np o ryw sd s u s d. c Ke ywor s d :DLC l s i f m :W e ra d fit n;S l s r yc ro i n;Elcr c e i a o o i n;P a m a a n rc i o at p a o r so — e to h m c l r so c ls e h n e h m i a a o e sto n a c d c e c l D rd po i n V i
金刚石薄膜的双波段红外光学性能研究
摘要ห้องสมุดไป่ตู้
本 文针 对 红外光 学材 料 对宽 波段 透 过 的要 求 , 用 HF V 采 C D法在 硅 基 体 上 制备 了红 外增 透 的金 刚
石薄膜。设计 了高红外透过率的膜 系结构 , 探讨 了基体处理方式、 单面、 双面涂层工 艺和厚度 对红外透过
率 的影响 , 并给 出 了相 关的 光谱 测 试 结果和金 刚石 薄膜 的微观 形貌 、 构表 征 。结 果表 明 : 面涂 层金 刚 结 双
L in u F n i i ago J e g Je ・ Hu Do g ig W a a g n pn n Qin
( .ntu yt n ier g hn cdm E gnei h s s 1 Is tt o s m E gne n ,C iaA a e yo n i r g P yi , i e fS e i f e n c
p ro ma c .Th e k ta s s in i b u 0% a h v a d 3. ~5. tm ,t a sc o e t h he r e r ne f e p a r n miso sa o t8 tt e wa e b n 0 0 x h ti ls o t e t o y v l e W h n t v a d i . —1 0 x ,t e ma i m nie e to s 1 au . e he wa e b n s 8 0 4. tm h x mu a t f cin i 8% 。t e p a r ns si n i rl h e k ta miso S
金刚石薄膜电极的电化学特性及其在污水处理中的应用研究
金刚石薄膜电极的电化学特性及其在污水处理中的应用研究金刚石薄膜电极的电化学特性及其在污水处理中的应用研究引言随着全球人口的增加和经济的发展,水资源日益稀缺,水污染问题也日益严重。
传统的污水处理方法难以有效地去除有机物、无机物、重金属等污染物,同时还存在处理成本高、操作复杂等问题。
因此,开发一种高效、环保、经济的污水处理技术是十分迫切的。
金刚石薄膜电极作为一种新型的电化学材料,具有良好的化学稳定性、高电导率、高机械强度和优良的抗腐蚀性能。
近年来,越来越多的研究表明金刚石薄膜电极在污水处理领域具有广泛的应用前景。
本文将对金刚石薄膜电极的电化学特性及其在污水处理中的应用进行综述,以期为相关研究提供参考和借鉴。
一、金刚石薄膜电极的电化学特性1.1 金刚石薄膜电极的制备方法金刚石薄膜电极的制备方法主要包括化学气相沉积法、磁控溅射法等。
其中,化学气相沉积法是目前最常用的制备金刚石薄膜电极的方法,通过控制沉积参数可以得到不同结构和性能的金刚石薄膜电极。
1.2 金刚石薄膜电极的表面性质金刚石薄膜电极具有很高的表面能和较低的电子亲和能,其表面具有良好的亲水性和导电性。
同时,金刚石薄膜电极的表面具有很高的绝缘性,可以显著减少电化学反应的副反应,提高污水处理效率。
1.3 金刚石薄膜电极的电化学性能金刚石薄膜电极具有良好的电化学性能,具有较宽的水窗、较低的电极电阻和较高的扩散系数。
与传统电极相比,金刚石薄膜电极具有更高的氧化还原峰电流和更低的氧化还原峰电位,可以提高电极的响应速度和反应效率。
二、金刚石薄膜电极在污水处理中的应用2.1 金刚石薄膜电极去除有机污染物金刚石薄膜电极在去除有机污染物方面具有良好的效果。
研究表明,金刚石薄膜电极通过氧化降解有机污染物,并生成二氧化碳和水。
同时,金刚石薄膜电极具有较强的抗生物附着能力,可以减少污染物的生物降解。
2.2 金刚石薄膜电极去除无机污染物金刚石薄膜电极在去除无机污染物方面也表现出良好的效果。
类金刚石(DLC)多层薄膜残余应力调控及其机械性能研究
类金刚石(DLC)多层薄膜残余应力调控及其机械性能研究类金刚石(DLC)薄膜由于具有高硬度和弹性模量、低摩擦系数、优异的耐磨损性和耐腐蚀性等优异性能,而成为具有广泛应用前景的保护膜及耐磨材料。
多年的研究发现DLC薄膜中存在很大的残余应力,降低了薄膜与钛合金基体的结合强度,导致DLC薄膜在使用过程中的早期失效,限制了它的工业应用。
多层薄膜是由不同材料相互交替沉积而成的组分或结构交替变化的薄膜材料,由于它具有大量的界面,通常会增加材料的韧性,阻碍裂纹的扩展,与相应的单层薄膜相比,多层薄膜的残余应力较低,且耐磨性能及耐蚀性能好,具有广泛的应用前景。
因此,基于DLC薄膜急需解决的问题和实际应用的需要,设计了软硬交替DLC多层薄膜体系,其中软层将起到剪切带的作用,以缓解膜层中的内应力和界面应力。
本文采用磁过滤阴极真空弧源(FCVA)沉积技术在Ti6A14V合金及Si(100)表面制备了一系列不同调制参数的软硬交替DLC多层薄膜和TiC/DLC多层薄膜,以减小或控制DLC薄膜中的残余应力、提高硬度和增强钛合金的摩擦学性能。
本文系统研究了调制周期和调制比对软硬交替DLC多层薄膜和TiC/DLC多层薄膜的形貌、残余应力、成分、结构、机械性能和摩擦学性能的影响。
同时采用有限元软件(Ansys)对软硬交替DLC多层薄膜的残余应力进行了模拟。
为使基体与膜层之间形成良好的过渡,进一步增强膜基结合力,本文还研究了Ti/TiC梯度过渡层对DLC多层薄膜性能的影响。
全文主要结果如下:(1)采用FCVA技术在钛合金表面成功的制备出了结构致密、低残余应力、高硬度和优异耐磨性能的软硬交替DLC多层薄膜和TiC/DLC 多层薄膜。
(2)使用FCVA技术制备的软硬交替DLC多层薄膜,在调制周期固定为140nm时,薄膜中sp3键的含量随调制比(硬DLC膜层与软DLC膜层厚度之比)的增大而增加;在调制比固定为1:1时,sp3键的含量随调制周期的减小而减小。
类金刚石薄膜的性能与应用
学科前沿知识讲座论文之袁州冬雪创作类金刚石薄膜的性能与应用摘要:类金刚石膜(Diamond-likeCarbon)简称DLC,是一类性质近似于金刚石如具有高硬度、高电阻率、耐腐蚀、杰出的光学性能等,同时其又具有自身独特磨擦学特性的非晶碳膜.作为功能薄膜和呵护薄膜,其广泛应用于机械、电子、光学、医学、航天等范畴中.类金刚石膜制备方法比较简单,易实现工业化,具有广泛的应用前景.关键词:超硬资料类金刚石薄膜制备气象沉积概况工程技术引言磨损是工程界资料功能失效的主要形式之一,由此造成的资源、动力的华侈和经济损失可用“宏大”来暗示.然而,磨损是发生于机械设备零部件概况的资料流失过程,虽然不成防止,但若采纳得力措施,可以提高机件的耐磨性.资料概况工程主要是操纵各种概况改性技术,赋予基体资料自己所不具有的特殊的力学、物理或化学性能,如高硬度、低磨擦系数、杰出的化学及高温稳定性、抱负的综合机械性能及优异的磨擦学性能,从而使零部件概况体系在技术指标、靠得住性、寿命和经济性等方面获得最佳效果.硬质薄膜涂层因能减少工件的磨擦和磨损,有效提高概况硬度、韧性、耐磨性和高温稳定性,大幅度提高涂层产品的使用寿命,而广泛应用于机械制造、汽车工业、纺织工业、地质钻探、模具工业、航空航天等范畴.