三角形中线等分面积专题
三角形中线等分三角形面积的灵活运用
三角形中线等分面积的灵活应用山东 王明华如图:线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE.因为BD =DC ,所以S △ABD =S △ADC .因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题.一、求图形的面积例1 长方形ABCD 的长为a ,宽为b ,E 、F分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.析解:连接CG ,不难得出S △BCF=S △DCE=4ab,从而S △BEG=S △DFG,由E 、F 分别是BC 和CD 的中点,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等,因此S 四边形ABGD=42433ab ab ab -⨯=. 二、巧算式子的值例 2 在数学活动中,小明为了求2341111122222n ++++⋅⋅⋅+的值(结果用n 表示),设计了如图2所示的几何图形.请你利用这个几何图形求2341111122222n ++++⋅⋅⋅+的值.析解:根据三角形的中线把它分成两个面积相等的三角形可知,图中三角形的面积等于1,也可以表示为234111*********n n ++++⋅⋅⋅++,因此2341111111222222n n ++++⋅⋅⋅+=-.点评:此题运用“数形结合思想”,借助三角形的面积来求数的运算,简捷、巧妙.三、巧分三角形例3 已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形.析解:方法1:取BC 的中点E ,然后在BE 上取点D ,使BD 13=BE ,则AD 、AE 把△ABC 分成面积之比为1:2:3的三个三角形(如图1).方法2:在BC 边上截取DC31=BC ,连结AD ,然后取AB 的中点P ,连结BP 、CP ,则△PAC 、△PAB 、△PBC 的面积之比为1:2: 3(如图2).想一想:方法2中,这三个三角形的面积之比为什么是1:2:3?。
小学数学《三角形的等积变形》练习题(含答案)
三角形ABC的面积=(12+4)×高÷2=8×高
三角形ADC的面积=4×高÷2=2×高
所以,三角形ABC的面积是三角形ABD面积的4/3倍;三角形ABD的面积是三角形ADC面积的3倍。
巩固理解结论:两个三角形等高时,面积的倍数=底的倍数
【例2】如右图,E在AD上,AD垂直BC,AD=12厘米,DE=3厘米。
而四边形CEFH是它们的公共部分,
所以三角形DHF的面积=三角形BCH的面积,
进而可得阴影面积=三角形BDF的面积=三角形BCD的面积= 10×10÷2=50(平方厘米)。
法2:连接CF,那么CF平行BD,
所以,阴影面积=三角形BDF的面积=三角形BCD的面积=50(平方厘米)。
附加题目
【附1】 如右图,四边形ABCD面积为1,且AB=AE,BC=BF,DC=CG,AD=DH.求四边形EFGH的面积.
巩固理解结论:两个三角形等底时,面积的倍数=高的倍数
【例3】用两种不同的方法,把任意一个三角形分成四个面积相等的三角形.
分析:法1:如图(1),将BC边四等分,连接各等分点,则△ABD、△ADE、△AEF、△AFC面积相等。
法2:如图(2),D是BC的二等分点,E、F是AC、AB的中点,从而得到四个等积三角形△ADF、△BDF、△DCE、△ADE.
【例7】图中△AOB的面积为15cm2,线段OB的长度为OD的3倍,求梯形ABCD的面积.
分析:
【例8】(北京市第一届“迎春杯”刊赛)如右图.将三角形ABC的BA边延长1倍到D,CB边延长2倍到E,AC边延长3倍到F.如果三角形ABC的面积等于l,那么三角形DEF的面积是?
分析:连结AE、BF、CD(如右下图).由于三角形AEB与三角ABC的高相等,而底边EB=2BC,所以三角形AEB的面积是2.同理,三角形CBF的面积是3,三角形ACD的面积是1.
三角形的中线与面积的三个重要结论
三角形的中线与面积的三个重要结论三角形的中线与三角形的面积有着密切的关系,下面就来探讨一下这个话题.一、三角形的中线与面积1、三角形的一条中线与面积如图1,AD 是三角形ABC 的中线,则ABD S 三角形=ACD S 三角形=21ABC S 三角形.证明:因为AD 是三角形的中线,所以BD=CD ,过点A 作AE ⊥BC ,垂足为E ,则ABD S 三角形=21×BD ×AE,ACD S 三角形=21×CD ×AE ,所以ABD S 三角形=ACD S 三角形, 所以ABD S 三角形=ACD S 三角形=21ABC S 三角形. 由此得到如下结论:1、等底同高的两个三角形面积相等.2、三角形的一条中线分原来三角形所成的两个三角形面积相等.2、三角形的二条中线与面积如图2,AD ,BE 是三角形ABC 的中线,则①BDF S 三角形=AEF S 三角形;②ABF S 三角形=CDFE S 四边形; ③ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形.证明:因为AD 、BE 是三角形的中线,所以ABD S 三角形=ACD S 三角形,ABE S 三角形=BCE S 三角形, 所以BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形---(1),AEF S 三角形+ABF S 三角形=BDF S 三角形+CDFE S 四边形——-(2),(1)—(2)得 BDF S 三角形-AEF S 三角形=AEF S 三角形-BDF S 三角形,所以BDF S 三角形=AEF S 三角形; 因为BDF S 三角形+ABF S 三角形=AEF S 三角形+CDFE S 四边形,所以ABF S 三角形=CDFE S 四边形;如图2,连接CF ,易得BDF S 三角形=CDF S 三角形=AEF S 三角形=CEF S 三角形,所以ABF S 三角形=CDFE S 四边形=2BDF S 三角形=2AEF S 三角形=31ABC S 三角形. 由此得到如下结论:1、三角形的两条中线分原来三角形所成的四个图形中,对顶的两个图形面积相等.2、三角形的两条中线分原来三角形所成的四个图形中,四边形的面积等于不对顶三角形面积的2倍.3、三角形的三条中线与面积如图3,AD ,BE,CF 是三角形ABC 的中线,设△BGD 的面积为1S ,△BGF 的面积为2S ,△AGF 的面积为3S ,△AGE 的面积为4S ,△CGE 的面积为5S ,△CGD 的面积为6S ,△ABC 的面积为S.则1S =2S =3S =4S =5S =6S =61S.证明:因为AD 是三角形ABC 的中线,所以BD=CD ,因为三角形ABD 和三角形ACD 的高相同,所以三角形ABD 的面积和三角形ACD 的面积相等,即1S +2S +3S =4S +5S +6S .因为三角形BGD 和三角形CGD 的高也是相同的,所以两个三角形的面积相等即1S =6S .所以2S +3S =4S +5S .因为三角形BGF 和三角形AGF 的高相同,BF=AF ,所以AFh BFh 2121 ,其中h 是点G 到AB 的距离,所以2S =3S ,同理可证4S =5S ,所以23S =24S ,所以3S =4S , 所以2S =3S =4S =5S ,同理可证1S =2S =3S =6S .所以1S =2S =3S =4S =5S =6S .因为三角形ABC 的面积为S ,所以1S =2S =3S =4S =5S =6S =61S. 由此我们得到如下结论:三角形的三条中线分三角形成六个小三角形,则六个小三角形的面积相等,等于三角形面积的六分之一.二、结论在解题中的应用例1 (2015•广东省)如图4,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若三角形ABC 的面积为12,则图中阴影部分面积是 .分析:这是三条中线分割三角形的情形,每一个小三角形的面积是相等,且等于原来三角形面积的61,2个就是面积的31. 解:因为三角形ABC 的面积为12,所以阴影部分的面积为31×12=4. 例2 三角形的一条中线把其面积等分,试用这条规律完成下面问题:(1)把一个三角形分成面积相等的4块(至少给出两种方法);(2)在一块均匀的三角形草地上,恰好可放养84只羊,如图5,现被两条中线分成4块, 则四边形的一块(阴影部分)恰好可放养几只羊?分析:抓住等底同高的两个三角形面积相等,依托三角形的中线性质,完成求解.解:(1)此题的答案不是唯一的,只要分割的方法合理就可以,下面给出了几种分割方法,供同学们学习时,参考.(2)根据中线分割图形与原来三角形面积之间关系知道,四边形的面积是整个图形面积的三分之一,因为是均匀分布,所以这块面积应该有 31×84=28(只)羊. 例3 如图6 所示,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点, 且ABC S =42cm ,则S 阴影等于________.解:因为点D 是BC 的中点,所以ACD ABD S S =12ABC S =12×4=2. 因为点E 是AD 的中点,所以BED S S 12ABD S =12×2=1. 所以ED S S 12ACD S =12×2=1. 所以BEC S =BED S +ED S =1+1=2,因为点F 是EC 的中点,所以S =12BEC S =12×2=1. 所以S 阴影等于1. 例4 已知三角形ABC 的面积为a ,请边阅读,边完成问题的解答:1、如图7,延长BC 到D ,使得CD=BC ,则阴影部分的面积为 .2、如图8,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,则阴影部分的面积为 .3、如图9,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,则阴影部分的面积为 .4、如图10,延长BC 到D ,使得CD=BC ,延长CA 到E ,使得AE=AC ,延长AB 到F ,使得AB=FB ,,连接DF ,则阴影部分的面积为 ;三角形DEF 的面积是 .分析:依据条件,结合三个结论,认真分析,就能轻松完成解答.解:1、如图7,AC是三角形ABD的中线,所以阴影面积与三角形ABC的面积相等,所以应该填a;2、如图8,当我们连接AD时,不难发现三角形ACD的面积与三角形AED的面积相等,所以阴影部分的面积为2a;3、如图9,三角形AEF的面积与三角形CDE的面积是相等,所以阴影部分的面积是4a;4、如图10,三角形BFD的面积等于三角形CDE的面积,所以阴影部分的面积为6a;三角形DEF的面积为阴影部分的面积加三角形ABC的面积,所以是7a,也就是说此时三角形的面积是原来三角形ABC面积的7倍.我们不妨把得到的三角形DEF叫做三角形ABC的膨胀三角形,当CD=BC 时,膨胀三角形的面积是原来三角形面积的7倍,这个数字7我们不妨叫做三角形DEF的膨胀系数,感兴趣的读者,可以思考当延长线段是已知边长的2倍时,膨胀三角形的面积多大,膨胀系数多大?其中一般性的规律是什么?。
专题 三角形六大重难题型(期末真题精选)(解析版)