一、超硬薄膜资料随着资料迷信和现代涂层技术的发展,应用超硬资料涂层技术改善零部件概况的机械性能和磨擦学性能是21世纪概况工程范畴重要的研究方向之一.超硬薄膜是指维氏硬度在40GPa以上的硬质薄膜.到今朝为止,主要有以下几种超硬薄膜:1 金刚石薄膜金刚石薄膜的硬度为50~100GPa(与晶体取向有关),从20世纪80年月初开端,一直受到世界各国的广泛重视,并曾于20世纪80年月中叶至90年月末形成了一个全球范围的研究热潮.金刚石膜所具有的最高硬度、最高热导率、极低磨擦系数、很高的机械强度和杰出化学稳定性的优异性能组合使其成为最抱负的工具和工具涂层资料.金刚石薄膜在磨擦学范畴应用的突出问题,就是在载荷条件下薄膜与基体之间的粘附强度以及薄膜自己的粗糙度问题,今朝,己经有针对性地展开了大量的研究工作.随着研究工作的不竭深入,金刚石薄膜将会为整个人类社会带来宏大的经济效益.2 立方氮化硼(c-BN)薄膜立方氮化硼(c-BN)薄膜的硬度为50~80GPa,它具有与金刚石相近似的晶体布局,其物感性能也与金刚石十分相似.与金刚石相比,c-BN的显著优点是具有杰出的热稳定性和化学稳定性,适用于作为超硬刀具涂层,特别是用于加工铁基合金的刀具涂层.3 碳氮膜碳氮膜是新近开辟的超硬薄膜资料,实际预测它具有达到和超出金刚石的硬度.已有的研究标明CNx薄膜的硬度可高达72GPa,可与DLc 相比较.同时CNx薄膜具有十分独特的磨擦磨损特性.在空气中,CNx薄膜的磨擦系数为0.2-0.4,但在N2、C02和真空中的磨擦系数为0.01~0.1.在N2气氛中的磨擦系数最小(0.01),在大气环境中向实验区域吹氮气,也可将其磨擦系数降至0.017.因此,CNx薄膜有望在磨擦磨损范畴获得实际应用.4 类金刚石薄膜类金刚石膜(DLC)是一大类在性质上和金刚石近似,具有sp2和sp3杂化的碳原子空间网络布局的非晶碳膜.与组分相关的硬度可从20GPa变更至80GPa.类金刚石碳膜作为新型的硬质薄膜资料具有一系列优异的性能,如高硬度、高耐磨性、高热导率、高电阻率、杰出的光学透明性、化学惰性等,可广泛用于机械、电子、光学、热学、声学、医学等范畴,具有杰出的应用前景.DLC的主要缺点是:(a)内应力很大,因此薄膜厚度受到限制,一般只能达到1um~2um以下;(b)热稳定性较差,含氢的a:C-H薄膜中的氢在400℃左右就会逐渐逸出,sp2键增加,sp3键降低,在大约500℃以上就会转变成石墨.5 纳米复合多层膜纳米多层膜是一种人为可控的一维周期布局,这种布局可以有效地调整薄膜中的位错和缺陷及其运动,从而获得高硬度、高模量等性能,近期有关多层膜的研究报导较多,其中以金属/氮化物(碳化物,硼化物等)多层膜和氮化物/氮化物多层膜的研究占多数.最近,纳米晶粒复合的TIN/SINx薄膜资料的硬度达到了创记录的105GPa,可以说完全达到了金刚石的硬度.以纳米厚度薄膜交替沉积获得的纳米复合多层膜的硬度与每层薄膜的厚度(调制周期)有关,有能够高于每种组分的硬度.纳米复合多层膜不但硬度很高,而且涂层的韧性和抗裂纹扩大才能得到了显著改善,磨擦系数也较小,因此是抱负的工模具涂层资料.它的出现向金刚石作为最硬资料的地位提出了严峻的挑战,同时在经济性上也有十分分明的优势,因此具有非常好的市场前景.但是,由于一些技术问题还没有得到处理,今朝暂时还未在工业上得到广泛应用.二、类金刚石薄膜简介类金刚石(Diamond-like Carbon,简称DLC)资料是碳的非晶亚稳态布局存在形式之一,是人工合成的含有sp3和sp2键碳混杂的非晶亚稳态布局.迄今为止,人们发现的由纯碳组成的晶体有3种:金刚石、石墨和最近被发现并引起广泛关注的具有笼状布局的布基球和布基碳管.布局分歧造成三者的性质表示出较大的差别.石墨中的碳原子通过sp2杂化形成3个共价σ键,并与其他碳原子毗连成六元环形的蜂窝平面层状布局.在层中碳原子的配位数为3,别的每个碳原子还有一个垂直于层平面的p轨道电子,它们互相平行,形成离域π电子而贯穿于全层中,层中每两个相邻碳原子间的键长0.142nm,层与层之间由分子力连系,间距0.34nm,远大于C-C键长,所以石墨有杰出的导电、导热和润滑特性;金刚石中每个碳原子停止sp3杂化形成4个σ键,构成正四面体,是典型的原子晶体,有硬度大、熔点高的特点,并具有优良的光学、声学、热学和电学特性.而含有sp3和sp2键碳混杂的非晶DLC,具有石墨和金刚石所共有的性能:硬度大、熔点高、杰出的导热、润滑特性,同时具有优良的光学、声学、热学和电学特性.紫外-可见光拉曼光谱(UVRS)测试标明DLC 薄膜确实具有石墨和金刚石混合布局.天然和人造金刚石晶体的Raman光谱峰位为1332cm-1的单峰,石墨晶体的Raman光谱峰位为1575cm-1,多晶石墨除1575cm-1峰外还有一个峰位于1355cm-1.1355cm-1峰的强度决议于样品中无机碳的含量及石墨晶粒的大小.而DLC薄膜不但则有一个在1560cm-1很强而且半高宽度很小的峰位,还有一个在1350cm-1~0.152nm,而石墨和金刚石的碳-碳原子的最近间隔分别为0.142和0.154nm.由于DLC薄膜制备方法(如PVD、CVD、PCVD 等)和采取碳原子的载体(如各种碳烷气、石墨等)分歧,所生成薄膜的碳原子键合方式(C-H,C-C)与碳原子之间的键合方式(有sp2和sp3)及各种键合方式的比例也分歧.因此DLC薄膜可分为非晶碳膜和含氢非晶碳膜.而非晶碳膜的成分、布局、性能也相差较大,但共同点是空间布局上长程无序而短程有序、由大量sp3和少量sp2碳原子键合的一种网状碳布局.研究标明,DLC薄膜的性质与持续的、无规则的sp3骨架的摆列及sp3/sp2的比例等都有关,DLC膜的物理、化学、力学和电子学等性能由其布局决议.三、类金刚石薄膜的制备DLC薄膜的制备方法分为物理物理气相沉积(PVD)和化学气相沉积(CVD)两大类.在此基础上,今朝己经发展出基于物理物理气相沉积和化学气相沉积以及二者连系的多种DLC薄膜制备方法.PVD方法主要有:离子束辅助沉积法,溅射沉积法,离子束沉积法,真空阴极电弧沉积法等.CVD方法主要有:直流辉光放电等离子体化学气相沉积法、射频辉光放电等离子体化学气相沉积法、电子回旋共振化学气相沉积法、脉冲激光沉积法等.与其他方法相比,磁过滤阴极真空弧沉积方法具有阴极资料离化率高、沉积离子能量可大范围调节、沉积温度低及沉积速率高等优点,被证明是制备高硬度涂层的非常优秀的方法之一,在近十年来得到广泛研究.先进的镀膜技术为沉积超硬薄膜提供了技术包管,完善的镀膜设备功能是包管超硬薄膜资料质量的基础.超硬薄膜资料是资料迷信与工程中蓬勃发展的范畴,只有在实际中得到应用才干增强它的生命力.四、类金刚石膜的应用类金刚石薄膜具有较高的硬度,化学惰性,低磨擦系数,优异的耐磨性,表面电阻高,在可见光区的透射率高.类金刚石膜作为呵护膜已经运用到许多范畴:光学窗口、磁盘和微机电系统(MEMS)等,详细的应用如下:1机械范畴的应用由于其具有高的硬度、低磨擦系数(尤其是在超高真空条件下)以及杰出的导热性,可使机械零件在没有冷却和润滑的情况下运转,而不至于导致过高的温度,因此作为耐磨涂层在磨擦学范畴具有宏大的应用前景.类金刚石膜作为耐磨硬质膜在太空中的应用研究也已经展开.由于其较低的磨擦系数,可较好地使用在高温,高真空等不适于液体润滑的情况以及有清洁要求的环境中.类金刚石作为轴承、齿轮、活塞等易损机件的抗磨损镀层尤其是作为刃具、量具概况的耐磨涂层是十分合适的.