专题01 三角形六大重难题型一.中线分周长(分类讨论)1.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为12,则△BCD的周长是10.试题分析:先根据三角形的中线、线段中点的定义可得AD=CD,再根据三角形的周长公式即可求出结果.答案详解:解:∵BD是△ABC的中线,即点D是线段AC的中点,∴AD=CD.∵AB=5,△ABD的周长为12,∴AB+BD+AD=12,即5+BD+AD=12.解得BD+AD=7.∴BD+CD=7.则△BCD的周长是BC+BD+CD=3+7=10.所以答案是:10.2.已知AD是△ABC的中线,若△ABD与△ACD的周长分别是17和15,△ABC的周长是22,则AD的长为5.试题分析:根据三角形的周长公式列式计算即可得解.答案详解:解:∵△ABD与△ACD的周长分别是17和15,∴AB+BC+AC+2AD=17+15=32,∵△ABC的周长是22,∴AB+BC+AC=22,∴2AD=32﹣22=10,∴AD=5.所以答案是:5.3.如图所示,AD是△ABC的中线.若AB=7cm,AC=5cm,则△ABD和△ADC的周长的差为2 cm.试题分析:根据三角形中线的定义得到BD=CD,求得△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,于是得到结论.答案详解:解:∵AD是BC边上的中线,∴BD=CD,∴△ABD和△ACD的周长差=(AB+AD+BD)﹣(AC+AD+CD)=AB﹣AC,∵AB=7cm,AC=5cm,∴△ABD和△ACD的周长差=7﹣5=2cm.所以答案是:2.二.中线之等分面积4.如图,已知△ABC中,点D、E分别是边BC、AB的中点.若△ABC的面积等于8,则△BDE的面积等于()A.2B.3C.4D.5试题分析:根据三角形的面积公式即可得到结论.答案详解:解:∵点D是边BC的中点,△ABC的面积等于8,∴S△ABD=12S△ABC=4,∵E是AB的中点,∴S△BDE=12S△ABD=12×4=2,所以选:A.5.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为1cm2.试题分析:易得△ABD,△ACD为△ABC面积的一半,同理可得△BEC的面积等于△ABC面积的一半,那么阴影部分的面积等于△BEC的面积的一半.答案详解:解:∵D为BC中点,根据同底等高的三角形面积相等,∴S△ABD=S△ACD=12S△ABC=12×4=2(cm2),同理S△BDE=S△CDE=12S△BCE=12×2=1(cm2),∴S△BCE=2(cm2),∵F为EC中点,∴S△BEF=12S△BCE=12×2=1(cm2).所以答案是1.三.三角形的高的辨别6.如图,△ABC中,AD⊥BC于D,点E在CD上,则图中以AD为高的三角形有6个.试题分析:由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.答案详解:解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.所以答案是:6.7.如图,△ABC中,BC边所在直线上的高是线段AD.试题分析:根据三角形的高的概念解答即可.答案详解:解:△ABC中,BC边所在直线上的高是线段AD,所以答案是:AD四.多边形的内角和与外角和8.若一个多边形的内角和是540°,则这个多边形是五边形.试题分析:根据多边形的内角和公式求出边数即可.答案详解:解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,所以答案是:五.9.如图,∠A+∠B+∠C+∠D+∠E+∠F的值是()A.240°B.360°C.540°D.720°试题分析:根据四边形的内角和及三角形的外角定理即可求解.答案详解:解:如图,AC、DF与BE分别相交于点M、N,在四边形NMCD中,∠MND+∠CMN+∠C+∠D=360°,∵∠CMN=∠A+∠E,∠MND=∠B+∠F,∴∠A+∠B+∠C+∠D+∠E+∠F=360°,所以选:B.10.一个多边形的内角和等于1260°,从它的一个顶点出发,可以作对角线的条数是()A.4B.6C.7D.9试题分析:设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=1260°,然后解方程即可.答案详解:解:设这个多边形的边数为n,∴(n﹣2)×180°=1260°,解得n=9,∴这个多边形为九边形;从这个多边形的一个顶点出发共有:9﹣3=6(条).所以选:B.五.三角形的内角和11.如图,在△ABC中,D是AC上一点,E是AB上一点,BD,CE相交于点F,∠A=60°,∠ABD=20°,∠ACE=35°,则∠EFD的度数是()A.115°B.120°C.135°D.105°试题分析:由△ABD的内角和为180°,可以求∠ADB,由△AEC内角和为180°,可以求∠AEC,再根据四边形AEFD内角和为360°,可求∠EFD.答案详解:解:在△AEC中,∠A+∠ACE+∠AEC=180°,∴∠AEC=180°﹣∠A﹣∠ACE=180°﹣60°﹣35°=85°,在△ABD中,∠A+∠ABD+∠ADB=180°,∴∠ADB=180°﹣∠A﹣∠ABD=180°﹣60°﹣20°=100°,在四边形AEFD中,∠A+∠AEC+∠ADB+2∠EFD=360°,∴∠EFD=360°﹣∠A﹣∠AEC﹣∠ADB=360°﹣60°﹣85°﹣100°=115°,所以选:A.12.如图,△ABC中,∠BAC>∠B,∠C=70°,将△ABC折叠,使得点B与点A重合,折痕PD 分别交AB、BC于点D、P,当△APC中有两个角相等时,∠B的度数为()A.35°或20°B.20°或27.5°C.35°或25°或32.5°D.35°或20°或27.5°试题分析:分三种情况,利用三角形的内角和定理、等腰三角形的性质先求出∠APC的度数,再利用折叠的性质和三角形的内角和定理求出∠B.答案详解:解:由折叠的性质知:∠BPD=∠APD=12∠BP A,∠BDP=∠ADP=90°.当AP=AC时,∠APC=∠C=70°,∵∠BPD=12(180°﹣∠APC)=55°,∴∠B=90°﹣55°=35°;当AP=PC时,∠P AC=∠C=70°,则∠APC=40°.∵∠BPD=12(180°﹣∠APC)=70°,∴∠B=90°﹣70°=20°;当PC=AC时,∠APC=∠P AC,则∠APC=55°.∵∠BPD=12(180°﹣∠APC)=62.5°,∴∠B=90°﹣62.5°=27.5°.所以选:D.13.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=48°,∠D=10°,则∠P的度数为()A.19°B.20°C.22°D.25°试题分析:延长PC交BD于E,根据角平分线的定义可得∠1=∠2,∠3=∠4,再根据三角形的内角和定理可得∠A+∠1=∠P+∠3,然后根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠5,整理可得∠P=12(∠A﹣∠D),然后代入数据计算即可得解.答案详解:解:如图,延长PC交BD于E,∵∠ABD,∠ACD的角平分线交于点P,∴∠1=∠2,∠3=∠4,由三角形的内角和定理得,∠A+∠1=∠P+∠3①,在△PBE中,∠5=∠2+∠P,在△DCE中,∠5=∠4﹣∠D,∴∠2+∠P=∠4﹣∠D②,①﹣②得,∠A﹣∠P=∠P+∠D,∴∠P=12(∠A﹣∠D),∵∠A=48°,∠D=10°,∴∠P=12(48°﹣10°)=19°.所以选:A.14.如图,在△ABC中,∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.42°B.46°C.52°D.56°试题分析:根据折叠得出∠D=∠B=28°,根据三角形的外角性质得出∠1=∠B+∠BEF,∠BEF =∠2+∠D,求出∠1=∠B+∠2+∠D即可.答案详解:解:∵∠B=28°,将△ABC沿直线m翻折,点B落在点D的位置,∴∠D=∠B=28°,∵∠1=∠B+∠BEF,∠BEF=∠2+∠D,∴∠1=∠B+∠2+∠D,∴∠1﹣∠2=∠B+∠D=28°+28°=56°,所以选:D.15.如图,将△ABC沿DE、HG、EF翻折,三个顶点均落在点O处,若∠1=131°,则∠2的度数为()A.49°B.50°C.51°D.52°试题分析:先根据折叠性质得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,根据三角形内角和为180°和周角360°求出结论.答案详解:解:由折叠得:∠HOG=∠B,∠DOE=∠A,∠EOF=∠C,∵∠A+∠B+∠C=180°,∴∠HOG+∠DOE+∠EOF=180°,∵∠1+∠2+∠HOG+∠DOE+∠EOF=360°,∴∠1+∠2=180°,∵∠1=131°,∴∠2=180°﹣131°=49°,所以选:A.16.如图,在△ABC中,∠1=100°,∠C=80°,∠2=12∠3,BE平分∠ABC交AD于E,求∠4的度数.试题分析:首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠4.答案详解:解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,∴∠3=20°,∵∠2=12∠3,∴∠2=10°,∴∠ABC=180°﹣100°﹣10°=70°,∵BE平分∠ABC,∴∠ABE=35°,∵∠4=∠2+∠ABE,∴∠4=45°.17.如果在直角三角形中,一个锐角是另一个锐角的3倍,那么这个三角形中最小的一个角等于22.5度.试题分析:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.由“直角三角形的两个锐角互余”的性质知,x+3x=90°.通过解方程即可求得x的值.答案详解:解:在直角三角形中,设最小的锐角的度数为x,则另一个锐角的度数则为3x.则x+3x=90°,即4x=90°,解得,x=22.5°,即这个直角三角形中最小的一个角等于22.5°.所以答案是:22.5.六.新定义类18.新定义:在△ABC中,若存在最大内角是最小内角度数的n倍(n为大于1的正整数),则称△ABC为“n倍角三角形”.例如,在△ABC中,若∠A=90°,∠B=60°,则∠C=30°,因为∠A最大,∠C最小,且∠A=3∠C,所以△ABC为“3倍角三角形”.(1)在△DEF中,若∠E=40°,∠F=60°,则△DEF为“2倍角三角形”.(2)如图,在△ABC中,∠C=36°,∠BAC、∠ABC的角平分线相交于点D,若△ABD为“6倍角三角形”,请求出∠ABD的度数.试题分析:(1)根据三角形内角和定理求出∠D,根据n倍角三角形的定义判断;(2)根据角平分线的定义、三角形内角和定理求出∠ADB,n倍角三角形的定义分情况讨论计算,得到答案.答案详解:解:(1)在△DEF中,∠E=40°,∠F=60°,则∠D=180°﹣∠E﹣∠F=80°,∴∠D=2∠E,∴△DEF为“2倍角三角形”,所以答案是:2;(2)∵∠C=36°,∴∠BAC+∠ABC=180°﹣36°=144°,∵∠BAC、∠ABC的角平分线相交于点D,∴∠DAB=12∠BAC,∠DBA=12∠ABC,∴∠DAB+∠DBA=12×144°=72°,∴∠ADB=180°﹣72°=108°,∵△ABD为“6倍角三角形”,∴∠ADB=6∠ABD或∠ADB=6∠BAD,当∠ADB=6∠ABD时,∠ABD=18°,当∠ADB=6∠BAD时,∠BAD=18°,则∠ABD=180°﹣108°﹣18°=54°,综上所述,∠ABD的度数为18°或54°.19.在△ABC中,若存在一个内角角度是另外一个内角角度的n倍(n为大于1的正整数),则称△ABC为n倍角三角形.例如,在△ABC中,∠A=80°,∠B=75°,∠C=25°,可知∠B=3∠C,所以△ABC为3倍角三角形.(1)在△ABC中,∠A=80°,∠B=60°,则△ABC为2倍角三角形;(2)若锐角三角形MNP是3倍角三角形,且最小内角为α,请直接写出α的取值范围为22.5°<α<30°.(3)如图,直线MN与直线PQ垂直相交于点O,点A在射线OP上运动(点A不与点O重合),点B在射线OM上运动(点B不与点O重合).延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线所在的直线分别相交于E、F,若△AEF为4倍角三角形,求∠ABO的度数.试题分析:(1)由∠A=80°,∠B=60°,可求∠C的度数,发现内角之间的倍数关系,得出答案,(2)△DEF是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)首先证明∠EAF=90°,分两种情形分别求出即可.答案详解:解:(1)∵∠A=80°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=40°,∴∠A=2∠C,∴△ABC为2倍角三角形,所以答案是:2;(2)∵最小内角为α,∴3倍角为3α,由题意可得:3α<90°,且180°﹣4α<90°,∴最小内角的取值范围是22.5°<α<30°.所以答案是22.5°<α<30°.(3)∵AE 平分∠BAO ,AF 平分∠AOG ,∴∠EAB =∠EAO ,∠OAF =∠F AG ,∴∠EAF =∠EAO +∠OAF =12(∠BAO +∠OAG )=90°,∵△EAF 是4倍角三角形,∠F 显然大于∠E ,∴∠E =14×90°或15×90°, ∵AE 平分∠BAO ,OE 平分∠BOQ ,∴∠E =12∠ABO ,∴∠ABO =2∠E ,∴∠ABO =45°或36°.20.在△ABC 中,若存在一个内角角度,是另外一个内角角度的n 倍(n 为大于1的正整数),则称△ABC 为n 倍角三角形.例如,在△ABC 中,∠A =80°,∠B =75°,∠C =25°,可知∠B =3∠C ,所以△ABC 为3倍角三角形.(1)在△ABC 中,∠A =55°,∠B =25°,则△ABC 为 4 倍角三角形;(2)若△DEF 是3倍角三角形,且其中一个内角的度数是另外一个内角的余角的度数的13,求△DEF 的最小内角;(3)若△MNP 是2倍角三角形,且∠M <∠N <∠P <90°,请直接写出△MNP 的最小内角的取值范围.试题分析:(1)由∠A =55°,∠B =25°,可求∠C 的度数,发现内角之间的倍数关系,得出答案,(2)△DEF 是3倍角三角形,必定有一个内角是另一个内角的3倍,然后根据这两个角之间的关系,分情况进行解答,(3)可设未知数表示2倍角三角形的各个内角,然后列不等式组确定最小内角的取值范围. 答案详解:解:(1)∵∠A =55°,∠B =25°,∴∠C =180°﹣∠A ﹣∠B =100°,∴∠C =4∠B ,所以答案是:4(2)设最小的内角为x °,则3倍角为3x °①当最小的内角的度数是3倍内角的余角的度数的13时, 即:x =13(90°﹣3x ),解得:x =15°②3倍内角的度数是最小内角的余角的度数的13时, 即:3x =13(90°﹣x ),解得:x =9°,因此,△DEF 的最小内角是9°或15°.(3)设∠M 的度数为x ,则其它的两个角分别为2x ,(180°﹣3x ),由∠M <∠N <∠P <90°可得:2x <90°且180°﹣3x <90°且2x ≠180°﹣3x∴30°<x <45°且x ≠36°.答:△MNP 的最小内角的取值范围是30°<x <45°且x ≠36°.21.若△ABC 中刚好有∠B =2∠C ,则称此三角形为“可爱三角形”,并且∠A 称作“可爱角”.现有一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( )A .45°或36°B .72°或36°C .45°或72°D .45°或36°或72° 试题分析:分设三角形底角为α,顶角为2α或设三角形的底角为2α,顶角为α,根据三角形的内角和为180°,得出答案.答案详解:解:①设三角形底角为α,顶角为2α,则α+α+2α=180°,解得:α=45°,②设三角形的底角为2α,顶角为α,则2α+2α+α=180°,解得:α=36°,∴2α=72°,∴三角形的“可爱角”应该是45°或72°,所以选:C.22.若三角形满足一个角α是另一个角β的3倍,则称这个三角形为“智慧三角形”,其中α称为“智慧角”.在有一个角为60°的“智慧三角形”中,“智慧角”是60或90度.试题分析:根据“智慧三角形”及“智慧角”的意义,列方程求解即可.答案详解:解:在有一个角为60°的三角形中,①当另两个角分别是100°、20°时,“智慧角”是60°;②α+β=120°且α=3β,∴α=90°.,即“智慧角”是90°.所以答案是:60或90.。