类金刚石薄膜用作刀具涂层,能提高刀具寿命和刀具边沿的硬度,减少刃磨时间,节俭成本.类金刚石薄膜用作量具概况涂层,不至于使其改变尺寸和划伤概况,减少标定时间.它还具有杰出的化学稳定性,防止酸碱及有机溶液侵蚀,适用于化工机械部和多种装饰件的镀层.2光学范畴的应用①红外窗口的抗磨损呵护层和反射层:类金刚石膜在整个红外波段范围具有杰出的透明特性.由于薄膜硬度高,耐磨性好,使其可以作为支撑红外窗口或作为ZnS、ZnSe等红外窗口的呵护涂层.朱昌等人发现对NaCl晶体镀类金刚石薄膜做呵护层,既不影响10.6um激光输出功率,又可以防止NaCl潮解,能延长红外窗口的使用寿命;②发光资料:类金刚石膜具有杰出的光学透过性以及室温生长的特点,因此类金刚石膜可以作为由塑料和聚碳酸脂等低熔点资料组成的光学透镜概况的抗磨损呵护层.类金刚石膜光学带隙范围宽,室温下光致发光和电致发光率都很高,能在整个可见光范围发光,这使得类金刚石膜成为性能极佳的发光资料之一;③存储资料:V.Yn Armeyer等人实验发现在硅玻璃基片上沉积厚度为100nm的类金钢石薄膜的光学存储信号密度可高达108bits/㎝2数量级,而且具有信噪比高,硬度高,化学稳定性强以及无需再加呵护层等优点,因此有希望成为一次性写入记录介质;④太阳能光-热转换层:在铝基片概况沉积分歧厚度的单层类金刚石膜、硅及锗涂层后,通过比较各自的性能发现单层类金刚石膜的光热转换效率最高.3医学范畴的应用作为一种种植资料,类金刚石膜具有广泛的应用前景.如:在聚乙烯的人工股骨关节头上镀一层类金刚石膜,其抗磨损性能可以与镀陶瓷和金属制品相比;镀有Ti/DLC多层膜的钛制人工心脏瓣膜,由于其具有疏水性和光滑概况,也取得了较好的效果;在用于骨科内固定机械的Ti-Ni形状记忆合金,镀一层类金刚石膜,使其具有杰出的抗氧化性以及杰出的生物学磨擦特性.在人造牙根上镀制一层类金刚石膜可以改善其生物相容性.4电子范畴的应用~3.8之间的DLC膜和介电常数小于2.3的FDLC膜.对于BEOL互联布局,低K值的DLC膜是很好的选择.采取碳膜和类金刚石膜交替出现的多层布局可构造具有共振隧道效应的多量子阱布局,具有独特的电特性,在微电子范畴有很大的发展前途.结论类金刚石膜(DLC).由于该膜在力学、热学、电学、化学、光学等方面具有优异的性能,且制备简单、成本低廉,较之于金刚石薄膜具有较高的性能价格比,且在相当广泛的范畴里可以代替金刚石薄膜,在机械、电子、化学、医学、军事、航空航天等范畴体现了其广阔的应用前景.参考文献[1] 吴大维. 硬质薄膜资料的最新发展及应用.真空. 2003[2] 吕反修. 超硬资料薄膜涂层研究停顿及应用. 热处理. 2004[3] 陈灵,刘正义,邱万奇等. 类金刚石膜的制备及其影响因素. 中国概况工程. 2002 [4] 程宇航等. 类金刚石膜布局的红外分析.硅酸盐学报,1998(4),26[5]李振军,徐洮,李红轩[6] 刘成龙,杨大智等.医用不锈钢概况沉积类金刚石薄膜的电化学腐蚀性能研究. 硅酸盐学报. 2005(5)[7]杨玉卫,刘慧舟等.类金刚石膜的性能、制备及应用.[9] 黄立业,徐可为,吕坚. 类金刚石薄膜的概况纳米划擦性能评价. 无机资料学报.2001(5)[10]罗崇泰. 类金刚石薄膜的获得和应用. 真空与低温. 1987(1)[11]王淑占,李合琴,巫邵波,赵之明,宋泽润. 掺氮类金刚石薄膜的制备及其布局表征. 真空. 2008(1)[12]王培君,江美福,杜记龙,戴永丰. 射频反应磁控溅射法制备的氟化类金刚石薄膜磨擦特性研究. 物理学报. 2010(12) [13]常海波,徐洮,张治军,刘惠文. 衬底对沉积类金刚石薄膜布局和磨擦学性能的影响. 河南大学学报(自然迷信版). 2005(4) [14]刘成龙,杨大智,邓新绿,齐平易近. 类金刚石薄膜的概况性能研究. 无机资料学报. 2005(3)。
我国类金刚石薄膜主要制备技术及研究现状
• 5.医疗设备和器具:手术刀片,手术剪, 心脏瓣膜,人工关节,血管支架。 • 6.内燃机工业:燃料喷射系统(气门挺杆, 柱塞,喷油嘴),动力传动系统(齿轮 轴 承 凸轮轴),活塞部件(活塞环,活塞 销),门扣锁,内饰。 • 7.娱乐健身:扬声器振膜,移动硬盘,光 盘,高尔夫球具,自行车部件,剃须刀片。 • 8.光学:红外增透膜,减反射膜,玻璃镀 膜,镜片镀膜,亚克力镀膜,保护膜。 • 9.装饰镀膜:手机外壳,高档手表,室内 外五金卫浴产品,饰品。 • 10.航空航天 :飞机,导弹整流罩镀膜, 卫星,太阳能电池镀膜。
激光法制备DLC膜的发展趋势
• DLC膜的沉积方法可分为物理沉积法和 化学沉积法两大类。化学沉积法已十分成 熟,但由于化学法沉积的DLC膜必然含氢, 导致膜层化学稳定性、热稳定性、硬度、 附着力较差。此外,化学法均需要在高温 下(>400oC)沉积,对于不耐高温的材料(如 玻璃、硫化锌等)无法在上面镀DLC膜;对 于耐高温的材料,虽然化学法可以镀膜, 但由于DLC膜热膨胀系数很小,和衬底热膨 胀系数差异大,沉积完成后,膜内部会产 生较大的热应力,甚至导致薄膜起皮、剥 落。因此,世界各国近年来都在积极开展 可以制备无氢DLC膜的物理沉积法研究。
我国类金刚石薄膜主要制备技 术及研究现状
汇报人:王培东 指导老师:胡鹏飞
主要内容
一、类金刚石薄膜介绍 二、类金刚石薄膜制备技术 三、类金刚石薄膜应用 四、类金刚石薄膜应用展望
一、类金刚石薄膜介绍
• 类金刚石薄膜(DiamondLike Carbon)是金刚石 的sp3杂化和石墨sp2杂 化两种结合键作为骨架 构成的非晶态碳膜,简 单地讲,由纳米级的金 刚石和碳混合形成,金 刚石占20%-80%。由sp3 结合的金刚石和sp2结合 的石墨与H(氢)组成的三 元相图右图:
金刚石薄膜的性质、制备及应用
金刚石薄膜的性质、制备及应用金刚石薄膜因其独特的物理、化学性质而备受。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在许多领域具有广泛的应用前景。
本文将详细探讨金刚石薄膜的性质、制备方法以及在各个领域中的应用,旨在为相关领域的研究提供参考和借鉴。
金刚石薄膜具有许多优异的物理和化学性质。
金刚石是已知的世界上最硬的物质,其硬度远高于其他天然矿物。
金刚石的熔点高达3550℃,远高于其他碳材料。
金刚石还具有优良的光学和电学性能。
其透明度较高,可用于制造高效光电设备。
同时,金刚石具有优异的热导率和电绝缘性能,使其在高温和强电场环境下具有广泛的应用潜力。
制备金刚石薄膜的方法主要有物理法、化学法和电子束物理法等。
物理法包括热解吸和化学气相沉积等,可制备高纯度、高质量的金刚石薄膜。
化学法主要包括有机化学气相沉积和溶液法等,具有沉积速率快、设备简单等优点。
电子束物理法是一种较为新兴的方法,具有较高的沉积速率和良好的薄膜质量。
各种方法的优劣和适用范围因具体应用场景而异,需根据实际需求进行选择。
光电领域:金刚石薄膜具有优良的光学性能,可用于制造高效光电设备。
例如,利用金刚石薄膜制造的太阳能电池可将更多的光能转化为电能。
金刚石薄膜还可用于制造高品质的激光器、光电探测器和光学窗口等。
高温领域:金刚石的熔点高达3550℃,使其在高温环境下具有广泛的应用潜力。
例如,金刚石薄膜可应用于高温炉的制造,提高炉具的耐高温性能和加热效率。
金刚石薄膜还可用于制造高温传感器和热电偶等。