专题03 三角形的中线与面积
专题03 三角形的中线与面积【专题解读】在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.由“等底同高”可知,三角形的一条中线能把这个三角形分成面积相等的两部分.利用这一性质,再进行适当拓展延伸,我们还可解决许多其他的等分点问题.反过来,在解决许多有关多边形(如三角形、四边形等)的面积问题时,如果我们能够快速地联想到“三角形的中线等分三角形面积”这一性质,那么往往可以事半功倍.思维索引例1.(1)如图,△ABC 中,D 为AB 的中点,E 为DF 的中点.①作出△AED 中的高AH ;②连接BF ,当AH =4,DF =5时,求△BDF 面积.DABECF(2)如图,△ABC 中,∠C =90°,AC =12,BC =9,AB =15,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒3个单位,设运动的时间为t 秒. ①当t = 时,CP 把△ABC 的面积分成相等的两部分;②当t =5时,CP 把△ABC 分成的两部分面积之比是S △APC ︰S △BPC = ; ③当t = 时,△BPC 的面积为18.ACBB CA备用图例2.如图1,在△ABC 中,中线AM 可以将△ABC 分成两个面积相等的三角形,即S △ABM =S △ACM .(1)请在图2,图3中,用两种不同的方法将图中的四边形ABCD 分成4个面积相等的小三角形; (2)如图4,在四边形ABCD 的边上找到一点E ,使得线段AE 将四边形ABCD 分为面积相等的两部分.DABCC BADM AB CDABC图1图2图3图4例3.(1)已知:△ABC 中,AD 是BC 边上的中线,P 是AD 上的一点,若△ABC 的面积为s ,①当点P 是AD 的中点(即PD =21AD )时,△PBC 的面积= (用含s 的代数式表示); ②当PD =31AD 时,△PBC 的面积= (用含s 的代数式表示);③当PD =n1AD 时,△PBC 的面积= (用含s 、n 的代数式表示). A PC(2)如图,△ABC 的面积为12cm 2.D 是AB 边的中点,E 为AC 边上一点,且AE =2EC .O 为DC 与BE 的交点.若△DBO 的面积为acm 2,△CEO 的面积为bcm 2,求a -b .OE BDCA例4.(1)如图1,在△ABD 中,BE 是△ABD 的中线,则有S △ABE = S △ABD .(2)在四边形ABCD 中,E 是AD 边上的动点,分别连接AC 、BD 、EB 和EC ,设△EBC 的面积为S 1,△ABC 的面积为S 2,△DBC 的面积为S 3. ①如图2,当AE =21AD 时,试探究S 1,S 2,S 3之间的关系,并写出求解过程; ②如图3,当AE =n1AD (n 表示正整数)时,试探究S 1,S 2,S 3之间的关系. (直接给出答案,不必求解过程)DABEC CBADEBAD E 图3图2图1素养提升1.如图,在△ABC 中,E 、F 分别是AD 、CE 边的中点,且24BEF S cm ∆=,则ABC S ∆为( )A .21cmB . 22cmC . 28cmD . 216cm2.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC ,△BEF 的面积分别为,ABC BEF S S ∆∆,且12ABC S ∆=,则BEF S ∆=( )A .1B .2C .3D .43.如图,三角形ABC 内的线段BD 、CE 相交于点F ,已知FB=FD ,FC=2FE .若△BFC 的面积为2,则四边形AEFD 的面积等于( )A .4B .5C .6D .7CABDBB第1题图 第2题图 第3题图4.如图,△ABC 三边的中线AF ,BD ,CE 的公共点为G ,若12ABC S ∆=,则图中△BEG 与△CDG 的面积和是( )A .2B .3C .4D .5BCBFB第4题图 第5题图 第6题图5.如图,G 为△ABC 内一点,连接AG 、BG 、CG 并延长分别交边BC 、AC 、AB 于点F 、D 、E ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,则△ABC 的面积为( ) A .300 B .315 C .279 D .3426.如图,AE 、BD 是△ABC 的两条中线,AE 、BD 交于F ,则△BEF 和△AFD 面积的大小关系是_______________.7.如图,△ABC 的中线BD 、CE 相交于点G ,GF ⊥BC ,且AB=6,BC=5,AC=3,GF=2,则四边形ADGE 的面积是_________.8.如图,在△ABC 中,点D 是BC 边上任意一点,点F 是线段AD 的中点,点E 、点G 分别为BF 与CF 的中点,则:ABC EFGD S S ∆四边形=_____________.9.如图,在△ABC 中,已知点D 、E 、F 分别是BC 、AD 、BE 上的中点,且△ABC 的面积为122cm ,则△ABF 的面积为___________2cm .EDFGCABFEB第7题图 第8题图 第9题图10.如图,在长方形ABCD 中,AB=8cm ,BC=6cm ,点E 是CD 边上的一点,且DE=2cm ,动点P 从A 点出发,以2cm /s 的速度沿A →B →C →E 运动,最终到达点E .当△APE 的面积等于202cm 时,则点P 运动的时间________________s .CDFEBC第10题图 第11题图11.如图,已知△ABC ,请你用两种不同的方法把它分成面积之比为1:2:3的三个三角形。
中考数学解题方法及提分突破训练:面积法专题(含解析)
解题方法及提分突破训练:面积法专题用面积法解几何问题是一种重要的数学方法,在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效.一.真题链接1。
(2012 济南模拟)圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为2。
(2012•东营)如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的41 ,那么点B′的坐标是( )A. (—2,3) B 。
(2,—3) C 。
(3,-2)或(—2,3) D.(-2,3)或(2,-3) 3.(2012 呼和浩特)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为 cm .4。
(2012•潍坊)如图,三角形ABC 的两个顶点B 、C 在圆上,顶点A 在圆外,AB 、AC 分别交圆于E 、D 两点,连接EC 、BD . (1)求证:△ABD ∽△ACE ;(2)若△BEC 与△BDC 的面积相等,试判定三角形ABC 的形状5.(2012•宜宾)如图,在四边形ABCD 中,DC ∥AB,CB ⊥AB,AB=AD ,CD=21,AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( ) A 。
71 B 。
61 C 。
51 D 。
41二名词释义平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
三角形中线等分面积的应用
第5讲例说三角形中线等分面积的应用如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE ,因为BD =DC ,所以S △ABD =S △ADC 。
因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。
一、求图形的面积例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE=4ab,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。
解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE=4ab,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于31×4ab =12ab ,因此S 四边形ABGD=ab -4×12ab =32ab。
例2、在如图3至图5中,△ABC 的面积为a .(1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.图1图2图4F 图5图3应用:去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图5).求这两次扩展的区域(即阴影部分)面积共为多少m 2?分析:从第1个图可以发现AC 就是△ABD 的中线,第2个图通过连接DA ,可得到△ECD 的中线DA ,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而求出扩展部分的面积,发现规律。
一、中线等分三角形面积
一、中线等分三角形面积我们知道:对称轴平分轴对称图形的面积、过对称中心的直线平分中心对称图形的面积.下面研究的是“三角形的中线平分三角形面积”的用法.解法归一:遇等分多边形面积题目时,最常用的方法是把多边形先转化为三角形,再借助中线等分三角形面积来解决.例3 -1 -1 (1)你用三种不同的方法把图3-l-l①~图3-l -1③中△ABC的面积四等分.图3-l-l①图3-l-1②图3-l-1③交流分享:三角形中线等分三角形面积!连续使用中线,可把一个三角形的面积n等分.(2)请你在图3-1-1④~3-1-1⑥中用三种不同的方法把梯形ABCD的面积二等分.图3-l-2④图3-l -2⑤图3-l -2⑥交流分享:(1)先把多边形转化为三角形,再利用中线,可等分一个多边形的面积;(2)借助一腰中点,把梯形转化为一个与它面积相等的三角形,是梯形常用的辅助线之一.例3-1-2 (1)如图3-1-2①,过点A画一条平分△ABC面积的直线;(2)如图3-1-2②,已知l1∥l2,点E、F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等的理由;(3)如图3-1-2③,点M在△ABC的边上,过点M画一条平分三角形面积的直线,写出画法.图3-1-2①图3-1-2②图3-1-2③交流分享:解决(3)需要把(1)、(2)结合起来用.即从图中给定的一点等分图形的面积时,先用中线找出一种分割法,再在此基础上利用“平行线下的同底等高面积相等”进行等积转化,根据定点的不同,可得不同的面积等分线.体验与感悟03-11、定义:“把一个平面图形的面积分成相等的两部分的直线叫做这个图形的一条面积等分线.”(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的是__________;(2)平行四边形的一条面积等分线是________;(3)请你尝试用不少于三种方法画出下列图形面积等分线.分享交流:当进行多边形的面积问题探究遇到困难时,将它转化为三角形,再去思考,常有奇效.2、如图3-1-2,已知△ABC 的面积为a.延长△ABC 的边BC 到点D ,延长边CA 到点E ,延长边AB 到点F,使CD=BC ,AE=CA ,BF=AB,连接DE 、DF 、FE ,得到△DEF ,此时我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的____________倍.扩展了n 次后得到的△DEF 的面积是原来△ABC 面积的____________倍.图 3-1-3 图3-1-4①3、如图3-1-4中,E 、G 、F 、H 分别为任意四边形ABCD 的边AD 、AB 、BC 、CD 的中点. (1)在图3-1-4①中,四边形EBFD 的面积与四边形ABCD 的面积关系是 ;(2)在图3-1-4②中,如果阴影部分的面积为20,则S 1+S 2+S 3+S 4= __________.图3-1-4②4、定义:我们把被三角形一边中线分成的两个三角形叫做“友好三角形”.如图3-1-5①,在△ABC 中,CD 是边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且BCD ACD S S △△=.应用:如图3-1-5②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O.(1)求证:△AOB 与△AOE 是“友好三角形”;(2)连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积.图3-1-5① 图3-1-5②探究:在△ABC 中,∠A=30°,AB=4,点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到CD A '△,若CDA '△与△ABC 重合部分的面积等于△ABC 面积的41,请直接写出△ABC 的面积.提醒:遇等分多边形面积怎么下手?。
人教版八年级数学下册专题复习(十一) 几何图形的面积等分
思维特训(十一)几何图形的面积等分方法点津面积等分基本模型:1.三角形的中线把三角形面积等分;2.夹在两条平行线间的距离相等,同底等高的两个三角形面积相等;3.过平行四边形对角线中点(对称中心)的任意一条直线把平行四边形面积等分.典题精练类型一作一个图形的面积等于已知图形1.(1)如图11-S-1①,已知直线m∥n,点A,B在直线n上,点C,P在直线m上.①写出图①中面积相等的三角形:________;②当点P在直线m上移动到任一位置时,总有________与△ABC的面积相等;(2)如图11-S-1②,已知一个五边形ABCDE,你能否过点E作一条直线交BC(或其延长线)于点M,使四边形ABME的面积等于五边形ABCDE的面积?图11-S-1类型二等分面积2.阅读下列材料:小明遇到一个问题:AD是△ABC的中线,M为BC边上任意一点(不与点D重合),过点M作一直线,使其等分△ABC的面积.他的作法是:如图11-S-2①,连接AM,过点D作DN∥AM交AC于点N,作直线MN,直线MN即为所求直线.请你参考小明的作法,解决下列问题:(1)如图②,在四边形ABCD中,AE平分四边形ABCD的面积,M为CD边上一点,过点M作一直线MN,使其等分四边形ABCD的面积(要求:在图②中画出直线MN,并保留作图痕迹);(2)如图③,求作过点A的直线AE,使其等分四边形ABCD的面积(要求:在图③中画出直线AE,并保留作图痕迹).图11-S-23.有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如三角形的中线所在的直线一定是三角形的“二分线”.解决下列问题:(1)在图11-S-3①中,试用三种不同的方法分别画出平行四边形ABCD的“二分线”;(2)解决问题:兄弟俩分家时,有原来共同承包的一块平行四边形田地ABCD,现要进行平均划分,由于在这块地里有一口井P,如图②所示,为了兄弟俩都能方便使用这口井,兄弟俩在划分时犯难了,聪明的你能帮他们解决这个问题吗(画图,并说明结果)?图11-S-34.我们把能平分四边形面积的直线称为“好线”.利用下面的作图,可以得到四边形的“好线”:如图11-S-4①,在四边形ABCD中,取对角线BD的中点O,连接OA,OC,AC.显然,折线AOC能平分四边形ABCD的面积,再过点O作OE∥AC交CD于点E,则直线AE即为一条“好线”.(1)试说明:直线AE是“好线”的理由;(2)如图②,AE为一条“好线”,F为AD边上的一点,请作出经过点F的“好线”,并对画图作适当说明(不需要说明理由).图11-S-45.自定义:在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.(1)如图11-S-5①,已知△ABC,AC≠BC,过点C能否画出△ABC的一条“等分积周线”?若能,说出确定的方法;若不能,请说明理由.(2)如图②,在四边形ABCD中,∠B=∠C=90°,EF垂直平分AD,垂足为F,交BC 于点E,已知AB=3,BC=8,CD=5.求证:直线EF为四边形ABCD的“等分积周线”.(3)如图③,在△ABC中,AB=BC=6,AC=8,请你作出△ABC的一条“等分积周线”EF(要求:直线EF不过△ABC的顶点,交边AC于点F,交边BC于点E),并说明理由.图11-S-5典题讲评与答案详析1.解:(1)①图①中符合条件的三角形有:△CAB与△P AB,△BCP与△APC,△ACO 与△BPO.②△P AB(2)如图,连接EC,过点D作直线DM∥EC交BC的延长线于点M,作直线EM,直线EM即为所求的直线.2.解:(1)如图①,连接AM,过点E作EN∥AM,交AD于点N,再作直线MN即可.(2)如图②,取对角线BD的中点O,连接AO,CO,AC,过点O作OE∥AC交CD于点E,直线AE就是所求直线.3.解:(1)答案不唯一,示例如下:(2)能解决这个问题.连接AC,BD相交于点O,过点O,P作直线与DC,AB分别交于点E,F,如图所示.则一人分四边形ADEF,一人分四边形CEFB.4.解:(1)∵OE∥AC,∴S△AOE=S△COE,∴S△AOF=S△CEF.又∵折线AOC能平分四边形ABCD的面积,∴直线AE平分四边形ABCD的面积,即AE是“好线”.(2)连接EF,过点A作EF的平行线交CD于点G,连接FG,则FG为一条“好线”.∵AG∥EF,∴S△AGE=S△AFG. 设AE与FG的交点是O,则S△AOF=S△GOE.又∵AE为一条“好线”,∴FG为一条“好线”.5.解:(1)不能.理由:如图①,取AB的中点D,连接CD,则S△ADC=S△DBC,且过点C只能画CD一条直线平分△ABC的面积.∵AC≠BC,∴AD+AC≠BD+BC,∴过点C不能画出△ABC的一条“等分积周线”.(2)证明:如图②,连接AE,DE,设BE=x,∵EF垂直平分AD,∴AE=DE,AF=DF,S△AEF=S△DEF.∵∠B=∠C=90°,AB=3,BC=8,CD=5,∴在Rt△ABE和Rt△DCE中,根据勾股定理,得AB2+BE2=CE2+DC2,即32+x2=(8-x)2+52,解得x=5,∴BE=5,CE=3,∴AB+BE=CE+DC,S△ABE=S△DCE.∴AF+AB+BE=DF+CE+DC.∵S四边形ABEF=S△ABE+S△AEF,S四边形DCEF=S△DEF+S△DCE,∴S四边形ABEF=S四边形DCEF,∴直线EF为四边形ABCD的“等分积周线”.(3)如图③,在AC上取一点F,使得FC=AB=6,在BC上取一点E,使得BE=2,作直线EF,则直线EF是△ABC的“等分积周线”.理由:由作图可得AF=AC-FC=8-6=2,在CB上取一点G,使得CG=AF=2.∵AB =BC,∴∠A=∠C.在△ABF和△CFG中,AF=CG,∠A=∠C,AB=CF,∴△ABF≌△CFG(SAS),∴S△ABF=S△CFG.又易得BE=EG=2,∴S△BFE=S△EFG,∴S△EFC=S四边形ABEF,AF+AB+BE=CE+CF=10,∴直线EF是△ABC的“等分积周线”.。
中线等分三角形面积
中线等分三角形面积以中线等分三角形面积为题,我们将探讨如何通过中线等分三角形的面积。
在开始之前,让我们先回顾一下中线以及面积的概念。
中线是连接三角形一个顶点和对边中点的线段。
每个三角形都有三条中线,它们交叉于一个共同的点,称为重心。
重心是三角形的一个特殊点,它将三角形分成六个小三角形,其中每个小三角形的面积都相等。
面积是一个平面图形所占据的空间大小的度量。
对于三角形来说,我们可以使用基础公式:面积等于底乘以高的一半。
而对于等边三角形,我们可以使用特定的公式:面积等于边长的平方乘以根号三除以四。
现在,我们来探讨如何通过中线等分三角形的面积。
假设我们有一个任意的三角形ABC,我们的目标是找到三条中线,然后将三角形分成六个面积相等的小三角形。
我们需要找到三角形的三个顶点,并确定它们的坐标。
然后,我们可以使用坐标几何的方法来计算中线的端点坐标。
对于每条中线,我们可以通过将对边的两个顶点坐标相加,然后除以2来获得中线的中点坐标。
一旦我们找到了三条中线的中点坐标,我们可以使用这些坐标来构建三个新的小三角形。
每个小三角形由重心和两个中点组成。
然后,我们可以使用三角形面积公式来计算每个小三角形的面积。
为了证明这六个小三角形的面积是相等的,我们可以使用几何证明或者向量证明。
对于几何证明,我们可以通过将三角形的顶点连接起来,形成一系列平行四边形,并利用平行四边形的性质来证明这六个小三角形的面积相等。
对于向量证明,我们可以使用向量的线性组合来表示每个小三角形的面积,并证明它们相等。
总结一下,通过找到三角形的中线,我们可以将三角形分成六个面积相等的小三角形。
这可以通过计算每个小三角形的面积来实现,使用三角形面积公式以及中点坐标的计算。
通过几何证明或向量证明,我们可以证明这六个小三角形的面积相等。
在实际应用中,等分三角形的面积可以有多种用途。
例如,在建筑设计中,我们可以通过等分三角形的面积来平衡结构的重量分布,从而提高建筑物的稳定性。
中线等分面积定理
中线等分面积定理1. 三角形中的情况- 在三角形中,三角形的中线将三角形分成面积相等的两个部分。
- 证明:设 ABC,AD是BC边上的中线(BD = DC)。
根据三角形面积公式S=(1)/(2)ah(a为底,h为这条底边对应的高)。
对于 ABD和 ACD,它们的高都是A到BC边的距离h, ABD的底BD和 ACD的底DC相等,因为BD = DC。
所以S_{ ABD}=(1)/(2)BD× h,S_{ ACD}=(1)/(2)DC× h,又因为BD = DC,所以S_{ ABD}=S_{ ACD}。
2. 平行四边形中的情况(拓展)- 平行四边形的一条对角线将平行四边形分成面积相等的两个三角形。
- 证明:设平行四边形ABCD,对角线AC。
对于 ABC和 ADC,因为平行四边形对边平行且相等,AB = DC,它们的高(AB与DC间的距离)相等。
根据三角形面积公式S=(1)/(2)ah,可得S_{ ABC}=S_{ ADC}。
1. 计算面积比例- 例1:在 ABC中,AD是中线,E是AD的中点,连接BE、CE,求S_{ ABE}:S_{ ABC}。
- 解:因为AD是中线,所以S_{ ABD}=S_{ ACD}=(1)/(2)S_{ ABC}。
又因为E是AD的中点,所以S_{ ABE}=(1)/(2)S_{ ABD},那么S_{ ABE}=(1)/(2)×(1)/(2)S_{ ABC}=(1)/(4)S_{ ABC},所以S_{ ABE}:S_{ ABC}=1:4。
2. 证明面积相等关系- 例2:已知四边形ABCD中,E、F分别是AB、CD的中点,连接EF,AC交EF于O点,证明S_{ AOE}=S_{ COF}。
- 设S_{ AOE}=x,S_{ EOC}=y,S_{ COF}=z,S_{ FOD}=w。
- 由S_{ ADF}=S_{ ACF}可得x + w=z + w,即x = z,所以S_{ AOE}=S_{ COF}。
2024年 三角形中的重要模型等积模型(含答案)
专题07 三角形中的重要模型-等积模型三角形的面积问题在中考数学几何模块中占据着重要地位,等积变形是中学几何里面一个非常重要的思想,下面的五大模型也都是依托等积变形思想变化而成的,也是学生必须掌握的一块内容。
本专题就三角形中的等积模型(蝴蝶(风筝)模型,燕尾模型,鸟头模型,沙漏模型,金字塔模型)进行梳理及对应试题分析,方便掌握。
模型1. 等积变换基础模型1)等底等高的两个三角形面积相等;如图1,当AB //CD ,则ACD BCD S S =△△; 反之,如果ACD BCD S S =△△,则可知直线AB //CD 。
图1 图2 图32)两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如图2,当点D 是BC 边上的动点时,则S △ABD ∶S △ADC =BD ∶DC 。
如图3,当点D 是BC 边上的动点,BE ⊥AD ,CF ⊥AD 时,则S △ABD ∶S △ADC =BE ∶CF 。