高压力领域:金刚石具有很高的硬度,使其在高压环境下保持稳定。
因此,金刚石薄膜可应用于高压设备的制造,如高压泵、超高压测试仪器等。
金刚石薄膜还可用于制造高精度的光学镜头和机械零件等。
本文对金刚石薄膜的性质、制备及应用进行了详细的探讨。
作为一种具有高硬度、高熔点、优良光学和电学性能的材料,金刚石薄膜在光电、高温、高压力等领域具有广泛的应用前景。
新材料概论——金刚石薄膜
新材料概论——金刚石薄膜金刚石是一种最坚硬的自然物质,由碳元素组成。
它的硬度远远超过其他任何材料,因此被广泛用于切割工具、磨料和研磨材料等领域。
然而,金刚石的应用受到其自然形态的限制,即大部分金刚石都以颗粒形式存在,而不是块体材料。
为了克服这个限制,科学家们研究出了一种新的材料,金刚石薄膜。
金刚石薄膜是一种由金刚石颗粒组成的薄层材料。
它可以通过化学气相沉积、物理气相沉积等方法制备而成。
金刚石薄膜具有许多优良的性质,包括极高的硬度、优异的热导性、良好的化学稳定性和优秀的光学特性等。
这些性质使金刚石薄膜在许多领域具有广泛的应用前景。
首先,金刚石薄膜的极高硬度使其成为理想的切割和磨削材料。
由于金刚石薄膜硬度大约是钢材的100倍,它可以用于制造高性能的切割刀具和磨料,用于加工硬质材料如玻璃、陶瓷和金属等。
金刚石薄膜的硬度也使其成为一种理想的涂层材料,可以提供耐磨、耐腐蚀和耐高温的性能。
其次,金刚石薄膜具有优异的热导性。
由于金刚石薄膜的热导率非常高,它可以用于制造高效的散热器和热管理器件。
这对于电子设备和光学器件等高功率和高温度应用非常重要,可以显著提高设备的稳定性和寿命。
此外,金刚石薄膜还具有良好的化学稳定性。
它在大多数化学溶剂和酸碱环境下都能保持稳定,不易发生腐蚀。
这使得金刚石薄膜在生物医学、环境监测和化学工程等领域具有广泛的应用潜力。
例如,金刚石薄膜可以用于制备生物传感器和电化学传感器,用于检测生物分子和环境污染物。
最后,金刚石薄膜还具有优秀的光学特性。
它具有高透明度和低吸收率,可以在广泛的光学波段内传输光线。
这使得金刚石薄膜在光学器件、光学涂层和光学传感器等领域具有广泛的应用。
例如,金刚石薄膜可以用于制造高性能的光学窗口、激光镜片和光学纤维等。
综上所述,金刚石薄膜是一种具有极高硬度、优异热导性、良好化学稳定性和光学特性的新材料。
它可以应用于切割工具、磨料、涂层、散热器、生物医学、环境监测、光学器件等众多领域。
金刚石薄膜
图1 碳的相图
各种动力学因素:
反应过程中输入的热能或射频功率等的等离子体能量、反 应气体的激活状态、反应气体的最佳比例、沉积过程中成 核长大的模式等对生成金刚石起着决定性的作用。 选用与金刚石有相同或相近晶型和点阵常数的材料作基片, 降低金刚石的成核势垒。却提高了石墨的成核势垒。 石墨在基片上成核的可能性仍然存在,并且一旦成核,就 会在其核上高速生长,还可能生成许多非晶态碳,因此, 需要有一种能高速除去石墨和非晶态碳的腐蚀剂,相比之 下,原子氢是最理想的腐蚀剂,它能同时腐蚀金刚石和石 墨,但它对石墨的腐蚀速率比腐蚀金刚石的速率高30~40 倍,这样就能有效地抑制石墨相的生长。
金刚石的性能
金刚石薄膜具有优异的机械、热、光、电、
半导体、声、生物及化学性能,下面只简要
介绍热敏特性及光学性能。
1.热敏特性
金刚石薄膜的电阻随温度的升高,下降得非常快。
未掺杂的金刚石薄膜计算得到的材料常数B值为 4443K,材料激活能E为0.38eV; 掺杂硼可改变B和E值,便于与二次仪表匹配。 因此金刚石薄膜可用于制造热敏电阻,具有灵敏度高、 工作温度范围宽、抗辐射能力强等优点。
类金刚石薄膜的制备方法
类金刚石薄膜的制法可以分为三类: 等离子体化学气相沉积法
离子束法
溅射法
类金刚石薄膜的性能
DLC的电阻率变化范围较宽(102~1014),一般含H 的DLC的电阻率比不含H的DLC高,这或许是H稳定 了 sp 3 键的缘故。 各种沉积法制备的DLC的硬度变化范围是很大的 2 ( H v 1500~ 10000kg/mm )。 内应力和黏附力决定着薄膜与基体结合的稳定性和薄 膜的寿命。内应力产生于沉积过程中的热膨胀差别或 由于杂质掺入界面,结构排列不完整或结构重排而致 的本征应力。DLC中一般都存在较大的压应力(GPa 量级),影响内应力的因素很多,如DLC中的H含量、 膜厚均匀性、膜层周围气氛等。
类金刚石薄膜摩擦学性能研究现状
关键词 : 类金 刚石薄膜 ; 摩擦 学性能 ; 热稳定性 ; 内应力 ; 掺杂; 多层膜
1栩谜 梯度 D L C薄膜。研究得出 w掺杂梯度复合薄膜磨损率小于 5 2 0 m 3 , s , 类金刚石稻 L Q 系列含有 s P 2 键和 s p键非晶碳膜物质的总 明显改善 了样 品的抗磨损性 能 , 且随着 w 靶终 端电流的增大 , 薄膜 称, 具有优异的机械陛能, 其较低的摩擦系数和磨损量使之成为一种理想 的磨损率逐渐变小 。马胜哥 、 于大洋等利用 中频孪生靶非平衡磁 控 溅射制备 了 C r + T i + T i N C + T i N C + C / D L C多层 硬质膜 。研 究表 明薄 膜 研究表明亚稳态的类金冈 l 尊 膜处于热力学非平衡状态 ,其原子徘 为多层膜结构且各层之 间的元素呈梯度变化 , 薄膜层 的显微 硬度 可 列表现为短程有序而长程无序, T P m o d e l 两相模型和 F C N mo d e l 完全约 以达 到 H V 2 0 0 0以上 , 大大 提高 了 D L C膜与基体的结合力。 束网络椟基 猢 较为广泛的两种 D L C薄膜模型目 。D L C薄膜中碳原子 2 2 离子束沉积制备 D L C薄膜 之问以共价键f 日 结合, 含量较少的 S P 可以忽略不计 , 因此 D L C 膜 的f 生 质 离子束沉积具有良好的工艺可控陛, 沉积温度较低。 通过多种离子束 由S P 2 和s P 3 的相对含量 泱定 ,因世 同工艺力怯 制备的 D L C膜的陛 沉积技术在 D L C膜 中添加其他元素可以制备多层 D L C薄膜用 以提高 能l 氆 所不同。 D L C薄膜具有优良的物理化学 陛能, 其中包括高硬度和 D L C膜与基体的结合强度并改善薄膜的热稳定性。离子束辅助沉积法是 弹 陆漠量 、 低摩擦系数 、 高耐磨I 生、 高导热率 、 高电阻率、 良好的光学透过 以离子束沉积技术为基础 , 在电子束蒸发沉积或离子束溅身 寸 移 C 积的同时 性、 化学隋性以及良好的生物相容眭等。 目前主要应用于机械 、 电子、 光学、 以高能离子束轰击沉积膜的生长表面用来提供形成 D L C膜的能量 。 离子 医学等领域。低摩擦系数是 D L C薄膜极其重要的性能 ,研究人员关于 体增强气相沉积是以碳氢气体为碳源的辉光放电沉积技术,通常采用甲 D L C薄膜的研究也大多集中在摩擦学领域 烷、 乙烷、 乙炔 、 苯、 丁烷作为碳源 , 因而制得的 D L C膜都 定的氢。 2 DL C薄膜制备及应用 朱宏等 人 使 用 源低能离子束辅助沉积方法制备了 D L C薄膜, 薄膜 D L C薄嗅制备技术的研究开始于=十世纪七十年代。离子束沉积技 中的碳原子主要以 S p 2 一 C的形式存在。研多 表明单携} f 氐 能离子竦 泐 沉 术是最早用于制备薄膜的方法 , 1 9 7 1 年A i s e n b e r g和 C h a J ) o 谌刁 生 积的类金刚石薄膜摩撩眭能好、 硬度高 、 薄膜与基体结合力较高。薄膜的 室温下制备了绝缘的碳膜 , 命 名为 D L C薄膜 , 并开始尝试用其构造薄膜 硬度随致密度} 勤Ⅱ 而增大 , 寿命与其硬度基本成正比。薄膜与基体的结合 晶体管。随后 S p e n c e r 等人利用离子束增强沉积法制备了 D L C薄膜并展 力达到某一定值后对其摩擦幽 的影响不大 , 开了研究 。二十世纪七十年代后期研究 人员开始分别用直流和高频放电 撩 陛能有一定的影响。在制备的薄膜样品中, 以离子能量 1 2 0 0 e v 时沉积 制得 DL C薄膜。 目 前磁控溅射技术已成为最常用的制备工艺。 样品的摩擦性能最好 ,适合用 D L C膜在生长过程 中由于薄膜与基体的物化 陛能不匹配会产生较 合。汤文杰、 张跃飞等采用等离子 仓 为等离子体聚合装置, 以甲烷为单 大的内应力, 限制了薄膜的厚度。 通 携练 . 薄膜中添加金属耍 险 体 , 氩气为工作气体在单晶硅片上沉积了 D L C 薄膜 , 并对其获得的 D L C 属元素( 如T i 、 C r 等) 可以 有效的降低薄膜内 应力。 另外 , 当薄膜使用温度 薄膜的摩擦学性能进行了研究 ,认为薄膜极低的摩擦系数是氢含量较高 高于 2 5 0  ̄ C 时易于发生石墨化影响其摩擦学陛能的应用, 通过多层膜技术 以及碳原子以s P 3 形式有 所 引起的。 E r d e m i r 等研究了离子 噌强化学 制备掺杂其他元素的多层 D L C膜可以有效 的改善薄膜的热稳定性。 2 1 磁控溅射制备 D L C薄膜 度R H = 5 %- 5 0 %的大气环境下 , DL C 膜的摩擦系数会随着载荷的增大而 作为 D L C膜常用制备方法的磁控溅射技术具有沉积温度低、 沉积面 呈现出降低的趋势。这是由于 D L C膜在高载荷下更易发生石墨化转变 , 积大等优 点,在一定程度 匕 符合工业生产的需要。通过磁控溅射技术在 在摩擦副表面形成转移膜 , 6 l 而使 曷部区域的润滑陆自 导 到改善。解志文 D L C膜中添加多种金属或者非金属元素可降低 D L C膜的内应力同时改 等采用等离子体沉积技术在 G C r l 5 和2 C r 1 3 钢基体表面合成了 T i / D L C 善薄膜的热稳定 陛。 磁控溅射技术以石墨为碳源, 以情 陛气体离子溅射石 和 W/ D L C纳米多层膜并分析了其摩擦学性能。 研究表明多层膜结构有效 墨靶产生碳原子和碳离子 , 进而再基体表面沉积形成 D L C膜。通 ^ 气体 地改善了 D L C膜和软基体的结合自 旨 力, 薄膜睡 彗 能好、 磨损量少 目 薄膜 为A r 和烷 气体) } 昆 合气时还可获得含氢的D L C 膜。 的硬度和弹 幽 封 氐 。 赵之明采用磁控溅射技术用射频、 直流溅射法在 单晶硅片 、 抛光不锈 2 3 真空阴极电弧沉积法市 备D L C薄膜 钢片、 玻璃基底表面制备了 D L C膜。 真空阴极电弧沉积设备简单 、 离化率大且沉积速率高 。 通过 瓜 装置 表面粗糙度低于直流磁控溅射制备的薄膜,并 目直流磁控溅射制备的薄 引燃电弧 , 在电源的维持和磁场的推动下电弧在靶面游动, 电弧所经 披 联9 挛擦系势 L 较低。张以忱、 巴德纠搀 研究 ^ 员采用 中频磁姥 弛i 于 沉 ≯ { { 导 碳被蒸发并离化进而沉积得到薄膜。西南交通大学材料工程学院徐禄祥、 到D L C复合薄膜并对其孪擦学性能进行了研究。 研究表明 D L C / T i A 1 N薄 孙永 春等用磁过滤脉冲真空弧沉积技术在不 膜的耐磨眭要好于T i A 1 N薄膜和 D L C薄膜, D L C / T i A 1 N薄膜的耐腐蚀胜 使得不锈钢表 面耐磨l 生大幅压 £ 提高。 能略好于 D L C薄膜。 孙丽丽等利用线 胜离子束混合磁控溅射技术在硅基 曾志翔采 用真空阴极电弧沉积法制备 了含氢 D L C薄膜, 并对其在真 底上制备 C r 过渡层和 c r 掺杂 D L C薄膜。研究发现增加 c r 过渡层或在 空和氮气中的摩擦学I 生 能进行研究 , 发现 D L C D L C薄膜中掺杂 c r 后薄膜的内应力明显 良小, 同时薄膜的附着力和摩擦 数的大小关系为低真空 >空气 > 干燥空气 > 氮气, N : 是保持低摩擦系数 性能得到了 明显的改善。 杨雨时等利用磁控溅射和 P E C V D 相结合的复合 因素,气氛中 H : 0 、 0 : 则会增大 D L C 薄膜的 沉积技术, 制备了 W— D L C薄膜。 研究发现对于 W— D L C薄膜 的工 摩擦系数。 艺条件下, 均可制备出厚度超过 5 m的薄膜。选择合适的工艺参数和钨 3 DL O薄膜摩擦学应用展望 的掺杂比冽, 可以有效地提高薄膜的硬度, 降低薄膜的内 应力和磨损率并 固体润滑剂的出现 , 既弥补了流体及半流体润滑剂( 如润滑油 、 润滑 减小薄膜的摩擦系数。杨义勇用离子束辅助非 脂) 不能再苛刻条件下有
钢基CVD 金刚石薄膜的制备、微结构及其机械性能的研究
书山有路勤为径,学海无涯苦作舟
钢基CVD 金刚石薄膜的制备、微结构及其机械性能的研
究
钢基CVD 金刚石薄膜的制备、微结构及其机械性能的研究
魏秋平1, 2 余志明1, 2
(1.中南大学材料科学与工程学院长沙410083;2.中南大学粉末冶金国家重点实验室长沙410083)
摘要金刚石具有最高的硬度、极高的耐磨和抗腐蚀性、极低的摩擦系数,这些特性使CVD 金刚石膜成为加工工具和耐磨零件的最佳防护涂层材料之一。
由于这些工件的失效通常始于表层,金刚石膜涂层钢基工具能有效提高工件的使用寿命和加工性能,可实现高效、高速、高精度加工。
尽管市场潜力巨大,但是金刚石膜涂层钢基工件的实际应用却一直受到某些因素的制约,主要是由于Fe 具有高溶碳性、催生石墨相和高热膨胀系数等特点,使得在钢基工件表面难以直接获得高质量、高结合强度的CVD 金刚石膜。
解决上述问题的关键在于找到某种中间过渡层,既能保证金刚石膜的高形核率和高质量,又同时可以保证金刚石膜/过渡层和过渡层/基体两个界面具有良好的结合强度。
基于这一原则,本文首先以化学热处理表面改性法作为切入点,发现高
速工具钢经渗铬热处理后能在基体表面形成一层富Cr 层,该处理能显著提高金刚石膜的形核密度,在优化工艺条件下能获得平滑致密、质量良好的金刚石薄膜,但是,低载荷压痕测试表明膜-基结合强度仍然不够理想。
此后,本文将研究重点转向通过其他方式寻找合适的中间过渡层隔离Fe 元素。
首先,采用反应磁控溅射技术在高速工具钢基体上制备了W-C 梯度过渡层,并研究了该过渡层对CVD 金刚石薄膜的影响,最终发现反应溅射W-C 梯。
拉曼光谱快速分析金刚石薄膜的性质解读
拉曼光谱快速分析金刚石薄膜的性质在高能物理学上,一个微米厚或更薄的无定形炭薄膜片用来剥离高速运动的离子上的电子,以增加这些离子的电荷稳定性。
在离子束进入到回旋加速器中之前,离子上的电子被直线加速器中的无定形炭薄片剥离出来。
在质子束中,电子从H 原子或者H-离子中剥离出来。
在稀有同位素原子束中,电子从重原子如Ne、Xe、Kr,甚至U中剥离出来。
在离子束进入回旋加速器之前去掉这些电子,能够改善离子束带电状态和电荷分布,从而优化离子束能级。
随着离子束能量的增加,炭薄膜片的使用寿命将受到严重影响。
如果因薄片的损坏而停工,不仅会对大型、昂贵的设备造成极大的损失。
期间还要采取措施把射线对维修工人的辐射降到最低。
金刚石具有高导热、高强度、高稳定性、低蒸汽压等优良性能,是在这一应用领域替代无定形炭的一种理想产品。