A .4B .3【答案】D 【分析】利用三角形面积公式,等高的三角形的面积比等于底边的比,由此利用已知条件可以分别求出BDC BED S S 、V V .A.9B.【答案】B【分析】利用中线等分三角形的面积进行求解即可.V【详解】解:∵BD是ABC【答案】12【分析】根据高相等的两个三角形的面积之比等于底之比可得答案.【详解】解::QCG GF=【答案】14.4【分析】连接BF , 12BDC ABC S S =V V ;根据示为2BDC S V 和3S V∵CD 为AB 边上中线,∵2BE CE =, S \V 2ABC BDC S S \==V V(1)如图2,延长ABC V 的边BC 到点D ,使CD BC =,连接DA (用含a 的代数式表示);(2)如图3,延长ABC V 的边BC 到点D ,延长边CA 到点E ,使面积为2S ,则2S = (用含a 的代数式表示);(3)在图3的基础上延长AB 到点F ,使BF AB =,连接FD ,积为3S ,则3S =(用含a 的代数式表示);Q 延长ABC V 的边BC 到点D ,延长边CA 到点E ,使CD BC =,AE \12ACD AED ECD S S S D D D ==,ACD ABC S D ,22ECD ABC S S a D D \==,即2S (3)由(2)得2ECD ABC S S D D ==同理:22EFA ABC S S a D D ==,2ECD BFD S a D D =,3ECD EFA S S S S D D \=++∵点E 是线段AD 的中点,12BCE ABC S =V .∥,连接,若过C作CE AB模型2.蝴蝶(风筝)模型蝴蝶模型(定理)提供了解决不规则四边形的面积问题的一个途径。
2020年秋人教版八年级数学上册第11章《三角形的三线及面积》(讲义、随堂练习、习题及答案)
人教版八年级数学上册第11章三角形的三线及面积(讲义)➢ 课前预习1. 三角形有关的性质和定理:定义:由___________________的三条线段_________________所组成的图形叫做三角形,三角形可以用符号“_______”表示. 性质:边:三角形两边之和______第三边,两边之差______第三边; 角:三角形的内角和等于_______; 直角三角形两锐角________;三角形的一个外角等于______________________________. 2. 如图,在△ABC 中,(1)若点D 是BC 的中点,则S △ABD :S △ACD =__________; (2)若BD :CD =2:1,则S △ABD :S △ACD =__________; (3)若BD :CD =a :b ,则S △ABD :S △ACD =__________.DCBA➢ 知识点睛1. 三角形的三线:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的__________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的______叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形的三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.如图,在△ABC中,作出AC边上的高线.CA________即为所求.2.面积问题:(1)处理面积问题的思路①_____________________________;②_____________________________;③_____________________________.(2)处理面积问题方法举例①利用平行转移面积21如图,满足S△ABP =S△ABC的点P都在直线l1,l2上.②利用等分点转移面积两个三角形底相等时,面积比等于_____之比;高相等时,面积比等于_____之比.➢精讲精练1.如图,△ABC的角平分线AD、中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABC的中线.其中()A.①②都正确B.①②都不正确C .①正确,②不正确D .①不正确,②正确AC DE OE DAF第1题图第2题图2. 如图所示,在△ABC 中,BC 边上的高是_______,AB 边上的高是_______;在△BCE 中,BE 边上的高是________,EC 边上的高是_________;在△ACD 中,AC 边上的高是________,CD 边上的高是________.3. 如图,在△ABC 中,AD 为∠BAC 的平分线,G 为AD 的中点,延长BG 交AC 于点E ,过点C 作CF ⊥AD 于点H ,交AB 于点F .下列说法:①AD 是△ABE 的角平分线;②BE 是△ABD 的中线;③CH 为△ACD 边AD 上的高;④AH 是△ACH 边CH 上的高;⑤AH 是△ACF 的角平分线.其中正确的说法有_______(填序号).ABCDEF G H第3题图第4题图4. 如图,在正方形ABCD 中,BC =2,∠DCE 是正方形ABCD 的外角,P 是∠DCE 的平分线CF 上任意一点,则△PBD 的面积等于_________.5. 如图,在梯形ABCD 中,AB ∥CD ,延长DC 到E ,使CE =AB ,连接BD ,BE .若梯形ABCD 的面积为25cm 2,则△BDE 的面积为__________.EDC BA第5题图第6题图6. 正方形ABCD ,正方形BEFG 和正方形RKPF 的位置如图所示,点G 在线段DK 上,正方形BEFG 的边长为4,则△DEK 的面积为____________. 7. 在如图所示4×4的方格纸中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个.第7题图第8题图8. 在如图所示的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2,则满足条件的格点C 的个数是_______个. 9. 如图,在△ABC 中,点D ,E ,F 分别为BC ,AD,CE 的中点,且S △ABC =16,则S △DEF =_____________.10. 如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =() A .1B .2C .3D.4F ED CA第10题图第11题图11. 如图所示,S △ABC =6,若S △BDE =S △DEC =S △ACE ,则S △ADE =______.12. 如图,设E ,F 分别是△ABC 的边AC ,AB 上的点,线段BE ,CF 交于点D .若△BDF ,△BCD ,△CDE 的面积分别是3,7,7,则△EDF 的面积是_______,△AEF 的面积是______.EFDCBAC 1B 1A 1CBA第12题图第13题图13. 如图,对面积为1的△ABC 进行以下操作:分别延长AB ,BC ,CA 至点A 1,B 1,C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1,B 1,C 1,则△A 1B 1C 1的面积为______.14. 如图,梯形ABCD 被对角线分为4个小三角形,已知△AOB 和△BOC 的面积分别为25cm 2和35cm 2,那么梯形的面积是_____________.15. 如图,在长方形ABCD 中,△ABP 的面积为20cm 2,△CDQ 的面积为35cm 2,则阴影四边形EPFQ 的面积是_________.16. 如图,若梯形ABCD 面积为6,E ,F 为AB 的三等分点,M ,N 为DC 的三等分点,则四边形EFNM 的面积是_________.E F DCBA MNO C D BA 2535【参考答案】➢课前预习1.不在同一条直线上,首尾顺次相接,△大于,小于180°互余和它不相邻的两个内角的和2.(1)1:1(2)2:1(3)a:b➢知识点睛1.(1)线段,在三角形内部,重心.(2)线段,在三角形内部,内心.(3)线段,所在直线,垂心,内部,直角顶点,外部.作图略2.(1)①公式法;②割补法;③转化法.(2)②对应高,对应底.➢精讲精练1. C2.AF,CE;CE,BE;DC,AC.3. ③④⑤4. 25. 25 cm 26. 167. 68. 59. 2 10. B 11. 112. 3,15 13. 1914. 144 cm 2 15. 55 cm 2 16. 2三角形的三线及面积(随堂测试)1. 下列四个图形中,线段BD 是△ABC 的高的是()A .B .C .D .2. 如图,正方形ABCD 和正方形BEFG 的位置如图所示,点E 在线段AB 上,已知正方形ABCD 的面积为50cm 2,则△AFC 的面积是___________.3. 已知在正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个(在图中标出点C 的位置).DCBA C DA BA BD C DC AAB EFG CD4. 如图,在△ABC 中,点E ,F 分别是AB ,BC 的中点,连接EF ,若△ABC的面积是8cm 2,则△BEF 的面积是______.【参考答案】1. D2. 25cm²3. 64. 2 cm²三角形的三线及面积(习题)➢ 例题示范例1:已知在4×4的正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数为__________个.【思路分析】连接AB ,则AB 作为△ABC 的底,要使△ABC 的面积为1,利用同底等高,即平行转移面积即可.具体操作:①先在AB 的一侧找一个点C ,使△ABC 的面积为1,过点C 作AB 的平行线; ②再在AB 的另一侧找一个点C ,使△ABC 的面积为1,过点C 作AB 的平行线. 如图所示:F E CBA共6个.➢巩固练习正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高3.在直角三角形、钝角三角形和锐角三角形中,有两条高在三角形外部的是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能4.如图,∠ABC=∠ACB,AD,BD,CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°-∠ABD;④∠BDC=∠BAC.其中正确的有______________(填序号).第4题图第5题图5. 在如图的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2,则满足条件的格点C 的个数是_______个.6. 如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则△ACE 的面积为___________.7. 如图,在△ABC 中,已知点D ,E,F 分别为边BC ,AD ,CE 的中点,且S △ABC =4cm 2,那么阴影部分的面积是_________.8. 已知:如图,在△ABC 中,点D ,E ,F 分别在三边上,E 是AC 的中点,BD =2CD ,AD ,BE ,CF 交于一点G ,S △BGD =8,S △AGE =3,那么△ABC 的面积是____________.F E DC BAA DEF G9. 如图,将△ABC 的三边AB ,BC ,CA 分别延长至D ,E ,F ,且使BD =AB ,CE =2BC ,AF =3AC .若S △ABC =1,则S △DEF =____.10. 如图,两条对角线把梯形分割成四个三角形,若S △EDC =6,S △BEC =18,则△AEB的面积是____________,△AED 的面积是___________.11. 如图所示,在△ABC 中,点D是AB 的中点,点E 在边BC 上,CE =2BE ,12. 部分的面积是______________.【参考答案】1. D2. C3. B4.①②③5. 56.87. 1 cm²8.309.1810.6 211.112.6 cm²。
2021年九年级数学中考复习专题:三角形综合(考察全等证明、长度与面积计算等)(四)