CVD(化学气相沉积法)可以生产出包含sp2键炭和sp3键炭的不同厚度的金刚石薄膜。
早期的试验显示了金刚石作为电子的剥离器的优越性,但是仍然不清楚这种优点是由sp2键炭还是sp3键炭引起的。
拉曼光谱提供了一种快速检测sp2键炭和sp3键炭,并计算他们相对浓度的方法。
在1332 cm-1和1520 cm-1处的拉曼峰分别作为金刚石和石墨的标志。
通过比较这两个峰的强度,可以来比较金刚石和石墨的相对含量。
实验方法及结果把数控Nd:YAG激光器从标准硅片上切除下来的硅作为剥离电子薄片的基底。
然后在这块底片上沉淀结晶 1.5um厚的金刚石薄膜。
为了得到sp2键炭和sp3键炭相对含量不同的金刚石膜,可以在沉淀过程图1中通入的不同浓度比例的甲烷和氢气。
金刚石薄膜沉淀后,把1cm2的硅底刻蚀掉,留下的金刚石薄膜就像窗户一样悬挂在硅框上,如图1所示。
使用B&WTek 公司的iRaman system来测量金刚石薄片的拉曼光谱,激发波长为532nm 。
从光谱上读取拉曼峰的强度值,并计算强度比值的大小。
然后把金刚石薄片放在含有Sn-117 离子束的直线加速器中进行测试。
金刚石涂层的制备及其性能研究
金刚石涂层的制备及其性能研究金刚石被认为是最坚硬的天然物质,它的硬度高达10,具有非常出色的抗磨损、耐腐蚀、导热性能等特点。
近年来,研究人员通过涂层技术实现了金刚石薄膜的制备,这种金刚石涂层具有优异的磨损性能,被广泛地应用于航空航天、机械制造、电子信息和生物医学等领域。
一、金刚石涂层的制备方法制备金刚石涂层的方法主要有化学气相沉积法、物理气相沉积法和电化学沉积法等。
其中,化学气相沉积法应用最为广泛,该方法利用一种特殊的气氛,将金属和碳源在高温、高压条件下反应,生成石墨烯等碳物质,再在模板上石墨烯表面再行活化,得到金刚石薄膜。
此外,物理气相沉积法与化学气相沉积法不同之处在于利用物理击中法制造金刚石薄膜,常用的制备方法为磨损法、熔融法等,最后得到的金刚石涂层厚度较厚。
二、金刚石涂层的性能研究1. 硬度性能金刚石涂层具有极高的硬度(18-50 GPa),能够有效抵抗磨损和划伤。
磨损实验结果表明,金刚石涂层的耐磨性能是普通材料的几千倍,可以有效地延长机械设备的使用寿命。
同时,金刚石涂层具有很好的化学稳定性和高温稳定性,能够适应复杂恶劣的使用环境。
2. 生物兼容性金刚石涂层具有良好的生物兼容性,可以被用于生物医学领域。
一个典型的例子是生物医学微电极,由于其小巧、灵敏和可靠的特点,成为体内电生理学和神经科学研究的重要手段。
金刚石涂层作为电极表面的材料,可以减少组织带来的反应,使电信号传输更加稳定和可靠。
3. 导电性能金刚石涂层本身不导电,但在一定条件下,可以加工后部分或全部导电,这种导电特性称为金刚石薄膜的“金属化”。
由于金刚石涂层是通过化学气相沉积或物理气相沉积法等高温过程制备而成的,在制备过程中可以控制其导电性能,从而应用于电子行业。
此外,金刚石涂层还具有良好的热导和导热性能,使其被广泛应用于制造热管理产品。
三、金刚石涂层的应用领域金刚石涂层具有高硬度、耐磨损、高温稳定性、优异的生物兼容性和导热性能等特点,被广泛地应用于航空航天、机械制造、电子信息和生物医学等领域。
金刚石薄膜的生长机制研究
金刚石薄膜的生长机制研究金刚石,被誉为“宝石之王”,是自然界中最坚硬的物质之一。
然而,金刚石的产量相对较少,使得其在磨削、切割等高精度工艺中成为极为宝贵的材料。
为了弥补稀缺的自然金刚石资源,科学家们致力于合成金刚石。
在金刚石的合成中,金刚石薄膜生长机制的研究则显得尤为重要。
金刚石薄膜的生长通常使用化学气相沉积(CVD)方法,在高温、高压条件下,将含金刚石前体气体传输到金刚石薄膜的生长表面上。
其生长机制主要包括物质输运、表面吸附、表面扩散、吸附物质反应和表面迁移等过程。
物质输运是金刚石薄膜生长的第一步。
在反应室中,金刚石前体气体需要通过扩散和对流的方式达到生长表面。
此过程中,气体流动速度的控制对金刚石薄膜的质量具有重要影响。
合理的气体流动速度有利于金刚石生长表面的物质输送,保证金刚石薄膜的均匀性和质量。
表面吸附是金刚石薄膜生长的关键环节之一。
在生长表面上,金刚石前体气体会吸附在表面上,形成吸附层。
金刚石前体的吸附量和吸附方式直接影响金刚石薄膜的生长速率和晶格结构。
科学家们通过实验和理论模拟,探究吸附层的形成机制,以及不同吸附方式对金刚石薄膜生长的影响,从而优化金刚石薄膜的合成方法。
表面扩散是金刚石薄膜生长中的重要过程。
在金刚石薄膜的生长过程中,吸附在表面的金刚石前体会向周围扩散。
扩散速率与金刚石薄膜的生长速率密切相关。
通过对表面扩散机制的研究,科学家们可以调节金刚石薄膜的生长速率,提高生长效率。
吸附物质反应是金刚石薄膜生长过程中的关键步骤之一。
吸附层上的金刚石前体会与来自气相的其他物质发生反应,形成金刚石晶体的基元结构。
反应过程的选择性和速率决定了金刚石薄膜的质量和晶格结构。
对反应机制的深入研究可以指导合成金刚石薄膜的方法改进,进而提高薄膜的质量和性能。
表面迁移是金刚石薄膜生长的后续过程。
在金刚石薄膜的生长表面上,金刚石晶体的形态会逐渐发生变化。
精确控制表面迁移过程可以改变金刚石薄膜的晶格结构和形貌,进而调节其力学性能和光学性能。
硬质合金基体金刚石薄膜摩擦学性能的探究
硬质合金基体金刚石薄膜摩擦学性能的探究硬质合金是以高硬度难熔金属的碳化物(WC、TiC等)微米级粉末,并通过Co 等较软金属为黏结剂烧结而成的一种合金,具有高韧性、高硬度、良好的热稳定性等优良特性,在耐磨和低粗糙度加工方面应用非常广泛,为制造刀具的理想材料。
传统硬质合金刀具在高速切削过程中,随着切削速度的加快,刀具温度随之升高,温度升高会导致硬质合金硬度降低,最终会影响加工零件的精度。
随着硬质难加工材料在精细加工领域越来越多的应用,如汽车、航空航天、集成电路板卡等,传统的硬质合金刀具已经很难满足加工的精度要求。
如何对刀具表面进行强化以提高其使用寿命并扩大其应用范围,成为一个亟待解决的问题。
CVD金刚石薄膜因具有天然金刚石的高硬度、低摩擦系数等优异的性能而被誉为21世纪最具发展前途的新型工具涂层材料,适用于高硅铝合金、金属基复合材料、工程陶瓷、纤维增强塑料等难加工材料的切削加工。
CVD金刚石薄膜材料的优势在于,可以在复杂形状的硬质合金基体上直接沉积以制造金刚石涂层刀具。
CVD金刚石薄膜作为理想的工具涂层和耐磨材料,还应用于内表面要求耐磨和低粗糙度的工具,如拉丝模、紧压模等,应用前景广泛。
基于以上优势,对硬质合金基体表面沉积的金刚石薄膜的摩擦磨损性能进行研究具有重要意义。
本文综述了近年来国内外对硬质合金基体金刚石薄膜摩擦学性能研究的进展,指出了硬质合金衬底表面金刚石涂层摩擦磨损研究的方向。
1 硬质合金基体CVD金刚石薄膜的摩擦机理CVD金刚石薄膜的摩擦学行为是众多因素共同作用和影响的结果。
由于在制备过程和测试过程中,存在很多不确定因素,如沉积参数、薄膜表面粗糙度、周围环境因素、实验温度和载荷等,因此,摩擦学机理一直没有统一的理论。
文献中指出,金刚石薄膜的摩擦学机理大体有3种情况:(1)薄膜的表面光滑度。
金刚石薄膜的摩擦磨损性能与金刚石的晶粒尺寸大小有关,当晶粒尺寸较大、表面较粗糙时,在滑动过程中容易在摩擦副表面产生犁沟磨损以及剪切滑移现象,使得其摩擦系数增大,加剧磨损。
润滑条件下金刚石薄膜及石墨/金刚石复合薄膜的摩擦学性能
润滑条件下金刚石薄膜及石墨/金刚石复合薄膜的摩擦学性能