2021年九年级数学中考复习专题:三角形综合(考察全等证明、长度与面积计算等)(四)1.已知:如图,在平面直角坐标系中,点A的坐标为(6,0),AB=6,点P从点O出发沿线段OA向终点A运动,点P的运动速度是每秒2个单位长度,点D是线段OA的中点.(1)求点B的坐标;(2)设点P的运动时间为点t秒,△BDP的面积为S,求S与t的函数关系式;(3)当点P与点D重合时,连接BP,点E在线段AB上,连接PE,当∠BPE=2∠OBP时,求点E的坐标.2.如图,在△ABC中,点E在AC边上运动(不含端点),BE平分∠DBC交DA于点P,且DB=BC.(1)试说明:∠PEA=∠DEB;(2)过点B作BF⊥AD交于点F,若∠P=∠ABC=60°,试说明:AB=BC;(3)在(2)的条件下,试探究PA、PD、PB满足怎样的数量关系?说明理由.3.在平面直角坐标系中,点A(3,0),点B(0,b)在y轴正半轴上,连接AB,在第一象限内作等腰Rt△ABC,∠BAC=90°,AB=AC,连接OC.(1)求△OAC的面积;(2)过C作CD⊥x轴于点D,在CD上截取CE=AD,连接OE,求证:OE∥BC;(3)在(2)的条件下,连接AE,∠AED=∠BOC,求OB+OC的值.4.如图1,在平面直角坐标系中,A(a,0),C(b,4),且满足(a+5)2+=0,过C作CB⊥x轴于B.(1)a=,b=,三角形ABC的面积=;(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED 的度数;(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.5.【数学经验】三角形的中线的性质:三角形的中线等分三角形的面积.【经验发展】面积比和线段比的联系:(1)如图1,M为△ABC的AB上一点,且BM=2AM,.若△ABC的面积为a,若△CBM的面积为S,则S=(用含a的代数式表示).【结论应用】如图2,已知△CDE的面积为1,,,求△ABC的面积.【迁移应用】如图3,在△ABC中,M是AB的三等分点(AM=AB),N是BC的中点,若△ABC的面积是1,请直接写出四边形BMDN的面积为.6.在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为120°、40°、20°的三角形是“灵动三角形”;三个内角分别为80°、75°、25°的三角形也是“灵动三角形”等等.如图,∠MON=60°,在射线OM上找一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(规定0°<∠OAC<90°).(1)∠ABO的度数为°,△AOB.(填“是”或“不是”)“灵动三角形”;(2)若∠BAC=70°,则△AOC(填“是”或“不是”)“灵动三角形”;(3)当△ABC为“灵动三角形”时,求∠OAC的度数.7.如图所示,在△ABC中,点D、E、F分别是AB、AC、BC上的点,且∠ADE=90°,∠DEF =90°,点P是FC上一点,直线DP交直线EF于点G,试探究∠BDP与∠EGP之间的数量关系.(1)请你完成这道思考题;(2)若将题中的条件“∠ADE=90°,∠DEF=90°,点P是FC上一点”改为“∠AED=∠C,∠B=∠DEF,点P是线段BC上一点(点P不与点F重合)”,其他条件均不变,则(1)中的结论是否仍然成立?请在备用图上画出图形,并说明理由.8.如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).9.如图所示,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB中点.点P在线段BC上以2cm/s的速度由B点向C点运动,点Q在线段CA上以cm/s的速度由C点向A点运动,P、Q两点同时出发.(1)设运动时间为t,则BP的距离可表示为;CQ的距离可表示为;(2)在点P、Q的运动过程中,存在某一时刻,使得△BPD≌△CPQ吗?若存在,求出此时t的值;若不存在,请说明理由.(3)若点P、Q均以原来的速度按逆时针方向沿△ABC的三边循环运动,经过多长时间点P与点Q第一次相遇?此时它们在哪条边上?10.在矩形ABCD中,E是AD延长线上一点,F、G分别为EC、AD的中点,连接BG、CG、BE、FG.(1)如图1,①求证:BG=CG;②若GF=3,求BE的长;(2)如图2,若ED=CD,过点C作CH⊥BE于点H,若BC=4,∠EBC=30°,求EH的长.参考答案1.解:(1)∵A(6,0),∴OA=6,在Rt△AOB中,∵∠AOB=90°,AB=6,OA=6,∴OB===6,∴B(0,6).(2)①当0<t<3时,S=•PD•BO=•(3﹣2t)×6=9﹣6t,当3<t≤6时,S=•DP•OB=(2t﹣3)×6=6t﹣9.(3)如图,作PJ∥OB交AB于J,过点E作EK⊥OA于K.∵PJ∥OB,∴∠OBP=∠BPJ,∵∠BPE=2∠OBP,∴∠JPE=∠OBP,∵EK∥PJ,∴∠PEK=∠JPE=∠OBP,∴tan∠PEK=tan∠OBE=,∴=,设PK=m,则EK=2m,∵OA=OB=6,∠AOB=90°,∴∠EAK=45°,∵EK⊥OA,∴∠EKA=90°,∴∠EAK=∠KEA=45°,∴EK=AK=2m,∴PA=3m=3,∴m=1,∴OK=4,EK=2,∴E(4,2).2.(1)证明:∵BE平分∠DBC,∴∠EBD=∠EBC,∵EB=EB,DB=CB,∴△EBD≌△EBC(SAS),∴∠DEB=∠CEB,∵∠PEA=∠CEB,∴∠PEA=∠DEB.(2)证明:∵∠P=∠ABC=60°,BF⊥DP于F,∴∠FBP=30°,∴∠EBC=∠EBD,∠ABE+∠EBC=∠ABE+∠DBE=60°,∴2∠ABE+∠ABF+∠FBD=60°,∴∠ABE+∠FBD=∠ABE+∠ABF=30°,∴∠DBF=∠ABF,∵∠DBF+∠BDF=90°,∠ABF+∠BAF=90°,∴∠BDF=∠BAF,∴BD=BA,∵BD=BC,∴BA=BC.(3)结论:PA+PD=PB.理由:由(2)可知,BD=BA,∵BF⊥AD,∴AF=DF,∵∠BFP=90°,∠FBP=30°,∴PB=2PF=2(PA+AF)=PA+PA+2AF=PA+PA+AD=PA+PD.即PA+PD=PB.3.解:(1)如图1中,过点C作CH⊥x轴于H.∵A(3,0),∴OA=3,∵∠AOB=∠BAC=∠AHC=90°,∴∠OAB+∠CAH=90°,∠CAH+∠ACH=90°,∴∠OAB=∠ACH,∵AB=AC,∴△AOB≌△CHA(AAS),∴OA=CH=3,∴S=•OA•CH=.△AOC(2)如图2中,连接OE.∵△AOB≌△CDA,∴OB=AD,∵CE=AD,∴OB=CE,∵OB∥CD,∴四边形OECB是平行四边形,∴OE∥BC.(3)如图3中,作∠BOC的角平分线OJ交DC的延长线于J.连接OC,AJ,OE,AE.∵OJ平分∠BOC,∴∠BOJ=∠JOC,∵DJ∥OB,∴∠OJC=∠BOJ,∴∠OCJ=∠CJO,∴OC=CJ,∵∠AED=∠OBC,∴∠AED=∠OJC,∴AE∥OJ,∴S△ACJ =S△OAC,∴=,∴=,∵EC=OB=AD=b,OA=CD=3,∴OC=CJ=,DE=3﹣b,∴=,∴=﹣3﹣b,∴9+9+6b+b2=+9+b2﹣+6b﹣18,整理得,3()2﹣﹣1=0,解得=1或﹣(舍弃),∴b=1,经检验b=1是方程的解,∴OB=1,OC=5,∴OB+OC=6.4.解:(1)∵(a+5)2+=0,又∵(a+5)2≥0,≥0,∴a=﹣5,b=5,∵CB⊥x轴,∴点A坐标(﹣5,0),点B坐标(5,0),点C坐标(5,4),∴S△ABC=×10×4=20.故答案为:﹣5,5,20;(2)∵BD∥AC,∴∠CAB=∠ABD,过E作EF∥AC,如图2,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠CAE=∠CAB==∠AEF,∠DEF=∠BDE=∠ODB,∴∠AED=∠AEF+∠DEF=(∠CAB+∠ODB)==45°;(3)存在,设P(0,t),分两种情况:①当P在y轴正半轴上时,如图3,过P作MN∥x轴,AN∥y轴,BM∥y轴,∵S△APC =S梯形MNAC﹣S△ANP﹣S△CMP=S△ABC=20,∴,解得t=6,②当P在y轴负半轴上时,如图4,过P作MN∥x轴,AN∥y轴,BM∥y轴,∵S△APC =S梯形MNAC﹣S△ANP﹣S△CMP=20∴,解得t=﹣2,∴P(0,6)或(0,﹣2).5.解:(1)∵M为△ABC的AB上一点,且BM=2AM,∴S=a,故答案为a;(2)连接BD,∵△CDE的面积为1,,∴S△BDC =3S△DEC=3,∵,∴S△ABC =4S△BDC=12;(3)连接BD,设S△ADM=a,∵M是AB的三等分点(AM=AB),∴S△ABD =3a,S△BDM=2a,∵N是BC的中点,∴S△ABN =S△ACN,S△BDN=S△CDN,∴S△ADC =S△ADB=3a,∴S△ACM=4a,∵AM =AB ,∴S △CBM =2S △ACM =8a ,∴S △CDB =6a ,S △ABC =12a ,∴S △BDN =3a ,∴S 四边形BMDN =5a ,∴S 四边形BMDN =S △ABC =×1=,故答案为.6.解:(1)∵AB ⊥OM ,∴∠BAO =90°,∵∠AOB =60°,∴∠ABO =90°﹣60°=30°,∵90°=3×30°,∴△AOB 是“灵动三角形”.故答案为:30,是.(2)∵∠OAB =90°,∠BAC =70°,∴∠OAC =20°,∵∠AOC =60°=3×20°,∴△AOC 是“灵动三角形”.故答案为:是.(3)①当∠CAB=3∠ABC,时,∠CAB=60°,∠OAC=30°.②当∠ABC=3∠CAB时,∠CAB=10°,∠OAC=80°.③∠ACB=3∠CAB时,∠CAB=37.5°,可得∠OAC=52.5°,综上所述,满足条件的值为30°或52.5°或80°.7.解:(1)结论:∠BDP+∠EGP=180°.理由:∵∠ADE=∠DEF=90°,∴AB∥EF,∴∠BDG=∠DGE,∵∠DGE+∠EGP=180°,∴∠BDP+∠EGP=180°.(2)结论不变.∵∠AED=∠C,∴DE∥BC,∴∠ADE=∠B,∵∠B=∠DEF,∴∠ADE=∠DEF,∴AB∥EF,∴∠BDG=∠DGE,∵∠DGE+∠EGP=180°,∴∠BDP+∠EGP=180°.8.解:(1)∵∠ABC与∠BAC的角平分线相交于点P,∴PC平分∠ACB,∴∠PCD=∠PCE=∠ACB=×90°=45°,∵PC⊥DE,∴∠CPD=90°,∴∠CDE=45°,∴∠ADP=135°,∵∠BAC=40°,∠ACB=90°,∴∠ABC=90°﹣40°=50°,∵∠PBA=∠ABC=25°,∠PAB=∠BAC=20°,∴∠APB=180°﹣25°﹣20°=135°.(2)结论:∠APB=∠ADP.理由:∵PB,PA分别是∠ABC,∠BAC的角平分线,∴∠PBA=∠ABC,∠PAB=∠BAC,∴∠APB=180°﹣(∠ABC+∠BAC)=180°﹣(180°﹣90°)=135°,∵∠ADP=135°,∴∠APB=∠ADP.9.解:(1)∵点P在线段BC上以2cm/s的速度由B点向C点运动,点Q在线段CA上以cm/s的速度由C点向A点运动,∴BP=2t,CQ=t,故答案为:2t,t;(2)存在,此时t=2,∵AB=AC,∴∠B=∠C,∴当BP=CP,CQ=BD时,△BPD≌△CPQ,∴2t=8﹣2t,×10,∴t=2,∴t=2时,△BPD≌△CPQ;(3)设经过x秒后点P与点Q第一次相遇,由题意得,x=2x+2×10,解得x=40,∴点P共运动了40×2=80cm,∴80=56+24=2×28+24,∴点P,点Q在AB边上相遇,∴经过40秒,点P与点Q第一次相遇,此时它们在边AB上.10.(1)①证明:∵G为AD的中点,∴AG=DG,∵四边形ABCD是矩形,∴AB=DC,∠A=∠CDG=90°,在△ABG和△DCG中,,∴△ABG≌△DCG(SAS),∴BG=CG;②证明:延长GF、BC交于点Q,如图1所示:∵四边形ABCD是矩形,∴AD∥BC,∴∠AGB=∠CBG,∠EGF=∠Q,∵F为EC的中点,∴EF=CF,在△GFE和△QFC中,,∴△GFE≌△QFC(AAS),∴GE=CQ,GF=QF,由(1)得:BG=CG,∴∠CBG=∠BCG,∴∠AGB=∠BCG,∴∠BGE=∠GCQ,在△BGE和△GCQ中,,∴△BGE≌△GCQ(SAS),∴BE=GQ=2FG=6;(2)解:∵四边形ABCD是矩形,∴∠CDA=90°,AD∥BC,∴∠CDE=90°,∠AEB=∠EBC=30°,∵ED=CD,∴△CDE是等腰直角三角形,∴∠DCE=∠DEC=45°,∴∠CEB=45°﹣30°=15°,在BE上截取EG=CG,如图2所示:则∠GCE=∠CEB=15°,∴∠CGB=∠GCE+∠CEB=30°,∴∠EBC=∠CGB,∴CG=BC=4,∴EG=4,∵CH⊥BE,∴GH=BH,∠CHB=90°,∵∠EBC=30°,∴CH=BC=2,GH=BH=CH=2,∴EH=GH+EG=2+4.。
八年级数学上册《三角形的高、中线与角平分线》练习题及答案
八年级数学上册《三角形的高、中线与角平分线》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.如图,△ABC中BC边上的高和△AEC中AE边上的高分别是()A.EF和CD B.BC和CD C.AB和CD D.AB和EF2.如图,ABC的面积是2,AD是ABC的中线,13AF AD=,12CE EF=,则CDE△的面积为()A.29B.16C.23D.493.数学活动课上,小敏、小颖分别画了△ABC和△DEF,数据如图,如果把小敏画的三角形面积记作S△ABC,小颖画的三角形面积记作S△DEF,那么你认为()A.S△ABC >S△DEF B.S△ABC <S△DEFC.S△ABC =S△DEF D.不能确定4.如图,在△ABC中,已知点D、E、F分别为边BC、AD、CE的中点,且△ABC的面积是8cm2,则阴影部分面积等于()A .2cm 2B .1.5cm 2C .1cm 2D .0.5cm 25.如图,BD 是ABC 的边AC 上的中线,AE 是ABD △的边BD 上的中线,BF 是ABE △的边AE 上的中线,若ABC 的面积是32,则阴影部分的面积是( )A .9B .12C .18D .206.请你量一量如图ABC 中BC 边上的高的长度,下列最接近的是( )A .0.5cmB .0.7cmC .1.5cmD .2cm7.如图,已知D 、E 分别为△ABC 的边BC 、AC 的中点,连接AD 、DE ,AF 为△ADE 的中线.若四边形ABDF 的面积为10,则△ABC 的面积为( )A .12B .16C .18D .208.已知A ,B 两点在数轴上的位置如图所示,原点为O ,现A 点以2m/s 的速度向左运动,B 点以1m/s 的速度向左运动,若A ,B 两点同时出发,当OA :OB =1:2时,用时为( )A .2sB .14sC .73s 或1sD .12s 或2s二、填空题 9.填空:(1)如图(1),,AD BE CF 是ABC 的三条中线,则2AB =______,BD =______,12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线,则1∠=______,132∠=______,2ACB ∠=______.10.已知BD 、CE 是△ABC 的高,直线BD 、CE 相交所成的角有一个角为45︒,则BAC ∠等于______. 11.如图,AC//BD ,OA ,OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,垂足为E ,如果OE 5=,那么AC 与BD 的距离是________12.如图,在ABC 中,90,BAC AD ∠=︒是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是____________.△ABE △的面积等于BCE 的面积;△AFG AGF ∠=∠;△2FAG ACF ∠=∠;△CG 是ACD △的角平分线13.如图,AD 是△ABC 的中线,BE 是△ABD 的中线,EF ⊥BC 于点F.若24ABCS=,BD = 4 ,则EF 长为___________.14.若AD是△ABC的高,△BAD=70°,△CAD=20°,则△BAC的度数为_____.15.连结三角形的一个顶点和它________________的________叫做三角形这边上的中线.如图,若BE是ABC中AC边上的中线,则AE________12EC=________.16.如图,点C、D分别是半圆AOB上的三等分点,若阴影部分的面积为32π,则半圆的半径OA的长为__________.三、解答题17.如图,△ABE 中,△E =90°,AC 是△BAE 的角平分线.(1)若△B =40°,求△BAC 的度数;(2)若D 是BC 的中点,△ADC 的面积为16,AE =8,求BC 的长.18.如图,在ABC 中(AB BC >),2AC BC =,BC 边上的中线AD 把ABC 的周长分成60和40两部分,求AC 和AB 的长.19.在平面内,分别用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下.问:(1)4根火柴棒能搭成三角形吗?(2)8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图. 20.如图,在正方形网格中有一个ABC ,按要求进行作图(只用直尺)(1)画出将ABC向右平移6格,再向上平移3格后的DEF;(2)画出ABC中AC边上的高BH;(3)请在图中直接标记出3个使BCP的面积等于3的格点1P、2P、3P.参考答案:1.C【分析】根据三角形高的定义,△ABC中BC边上的高为从BC边相对的顶点A向BC边作的垂线段,△AEC 中AE边上的高为从AE边相对的顶点C向AE边作的垂线段,观察图形,找出符合要求的线段即可.【详解】解:根据三角形高的定义可知,AB是△ABC中BC边上的高,CD是△AEC中AE边上的高,故选C.【点睛】本题考查三角形高的定义:从三角形一个端点向它的对边作一条垂线,三角形顶点和它对边垂足之间的线段称三角形这条边上的高.2.A【分析】根据中线的性质即可求出S△ACD,然后根据等高时,面积之比等于底之比,即可依此求出S△CDF,S△CDE.【详解】解:△△ABC的面积是2,AD是△ABC的中线,△S△ACD=12S△ABC=1,△AF=13 AD,△DF=23AD,△S△CDF=23S△ACD=23×1=23,△CE=12EF,△CE=13 CF△S△CDE=13S△CDF=13×23=29,故选:A.【点睛】此题考查的是三角形的面积关系,掌握中线的性质和等高时,面积之比等于底之比是解决此题的关键.3.C【分析】在两个图形中分别作BC、EF边上的高,欲比较面积,由于底边相等,所以只需比较两条高即可.【详解】解:如图,过点A、D分别作AG△BC,DH△EF,垂足分别为G、H,在△ABG和△DHE中,AB=DE=5,△B=50°,△DEH=180°-130°=50°,△△B=△DEH,△AGB=△DHE=90°,△△AGB△△DHE(AAS),△AG=DH.△BC=4,EF=4,△S△ABC=S△DEF.故选:C.【点睛】要题考查全等三角形的判定和性质,等底等高两三角形面积相等.证明△AGB△△DHE是解题的关键.4.A【分析】先由D为BC中点,求出△ABD和△ACD面积,再由点E为AD中点求出△BCE面积,再根据F是CE中点,知阴影部分面积等于△BCE面积的一半,即可求解.【详解】解:△D是BC中点,△ABC的面积是8cm2,△1=42ABD ACD ABC S S S ==△△△cm 2, △E 是AD 中点,△1=22ABE BDE ABD S S S ==△△△cm 2,1=22ACECDEACDS SS ==cm 2,△4CBE S =△cm 2, △F 为CE 中点, △1=22CBE S S =△阴影cm 2, 故选:A .【点睛】本题考查了三角形面积的等积变换,掌握三角形的中线将三角形分成面积相等的两部分是解题关键. 5.B【分析】利用中线等分三角形的面积进行求解即可. 【详解】△BD 是ABC 的边AC 上的中线,△11321622ABD BCD ABC S S S ===⨯=△△,△AE 是ABD △的边BD 上的中线, △1116822ABEADEABDSSS ===⨯=, 又△BF 是ABE △的边AE 上的中线,则CF 是ACE 的边AE 上的中线, △118422BEFABFABESSS ===⨯=,182CEFACFADECEDACES SSSS =====,则4812BEFCEFS SS =+=+=阴影,故选:B .【点睛】本题考查了中线的性质,清晰明确三角形之间的等量关系,进行等量代换是解题的关键. 6.D【分析】作出三角形的高,然后利用刻度尺量取即可. 【详解】解:如图所示,过点A 作AO △BC ,用刻度尺直接量得AO 更接近2cm ,故选:D .【点睛】题目主要考查利用刻度尺量取三角形高的长度,作出三角形的高是解题关键. 7.B【分析】根据三角形的中线平分三角形的面积即可得到结论. 【详解】设AEF S x =△, △AF 为△ADE 的中线. △,2AEFADFADESSx Sx ===△E 分别为△ABC 的边AC 的中点, △2,4ADECDECDASSx Sx ===△D 分别为△ABC 的边BC 的中点, △4,8CDABDAABCSSx Sx ===△四边形ABDF 的面积=510FDABDAS Sx +==解得2x = △816ABCSx ==故选:B【点睛】本题考查了三角形的面积,熟练三角形的中线平分三角形的面积是解题的关键. 8.C【分析】设A ,B 两点同时出发运动的时间为t s ,分类讨论△当A 点在O 点右侧时和△当A 点在O 点左侧时,分别用t 表示出OA 和OB ,再列出等式,解出t 即可. 【详解】设A ,B 两点同时出发运动的时间为t s , 分类讨论△当A 点在O 点右侧时,即32t <时, 此时1OB t =+,32OA t =-, △OA :OB =1:2 △(32)t -:(1)t +=1:2 解得:312t =<,符合题意; △当A 点在O 点左侧时,即32t >, 此时1OB t =+,23OA t =-,△OA :OB =1:2 △(23)t -:(1)t +=1:2 解得:7332t =>,符合题意. 综上可知1t =或73t =时,OA :OB =1:2 故选C .【点睛】本题主要考查数轴上的动点问题,利用分类讨论的思想是解答本题的关键. 9. AF 或BF CD AC 2∠ ABC ∠ 4∠【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点,进而得到答案.(2)根据角平分线定义,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线即可解答.【详解】解:(1)△CF 是AB 边上的中线, △AB =2AF =2BF ; △AD 是BC 边上的中线, △BD =CD ,△BE 是AC 边上的中线, △AE =12AC ,(2)△AD 是BAC ∠的角平分线, △12∠=∠ ,△BE 是ABC ∠的角平分线, △132∠=ABC ∠, △CF 是ACB ∠的角平分线, △2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线,解题的关键是掌握三角形的中线及角平分线的定义. 10.45°或135°【分析】分两种情况:(1)当△A 为锐角时,如图1,(2)当△A 为钝角时,如图2,根据三角形的内角和计算得出结果.【详解】解:分两种情况:(1)当△A为锐角时,如图1,△△DOC=45°,△△EOD=135°,△BD、CE是△ABC的高,△△AEC=△ADB=90°,△△EAO+△AEO+△AOE=180°=△DAO+△DOA+△ADO,△△AEO+△EAD+△ADO+△EOD=360°△△A=360°−90°−90°−135°=45°;(2)当△A为钝角时,如图2,△△F=45°,△ADF=△AEF=90°,同理△DAE=360°−90°−90°−45°=135°,△△BAC=△DAE=135°,则△BAC的度数为45°或135°,故答案为:45°或135°.【点睛】本题考查了三角形的高和三角形的内角和,明确三角形内角和,三角形的高所构成了两个直角;本题是易错题,容易漏解,要分锐角三角形和钝角三角形两种情况进行计算.11.10【分析】过点O 作OM AC ⊥于M ,作ON BD ⊥于N ,利用平行线的性质可证得OM△BD ,进而可证得MN 为AC 和BD 的距离,根据角平分线的性质可知OE=OM=OE ,即可求得MN 的长度.【详解】解:如图,过点O 作OM AC ⊥于M ,作ON BD ⊥于N .△OA 、OB 分别平分BAC ∠和ABD ∠,OE AB ⊥,△OM OE ON 5===,又 AC △BD ,OM AC ⊥,△OM BD ⊥,又ON BD ⊥,△M ,O ,N 三点共线,△ AC 与BD 之间的距离为MN=OM ON 10+=.故答案为:10.【点睛】本题考查求平行线间的距离、角平分线的性质、八个基本事实,熟练掌握角平分线的性质,作出AC 和BD 之间的距离是解答的关键.12.△△△△【分析】根据等底同高的三角形的面积相等即可判断△;根据直角三角形两锐角互余求出△ABC =△CAD ,根据三角形的外角性质即可推出△;根据直角三角形两锐角互余求出△BAD =△ACD ,根据角平分线定义即可判断△;根据三角形的角平分线的定义判断△即可.【详解】解:△BE 是中线,△AE =CE ,△△ABE 的面积=△BCE 的面积(等底同高的三角形的面积相等),△正确;△CF 是角平分线,△△ACF =△BCF ,△AD 为高,△△ADC =90°,△△BAC =90°,△△ABC +△ACB =90°,△ACB +△CAD =90°,△△ABC =△CAD ,△△AFG =△ABC +△BCF ,△AGF =△CAD +△ACF ,△△AFG =△AGF ,△正确;△AD 为高,△△ADB =90°,△△BAC =90°,△△ABC +△ACB =90°,△ABC +△BAD =90°,△△ACB =△BAD ,△CF 是△ACB 的平分线,△△ACB =2△ACF ,△△BAD =2△ACF ,即△F AG =2△ACF ,△正确;△CF 是△ACB 的平分线,CF 交AD 于点G ,△CG 是△ACD 的角平分线,△正确;故答案为:△△△△.【点睛】本题考查了直角三角形两锐角互余,三角形的外角性质,三角形的角平分线、中线、高线等知识点,能综合运用定理进行推理是解此题的关键.13.3【分析】因为S △ABD =12S △ABC ,S △BDE =12S △ABD ;所以S △BDE =14S △ABC ,再根据三角形的面积公式求得即可.【详解】解:△AD 是△ABC 的中线,S △ABC =24,△S △ABD =12S △ABC =12,同理,BE 是△ABD 的中线,612BDE ABD SS ==,△S △BDE =12BD •EF ,△12BD •EF =6,即1462EF ⨯⨯= △EF =3.故答案为:3.