本文报告了润滑条件下金刚石薄膜及石墨/金刚石复合薄膜的
摩擦学性能。
通过实验,我们发现这两种结构的摩擦系数相对较低。
首先,我们在润滑剂润湿的环境中测试了金刚石薄膜的摩擦性能。
结果表明,该薄膜的摩擦系数小于0.1。
该值非常低,接
近于理想摩擦系数0。
此外,金刚石薄膜具有强烈的耐磨性,
可以抵抗高温和冲击力。
其次,我们利用变频器试验法研究了一层石墨/金刚石复合薄
膜的摩擦学性能。
实验测试结果表明,石墨/金刚石复合薄膜
具有极低的摩擦系数,约为0.02。
而且,复合薄膜具有优异的防腐性能,可以有效抗潮,耐水性能较好。
此外,复合薄膜还具有良好的热塑性、优异的耐热性和良好的热特性,可以有效抑制热膨胀和应力集中,并显示出优异的抗震性。
总之,润滑条件下,金刚石薄膜和石墨/金刚石复合薄膜都具
有良好的摩擦性能,其摩擦系数很低,而且具有优异的耐磨性、防腐性和耐水性。
因此,这种薄膜能够有效应用于航空、核工业、冶金以及船舶等行业,可以大大提高抗磨损性能并提升工作效率。
类金刚石薄膜的研究
PECVD制备DLC薄膜
DLC工艺流程
DLC薄膜
王永 东北大学真空预流体工程研究中心 导师 李建昌 蔺增
DLC薄膜
类金刚石碳(DLC)涂层的主要成分为碳,是一种兼有高硬 度和优异摩擦性能的非晶体硬质薄膜,一种非晶亚稳态 结构 DLC膜的成份主要指sp^3键和sp^2键,还可能含有一些杂 质相如C- H 等
DLC薄膜
1971:Sol Asienberg和Ronald Chabot用IBD首次制备 根据薄膜结构是否含有氢可分为:
无氢非晶碳膜(a-C film):一般CVD制备 四面体碳膜(ta-C film)或非晶金刚石膜(a-D film):一般PVD制备
DLC薄膜性能
机械性能:高硬度和高弹性模量、优异的耐磨性、低摩擦系 数
DLC膜中氢的含量超过40%门限时能获得很低的摩擦系数,但过多的 氢存在将降低膜与基体的结合力和表面硬度,使内应力增大。
DLC薄膜制备方法
物理气相沉积
1.离子束沉积(IBD):采用氩等离子体溅射石墨靶形成大量的碳离子, 并通过电磁场加速使碳离子沉积于基体表面形成DLC膜
DLC薄膜制备方法
2.溅射沉积 特点:沉积的离子能量范围宽。 主要分为:直流溅射、射频溅射、磁控溅射 3.磁过滤阴极弧沉积 4.脉冲激光沉积(PLD): 多功能的工艺方法,可以用来沉积从高温超导体到硬质涂层等多种不 同性质的材料。
3.光学领域的应用
用在锗光学镜片上和硅太阳能电池上作为减反射膜 塑料和聚碳酸脂等低熔点材料组成的光学透镜表面抗磨损保护层 DLC膜为性能极佳的发光材料之一:光学隙带范围宽,室温下光致发光和电 致发光率都很高
DLC薄膜应用
4.医学领域的应用
金刚石薄膜
金刚石薄膜的应用
CVD法大大降低了金刚石的生产成本,同时CVD金刚石薄 CVD法大大降低了金刚石的生产成本,同时CVD金刚石薄 法大大降低了金刚石的生产成本 CVD 膜的品质逐渐赶上甚至在一些方面超过天然金刚石, 膜的品质逐渐赶上甚至在一些方面超过天然金刚石,使得 金刚石薄膜广泛用于工业的许多领域。 金刚石薄膜广泛用于工业的许多领域。
光学应用领域: 光学应用领域:金刚石从真空紫外光波段到远红外光波段 对光线是完全透明的,因此金刚石是最好的光学材料。 对光线是完全透明的,因此金刚石是最好的光学材料。金 刚石膜作为光学涂层的应用前景非常好, 刚石膜作为光学涂层的应用前景非常好,在军事上可用作 红外光学窗口和透镜的保护性涂层。 红外光学窗口和透镜的保护性涂层。在民用方面可用作在 恶劣环境(如冶金,化工等)下工作的红外在线监测和控制 恶劣环境(如冶金,化工等) 仪器的光学元件涂层。 仪器的光学元件涂层。
LOGO
金刚石薄膜
金刚石在所有已知物质中具有最高的硬度, 金刚石在所有已知物质中具有最高的硬度,室温下有最高 的热导率,对光线而言从远红外区到深紫外区完全透明, 的热导率,对光线而言从远红外区到深紫外区完全透明, 有最低的可压缩性,极佳的化学惰性, 有最低的可压缩性,极佳的化学惰性,其生物兼容性超过 了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵, 了钛合金等等。然而由于天然金刚石数量稀少,价格昂贵, 尺寸有限等因素,人们很难利用金刚石的上述优பைடு நூலகம்的性能。 尺寸有限等因素,人们很难利用金刚石的上述优异的性能。
体会与建议
迄今, 迄今,人们已经设计和开发出不同结构和不同功能的薄膜 材料,这些材料在化学分离、化学传感器、人工细胞、 材料,这些材料在化学分离、化学传感器、人工细胞、人 工脏器、水处理等许多领域具有重要的潜在应用价值, 工脏器、水处理等许多领域具有重要的潜在应用价值,被 认为是21世纪膜科学与技术领域的重要发展方向之一 世纪膜科学与技术领域的重要发展方向之一。 认为是 世纪膜科学与技术领域的重要发展方向之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金刚石薄膜的性能研究金刚石薄膜的应用由于金刚石的优异性质,加上CVD法大大降低了金刚石的生产成本而CVD金刚石薄膜的品质逐渐赶上甚至在一些方面超过天然金刚石而使得金刚石薄膜广泛地用于工业的许多领域:1 工具领域随着汽车、航空和航天工业的发展以及对材质轻量化、高比强度的要求日益提高,有色金属、碳纤维增强塑料(CFRP)、玻璃纤维增强塑料(GFRP)、纤维增强金属(FRM)以及石墨、陶瓷等新材料在工业中的应用日益广泛,因而对加工这些材料的刀具提出了更高的要求,金刚石的高硬度,耐磨损,高热导,低热膨胀系数,低摩擦系数,化学惰性等优点使得金刚石是加工非铁系材料的理想工具材料。
HTHP金刚石在二十世纪60年代就被用于刀具领域,但由于其制备工艺复杂,价格昂贵,刀具种类受限而限制了其在工业上的广泛应用;将金刚石薄膜直接沉积在刀具表面,能极大地延长刀具的使用寿命,加工质量也大为提高。
2 热沉领域目前国内半导体功率器件采用铜作热沉,在同时要求绝缘的场合采用氧化铍陶瓷。
但氧化铍在制备过程中有剧毒物质产生,在发达国家已禁止使用。
金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体,因而是大功率激光器件、微波器件、高集成电子器件的理想散热材料采用金刚石热沉(散热片)的大功率半导体激光器已经用于光通信,在激光二极管、功率晶体管、电子封装材料等方面都有应用;金刚石热沉商品也已在国外市场出现。
金刚石热沉的另一应用前景是用于正在发展之中的多芯片技术(MCMs,Multi Chip Modules),这一技术的目标是把许多超大规模集成电路芯片以三维的方式紧密排列结合成为超小型的超高性能器件,而这些芯片的散热则是该技术的关键,显然金刚石薄膜是解决这一技术难题最理想的材料。
3 光学应用领域金刚石的光学吸收在0.22μm左右,相当于真空紫外光波段,从此位置直到毫米波段,除位于~5μm附近由于双声子吸收而造成的微弱吸收峰(吸收系数~12.3cm-1)外,不存在任何吸收峰。
金刚石膜作为光学涂层的应用前景非常好。
在军事可用作红外光学窗口和透镜的涂层。
在民用方面可用作在恶劣环境(如冶金,化工等)下工作的红外在线监测和控制仪器的光学元件涂层。
CVD金刚石膜通常沉积温度在800~1000℃左右,大多数光学材料衬底都不允许在这样高的温度下沉积金刚石膜,因此在低温下沉积金刚石膜的技术就成为金刚石膜光学涂层应用的关键.目前采用微波等离子体CVD方法已能在~140℃的低温下沉积质量可以接受的多晶金刚石膜[24].该技术的关键是必须在沉积气氛中引入大量的氧,依靠原子氧在低温下对非金刚石碳的较强刻蚀作用保证金刚石膜的低温沉积.在280℃用微波等离子体CVD方法沉积的金刚石膜,金刚石晶粒尺寸仅0.2μm左右,因此表面非常平整,不需要抛光就可以在红外波段应用.但由于沉积温度低,膜的生长速度也相当低,这是低温沉积技术的一个不足之处.当前正在发展的用卤素化合物作为碳源的沉积技术,以及激光CVD技术很有可能成为更好的金刚石膜低温沉积技术.金刚石膜光学涂层已经开始实用化,如X-射线光刻技术的掩膜,红外光学器件涂层及X-射线窗口等等。
金刚石薄膜在电化学和生物医学中的发展掺硼的金刚石膜(Borondopeddiamond,BDD)具有优异的电化学性质。
宽电化学势窗、低背景电流、极好的电化学稳定性(常温下不和任何酸碱介质反应)以及表面不易产生吸附等。
采用BDD电极能够处理工业生产中产生的各种废水,如酸性废水、碱性废水、含氰废水、含铬废水、含镉废水、含汞废水、含酚废水、含醛废水、含油废水、含硫废水、含有机磷废水和放射性废水等,可以实现其它电极材料(如石墨电极,贵金属材料电极等)无法胜任的工作,BDD是最为理想的电极材料国内目前仍处于实验室研究阶段,海外已有薄膜电极产品销售。
德国Condias公司利用HFCVD法在铌﹐钽﹐钛﹐石墨﹐硅和导电陶瓷等衬底上制得面积为(100×50)cm的薄膜电极,BDD膜厚达15μm,制成平板状、网孔状等不同形状的电极产品投放市场,广泛应用于污水处理,电解产业方面。
图6为该公司各类不同种类的BDD电极产品。
CVD金刚石薄膜在生物医学上常应用于生物传感器和培养基。
因金刚石比其它任何材料都具有良好的生物兼容性,另一特性来源于其独特的表面特征。
ADT公司推出的实验室用UNCD传感器基体,人体温度下,生物分子活性在其上面可保持多达两周,存放冰箱里,可以保持半年以上的生物分子活性,足以说明该材料具有及其稳定的生物表面功能。
图7为氢终结的UNCD表面能够和生物分子(如各种蛋白质)形成牢固的共价键结合,UNCD培养基上检40测大肠杆菌,还可以检测水体中的病原体、毒物、大肠杆菌、沙门氏菌等,可用来应对地质灾害、生化袭击等各种突发事件。
研究的主要性质:金刚石的高硬度,耐磨损,高热导,低热膨胀系数,低摩擦系数,化学惰性;金刚石在室温下具有最高的热导率,是铜、银的5倍,又是良好的绝缘体;金刚石的光学吸收在0.22μm 左右,相当于真空紫外光波段,从此位置直到毫米波段,除位于~5μm附近由于双声子吸收而造成的微弱吸收峰(吸收系数~12.3cm-1)外,不存在任何吸收峰。
制备方法,原理,制备优势及其仪器介绍,实验条件,实验步骤:直流等离子体喷射CVD法根据低压下生长金刚石的机理,如果氢原子、甲基原子团和其它活性原子团的密度很高,则金刚石的生长速度较高。
热等离子体使气体分解,产生高密度的原子团,但是,若等离子体的温度太高(超过5000℃),就难以直接应用。
Kurihara等人利用淬灭热等离子体,产生非平衡态结构的等离子体,从而能在低温下获得高密度的原子团。
喷射热等离子体能形成非平衡结构的等离子体.形成的等离子体流射向高速水冷的基片而淬灭,构成金刚石生长的环境。
该法常用的装置中,等离子体管是由石墨(或钨)制成的圆柱形阳极和阴极构成,阳极喷嘴直径一般为2mm,阳极与阴极之问的距离约为1mm,甲烷和氢气的混合气体通人两极之间。
通过直流放电在管的喷嘴周围产生等离子体,用铜做的基片座焊接在水冷的同轴不锈钢管上。
等离子体管喷嘴和基片的距离可用不锈钢管的支架来调节。
一般的合成条件是:Ar的流速为0—20L/min,H2的流速为5~20L/min,CH4的流速为10~200L/min;反应室的压力为1.3×104 -5.3×104 Pa;放电电流为1O~2OA,电压为60~90V;基片与喷嘴之间的距离为5—50mm;在基片温度为800~1500K时,在基片上可生长出结晶形态很好的金刚石多晶薄膜。
该法以非常高的冷却速率(106 K/s量级)使等离子体淬灭,产生非平衡态等离子体,从而使生长速度达到930μm/h,是目前所有合成方法中生长速度最快的一种方法,为快速生长金刚石薄膜提供了一种行之有效的方祛。
其缺点是沉积面积相对较小,对等离子体发生器的稳定性要求高,如果能进一步加大反应器的容积,使用大面积的基片,达到快速生长出大面积的金刚石多晶膜,将会加快金刚石薄膜的商品化进程。
具有和金刚石薄膜部分相同性质的薄膜:1聚酰亚胺薄膜聚酰胺酸(PAA)的制备加入01540gPPA(5mmol)到100ml三颈瓶中,加入30mlDMAC,氮气保护下磁力搅拌20min使PAA充分溶解。
然后加入11090gPMDA(5mmol)到二胺溶液中,在氮气气氛下室温磁力搅拌12h。
最后得到澄清的淡黄色粘稠PAA溶液,该溶液用于进一步反应制备聚酰亚胺薄膜。
其它的聚酰胺酸中间体也是用同样的方法制得的。
213 聚酰亚胺薄膜的制备将载玻片在PAA溶液中浸渍12h然后取出依次在DMAC和丙酮中清洗30min。
浸渍成膜的载玻片以1e/min的速率升温至80e并且恒温1h,然后以同样的速率升温至300e并且恒温1h,然后自然降温至室温,得到聚酰亚胺薄膜。
所得到的PMDA/OPA,PMDA/MPA和PMDAPPPA型聚酰亚胺薄膜依次简写为PI1,PI2,和PI3。
通过SEM观测聚酰亚胺薄膜断面,聚酰亚胺薄膜的厚度大约为115Lm应用:广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域2氮化硅薄膜等离子增强型化学气相沉积法(PECVD)、低压化学气相沉积法(LPCVD)、射频等离子增强型化学气相沉积法(RF-PECVD)、光化学气相淀积(光CVD)、射频(RF)磁控反应溅射法等。
其中,PECVD法具有以下特点:(1)生长设备简单、工艺重复性好。
(2)沉积温度低(﹤400℃)、台阶覆盖性能好。
PECVD的等离子激活所需的温度范围低,与Al、Au等电极的金属化温度相容,这一点在工艺中很重要。
比如,对铝电极而言,钝化温度不得高于400℃,以抑制铝连线和硅形成硅化物,防止衬底基片物性变化。
(3)生成的氮化硅薄膜结构致密,缺陷密度低,具有良好的抗钠、抗潮湿、抗腐蚀性应用:太阳电池3二氧化硅薄膜磁控溅射沉积法SiO2靶的射频溅射法是制备SiO2薄膜的主要方法之一。
这种方法在低温下制备的SiO2薄膜,具有多孔结构,致密度低,因而抗侵蚀能力差;而在较高温度下制备的薄膜,具有较高的致密度和较好的性能。
所以,在通常情况下,衬底温度选择为300~600℃。
其缺点是导致器件易受到热伤害,使一些性能指标降低。
随后发展起来的磁控射频溅射技术,能达到快速和低温的要求,不仅弥补了射频溅射的缺点,大大减小了电子对衬底表面直接轰击造成的损伤,且能在较低的功率和气压下工作。
绝缘体和导体均可溅射,工艺简单,衬底温度低,薄膜厚度的可控性、重复性及均匀性与其他薄膜制备方法相比有明显的改善和提高,因而得到了广泛使用。
许生等使用140mm×600mm的硅靶,频率为40kHz的中频电源,以Ar为溅射气体,O2为反应气体,成功地制备了SiO2薄膜,并对制备的SiO2薄膜的化学配比和元素化学态进行了扫描俄歇谱(SAM)和X射线光电子能谱(XPS)分析,测试了膜层对钠离子(Na+)的阻挡性能、光学折射率和可见光透过率。
应用:微电子领域,光学领域。