【点睛】此题考查了三角形的面积,三角形的中线特点,理解三角形高的定义,根据三角形的面积公式求解,是解题的关键.14.90°或50°【分析】分高AD 在△ABC 内部和外部两种情况讨论求解即可.【详解】解:△如图1,当高AD 在△ABC 的内部时,△BAC =△BAD +△CAD =70°+20°=90°;△如图2,当高AD 在△ABC 的外部时,△BAC =△BAD -△CAD =70°-20°=50°,综上所述,△BAC 的度数为90°或50°.故答案为:90°或50°.【点睛】本题考查了三角形的高线,难点在于要分情况讨论.15. 所对边的中点 线段 = AC【分析】根据三角形中线的定义,即可求解.【详解】解:连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线.△BE 是ABC 中AC 边上的中线, △12AE EC AC == 故答案为:所对边的中点;线段;=;AC ;【点睛】本题主要考查了三角形的中线,熟练掌握连结三角形的一个顶点和它所对边的中点的线段叫做三角形这边上的中线是解题的关键.16.3.【分析】如图,连接,,,OC OD CD 证明//,CD AB 再证明32OCD S S π=阴影扇形=,从而可以列方程求解半径. 【详解】解:如图,连接,,,OC OD CD点C 、D 分别是半圆AOB 上的三等分点,60,AOC COD DOB ∴∠=∠=∠=︒,OC OD =COD ∴为等边三角形,60,OCD ∴∠=︒,AOC DCO ∴∠=∠//,CD AB ∴,COD BCD S S ∴=32OCD S S π∴=阴影扇形=, 2603,3602OA ππ•∴= 解得:3,OA = (负根舍去),故答案为:3.【点睛】本题考查的圆的基本性质,弧,弦,圆心角之间的关系,平行线的判定与性质,扇形面积的计算,掌握以上知识是解题的关键.17.(1)25BAC ∠=︒;(2)8BC =【分析】(1)先利用互余计算出△BAE =50°,再利用角平分线的定义得到△BAC =12△BAE =25°;(2)先根据三角形面积公式得出DC ,利用D 是BC 的中点得到BC 即可.(1)解:△△B =40°,△E =90°,△△BAE =90°﹣40°=50°,△AC 是△BAE 的角平分线,△△BAC =12△BAE =25°;(2)△S △ADC =12DC •AE , △12×DC ×8=16,△DC =4,△D 是BC 的中点,△BC =2CD =8.【点睛】本题考查了角平分线的定义,线段的中点,角平分线的定义的正确运用是解题的关键. 18.48AC =,28AB =【分析】由题意可得60AC CD +=,40AB BD +=,由中线的性质得244AC BC CD BD ===,故可求得48AC =,即可求得28AB =. 【详解】由题意知100AC CD BD AB +++=,60AC CD +=,40AB BD +=△2AC BC =,D 为BC 中点△244AC BC CD BD === △156044AC CD AC AC AC +=+== 即460485AC =⨯= 则BC =24,CD =BD =12则40401228AB BD =-=-=且28>24符合题意.【点睛】本题考查了中线的性质,中线是三角形中从某边的中点连向对角的顶点的线段.19.(1)4根火柴棒不能搭成三角形(2)8根火柴棒能搭成一种三角形,12根火柴棒能搭成三种不同的三角形,画图见解析【分析】(1)把4分成3个数只能分成1,1,2三个数,故4根火柴棒不能搭成三角形;(2)利用三角形三边关系定理求解即可.(1)解:△把4分成3个数只能分成1,1,2三个数,而1+1=2,△4根火柴棒不能搭成三角形;(2)△ 8根火柴棒能搭成一种三角形,示意图如下:△12根火柴棒能搭成三种不同的三角形,其边长分别为:(4,4,4),(5,5,2),(3,4,5),示意图如下:【点睛】本题主要考查了三角形三边关系定理:任意两边之和大于第三边,任意两边之差小于第三边.20.(1)见解析(2)见解析(3)见解析【分析】(1)按要求分别画出平移A、B、C三点后的点D、E、F,并依次连接,即得到△ABC平移后的△DEF;(2)按要求画即可;(3)作三格点1P、2P、3P,使CP1=CP3=BP2=3即可.(1)平移后的△DEF如下图所示:(2)所画的高BH如下图所示:(3)由于CP1=CP3=BP2=3,则此三点1P、2P、3P满足题意.【点睛】本题考查了作图:作图形的平移,画三角形边上的高、三角形的面积,学会利用数形结合是解题的关键.。
三角形中线专题
中线:顶点到对边中点的连线段第一、中线等分而积;1能将一个三角形分成而积相等的两个三角形的一条线段是A •中线B •角平分线C.高线D •三角形的角平分线2•如图,在厶ABC 中,D 、E 分别为BC 上两点,且BD = DE = EC,则图中面积相等的三角形有()A • 4对B • 5对C.6对D • 7对(注意考虑完全,不要漏掉某些情况)3. A ABC 的周氏为16cm, AB = AC, BC 边上的中线 AD 把△ ABC 分 成周长相等的两个三角形.若BD = 3cm ,求AB 的长.4 4. 一块三角形优良殆种试验m,现引进四个良种进行对比实弭 需: 这块土地分成面积相等的四块.请你制订出两种以上的划分分案.B第二、中线提供了对应全等的一组边一一倍长中线构造全等;实例:△ ABC 中AD 是BC 边中线B A方式1延长AD到E,使DE=AD,连接BE方式2 间接倍长延长MD到N,使DN=MD,连接CN过点C作CF丄方式3 AD于F,过点B作BEX AD的延长线于E;【经典例题】例ABC中,AB=5 , AC=3,求中线AD的取值范围例2:己知在△ ABC中,AB=AC , D在AB上,E在AC的延长线上,DE交BC于F,且DF=EF,求证:BD=CE3、己知:如图,ABC 中,C=90 , CM_AB 于M , AT 平分BAC 交CM 于D,交BC 于T,过 D 作DE//AB 交BC 于E,求证:CT=BE ・例3:己知在△ ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC,延长BE 交AC 于 F,求证:AF=EF提示:倍长AD 至G,连接BG,证明△ BDG A ACDA三角形BEG 是等腰三角形例4:己知:如图,在J ABC 中,AB = AC , D E 在BC 上,且DE= 交AE 于点 F, DF=AC.求证:AE 平分.BAC提示:方法1倍长AE 至G,连结DG方法2:倍长FE 至H,连结CH例 5:己知 CD=AB, / BDA= / BAD , AE 是厶 ABD 的中线,求证:/ C= / BAE提示:倍长AE 至F,连结DF证明 A ABE A A FDE( SAS进而证明 A ADF A A ADC(SAS例6:在厶ABC 中,AD是厶ABC 的中线,求证:AB+A02AD // BA 【融会贯通】1在四边形ABCD 中,相交 于点F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AB 到点 F ,使
让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 增强学生把新知识 转化旧知识的能力。 从不同角度识别图 形的能力。 加强交流学习其他 同学思维上的优势。
BF AB ,连接 FD , EF ,得到 DEF (如图
4).若阴影部分的面积为 S3 ,则 S3 =
,
教学 重点与难点
设计思路
教与学的方法
重点: 结论的推导和灵活运用
难点: 从复杂图形中找出含有中线的三角形这一基本图形
.
从学生学过的三角形面积入手,自己动手推导出三个结论,然后利用结论
推导三角形中重要的重心图的结论,最后联系中考
.对于四边形的面积问题
转化为三角形面积问题 .在课的结尾联系生活实际,让孩子打开思路 ,应用所
(用含 a 的代数式表示) .
学生画图,求面积。 五 拓展与应用
如图 5,已知四边形 ABCD 的面积是 a , E、 F、
G面积?
转化思想方法的应 用。 让学生灵活运用所 获得的结论, 解决问 题,考查学生对结论 的理解。 学生把新知识转化 旧知识的能力。 从不同角度识别图 形的能力。
E
A
A
B
C
D
结论:若底相等,则面积之比等于高之比
B
HFC
D
3.已知 S ABD 30, S ACD 12 ,问:线段 BD 与线
段 CD 的比值是多少?得出什么结论?
A
B
C D
学生动手画出
ABC , ECD 的高,
写出证明过程, 并能得 出结论,小组合作, 互 相检查书写规范与否。 学生到前面讲解
A
线等分三角形的面积 , 即如图 1 ,已知 AD 为 ABC 的 BC 边上的中线 ,则 S ABD S ADC
如图 2 至图 4 中, S ABC a .
( 1)如图 2,延长 ABC 的边 BC 到点 D ,使
CD BC , 连 接 DA . 若 S ACD S1 , 则 学生动手推导。 小组合
六 .开放题 请你设计一个方案把一块形状如三角形的地,分 成面积为 1:2:3 三部分,分别种植不同的作物。
A
A
C
C
B
B
及时发现学生的闪光点,及时表扬。
课后反思:
把实际问题转化数学 问题。 学生画图,小组 交流,看看谁画的多。 展示其结论。 得到如下 结论的表扬。
C
B
D
M
2..已知下图中, BC CD , S ECD 2 S ABC ,问 学生动手做题,画出
BC , CD 边上的高有什么数量关系?得出什么结
论?
E
ABC , ECD 的高,
写出证明过程, 并能得 出结论。 学生到前面讲 解。
学生亲自实践, 画两 个三角形的高。 并能 给出逻辑推理, 锻炼 学生的推理论证能 力。
学生亲自实践, 给出 逻辑推理, 锻炼学生 的推理论证能力与 归纳总结能力
结论:若高相等,则面积之比等于底之比
30
12
B
C D
三.理论基本应用
已知 AD , BE ,CF 是 ABC 的三条中线 ,O 为中
线的交点 .中线把三角形分成了六个小的三角形, 它们的面积分别用 s1、s2、s3、s4、s5 、s6 表示(如 下图)。 问题 : (1)s 1 与 s2, s3 与 s4, s5 与 s6 有什么关系? ( 2) s1 与 s6 有什么关系?说明理由
作交流。
S1
. (用含 a 的代数式表示) ;
( 2)如图 3,延长 ABC 的边 BC 到点 D ,延 长边 CA 到点 E ,使 CD BC , AE CA 连接
DE .若 S ECD S2 ,则 S2
(用含 a 的
找学生都前面演示并 讲解做法, 其他同学补 充。
代数式表示) ,并写出理由; ( 3 )在图 3 的基础上延长
A
B
C
A
B
C
二.基本理论
1.已知 AD 为 ABC 的 BC 边上的中线,问: ABD , ADC 的面积有什么关系?得出什么结
论? A
B
D
C
板演过程,得出结论 结论: .等底等高面积等
学生动手做题, 写出证 明过程,并发现
ABD , ADC 的高是
同一条线段。 并能得出结论。
A
学生亲自实践, 画两 个三角形的高。 看看 学生在复杂图形中 会不会画三角形的 高。 让学生学会从复杂 图形中辨认简单图 形。
s3=s4, 总结能力以及从复
s5=s6。
杂图形看出简单图
A
形的能力。
F
s1
s6 E
s2
O
s5
s3 s4
小组合作加强同学
B
D
C 们之间的交流, 增强
然后在大的三角形中
友谊,同时让孩子们
再利用中线等分面积, 善于发现其他同学
推倒出 s1=s6。同理得 身上的优点。
到 6 个面积都相等。
四.中考链接 阅读与理解:三角形的中线的性质:三角形的中
课题: 三角形中线等分面积专题
授课教师:
授课班级:初 二 5 班
许艳
授课时间 :2016 年 4 月 22 日
教学目标
学情分析
能够推出以下三个基本结论,并能灵活用基本结论解决问题
.
1.等底等高面积等;
2.若底相等,则面积之比等于高之比;
3.若高相等,则面积之比等于底之比 .
我是中间接班, 进入初二才接初二 5,6 班,我与学生的磨合还是不够, 特别 是几何方面,对学生的几何基础与弱点不是十分了解。学生在初一已经学 过三角形以及与三角形有关的线段 .中线作为三角形中的一条重要线段,具 有重要的性质:每条三角形中线分得的两个三角形面积相等,学生都知道 这一结论,但是对于结论认识的深度与广度还有很大差距。六班孩子基础 较好,大部分孩子属于中游,听课习惯较好,爱回答问题,思维活跃。五 班两极分化严重。
学的知识把三角形的面积按照要求划分 .
学习方法:探究,合作交流 教学方法:启发式,讲解式
教师活动
一. 复习回顾 1. 什么是三角形的高? 2. 如何画一个三角形的高?
学生活动
设计意图
学生回忆学过的知识, 叙述三角形高的定义, 定义明确指出了三角 形高的画法。 画钝角三角形的高, 锐 角三角形的高。
回忆以前的知识, 为 本节课的学习做好 铺垫。
( 3 ) S AOC 与 S DOC 的 面 积 之 比 是 多
少? OA: OD 是多少?由此你能得出什么结论?
A
F
E
O
B
B
D
C
A
F s1 s6 E
s2 O s5
s3 s4 D
C
学生自己推导,
学生亲自实践, 动手
然后小组合作,讨论。 推导,锻炼学生的推
根据中线等分面积得
理论证能力与归纳
到 s1=s2,